On solving parametric polynomial systems

Rong Xiao¹ joint work with Marc Moreno Maza¹, Bican Xia²

¹ University of Western Ontario, Canada ² Peking University, China

MACIS 2011, Oct 21, 2011

1 Motivation and background

3 🕨 🖌 3

Plan

1 Motivation and background

2 Main results

3 Conclusion and future work

→ 3 → 4 3

Related work

1 ...

- ② Comprehensive Gröbner bases (Weispfenning, 1992)
- Comprehensive Gröbner systems (Montes, 2004) (Kapur, Yao Sun, Wang 2010-2011)
- Border polynomial (Yang, Xia and Hou, 1999)
- S Discriminant variety (Lazard and Rouillier, 2007)
- Comprehensive triangular decomposition (Chen, Golubitsky, Lemaire, MMM, Pan 2007)

0...

< 3 > < 3 >

Solving a parametric polynomial system?

Input: $f := a x^2 + x + 1$ with parameter *a* and $(a, x) \in \mathbb{R}^2$ **Output:**

$$\begin{cases} x = \frac{-1+\sqrt{1-4a}}{2a} \text{ or } x = \frac{-1-\sqrt{1-4a}}{2a}, & \text{when } a \neq 0\\ x = -1, & \text{when } a = 0 \end{cases}$$

"Genererically", the properties of solutions depend on the parameter values continuously

- Generically: the points related to "discontinuity" are few
- Properties of the solutions: number, value, representation form (regular chains, Gröbner bases)

(日) (周) (三) (三)

Solving a parametric polynomial system?

Input: $f := a x^2 + x + 1$ with parameter *a* and $(a, x) \in \mathbb{R}^2$ **Output:**

$$\begin{cases} x = \frac{-1+\sqrt{1-4a}}{2a} \text{ or } x = \frac{-1-\sqrt{1-4a}}{2a}, & \text{when } a \neq 0\\ x = -1, & \text{when } a = 0 \end{cases}$$

"Genererically", the properties of solutions depend on the parameter values continuously $% \left({{{\left({{{{{\bf{n}}}} \right)}_{i}}}_{i}}} \right)$

• Generically: the points related to "discontinuity" are few

• Properties of the solutions: number, value, representation form (regular chains, Gröbner bases)

イロト イポト イヨト イヨト 二日

Solving a parametric polynomial system?

Input: $f := a x^2 + x + 1$ with parameter *a* and $(a, x) \in \mathbb{R}^2$ **Output:**

$$\begin{cases} x = \frac{-1+\sqrt{1-4a}}{2a} \text{ or } x = \frac{-1-\sqrt{1-4a}}{2a}, & \text{when } a \neq 0\\ x = -1, & \text{when } a = 0 \end{cases}$$

"Genererically", the properties of solutions depend on the parameter values continuously

- Generically: the points related to "discontinuity" are few
- Properties of the solutions: number, value, representation form (regular chains, Gröbner bases)

イロト 不得下 イヨト イヨト 二日

Various notions of continuity

Let $f := a x^2 + x + 1$ with parameter a and α be a fix parameter value.

Example (Simple solutions)

Let $\alpha \notin \{0, \frac{1}{4}\}$. For all *a* near α , *f* has 2 complex simple roots.

Example (Real solutions)

Let $\alpha \in (0, \frac{1}{4})$. For all *a* near α , *f* has 2 simple real roots α_1, α_2 , which are semi-algebraic functions of *a*:

$$\alpha_1 = \frac{-1 + \sqrt{1 - 4a}}{2a}, \alpha_2 = \frac{-1 - \sqrt{1 - 4a}}{2a}$$

Various notions of continuity

Let $f := a x^2 + x + 1$ with parameter a and α be a fix parameter value.

Example (Simple solutions)

Let $\alpha \notin \{0, \frac{1}{4}\}$. For all *a* near α , *f* has 2 complex simple roots.

Example (Real solutions)

Let $\alpha \in (0, \frac{1}{4})$. For all *a* near α , *f* has 2 simple real roots α_1, α_2 , which are semi-algebraic functions of *a*:

$$\alpha_1 = \frac{-1 + \sqrt{1 - 4a}}{2a}, \alpha_2 = \frac{-1 - \sqrt{1 - 4a}}{2a}$$

More examples

Let $f_2 := ay^2 + xy - 1$, $f_1 := (a - 1)x^2 - 1$ and $S := \{f_1 = 0, f_2 = 0\}$ with parameter a

Example (Gröbner bases)

Let $\alpha \notin \{0,1\}$. For all $a = \beta$ near α , the reduced Gröbner basis of the polynomial ideal $\langle f_1, f_2 \rangle|_{a=\beta}$ w.r.t. $x \prec y$ has the formula:

$$\{\frac{f_2}{a},\frac{f_1}{a-1}\}_{a=\beta}.$$

Example (Triangular decomposition)

Let $\alpha \notin \{0, 1\}$. For all $a = \beta$ near α ,

 $\left\{ \left[f_1, f_2 \right] \right\} |_{\boldsymbol{a} = \beta}$

forms a triangular decomposition of $S|_{a=\beta}$.

イロト イヨト イヨト

More examples

Let $f_2 := ay^2 + xy - 1$, $f_1 := (a - 1)x^2 - 1$ and $S := \{f_1 = 0, f_2 = 0\}$ with parameter a

Example (Gröbner bases)

Let $\alpha \notin \{0,1\}$. For all $a = \beta$ near α , the reduced Gröbner basis of the polynomial ideal $\langle f_1, f_2 \rangle|_{a=\beta}$ w.r.t. $x \prec y$ has the formula:

$$\{\frac{f_2}{a},\frac{f_1}{a-1}\}_{a=\beta}.$$

Example (Triangular decomposition)

Let $\alpha \notin \{0,1\}$. For all $a = \beta$ near α ,

 $\{\,[\mathit{f}_1,\mathit{f}_2]\,\}|_{\mathit{a}=\beta}$

forms a triangular decomposition of $S|_{a=\beta}$.

イロト イポト イヨト イヨト

Notations

Parameters/values: $U = u_1, u_2, \ldots, u_d / \mathbb{C}^d$ Unknowns/values: $X = x_1, x_2, \ldots, x_s / \mathbb{C}^s$ Parametric algebraic system S := [F, H]:

$$\begin{cases} f_1 = f_2 = \dots = f_\ell = 0\\ h_1 \neq 0, h_2 \neq 0, \dots, h_k \neq 0 \end{cases}$$

where

$$F = \{f_1, f_2, \dots, f_\ell\},$$
$$H = \{h_1, h_2, \dots, h_k\},$$
$$F, H \subset \mathbb{Q}[U, X].$$

Z(S): zero set of S in \mathbb{C}^{d+s} Assumption: S is *well-determinate*, i.e.

$$\mathcal{I} := \langle F \rangle : (\prod_{h \in H} h)^{\infty}$$

is of dimension d and U is maximally algebraically independent modulo $\mathcal{I}_{\mathfrak{q},\mathfrak{q}}$

Rong Xiao (UWO)

Two notions of continuity

$$\Pi_{\mathrm{U}}: Z(S) \subset \mathbb{C}^{s+d} \mapsto \mathbb{C}^d$$
$$\Pi_{\mathrm{U}}(x_1, \dots, x_s, u_1, \dots, u_d) = (u_1, \dots, u_d)$$

Definition

Let α in \mathbb{C}^d . We say that S is

- I Z-continuous at α: if there exists an open ball O_α centered at α s.t. for any β ∈ O_α we have # (Z(S(β)) = # (Z(S(α)).
- On U-continuous at α: if there exists an open ball O_α centered at α and a finite partition, say {C₁,..., C_k} of Π⁻¹_U(O_α) ∩ Z(S) such that for each j ∈ {1,..., k}

$$\Pi_{\mathrm{U}}|_{C_{j}}:C_{j}\xrightarrow{\Pi_{\mathrm{U}}}\mathcal{O}_{\alpha}$$

is a diffeomorphism.

Two notions of continuity

$$\Pi_{\mathrm{U}}: Z(S) \subset \mathbb{C}^{s+d} \mapsto \mathbb{C}^d$$
$$\Pi_{\mathrm{U}}(x_1, \dots, x_s, u_1, \dots, u_d) = (u_1, \dots, u_d)$$

Definition

Let α in \mathbb{C}^d . We say that S is

- Z-continuous at α: if there exists an open ball O_α centered at α s.t. for any β ∈ O_α we have #(Z(S(β)) = #(Z(S(α)).
- O Π_U-continuous at α: if there exists an open ball O_α centered at α and a finite partition, say {C₁,..., C_k} of Π_U⁻¹(O_α) ∩ Z(S) such that for each j ∈ {1,..., k}

$$\Pi_{\mathrm{U}}|_{C_{j}}:C_{j}\xrightarrow{\Pi_{\mathrm{U}}}\mathcal{O}_{\alpha}$$

is a diffeomorphism.

(日) (同) (日) (日)

Border polynomial and discriminant variety

We reformulate these two well-known concepts using the previous continuity notions.

Definition (Border polynomial)

A non-zero polynomial b in $\mathbb{Q}[U]$ is called a *border polynomial* (BP) of the parametric polynomial system S if the zero set V(b) of b in \mathbb{C}^d contains all the points at which S is not Z-continuous.

Definition (Discriminant variety)

An algebraic set $W \subsetneq \mathbb{C}^d$ is a *discriminant variety* of the parametric polynomial system S if W contains all the points at which S is not Π_U -continuous.

- 4 周 ト 4 ヨ ト 4 ヨ ト

Border polynomial and discriminant variety

We reformulate these two well-known concepts using the previous continuity notions.

Definition (Border polynomial)

A non-zero polynomial b in $\mathbb{Q}[U]$ is called a *border polynomial* (BP) of the parametric polynomial system S if the zero set V(b) of b in \mathbb{C}^d contains all the points at which S is not Z-continuous.

Definition (Discriminant variety)

An algebraic set $\mathcal{W} \subsetneq \mathbb{C}^d$ is a *discriminant variety* of the parametric polynomial system S if \mathcal{W} contains all the points at which S is not Π_U -continuous.

- 4 回 ト - 4 回 ト

Remarks

- **1** $\Pi_{\rm U}$ -continuity implies Z-continuity
- 2 The minimal DV: the intersection of all DV
- The "minimal" BP?: does not exist in general; see the case the minimal DV is not a hypersurface.

3 🕨 🖌 3

Motivation and contributions

- Are those different notions of continuity (and discontinuity) computatable?
- How are they related to each other?
- Our contributions:
 - Z-continuity and $\Pi_{\rm U}\text{-}continuity$ are equivalent for "triangular" systems
 - An explicit form of BP/minimal DV for "triangular" systems
 - A new characterization for the non-properness locus of the mnimal DV of sat(*T*)
 - The difference between the minimal DV of T and that of sat(T)
 - Given T, characterize T' among all T' satisfying sat(T') = sat(T) such that T' poccessing the minimal BP.

A (10) A (10) A (10)

Motivation and contributions

- Are those different notions of continuity (and discontinuity) computatable?
- How are they related to each other?

Our contributions:

- Z-continuity and $\Pi_{\rm U}\text{-}continuity$ are equivalent for "triangular" systems
- An explicit form of BP/minimal DV for "triangular" systems
- A new characterization for the non-properness locus of the mnimal DV of sat(*T*)
- The difference between the minimal DV of T and that of sat(T)
- Given T, characterize T' among all T' satisfying sat(T') = sat(T) such that T' poccessing the minimal BP.

A B F A B F

Motivation and background

Conclusion and future work

Rong Xiao (UWO)

イロト イヨト イヨト イヨト

Equivalence BP-DV for triangular systems (1/2)

Let S := [T, H] be a squarefree triangular algebraic system (STAS). Denote by $B_{sep}(T)$, $B_{ini}(T)$, $B_{ie}([T, H])$ respectively the set of the irreducible factors of

$$\prod_{t \in T} \operatorname{ires}(\operatorname{discrim}(t, \operatorname{mvar}(t)), T), \prod_{t \in T} \operatorname{ires}(\operatorname{init}(t), T), \text{ and } \prod_{f \in H} \operatorname{ires}(f, T).$$

Denote **BPS**(T) := $B_{sep}(T) \cup B_{ini}(T) \cup B_{ie}([T, H])$.

Equivalence BP-DV for triangular systems (2/2)

Lemma

Let $b = \prod_{f \in B_{sep}(T) \cup B_{ini}(T) \cup B_{ie}([T,H])} f$; let $N := \prod_{f \in T} \operatorname{mdeg}(f)$. Then for each parameter value $\alpha \in \mathbb{C}^d$:

• if $b(\alpha) \neq 0$, then $\# Z(S(\alpha)) = N$ holds;

• if $b(\alpha) = 0$, then $\# Z(S(\alpha))$ is either infinite or less than N. (This means b is a border polynomial of S)

Proposition

The minimal discriminant variety of S := [T, H] is

$$V(\prod_{f \in B_{ini}(T) \cup B_{sep}(T) \cup B_{ie}([T,H])} f).$$

clearly $BP \equiv DV$ for STASes

< ロト < 同ト < ヨト < ヨト

Equivalence BP-DV for triangular systems (2/2)

Lemma

Let $b = \prod_{f \in B_{sep}(T) \cup B_{ini}(T) \cup B_{ie}([T,H])} f$; let $N := \prod_{f \in T} \operatorname{mdeg}(f)$. Then for each parameter value $\alpha \in \mathbb{C}^d$:

• if $b(\alpha) \neq 0$, then $\# Z(S(\alpha)) = N$ holds;

• if $b(\alpha) = 0$, then $\# Z(S(\alpha))$ is either infinite or less than N. (This means b is a border polynomial of S)

Proposition

The minimal discriminant variety of S := [T, H] is

$$V(\prod_{f\in B_{ini}(T)\cup B_{sep}(T)\cup B_{ie}([T,H])}f).$$

clearly $BP \equiv DV$ for STASes

イロト イポト イヨト イヨト

Equivalence BP-DV for triangular systems (2/2)

Lemma

Let $b = \prod_{f \in B_{sep}(T) \cup B_{ini}(T) \cup B_{ie}([T,H])} f$; let $N := \prod_{f \in T} \operatorname{mdeg}(f)$. Then for each parameter value $\alpha \in \mathbb{C}^d$:

• if $b(\alpha) \neq 0$, then $\# Z(S(\alpha)) = N$ holds;

• if $b(\alpha) = 0$, then $\# Z(S(\alpha))$ is either infinite or less than N. (This means b is a border polynomial of S)

Proposition

The minimal discriminant variety of S := [T, H] is

$$V(\prod_{f\in B_{ini}(T)\cup B_{sep}(T)\cup B_{ie}([T,H])}f).$$

clearly $\mathsf{BP}\equiv\mathsf{DV}$ for STASes

$\mathcal{O}_\infty:$ set of non-properness of $\Pi_{\rm U}$

 $\mathcal{O}_{\infty}(S)$: the set of points where Π_{U} is not proper $(\mathcal{O}_{\infty}(S)$ is related to the number of solutions counting multiplicities)

Proposition We have $\mathcal{O}_{\infty}(T) = V(\prod_{f \in B_{ini}(T)} f).$

Proposition

For each i = 1, ..., s, let g_i be a polynomial generating the principal ideal sat $(T) \cap \mathbb{Q}[U, x_i]$. Then we have

$$\mathcal{O}_{\infty}(\mathsf{sat}(T)) = \cup_{i=1}^{s} V(\mathsf{init}(g_i)).$$

$\mathcal{O}_\infty:$ set of non-properness of $\Pi_{\rm U}$

 $\mathcal{O}_{\infty}(S)$: the set of points where Π_{U} is not proper $(\mathcal{O}_{\infty}(S)$ is related to the number of solutions counting multiplicities)

Proposition We have $\mathcal{O}_{\infty}(T) = V(\prod_{f \in B_{ini}(T)} f).$

Proposition

For each i = 1, ..., s, let g_i be a polynomial generating the principal ideal sat $(T) \cap \mathbb{Q}[U, x_i]$. Then we have

$$\mathcal{O}_{\infty}(\operatorname{sat}(T)) = \cup_{i=1}^{s} V(\operatorname{init}(g_i)).$$

- < A > < B > < B >

$\mathcal{O}_\infty:$ set of non-properness of $\Pi_{\rm U}$

 $\mathcal{O}_{\infty}(S)$: the set of points where Π_{U} is not proper $(\mathcal{O}_{\infty}(S)$ is related to the number of solutions counting multiplicities)

Proposition

We have $\mathcal{O}_{\infty}(T) = V(\prod_{f \in B_{ini}(T)} f)$.

Proposition

For each i = 1, ..., s, let g_i be a polynomial generating the principal ideal sat $(T) \cap \mathbb{Q}[U, x_i]$. Then we have

$$\mathcal{O}_{\infty}(\operatorname{sat}(T)) = \cup_{i=1}^{s} V(\operatorname{init}(g_i)).$$

- < 🗇 > < E > < E >

Discriminant variety: T vs sat(T)

Proposition

We have

$DV_T \setminus DV_{\mathsf{sat}(T)} \subseteq \mathcal{O}_{\infty}(T) \setminus \mathcal{O}_{\infty}(\mathsf{sat}(T)).$

Proposition

Let T_1 and T_2 be two regular chains satisfying sat $(T_1) = sat(T_2)$. If $B_{ini}(T_1) \subseteq B_{ini}(T_2)$ holds, then $B_{ini}(T_1) \cup B_{sep}(T_1) \subseteq B_{ini}(T_2) \cup B_{sep}(T_2)$ holds.

Theorem

Let T^* be another regular chain satisfying sat $(T) = sat(T^*)$. If T^* is canonical, then we have $B_{ini}(T^*) \subseteq B_{ini}(T)$.

(日) (同) (三) (三)

Discriminant variety: T vs sat(T)

Proposition

We have

$$DV_T \setminus DV_{\mathsf{sat}(T)} \subseteq \mathcal{O}_{\infty}(T) \setminus \mathcal{O}_{\infty}(\mathsf{sat}(T)).$$

Proposition

Let T_1 and T_2 be two regular chains satisfying sat $(T_1) = \text{sat}(T_2)$. If $B_{ini}(T_1) \subseteq B_{ini}(T_2)$ holds, then $B_{ini}(T_1) \cup B_{sep}(T_1) \subseteq B_{ini}(T_2) \cup B_{sep}(T_2)$ holds.

Theorem

Let T^* be another regular chain satisfying sat $(T) = sat(T^*)$. If T^* is canonical, then we have $B_{ini}(T^*) \subseteq B_{ini}(T)$.

(日) (周) (三) (三)

Discriminant variety: T vs sat(T)

Proposition

We have

$$DV_T \setminus DV_{\mathsf{sat}(T)} \subseteq \mathcal{O}_{\infty}(T) \setminus \mathcal{O}_{\infty}(\mathsf{sat}(T)).$$

Proposition

Let T_1 and T_2 be two regular chains satisfying sat $(T_1) = \text{sat}(T_2)$. If $B_{ini}(T_1) \subseteq B_{ini}(T_2)$ holds, then $B_{ini}(T_1) \cup B_{sep}(T_1) \subseteq B_{ini}(T_2) \cup B_{sep}(T_2)$ holds.

Theorem

Let T^* be another regular chain satisfying sat(T) = sat(T^*). If T^* is canonical, then we have $B_{ini}(T^*) \subseteq B_{ini}(T)$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Plan

Motivation and background

2 Main results

Conclusion and future work

(3)

- 一司

Summary and future work

Propose the framework of "continuity" to unify the notions of BP and DV

For an STAS S := [T, H]

- $b := \prod_{f \in B_{sep}(T) \cup B_{ini}(T) \cup B_{ie}([T,H])} f$ is a border polynomial of S
- V(b=0) is the minimal DV of S
- New characterization of \mathcal{O}_{∞} :

$$\begin{aligned} \mathcal{O}_{\infty}(T) &= \prod_{f \in B_{ini}(T)} f = 0, \\ \mathcal{O}_{\infty}(\mathsf{sat}(T)) &= \prod_{i \in \{1,2,\dots,s\}} g_i = 0 \end{aligned}$$

$$\mathit{DV}_{\mathcal{T}} \setminus \mathit{DV}_{\mathsf{sat}(\mathcal{T})} \subseteq \mathcal{O}_{\infty}(\mathcal{T}) \setminus \mathcal{O}_{\infty}(\mathsf{sat}(\mathcal{T})).$$

• The regular chains in canonical form possess the smallest BPes.

- 4 同 6 4 日 6 4 日 6

Summary and future work

Future work:

- Show that *Z*-continuity and Π_U-continuity are equivalent for equidimensional systems
- Investigate the relation of other notions: comprehensive GB, comprehensive TD and the notion of BP or DV
- Design better algorithm to compute BP