(FENERATING LOOP INVARIANTS VIA POLYNOMIAL INTERPOLATION

Western O_MR C

Marc Moreno Maza and Rong Xiao

University of Western Ontario
Ontario Research Center for Computer Algebra

\ I}:’T :}::I
NSERC Nt
CRSNG MITACS

—a
Maplesoft

J

The problem

v

A loop invariant is a condition of the loop variables that is always true at the entry point of the
loop. We are interested in computing polynomaal equations which are loop invariants for the
following type of loops in programs.

while Cj do
if O Notations and assumptions:
then e loop variables X = x1,..., x4 are real values (in practice ra-
X = A1(X); tional value) scalar variables;
fllrllf Cs e all conditions consist of polynomial constrains in X; given a
en

X = Ay(X); C:

.e.li.f C, e denote by [ the initial condition;

then e for i =1,...,m, we denote by A; a polynomial in Q[X] d and

X = Ap(X); ny M; the corresponding map induced by A;;

end if o (,Cy, ..., Cy, are pair-wise exclusive; each implies C.
end while

condition C' in X, denote by Z(C') all points in R? satisfying

Given a loop L, it is easy to deduce that
{p € QX]||p=0isan invariant of L}

forms a polynomial ideal in Q[X |, which is called the invariant ideal of L.

The proposed method

S

The proposed approach aims at computing all polynomial invariants up to a given total degree
d. It is based on polynomaial interpolation and it is rather straight forward:

step 1: sample a list of (typically (S;d)) points S from the trajectory of the given loop:;
step 2: compute all the polynomials P up to degree d which have S as zeros:

step 3: return P if one can verify that A,ep p = 018 an invariant of the loop; otherwise, the
method fails.

Example 1. Consider the following simple infinite loop:
x :=1; y:=1; while truedo =2+ 1; y .=y + z; end do; ...

It is easy to deduce that the trajectory of the loop variables (x,y) are (1, @) i1=1---00
and y = % 15 an equational invartant of the loop.

Using our method, to compute polynomaal equation invariants of degree < 2, one would:
step 1: sample the following points from the loop trajectory

$ = {(1,1),(2,3), (6, 10), (8, 36), (11, 66), (15, 120), (20, 420)}.
step 2: compute all polynomials of x,y up to degree 2 vanishing on S, which turn out to
be multiples of 2y — x (x + 1);

step 3: one can verify that 2y —x (x + 1) = 0 is invariant since 2y —x (x + 1) = 0 implies

2y+x +1—(z+1) (x+1+1) = 0. Therefore, one can conclude that all polynomial

equation invariants of degree < 2 are equivalent to y = M

The method is simple, but 3 non-trivial issues have to handled:

A. a reasonable degree must be supplied. In the next section, we shall estimate the degree
bound as well the dimension of the invariant ideals for certain loops.

B. a general criterion to check whether or not a condition is invariant must be developed. A
criterion is proposed at the end of this part.

C. the size of sample points might grow dramatically, direct implementation may not be efficient
in practice. In out implementation, modular techniques are used to compute the interpolated
polynomials.

Proposition. Given a condition inv consisting of polynomaial constraints, if
Z(1Iy) C Z(inv)
holds and if for each branch, the relation
M;(Z(inv A Cy)) C Z(inv)
holds, then inv s a loop invariant.

The criterion in the above proposition can be easily implemented by set-theoretical operation of
semi-algebraic sets, see SemiAlgebraicSetTools of RegularChains package in MAPLE 16.

Degree and dimension of invariant
ideals

J

In this part, we study the degrees and dimensions of invariant ideals of certain type of loops:
the loops have only one branch and corresponding recurrence equation X(n + 1) = A(X(n))
induced by the assignment is P-solvable.

Definition (P-solvable recurrence). An s-variable recurrence R is called P-solvable over
Q 1f it is defined by a relation of the following form:

T
X(n—l_l) :MXX<TL) T (flnlxlvf2n2><17"' 7f]€nk><1)

)

where M 1s an s X s block-diagonal matrixz over Q with the following shape:

(menl Omxng Onlxnk\

M = Ongxnl Mngxng On2><nk

\ Onkxnl Onkan Mnkxnk)
£ € Q™ and £, (i =2,...,k) isin Qxy, ..., Tni4tn, ,]"". The matrix M is called the
coefficient matrix of R.

Example 2. All linear recurrences are P-solvable.

Proposition. For the above defined P-solvable recurrence, one can compute poly-
geometrical expressions (see definition below) in n w.r.t. the eigenvalues of M as closed
form solutions. Moreover, the degree of each variable in such expressions can be estimated
without computing explicitly those forms.

Definition. Let aq,...,ap be k elements of @* Let n be a variable taking non-negative

integer values. Regard n,af, ..., oy as independent variables. Then each polynomial in

Qln, aff,...,ay] is called a poly-geometrical expression in n over Q w.rt af,..., .

Let A:=(aq,...,aq) C Q". Associate each a; with a variable y;. The multiplicative relation
ideal (MRI) of A is the ideal in Qlyq, . .., ys] generated by

S
{11 v - 11 w1 ]let - ap=1}
1=1

jE{l,...,S},Uj>O iE{l,...,S},U@<O

Example 3. The MRI of A = (1/2,1/3,—1/6) associated with y1, 9, y3 is <y%y% - y§>

be the MRI of non-zero eigenvalues of R. Denoted by d7 the degree of Z.

Notations: let R be a P-solvable recurrence relation defining s sequences in Q°, with recur-
rence variables (z1,x9,...,2g). Let Z C Q|x1, 29, ..., xs| be the invariant ideal of R. Let M

Theorem. Suppose M has dimension r and degree dpq. Assume the total degrees of
poly-geometrical expression solutions of R are estimated to be no more than d. Then we
have

dr < dpgd

Moreover, if the degrees of the variable n are 0, then we have

dy < dpd’

A set of s non-zero non-one numbers is said to be weakly multiplicatively independent if

they are can be arranged in an order ay,as,...,as such that for each i € 2---s and
V(er, e, ...,e;—1) € (NU{0})"L we have a; # H;;ll a;fj holds.

Theorem. The dimension of Z is at most r + 1. Moreover, for generic initial values:
1. the dimension of L 1s at least r;

2. if the eigenvalues of R are weakly multiplicatively independent (thus not containing 0),
then 1 has dimension r.

Implementation and benchmarks

J

The proposed method has been implemented in MAPLE, which is the command Equational-
Looplnvariants of our developing ProgramAnalysis package.

The ProgramAnalysis package will contain functionality to: automatically generate invariants,
verify specifications and verify termination for while loops; optimize for loops for better data
locality, .. ..

> with (ProgramAnalysis) ;

| CreateLoop, DisplayLoop, EquationalLoopnvariants, mequational Loopnvariants, IsLooplnvariant, (2)
Multivariate nterpolation, Set Postecondition, Set Preconditon, VerifyLoop |
[ > mplfile := "/home/rxiao/mapleP4/lib/ProgramAnalysis/tst/programs/fermat. . mpl™:
loop := CreateLoop(mplfile); # parse loop from a mpl file
loop = loop _sextuple (3)
[ > EquaticonalLoopInvariants {(loop) ;
[ = v —dr—2u+2v—4N] @
(> vars := [a,b,d,v,Q]; initialization := [0,Q/2,1,0]; guard := [[E<=d]]:
transitions := [[[P<atbk],[a,b/2,d/2,v,Q]1],[[P>=atk], [atk,b/2,d/2,yv+b/2,0]]1]:;
precond = [[Q>P, P>=0, E>0]],; postcond = [[P >= Q*y , Q*y > P - Q*E 1]

vars = |a, b, d, y, O]
1
0, 5 ¢, 1, U]

suard = [[E = d]]

initalization =

transitions == ”[P <a+ 5] |a, %b, %d,y, Q”, la + b =< P], |a+ 5, %b, %d,y + %b, Q”]
precond =[[P< O, 0< P, 0 < F]]
postcond =[Oy = P, P— Q0 F < Oy]] (5)
B loop := Createloop(vars, initialization, transitions, guard, precond, postcond):
eq_invs := EquationallLooplnvariants(loop);
g invy i =|la—2y,d (0 — 245] (6)
[ > eq_invs:= map({t->t=0, eq invs}):
ineq invs = [ P - Q*d < Q¥*y, Q¥%y <= P,y>=0]:
all invariants:=[op(ineq invs), op(eq invs)]:
VerifyLoop(loop, 'user invariants'=all invariants); # verify if a loop satisfy its
specification
trie (7)

Timings of 4 polynomial equation loop invariants generating methods: the proposed method
(PI); a method based on abstract interpolation (Al) and a method based on fix point method

(FP), both are developed by D. Kapur and E.R odriguez-Carbonell; the method based on solving
recurrences explicitly (SE), developed by L. Kavocs.

prog. # vars/deg) PI | Al | FP | SE
cohencu 4 0.6 10.93 0.28 1 0.13
cohencu 0.06/0.76] 0.28 | 0.13
fermat 3.7410.791 0.37 | 0.1

1.4 0.74) 0.36 | 0.13
3.112.23 NA | 0.35
0.2 10.57 0.22 1 0.01

prodbin

rkQ7
kov0&

sumo 3.5 11.00 2.25 0.16
wensley?2 0.4 0.84 0.39 0.21
int-factor 10.3/1.28 160.7| 0.9

fib(coupled)
fib(decoupled)
non-inv2*
coupled-5-1*
coupled-5-2*
mannadiv

2.410.71 NA | NA
4.3 11.28 160.7| FAIL
1.2 13.83 NA |FAIL
1.1 19.58] NA | NA
5.38/15.8) NA | NA
0.1]0.83) NA | 0.04

CO UL i I O O W WD Ol Ol
CO R R O R R O L U W W W R DD W

Conclusion

Though not complete, the proposed method is quite efficient in practice, and applies to broader
situations than some other methods (e.g. F'P and SE). Our degree and dimension estimates
can be used to justify the completeness of our output as well as to supply a reasonable degree
bound in other methods which also need a degree bound (e.g. PI).



