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Foreword to the SNC 2011 Conference

Algorithms that combine techniques from symbolic and numeric computation
have been of increasing importance and interest over the past decade. The
necessity to work reliably with imprecise and noisy data, and for speed and
accuracy within algebraic and hybrid-numerical problems, has encouraged a
new synergy between the numerical and symbolic computing fields. Novel and
exciting problems from industrial, mathematical and computational domains
are now being explored and solved.

The goal of the present workshop is to support the interaction and integra-
tion of symbolic and numeric computing. Earlier meetings in this series include
the SNAP 96 Workshop, held in Sophia Antipolis, France, the SNC 2005 meet-
ing, held in Xi’an, China, SNC 2007 which was held in London, Canada, and
SNC 2009, held in Kyoto, Japan. The 4th International Workshops on Symbolic-
Numeric Computation will be held on June 7 − 9 at San Jose, California, as
a member of the ACM Federated Computing Research Conference. SNC 2011
is affiliated with the 2011 International Symposium on Symbolic and Algebraic
Computation (ISSAC 2011) which will be held on June 8− 11, 2011 as another
member of the ACM FCRC.

The SNC 2011 Call For Papers from all areas of symbolic-numeric comput-
ing, including:

• Hybrid symbolic-numeric algorithms in linear, polynomial and differential
algebra

• Approximate polynomial GCD and factorization

• Symbolic-numeric methods for solving polynomial systems

• Resultants and structured matrices for symbolic-numeric computation

• Differential equations for symbolic-numeric computation

• Symbolic-numeric methods for geometric computation

• Symbolic-numeric algorithms in algebraic geometry

• Symbolic-numeric algorithms for nonlinear optimization

• Implementation of symbolic-numeric algorithms

• Model construction by approximate algebraic algorithms

• Applications of symbolic-numeric computation: global optimization, ver-
ification, etc.
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We received 36 submissions: 10 extended abstracts and 26 full papers. Based
on 99 referee reports, we accepted 8 extended abstracts and 18 full papers. We
are grateful to all who contributed to the success of our meeting: the invited
speakers: Jonathan Borwein, James Demmel, Stephen Watt; the authors of
full papers and extended abstracts; our hard-working program committee; and
many anonymous reviewers. We wish to thank our publicity chair Erik Postma,
webmaster Guillaume Moroz and treasurer Werner Krandick. We would also
like to thank Eric Schost and Ioannis Z. Emiris for their support. Finally, we
wish to express our sincere gratitude to the following sponsors:

• Maplesoft

• Wilfrid Laurier University

• Numerical Algorithms Group

• The Ontario Research Centre for Computer Algebra

• The Association for Computing Machinery

Ilias Kotsireas Marc Moreno Maza Lihong Zhi
SNC 2011 General Chair SNC 2011 Proceedings Editor SNC 2011 Program Committee Chair
Wilfrid Laurier University University of Western Ontario Academy of Mathematics and Systems Science
Canada Canada China
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Synthetic Division in the Context of Indefinite Summation 151
Eugene Zima

GCD of Multivariate Approximate Polynomials using Beautification with the
Subtractive Algorithm 153
Robert M. Corless, Erik Postma and David R. Stoutemyer

Empirical Study of an Evaluation-Based Subdivision Algorithm for Complex
Root Isolation 155
Narayan Kamath, Irina Voiculescu and Chee Yap

Refining and Verifying the Solution of a Linear System 165
Hong Diep Nguyen and Nathalie Revol

An Effective Implementation of Symbolic-Numeric Cylindrical Algebraic Decom-
position for Optimization Problems 168
Hidenao Iwane, Hitoshi Yanami and Hirokazu Anai

Challenge to Fast and Stable Computation of Approximate Univariate GCD,
Based on Displacement Structures 178
Masaru Sanuki

iv







Mahler measures, short walks and log-sine integrals: A
case study in hybrid computation

[Extended Abstract]

Jonathan Borwein
Professor Laureate, Director

Centre for Computer Assisted Research Mathematics and its Applications (CARMA)
School of Mathematical and Physical Sciences

University of Newcastle
Callaghan NSW 2308, Australia
jon.borwein@gmail.com

Categories and Subject Descriptors
G.1.9 [Mathematics of Computing]: Numerical Analy-
sisIntegral Equations; I.1.2 [Computing Methodologies]:
Symbolic and algebraic manipulationAlgorithms

General Terms
Theory, Experimentation

Keywords
Mahler measures, short walks, log-sine integral

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SNC 2011, June 7-9, 2011, San Jose, California.
Copyright 2011 ACM 978-1-4503-0515-0 ...$10.00.

The Mahler measure of a polynomial of several variables
has been a subject of much study over the past thirty years.
Very few closed forms are proven but many more are conjec-
tured.

We provide systematic evaluations of various higher and
multiple Mahler measures using moments of random walks
and values of log-sine integrals. We also explore related gen-
erating functions for the log-sine integrals and their general-
izations.

This work would be impossible without very extensive
symbolic and numeric computations. It also makes frequent
use of the new NIST Handbook of Mathematical Functions.

My intention is to show off the interplay between numeric
and symbolic computing while exploring the three topics in
title.
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Accurate and efficient expression evaluation and linear
algebra, or Why it can be easier to compute accurate

eigenvalues of a Vandermonde matrix than the accurate
sum of 3 numbers

[Extended Abstract]

James Demmel
Department of Mathematics (Computer Science Division )

University of California at Berkeley
Berkeley CA 94720-1776

demmel@cs.berkeley.edu

Categories and Subject Descriptors
G.1.3 [Numerical Linear Algebra ]:

General Terms
Performance

Keywords
Eigenvalues, accurate numerical linear algebra, structured
matrices

We survey and unify recent results on the existence of
accurate algorithms for evaluating multivariate polynomi-
als, and more generally for accurate numerical linear algebra
with structured matrices. By ”accurate” we mean the com-
puted answer has relative error less than 1, i.e. has some
leading digits correct. We also address efficiency, by which
we mean algorithms that run in polynomial time in the size of
the input. Our results will depend strongly on the model of
arithmetic: Most of our results will use what we call the Tra-
ditional Model (TM), that the computed result of op(a, b),
a binary operation like a + b, is given by op(a, b) ∗ (1 + δ)
where all we know is that |δ| ≤ ε� 1. Here ε is a constant
also known as machine epsilon.

We will see a common reason that the following disparate
problems all permit accurate and efficient algorithms using
only the four basic arithmetic operations: finding the eigen-
values of a suitably discretized scalar elliptic PDE, finding
eigenvalues of arbitrary products, inverses, or Schur com-
plements of totally nonnegative matrices (such as Cauchy
and Vandermonde), and evaluating the Motzkin polynomial.
Furthermore, in all these cases the high accuracy is “de-
served”, i.e. the answer is determined much more accurately
by the data than the conventional condition number would

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SNC 2011, June 7-9, 2011, San Jose, California.
Copyright 2011 ACM 978-1-4503-0515-0 ...$10.00.

suggest.
In contrast, we will see that evaluating even the simple

polynomial x + y + z accurately is impossible in the TM,
using only the basic arithmetic operations. We give a set of
necessary and sufficient conditions to decide whether a high
accuracy algorithm exists in the TM, and describe progress
toward a decision procedure that will take any problem and
either provide a high accuracy algorithm or a proof that none
exists.

When no accurate algorithm exists in the TM, it is natural
to extend the set of available accurate operations op() by
a library of additional operations, such as x + y + z, dot
products, or indeed any enumerable set which could then be
used to build further accurate algorithms. We show how our
accurate algorithms and decision procedure for finding them
can be extended in this case.

Finally, we address other models of arithmetic, and ad-
dress the relationship between (im)possibility in the TM
with (in)efficient algorithms operating on numbers repre-
sented as bit strings.
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Polynomial Approximation in Handwriting Recognition

[Extended Abstract]

Stephen M. Watt
Dept of Computer Science

University of Western Ontario
London, Ontario, Canada

Stephen.Watt@uwo.ca

ABSTRACT
Considering digital ink traces as plane curves provides a use-
ful framework for handwriting recognition. Characters may
be represented as parametric curves approximated by certain
truncated orthogonal series, mapping symbols to the low-
dimensional vector space of series coefficients. Many use-
ful properties are obtained in this representation, allowing
fast recognition based on small training sets. The beauty
of this framework is that a single, coherent view leads to
highly efficient methods with a high recognition rate. Fur-
thermore, these truncated orthogonal series are subject to
all the geometric techniques of symbolic-numeric polynomial
algorithms.

Categories and Subject Descriptors
I.5.1 [Pattern Recognition]: Models; I.7.5 [Document
and Text Processing]: Document Capture—Optical char-
acter recognition; G.1.2 [Numerical Analysis]: Approxi-
mation

General Terms
Algorithms

Keywords
Handwriting recognition, orthogonal series, approximation

1. INTRODUCTION
Machine-based handwriting recognition has been studied

now for more than a century. In 1910, Hyman Goldberg pro-
posed recognizing handwriting using electically conducting
ink [1]. Since then, the subject of handwriting recognition
has grown and flourished. Handwriting recognition is essen-
tial to major economic activities, such as cheque processing
and mail sorting, and is a standard feature on many mobile
electronic devices.

There is by now a vast literature on the subject of hand-
writing recognition by computer, divided between “off-line”
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and “on-line” recognition. Off-line recognition takes a static
image of some handwriting and produces text. The input is
typically an image which may involve background noise, dig-
itization artifacts and distortion. On-line recognition takes
motions and other events, such as button presses, pen up and
pen down, and produces text. A variety of capture devices
may be used, including digitizing tablets, screen overlays or
cameras. The captured pen movements and related events
may be called “digital ink” regardless of the source, and
which may be stored and transmitted in a number of ways,
including InkML [2]. On-line recognition is often regarded
as an easier problem because the writing order is given, the
identification of the input is evident and mis-recognitions can
be corrected. On the other hand, processing time becomes
a constraint and there is no forward context.

A problem of particular interest is that of mathematical
handwriting recognition. High quality mathematical hand-
writing recognition would be useful for expression entry and
editing in both document processing systems and mathe-
matical software, such as computer algebra systems. We
are therefore interested in on-line methods. The usual tech-
niques used for natural languages cannot, however, be ap-
plied to written mathematics. There are a number of difficul-
ties: First, a dizzying array of symbols from many different
alphabets are used at once. Second, many similar charac-
ters, which must be distinguished, are written with just a
few strokes. For example, Figure 1 shows a progression of
symbols with similar features all written with one stroke.
Third, the lay out is two dimensional and relative position-
ing matters. Moreover the symbols are typically in several
sizes leading to ambiguous juxtapositions, as shown in Fig-
ure 2. (Are the first two symbols ap or aP?) Fourth, in
mathematical handwriting, there is not a useful fixed dictio-
nary of words that may be used to rule out senseless letter
combinations. Almost any sequence of symbols potentially
has meaning. On the other hand, symbols tend to be well
separated with a known orientation.

With so many symbols, each with variants, and new ones
frequently added, the usual techniques of symbol recogni-
tion are difficult to apply. It is impractical do develop hand-
tuned heuristics to recognize specific features for each sym-
bol. Matching against a comprehensive database of models
is too time consuming. Neural nets require massive amounts
of training data not readily available for rarely used symbols.
Instead, in a series of papers, we have developed a framework
suitable for this setting, allowing high recognition rates at
high speed with only modest amounts of training data.
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Figure 1: Similar single-stroke characters

Figure 2: Juxtaposition ambiguity

2. FRAMEWORK
One of the main difficulties we find with other recognition

methods is that the digital ink is thought of as a set of points,
and subject to various ad hoc treatments, such as smooth-
ing to eliminate device jitter and “re-sampling”, i.e. inter-
polation to add or remove or equalize the distance between
points. This is followed by various numerical heuristics to
try to identify features such as cusps, self intersections, etc.
The problem with this is that we are not treating the ink
traces as what they really are, curves.

We consider an ink trace to be a segment of a plane curve
(x(λ), y(λ)) , λ ∈ [0, L]. Various parameterizations are pos-
sible, including parameterization by time (as the curve was
traced), by arc length or by affine arc length. We have found
over the course of various experiments that arc length is the
most robust parameterization in most cases, which makes
intuitive sense since this gives curves that look the same the
same parameterization.

The next step is to realize that curves that are “almost the
same”should be recognized as the the same symbol. We may
therefore work with approximations in a finite dimensional
function space:

x(λ) ≈
dX

i=0

xiBi(λ), y(λ) ≈
dX

i=0

yiBi(λ).

By appropriate choice of basis functions Bi, i = 0, . . . , d,
the approximations can be made arbitrarily close to x and
y. After normalizing for position and scale, the coefficients
represent the curve as a (2d − 1)-dimensional point. If the
basis functions are orthogonal with respect to a functional
inner product, then we can obtain the coefficients (xi, yi) by
numerical integration. One of the most appealing aspects to
this is that this completely captures the curves in a manner
independent of the resolution of the device and allows us to
ask geometrically meaningful questions.

The first step in this approach used Chebyshev polynomi-
als as the basis functions [3]. The non-linearity of the weight
function 1/

√
1− λ2 required first capturing the entire curve,

normalizing it, then computing the series coefficients. It was
then shown that a Legendre polynomial basis allowed the co-
efficients to be calculated instantly on pen-up from moments

Figure 3: L-S polynomials on [0, 1] for µ = 1/8

of x(λ) and y(λ) integrated as the curve is written [4]. This
real-time property is preserved using a Legendre-Sobolev ba-
sis, orthogonal with respect to the inner product

〈f, g〉 =

Z b

a

f(λ)g(λ)dλ+ µ

Z b

a

f ′(λ)g′(λ)dλ,

for which orthogonal series approximate both the function
and its derivative well [5]. An orthogonal polynomial ba-
sis may be obtained for this or any desired inner product
by Gram-Schmidt orthogonalization of the monomial basis
{1, λ, λ2, ...}. The Legendre-Sobolev polynomials of degrees
0 to 12 for a = 0, b = 1, µ = 1/8 are shown in Figure 3. As
the representation by series coefficients is space efficient, it
may be used for digital ink compression [6].

3. DISTANCE-BASED RECOGNITION
Representing handwritten mathematical symbols as points

in such an inner product space has a number of pleasant
properties. One property of using orthonormal series is that
distances in the function space become Euclidean distances
in the coefficient space:

||f − g|| ≈
vuut dX

i=0

(fi − gi)2

as the integrals of the BiBj 6=i cross terms vanish by orthog-
onality. This allows the variational integrals approximated
by elastic matching to be calculated extremely quickly.

We find that classes of like symbols form clusters, and
that the classes are convex even at low dimension [7, 8].
This implies that linear homotopies between points in the
same class should have intermediate points that remain in
the same class. Indeed this is observed, as illustrated in Fig-
ure 4. This property allows us to classify points based on
distances to convex hulls of sets of points, rather than to par-
ticular point or their averages, which is more robust when
the training sets are small. A comparison of recognition
methods using elastic matching with dynamic time warping
(re-parameterization), and Euclidean and Manhattan dis-
tances in the orthogonal series coefficient space [9] shows
that for many choices of dimension d and coefficient size,
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Figure 4: Linear homotopy stays within the class

the coefficient-based methods give similar results to elastic
matching, but may be computed much faster. Alternatively
to convex hulls of the known points, one may use the polyhe-
dra bordered by the planes of SVM ensembles [10] and these
may additionally make use of other features [11].

Even with the best individual character recognition, am-
biguities remain. Consider the two expressions shown in
Figure 5. Even though the symbol shown in the red box is
exactly the same in both cases, in one case it should be rec-
ognized as “i” and in the other as “ż”. It is therefore useful
to be able to use our distance-based methods in conjunction
with contextual information, such as frequency information
for mathematical n-grams [12, 13, 14]. In this regard, a use-
ful distance-based confidence measure may be obtained for
classification using either distances to convex hulls of classes
or to separating planes in SVM ensembles [15].

To this point, we have discussed classification based on
functional approximation of the coordinate curves x(λ) and
y(λ). If the orientation of the characters is not certain, or if
they are deformed in other ways, then it is natural to seek
methods that are invariant under these transformations. We
have seen that similar methods may be applied to integral
invariants of the coordinate curves to classify symbols with
unknown rotation or shear [16, 17].

4. ON TO APPROXIMATE POLYNOMIALS
The objects with which we are working, these truncated

series, are polynomials with approximate coefficients in a
non-monomial basis. Given the vast body of work in ap-
proximate polynomial algebra, e.g. [18, 19, 20, 21, 22], we
ask what ideas may be brought to bear from this community.
This points to several directions for investigation.

It is easy in this representation to find all the critical points
of digital ink traces. Many of these, such as self intersection,
number of local maxima, etc, have long been used as features
for recognition. The usual methods for detecting these fea-
tures depend significantly on device resolution. With rapidly
evolving technology, this means that newly adjusted algo-
rithms become necessary, and these cannot use archival data
directly. Instead, finding these critical points from the poly-
nomial approximations is robust against changes in device
resolution.

We give an example. Consider the digital ink trace of a
lower case letter d, shown in Figure 6(a). The trace consists
of about 300 data points sampling the x and y coordinates
and pressure at a uniform frequency. Figure 6(b) shows an
approximation in parametric form (x(λ), y(λ)) for λ ∈ [0, 1],
with x and y being Legendre Sobolev series over λ ∈ [0, 1]
with µ = 1/8 up to degree 12. Figure 6(c) shows the critical
points found by solving x′(λ) = 0 and y′(λ) = 0. This
is achieved by univariate polynomial root finding, retaining
real roots in the interval [0, 1].

Figure 5: Context dependency: i or ż

The key point is that it is meaningful to perform use-
ful analysis efficiently on the traces as curves, rather than
considering the trace as a collection of discrete points. To
illustrate this concretely, consider the critical point on the
top of the body of the letter d. This is the second critical
point from the beginning of the trace. Finding the critical
point from the polynomial approximation can be done by a
fast Newton iteration. This takes into account the effect of
all the sample points on the local behaviour. In contrast,
consider trying to find this local maximum from the discrete
sample points. A portion of the trace data is shown in Fig-
ure 7, magnified more vertically than horizontally. We see
that the local maximum should occur somewhere near the
five sample points with approximately equal y value, but
have to construct heuristics to compute a value. For ex-
ample, in deciding which points are at the maximum, what
error tolerance should be used? If several points are within
the error tolerance of being the maximum, whereabouts in
that point set should the maximum be taken? Should the
maximum be taken as the maximum value achieved by one of
the sample points, or should the maximum of a local spline
be used? All this is avoided by working with curves instead
of points.

Some operations can be more natural on implicit curve
models. This is obtained directly from the parametric rep-
resentation as Resultant(X − x(λ), Y − y(λ), λ). For the
example, the implicit polynomial obtained this way to ap-
proximate the example trace is plotted in Figure 6(d). This
polynomial of degree 12 in X and Y has 91 terms. (A plot-
ting artefact loses part of the tail.)

5. FUTURE DIRECTIONS
There appears to be a fertile ground for further work in

this area. It should be useful to maintain the perspective
that perturbations are to be minimized in the Legendre-
Sobolev space instead of with respect to polynomial norms
in a monomial basis. Thus we would want to compute re-
sultants, SVDs, etc, in this basis, rather than perform ill-
conditioned conversions. Some new results are required in
this area in order to proceed.

Two of the main ideas in symbolic-numeric algorithms for
polynomials are that of backward error and semi-definite
programming. With backward error, we may ask questions
such as whether there is a near by polynomial (i.e. requiring
perturbation by less than a given bound) that has certain
properties, e.g. singularity, factorization, etc. With semi-
definite programming we can ask questions about the least
perturbations required.

These tools provide a most useful opening for symbolic-
numeric computation in handwriting recognition. Rather
than ad hoc numerical techniques based on sample points, we
have a framework in which to ask well-posed questions about
nearby curves and have a systematic, meaningful approach
to answering them.

5



(a) (b) (c) (d)

Figure 6: Analysis of an input symbol:
(a) Trace data (green box magnified in Figure 7), (b) Parametric approximation (x(λ), y(λ)) λ ∈ [0, 1],
(c) Critical points computed from (x(λ), y(λ)), (d) Implicit approximation P (X,Y ) = 0.

Figure 7: Top of d body, magnified more vertically
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ABSTRACT
A symbolic-numeric method for calculating an H-basis for
the ideal of a positive dimensional complex affine algebraic
variety, possibly defined numerically, is given. H-bases for
ideals I in C[x] = C[x1, . . . , xs], introduced by Macaulay and
later studied by Möller and Sauer, are an analog of Gröb-
ner bases with respect to a global degree ordering: f is an
element of I of total degree n if and only f is a C-linear com-
bination of polynomials of total degree n or less which are
monomial multiples of members of the H-basis. The method
uses the interplay of local and global duality.

Applications include factoring multivariable polynomials,
analyzing singular curves, finding equations for the union of
varieties, and, most importantly, finding equations for com-
ponents of reducible varieties given numerically.

Categories and Subject Descriptors
G.1.5 [Roots of Nonlinear Equations]: Systems of Equa-
tions

General Terms
Algorithms, Theory

Keywords
H-basis, Dual Functionals, Macaulay Array, Sylvester Array,
Positive dimensional varieties, Symbolic Numeric Computa-
tion

1. INTRODUCTION
We introduce a heuristic symbolic-numeric method to find

a H-basis [14, 15] for an ideal I in C[x] = C[x1, . . . , xs] pro-
vided the zero set V (I) is positive dimensional or has only a
few isolated zeros. This method, which makes use of both the
original equations which locally define V (I) and numerically
approximate points, generally works better than interpola-
tion and requires fewer points. Although the method was

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SNC 2011, June 7-9, 2011, San Jose, California.
Copyright 2011 ACM 978-1-4503-0515-0 ...$10.00.

developed to handle systems given numerically, experiments
on exact systems show that, using machine precision (about
17 digits) numerical calculation, one can generally approxi-
mate exact solutions to 9 or more digits for moderate sized
systems.

These algorithms make use of the interplay between local
and global duality via Macaulay and Sylvester matrices. The
H-basis will generate the Sylvester matrices of the ideal for
all orders which, like Gröbner bases, will provide a decision
process for deciding if a polynomial is in the ideal and, if
so, write it in terms of the basis, see Lemma 1. Möller and
Sauer [15] show how, given an inner product on C[x], normal
forms may be calculated.

When finding the ideal of a component of a reducible va-
riety straight forward interpolation methods work poorly in
the positive dimensional case and there are many solutions;
therefore picking a good generating system is not realistic.
Sommese et. al. have suggested algorithms in [18, 2]. These
require numerical irreducible decomposition and may return
only a set theoretic basis whereas our method will generally
give an ideal theoretic basis. They recently have proposed
an algorithm [3] that will return a system with integer coef-
ficients, when available, using the LLL or similar algorithms.
However this method does not apply to some of the systems
discussed in this paper.

H-bases are specifically introduced to handle affine sys-
tems and are numerical friendly analogs of Gröbner bases
given from global degree orderings, for example the degree
reverse lexicographical dp ordering of [9, §1.2]. Example 1
shows that in general H-bases are larger than arbitrary ideal
generating sets but are often smaller than Gröbner bases. If
the ideal of the system is homogeneous, then any homoge-
neous basis for the ideal is an H-basis which may explain the
use of the letter H.

The algorithms are implemented using Macaulay arrays
and SVD based numerical linear algebra to calculate the
dual vectors. Various authors [13, 16, 21, 22] have used
other methods to avoid the large matrices. These strategies
may be useful in the calculation of §5.1. In this paper we
avoid these strategies for the following reasons: 1) the com-
plexity of these methods is an unnecessary distraction from
the subject at hand, 2) we want to emphasize the interplay
of Macaulay and Sylvester arrays and 3) for most of our ex-
amples using sparse matrices makes the Macaulay method
fast enough that, from a practical point view, the more so-
phisticated methods are not necessary and may actually be
slower.

The method here is inherently numerical, there is no exact
analog. For instance in Example 4 we factor a multivariate
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polynomial using a single numerical point on its variety as
opposed to a-priori knowledge, which would be required by
any exact method, of the extension field over which the fac-
tors are defined .

All computations in this paper were done with Mathe-
matica. Timings were taken using both Mathematica 6
running on a Linux system and Mathematica 7 running on
Windows. To be conservative the slower Mathematica 6
times are reported.

2. SYLVESTER AND MACAULAY
ARRAYS

Let F = [f1, f2, . . . , ft] be a list of t polynomial functions
in s variables x1, . . . , xs and x̂ = (x̂1, . . . , x̂s) a point in Cs.

For a non-negative integer list j = [j1, . . . , js] write |j| =
j1+j2+· · ·+js and then xj = xj11 x

j2
2 . . . xjss is a monomial in

C[x] = C[x1, . . . , xs] of total degree |j|. The total degree of a
polynomial in these variables is the total degree of the largest
monomial. Let (x − x̂)i denote (x1 − x̂1)i1 . . . (xs − x̂s)is .
Assume a global degree ordering is given on the monomials
of C[x]. As in [19, 7, 6] we use the differentiation operator

∂xj ≡ ∂
x

j1
1 ···x

js
s
≡ 1

j1! · · · js!
∂j1+···+js

∂xj11 · · · ∂xjss
. (1)

where we write ∂xj [x̂](f) to indicate that we have applied
the operator to function f and evaluated at point x̂.

The Macaulay array of degree n at x̂, M(F, k, x̂) is the
t
`
n+s−1

s

´ × `n+s
s

´
matrix with columns indexed by the dif-

ferentials ∂xj for |j| ≤ n or, more commonly, just by the
xj ordered by a global degree ordering, we write Xn for the
ordered list of monomials of total degree n or less. In par-
ticular, the left hand column has index 1 for the evaluation
functional. The rows will be indexed by the functions xifα
for |i| < k, α = 1, . . . , t. Again these will be grouped by
degree |i| and by monomial xi in our ordering. In particular
the first t rows are indexed by f1, . . . , ft.

The entry in the row indexed by xifα and column indexed
by xj is ∂xj [x̂]((x− x̂)ifα) .

The Sylvester Array of degree k, S(F, k) of the list F =
[f1, . . . , ft] is the submatrix of M(F, k, 0̂), where 0̂ is the
origin, consisting of rows so that the total degree of the index
polynomial xifα is less than or equal to k. The entry in
the row indexed by xifα and column indexed by xj is the
coefficient of the monomial xj in the polynomial xifα. In the
Macaulay array the polynomials may be truncated, for the
Sylvester array there is no truncation since only polynomials
of total degree k or less are used.

Denote I = 〈f1, . . . , ft〉 to be the ideal generated by the
fi in C[x] and put A = C[x]/I. Then the row spaces of
Macaulay arrays can be identified with a filtration of the
maximal ideal of the local ring Ox̂(A), [4], while the row
spaces of the Sylvester arrays filter the ideal I so are associ-
ated with the global structure. But note while every element
of I is of the form of a finite sum g =

P
cix

ifα the total
degrees of some of the terms in this sum may be larger than
the total degree of g due to some cancellation of terms. So
not all the polynomials of total degree k or less may be in
the sub-vector space of I associated with S(F, k), see Ex-
ample 1 below. If we want to include such polynomials we
will use the notation S(I, k) for the Sylvester array of some
set G so that the rowspace S(G, k) contains the rowspace of
S({f}, k) for all polynomials f of degree k or less in I. Note

that S(I, k) is only defined up to row space. This leads to a
restatement of our main definition:

Definition 1. Let I be an ideal of C[x]. If B is a set of
polynomials in I such that S(B, k) = S(I, k) for all k ≥ 1
then B will be called an H-basis for I. If no proper subset of
B is an H-basis we will call B a minimal H-basis.

For a polynomial f borrowing notation from [9] we write
jet(f, n) for the polynomial consisting of all terms of f of
degree n or less. We write vjet(f, n) for the vector consisting
of all coefficients of jet(f, n) in the ordering given by Xn, i.e.
vjet(f, n)Xn = jet(f, n). In particular vjet(f, n) would be
the row indexed by f in M({f}, n,0) so S(I, n) could be
described by the property that vjet(f, n) is in the rowspace
of S(I, n) for all f ∈ I of total degree n or less.

The existence and main property of a minimal H-basis are
given by

Lemma 1. Let I be an ideal of C[x1, . . . , xs]. Then

i) A finite H-basis for I exists.

ii) If B is an H-basis for I then given f ∈ C[x] of total de-
gree n, f ∈ I if and only if vjet(f, n) is in the rowspace
of S(B, n).

Proof: For i) note that any Gröbner basis with respect
to a global degree ordering [9, §1.2] contains an H-basis. Or
see [15, Theorem 2.3 (ii)]. ii) follows from the definition of
S(I, n).

From Part i) finite minimal H-bases exist for each each
ideal of C[x]. Part ii) of Lemma 1 gives the recognition
criteria for membership in I and writing f ∈ I in terms of
the H-basis is then a matter of linear algebra.

Example 1: Consider the ideal I of C[x, y, u, v] generated
by F = [x − y + uy + vy,−x + ux + vx + y,−1 + u + v +
xy]. Then rank S(F, 2) = 3 but rank S(I, 2) = 5 because
of the additional degree 2 linearly independent polynomials
−x2 + y2, 1 − 2u + u2 − 2v + 2uv + v2 − x2. An H-basis
consists of these 5 polynomials. The Gröbner bases given by
Mathematica using the DegreeReverseLexicograpic ordering
or by Singular using the dp ordering require also the cubic
x3−x. However vjet(x3−x, 3) is already in the rowspace of
the Sylvester array of degree 3 given by the H-basis above
so is not needed in the H-basis.

3. THE DUAL SPACE OF DIFFERENTIAL
FORMS

3.1 Local and Global Duality
Dual spaces on polynomial ideals have been studied by

[14, 10, 8, 16] and also by [7, 6, 19], however the former use
a global point of view while the latter take a local point of
view with the exception of [19] who attempts to combine the
two ideas. Since the main object of study by both groups are
zero-dimensional rings the difference may not be apparent,
however we are applying these to positive dimensional rings
and the important distinction needs to be noted. We begin
by briefly reviewing the two concepts of dual spaces in the
papers cited above.

For the global point of view a global differential func-
tional on C[x] = C[x1, . . . , xs] is a formal infinite sum D =P

k ckX
k where k runs over all lists k = [k1, . . . , ks] where
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the ki are non-negative integers. The Xk are the functionals
defined for each monomial xj by

Xk`xj´ =

(
1 if j = k,

0 if j 6= k.

This extends D to a linear functional over all polynomials in
C[x]. If I is an ideal of C[x] we say D is in the dual space of
I if D(f) = 0 for all f ∈ I. This makes D a linear functional
on C[x]/I By abuse of language we sometimes say D is a a
linear functional on I.

If D =
P

k ckX
k we write jet(D, p) =

P
|k|≤p ckX

k. Then

vjet(D, p) will be the vector of coefficients ck indexed as in
the Macaulay and Sylvester matrices. We have

Lemma 2. Suppose F = [f1, . . . , ft] and I is the ideal
C[x]F generated by the fi. Let D =

P
k ckX

k be a differen-
tial functional. The following are equivalent.

i) D is a differential functional on I.

ii) For all n > 0 vjet(D, n) is in the nullspace of S(F, n).

iii) For all n > 0 vjet(D, n) is in the nullspace of S(I, n).

Proof: From the definitions i) is equivalent to iii) and iii)
implies ii). But if g ∈ I then the coefficient vector of g is
contained in the row space of S(F, d) for some d and hence
D(g) = 0. Thus ii) implies i).

On the other hand a local differential functional on C[x]
is a finite sum d =

P
xj cxj∂xj [x̂] where xj runs over a finite

set monomials in C[x], each cxj is a complex number and
∂xj [x̂] was defined in (1). Local differential functionals are
the differential functionals used in [19, 7, 6]. x̂ is a point we
will call the center, this point will act as a local origin, and
local differential functionals will act on analytic functions as
well as polynomials [6], a fact we will not use.

Given x̂ in V (I), the local dual space at x̂ is the vec-
tor space of all local differentials d centered at x̂ such that
d(g) = 0 for all g ∈ I. A member of the local dual space at
x̂ will also be called a local differential functional on C[x]/I,
or on Ox̂(C[x]/I) or on I for an ideal I

The order of a local differential functional d, written d =
ord(d) is the largest integer d so that cxj 6= 0 for some |j| = d.
Again we can write vjet(d, p) for the vector of coefficients cxj

where |j| ≤ p, if p > ord(d) filling with 0’s so that there is
an entry for each index j with |j| ≤ p. In contrast to Lemma
2, we have from [7, 6]

Lemma 3. Suppose F = [f1, . . . , ft] is a list of polynomi-
als and I is the ideal of C[x] generated by the fi. Then d is
a local differential functional at x̂ if and only if vjet(d, d) is
in the nullspace of M(F, d, x̂) where d = ord(d). Moreover,
vjet(d, p) will then be in the nullspace of M(F, p, x̂) for all
p ≥ d.

We note that although local differentials are finite sums,
the vector space of all local differentials on I at x̂ may be
infinite dimensional. In fact [6, Theorem 1] a point x̂ in
V (I) is an isolated point of V (I) if and only if the local
dual space of I is finite dimensional. On the other hand the
global result, eg. [8, 16, 19], is that V (I) is finite if and only
the global dual space of I is finite dimensional.

It is instructive to compare our distinction of local and
global with the monomial orderings of [9]. Local orderings
have notation such as ls, ds where the “s” stands for series

while global orderings are denoted by lp, dp etc. where “p”
stands for polynomial. The local dual differential functionals
here make sense in the context of analytic functions or series
[6] while the global dual differential functionals only apply
to polynomials.

To sum up, local forms act at a point, global forms act
on the whole variety, local forms are dual to the Macaulay
arrays while global forms are dual to the Sylvester matri-
ces. These differences become most apparent working with
positive dimensional algebraic sets.

3.2 Local to Global
A key feature for polynomials is that we can convert local

differentials to global. Given a local differential at a point
x̂ ∈ Cs we have the following change of center formula:

∂xj [x̂] =
X
i≥j

`
i1
j1

´
x̂i1−j11 · · · `is

js

´
x̂is−jss Xi (2)

where x̂ = [x̂1, . . . , x̂s], i = [i1, . . . , is] and j = [j1, . . . , js],
i ≥ j means iα ≥ jα for all 1 ≤ α ≤ s and, for this formula,
x0
i = 1 even if xi = 0. Further, 0̂ always denotes the actual

origin in that all coordinates of 0̂ are 0.
Note that the right hand side of (2) is a formal infinite

sum so we do not get a local differential. But there are only
finitely many terms of any degree so applying this to any
polynomial gives only finitely many non-zero terms. If d =P
cj∂xj linearity gives a global differential D =

P
ξiX

i[0̂].
But both give the same result when acting on any polynomial
f ∈ C[x]. So if d is in the local dual space to I at x̂, then
D is in the global dual space to I. We will write D = Γ(d)
and call Γ the globalization operator.

If vjet(d, n) is in the nullspace of the Macaulay matrix
M(F, n, x̂) then vjet(D, n) is in the nullspace of the Sylvester
matrix S(F, n) for d = Γ(d). In fact, if I is generated by
F then Lemma 2 says that vjet(D, d) is in the nullspace of
S(I, d).

Conversely if D is in the nullspace of S(F, n) it need not
be in the nullspace of M(F, n, 0̂). In particular a local dif-
ferential on I is global but not conversely. So there is no
global to local principle.

Note that (2) extends to a linear transformation on the
local dual space at x̂ to the global dual space of I. Thus,
given suitable bases for the space of all differentials at x̂ and
the global differentials, then there are matrices which give
these transformations taking vjet(d, n) to vjet(D, n). For
example if s = 2 and x̂ = (1, 2) then, with the monomial
ordering X3 = {1, x, y, x2, xy, y2, x3, x2y, xy2, y3}, this is the
10× 10 lower triangular unit diagonal matrix in Figure 1.

γx̂ =

266666666666664

1 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0
2 0 1 0 0 0 0 0 0 0
1 2 0 1 0 0 0 0 0 0
2 2 1 0 1 0 0 0 0 0
4 0 4 0 0 1 0 0 0 0
1 3 0 3 0 0 1 0 0 0
2 4 1 2 2 0 0 1 0 0
4 4 4 0 4 1 0 0 1 0
8 0 12 0 0 6 0 0 0 1

377777777777775
Figure 1: Change of Center Matrix
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3.3 The Main Theorem
If I is an ideal in C[x] we write jet(I, n) for the C vector

subspace of I of all polynomials of total degree at most n.
Our main theoretical result is

Theorem 1. Let I be an ideal of C[x] and integer n > 0
be given. Then there exist finitely many points p̂j ∈ V (I), j =
1, . . . , k such that for f ∈ C[x] of total degree no more than
n, f ∈ jet(I, n) if and only if D(f) = 0 for each global vector
D = Γ(d) where d is a local vector of order n or less at some
p̂j.

Proof: Since f ∈ I if and only if f lies in the local ideal
Ix̂ for all x̂ ∈ V (I) then strict local duality given in [8, 16]
shows f ∈ Ix̂ if and only if d(f) = 0 for all local differentials
at x̂. Thus f ∈ I if and only if Γ(d)(f) = 0 for all local differ-
entials at all points of V (I). Moreover if the total degree of
f is no more than n, f ∈ jet(I, n) if and only if Γ(d)(f) = 0
for all d of order n or less. But since jet(I, n) ⊆ jet(C[x], n)
which is finite dimensional the restriction of the dual space to
dual vectors operating on jet(C[x], n) is finite dimensional.
Thus it has a basis consisting of finitely many Γ(d), and
these can be derived from finitely many points of V (I).

If P = {p̂1, . . . , p̂k} is a finite set of points such that the
conclusion of Theorem 1 holds for I andN we say P satisifies
Theorem 1 for I, N .

From a matrix point of view Theorem 1 says that if one
constructs the column matrix Dn = Dn({p̂1, . . . , p̂k}) of all
vjetΓ(d) of all local dual vectors d of degree n or less at the
points p̂j then the Sylvester matrix S(I, k) is row equivalent
to the left nullspace of Dn. If N > n then if f is a polynomial
in I of degree n then vjet(f,N) is the vector of length

`
N+s
s

´
which agrees with vjet(f, n) in the first

`
n+s
s

´
places and is

0 in the remaining places. By Theorem 1 vjetf,N is then
in the left null space of Dn = DN ({p̂1, . . . , p̂k}) for any set
of points ({p̂1, . . . , p̂k} of V (I). But because of the zeros
above degree n it is seen that vjet(f, n) is in the left nullspace
of vjet(DN , n), the submatrix of DN consisting of the first`
n+s
s

´
rows. Conversely any vector in the left nullspace of

vjet(DN , n) extends, by adding 0’s at the end to a vector in
the left nullspace of DN so corresponds to a polynomial of
degree n in I assuming {p̂1, . . . , p̂k} satisfies Theorem 1 for
degree N . Thus we have shown

Corollary 1. Suppose {p̂1, . . . , p̂k} satisfy Theorem 1
for N and n < N . Then the row space of the Sylvester matrix
S(I, n) is the left nullspace of vjet(DN ({p̂1, . . . , p̂k}), n).

This corollary will provide the theoretical justification of
the algorithms in this paper. How many points are needed
cannot be easily quantified because all points of V (I) may
not be equally good. To get a full H-basis for I it can be
seen that it is necessary to have at least one point from each
component of V (I). For fixed n as N grows the number
of points needed per component decreases, in principle one
point per component should be enough but computing costs
grow quickly with n while adding new points is cheaper, so
this idea is not pursued here.

Often if the degree of V (I) is d then d points are sufficient
and intersecting V (I) by a random hyperplane gives general
enough points. The result can be checked on additional ran-
dom points and/or by numerical irreducible decomposition
to see that in fact V (I) is defined, at least as a set theoretical
intersection, by the resulting system.

4. THE HILBERT FUNCTION
Kreuzer and Robbiano define an affine Hilbert function in

[12, §5.6] which is easy to describe using our notation. We
will call it the global Hilbert function GHF(n) to distinguish
it from our local Hilbert function in [7, 6]. Given an ideal I
in C[x] = C[x1, . . . , xs]

GHF(n) =

 
n+ s

s

!
− rank S(I, n), n > 0 (3)

Note that GHF(0) = 1 always. Since we will be using
Corollary 1 to calculate S(I, n) a more direct calculation of
GHF(n) is given by

Corollary 2. If {p̂1, . . . , p̂k} ⊆ V (I) is a set of points
for which the conclusion of Theorem 1 is true for N then for
n ≤ N

GHF(n) = rank vjet(DN ({p̂1, . . . , p̂k}), n)

Example 2 [12, Example 5.6.2]: Consider I = 〈xy, x2−y〉 ⊆
C[x, y]. Since V (I) = {(0, 0)} it can be seen that Theorem
1 holds for {(0, 0)}. Thus the global dual space is the local
dual space spanned by ∂1, ∂x, ∂y + ∂2

x. In [7, 6] this gives
local Hilbert function 1, 1, 1, 0, 0, . . . . The global duals are
1, X, Y +X2 so vjet(DN ({(0, 0)}, 2) is the matrix241 0 0 0 0 0

0 1 0 0 0 0
0 0 1 1 0 0

35>

for N ≥ 2 where the rows are indexed by 1, X, Y,X2, XY,
Y 2, . . . . So vjet(DN ({(0, 0)}, n) has rank 3 for n ≥ 1 and
hence GHF is 1, 3, 3, 3, . . . .

Further it is noted in [12] that C[x, y]/I ∼= C[x]/〈x3〉 which
has GHF 1, 2, 3, 3, . . . . Thus for ideals J in C[x] the global
Hilbert function is an invariant of J but not of the ring
C[x]/J .

We remark that there is a polynomial GHP(n) with ra-
tional coefficients which agrees with GHF for large n known
as the affine Hilbert polynomial. The degree d of this poly-
nomial is the Krull dimension of C[x]/I, see again [12] for
details. If cd is the leading coefficient of GHP we will call the
integer d! cd the degree of V (I) which agrees with the usual
definition of degree of an irreducible variety.

5. THE ALGORITHMS

5.1 Calculating DN (p̂1, . . . , p̂k)

Let polynomials f1, . . . , ft be given, as in §3 we will let
DN = DN (p̂1, . . . , p̂k) be the column matrix of all vjet(Γ(d))
where d is of order N or less in the dual of the ideal I =
〈f1, . . . , ft〉 at some p̂j . DN can be calculated by Macaulay
matrices as in Lemma 2 and §3.2 or using strategies such as
in [13, 16, 21, 22] and then multiplying the vjet vectors at x̂
by γx̂.

Computations in this paper are done primarily by SVD
based numerical linear algebra. Matrix ranks are given by
the number of singular values larger than a specified toler-
ance. In satisfying the conclusion of Theorem 1 picking a
correct tolerance is a further complicating factor.

Experiment 3: The most difficult example encountered
is finding the positive dimensional locus of the well known

11



cyclic-4 example:

x1 + x2 + x3 + x4

x1x2 + x2x3 + x3x4 + x4x1

x1x2x3 + x2x3x4 + x3x4x1 + x4x1x2

x1x2x3x4 − 1

Let I be the ideal generated by the above, then V (I) con-
tains a curve of degree 4 with global Hilbert function 1, 3, 6,
10, 14, 18, 22, . . . and the remaining points are isolated. It is
relatively easy to find points on the curve by adding a ran-
dom linear function to the system above as the augmented
system will have 4 solution points. This latter information
implies the highest degree term of the global Hilbert poly-
nomial will be 4t. As mentioned above it is tempting to
use these 4 points and N = 6 to satisfy the conclusion of
Theorem 1.

One can test by calculating a global Hilbert function using
Corollary 2. As an experiment we tested the terms of the
global Hilbert function up to degree 6. Ten trials each were
done using Mathematica 6 and Mathematica 7, 3 differ-
ent tolerances and both 4 and 5 points. For each trial with
4 points the points were chosen by intersecting the Cyclic
4 with a random hyperplane. For the trials with 5 points
4 were chosen as before and the fifth came from a different
random hyperplane intersection. For each of the 12 possibil-
ities 10 trials were run. The following table gives the number
of successful trials out of ten.

Mathematica 6.0.3.0 7.0.1
tolerance 4 pts 5 pts 4 pts 5 pts

10−12 5 9 3 6

10−10 9 9 5 6

10−8 7 7 10 8

Overall it seems that with tight tolerance the extra point
helped, but with loose tolerance the extra point was not
needed. It should be pointed out that often, even if one or
more terms in the Hilbert function was incorrect, the correct
leading term of the Hilbert Polynomial, 4t, could still be
inferred from the last 3 terms. This happened 107 times out
of the 120 total trials or 89% of the time.

When the correct Hilbert function is obtained then using
the same tolerance and the two algorithms HBasis, MBasis
below give a complex H-basis. Comparing Sylvester matrices
we see that this complex H-basis is equivalent to the known
H-basis {x1 + x3, x2 + x4, −1 + x2

1x
2
2}. With the correct

number of points and tolerance this entire calculation should
take less than a minute of computer time.

Thus given the present lack of a definitive criteria for sat-
isfing Theorem 1 with a given tolerance we must regard this
step, only, as heuristic. If the Hilbert function is not known
a-priori then one should run several trials with different ran-
dom points, different numbers of points and different toler-
ances. One is looking for the smallest global Hilbert function
with the correct highest degree term, easily found, for the
Hilbert polynomial.

5.2 Computing S(I, k)

Our main algorithm is the following, here Xn is a vector
of column indices of S(I, n).

Algorithm HBasis: Calculation of Sylvester Matrices.
• Input: Positive integers n ≤ N , polynomials f1, . . . , ft

defining V (I) and points p̂1, . . . , p̂j in V (I).

• Calculate DN = DN (p̂1, . . . , p̂k) as in §5.1.

• Truncate this matrix to order n, i.e. take the first
`
n+s
s

´
rows vjet(DN , n) of DN .

• Find the nullspace of vjet(DN , n) as a row matrix S.

• Output: The matrix S or the set of polynomials SXn.

If I and the points p̂1, . . . , p̂k satisfy Theorem 1 for order
N then S = S(I, n), and, if N is sufficiently large, S(I, N)
will be a H-basis for I.

Even when DN (p̂1, . . . , p̂k) does not have the correct Hil-
bert function the algorithm HBasis may give useful informa-
tion.

Example 4: Consider the polynomial

f = 2 + 3x2 − 5x4 + x6 − 3y2 − 16x2y2 + 8x4y2 − 5y4+

16x2y4 + 7y6 + 9xz − 4x3z − 2x5z − 22xy2z+

11xy4z + 7x2z2 − 4x4z2 − 11x2y2z2 + x3z3

This polynomial can be factored exactly over a complicated
complex finite extension field of the rationals to give 3 real
quadratic factors. However we merely have Mathematica
pick random complex values, approximately, ŷ = −0.59133−
0.126784ı, x̂ = −0.2477 + 0.897805ı which we substitute into
f and solve the resulting one variable polynomial for ẑ. For
p̂1 = (x̂, ŷ, 1.03993 + 5.73923ı), approximating the 17 digit
machine numbers, we construct D7({p̂1}) taking 4.3 sec-
onds. The Hilbert function with tolerance 10−9 is 1, 4, 9, 16,
24, 30, 34, 36 which shows that Theorem 1 is not satisfied for
{p̂1} and N = 7 but that the Sylvester matrix of order 2
obtained by the algorithm HBasis will contain the unique
row vjet(g1, 2) for a quadratic g1. The time reported for
this computation is zero since we are merely taking the
nullspace of a tiny 36 × 10 matrix. Thus from this single
point p̂1 we obtain a potential factor of f in under 5 sec-
onds. We repeat this for points p̂2, p̂3 with the same x̂, ŷ
but ẑ = 0.232135 − 0.184349ı, 0.395344 + 1.01247ı respec-
tively. Thus we obtain, after about 15 seconds, the following
3 factors with real coefficients, the small imaginary terms
dropped, and coefficients accurate to 9 digits

g1 =− 0.447561736 + 0.364721029x2

+ 0.812282765y2 − 0.082840707xz

g2 =− 0.210422444− 0.537639032x2

− 0.327216587y2 − 0.748061476xz

g3 =0.561390307− 0.134811931x2

− 0.696202238y2 + 0.426578376xz

Multiplying these as reported above, then norming the re-
sult to have constant term 2, we obtain a polynomial whose
difference from the exact f is about 5 ∗ 10−8 in the 2-norm.
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5.3 Minimal H-Basis
Let Xn be the vector of column indices of S(I, n) for an

ideal of C[x1, . . . , xs]. In theory it should hold that

rowspace
`
S(S(I, n)Xn, n+1)

´ ⊆ rowspace
`
S(I, n+1)

´
(4)

From the point of view of numerical linear algebra this in-
clusion of row spaces could be tested by

rank S(I, n+ 1) = rank

»
S(S(I, n)Xn, n+ 1)

S(I, n+ 1)

–
(5)

where the second matrix is a block matrix and rank is mea-
sured by number of singular values above the current work-
ing tolerance. However using the algorithm HBasis of the
last section (4) may not precisely hold. There are various
strategies that may be used to overcome this issue, but in
this paper we will use the simple, although not totally sat-
isfying, strategy of loosening the working tolerance so that
(5) holds. Since (5) almost holds the extra singular values
of the test block matrix are still small so we can reset the
tolerance to be slightly larger than the largest of these.

Given a matrix A with rowspace a subset of the rowspace
of B there are many numerical algorithms which, to a tol-
erance ε, will produce a submatrix B′ of B such that all of
the rows of B′ are numerically independent of the rowspace
of A and the block matrix

ˆ
A
B′
˜

has the same rowspace the
same rowspace as B. We let the reader choose her favorite
and call the result B′ a complimentary matrix to A in B.

Algorithm MBasis: Calculation of Minimal H-basis.
• Input: DN (p̂1, . . . , p̂k) as calculated in §5.1.

• Use HBasis algorithm to successively calculate S(I, 1),
S(I, 2), . . . until one finds a non-empty Sylvester ma-
trix S(I, n0), initialize B = S(I, n0)Xn0

• For n = n0, . . . , N − 1 do

– Calculate S(I, n+ 1) and check that (5) holds for
n, if not increase ε so that it does hold. If the new
ε is unacceptably large then quit, algorithm fails.

– Let C be the complimentary matrix to
S(S(I, n)Xn) in S(I, n + 1). Append CXn+1 to
B.

• Output B.

Example 5: Consider the plane curve defined by f =
8x3+x4+12x2y−20xy2−x2y2+4y3+y4 which clearly has a
singularity at the origin. We wish to desingularize this curve
and use the information to find the tangent directions of the
branches, which are irrational numbers. Since apriori we do
not know the answer we use a random quadratic, approxi-
mately g = −.292846x+ .999554y − .763056xz − .063694yz.
At least locally the desingularized curve will be the compo-
nent of the system f, g obtained by removing the unwanted
multiple component x = y = 0. To illustrate algorithm
MBasis we will find a minimal H-basis describing this com-
ponent.

Intersecting V (〈f, g, 〉) with a random hyperplane we ob-
tain 8 points, three on the component x = y = 0. We calcu-
late D6({p̂1, . . . , p̂5}), starting with tolerance 10−12, which
takes 6 seconds. The Hilbert function confirms we have a
curve of degree 5, so Theorem 1 is satisfied. By HBasis
S(I, 1) is empty, where I will be the ideal of the desingular-
ization. S(I, 2) has rank 1, essentially the vjet of quadratic
g, so we initialize B = {g}. Now S(B, 3) has rank 4, and
HBasis finds S(I, 3) also to be of rank 4 with condition (5)

satisfied, so B will contain nothing of degree 3. S(B, 4) has
rank 10 while S(I, 4) has rank 14. Condition (5) is not satis-
fied so we raise tolerance to 6∗10−10 to make it true. We add
the 4 new functions to B. There is nothing new in S(I, 5) or
S(I, 6) but we must raise the final tolerance to 3 ∗ 10−6 to
keep (5) valid. Along the way we have calculated the Hilbert
function of the ideal generated by B using (3) and we appear
to have our curve of degree 5 so we are satisfied that we have
the correct B.

Substituting x = y = 0 into the 5 members of B we find
that all 5 have solutions {−1.7727, 0.479915, 0.810186} for z
so we now know the points over (0, 0) in the curve V (B), we
can check that these points are all non-singular by checking
the Jacobians, each is of rank 2. Projecting the null vectors
of these Jacobians down to the plane we find the tangent
lines to be y + .391382x, y − 1.22713x, y − 4.16425x.

5.4 Alternate Minimal Basis Computation
The algorithm MBasis above returns a numeric minimal

H-basis. Not only do these bases contain polynomials with
many terms but the coefficients are floating point complex
numbers which makes these bases awkward to display. In
this section we consider an alternate computation of a mini-
mal H-basis which often gives nicer results to display. When
there is an exact minimal H-basis this algorithm often finds
a good approximation of it. This algorithm is, however, less
robust and may not work for large systems.

A matrix M is in RRREF form, i.e. reverse reduced row
echelon form, if the rightmost non-zero entry of each row
is a 1, say in the ith0 row and jth0 column and each entry
in the ith row and jth column for i < i0, j ≥ j0 is zero.
In s variables the number of monomials of total degree n
or less is

`
n+s
n

´
. So if F is set of s-variable polynomials

and S(F, n) is put in RRREF form the rows with leading
(rightmost) 1 in position

`
k+s−1
k−1

´
+ 1 to

`
k+s
k

´
correspond

to polynomials with total degree k. By a mild abuse of
language we will say the degree of that row is k and write
RS(F, n) for the RRREF reduction of S(F, n) and RS(F, n)k
for the submatrix of RS(F, n) consisting of rows of degree
k or less. The following specialization of Lemma 1 is then
easily proved:

Lemma 4. Let f ∈ I be of total degree k ≤ n. Then
vjet(f, k) is in the rowspace of RS(I, n)k.

In [4] the author introduced a approximate reverse row
echelon form algorithm ARRREF which creates an approxi-
mate reverse row echelon form. The approximate method is
similar to an approximate RREF introduced about the same
time in [17]. The author’s implementation also outputs a list
b of the pivot columns and we will assume below that the
ARRREF algorithm used does this.

Then we have the alternate minimal H-basis algorithm:

Algorithm MBasis2: Minimal S-basis via the ARRREF al-
gorithm

• Input: Sylvester Matrix S(I, n) for large n so that
S(I, n) contains an H-basis.

• Apply ARRREF to S(I, n) to obtain a matrix RS(I, n)
which is row equivalent to S(I, n) but in reverse re-
duced row echelon form. Analyze the list of pivot
indices to obtain a list k1 ≤ k2 ≤ · · · ≤ kn where
ki = dimRS(I, n)i.
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• Let i be the smallest index where ki > 0. Multiply
RS(I, n)i by the column vector of indices xj, |j| ≤ ki
to obtain the corresponding polynomials and let B be
this set of polynomials.

• Let j = i+ 1, while j ≤ n do

a. Calculate S(B, j), if rank S(B, j) = kj increment
j = j + 1 and repeat step a.

b. Find the complementary matrix of S(B, j) and the
first

`
s+j
s

´
columns of RS(I, n)j . Extract the last

kj − rank S(B, j) rows of this complementary ma-
trix and multiply by the appropriate vector of in-
dices xj to get polynomials. Append these poly-
nomials to B. Increment j = j+ 1 and go back to
step a.

• Output B.

6. SUBVARIETIES AND UNIONS OF
VARIETIES

In both Examples 4 and 5 we illustrated the application
that motivated this paper, finding a system of equations
defining a subvariety of a reducible variety. In Example 4 we
were fortunate that one point was enough, in Example 5 we
were fortunate that many points on the desired component
satisfied a simple condition, x 6= 0 or y 6= 0. Another for-
tuitous situation is finding the top dimension locus of V (I)
using Mathematica’s NSolve which, when presented with a
non-zero dimensional system returns a set of points in the
top dimensional locus of the variety. We illustrated this with
Example 3.

More generally one could use homotopy continuation nu-
merical algebraic geometry software such as PHCpack [20]
or Bertini [1] the latter of which automatically gives degree
V (J ) witness points on the component V (J ). If this is not
enough Bertini also has an automatic option to give more.
PHCpack can also give this information but requires a bit
more effort from the user.

An alternative is to note that each point on a positive di-
mensional component of V (I) has infinitely many local dual
differentials. These can be interpreted as tangency condi-
tions. Thus while a function that that is dual to just a few
low order differentials at one point p̂ need not be in the ideal
of the component it should have a small residue near p̂.

Conversely, Suppose I1, I2 are ideals in C[x]. If D1 =
D1
N (p̂1, . . . , p̂j),D2 = D2

N (q̂1, . . . , q̂k) are the dual matrices
for the two ideals both satisfying Theorem 1 for the same
N then any f ∈ J = I1T I2 will be dual to both, that is
dual to the block matrix [D1|D2], and conversely. Thus the
algorithms HBasis, MBasis will calculate a minimal S-basis
for V (I1)

S
V (I2). Note that [5] gives a different approach

that works for homogeneous ideals only.
Here is one final example illustrating both of the above

ideas.

Example 6 Let F = [x3 + y3 + z3 − 1, x2y + xy2 + xz +
yz]. It is checked that V (〈F 〉) is the union of 9 lines in
the non-singular cubic surface x3 + y3 + z3 = 1. For more
information on this see [5, 11]. We will first use MBasis2 to
find equations for 4 of these lines and then find the ideal of
the union of these 4 lines.

Intersecting V (〈F 〉) with a random plane gives 9 points, 4

of which are, approximately

p̂1 =(−0.5 + 0.866025ı, 0.422331 + 0.471534ı,

0.619526− 0.129982ı)

p̂2 =(−0.5− 0.866025ı, 0.422331− 0.471534ı,

0.619526 + 0.129982ı)

p̂3 =(0.311069 + 0.406982ı,−0.5 + 0.866025ı,

0.507991− 0.0659029ı)

p̂4 =(0.311069− 0.406982ı,−0.5− 0.866025ı,

0.507991 + 0.0659029ı)

For each of these points we calculate D3(p̂j) as in §5.1 and
then use HBasis to find S(Jj , 1) where Jj is the ideal of the
line through p̂j . Then apply MBasis2 to get a nice system.
The total Mathematica 6 time for all three steps is 0.05
seconds. The lines are given by the following exact systems
which differ from the numeric output by about 3 ∗ 10−16 for
each equation. Let λ be cube root of unity (−1 +

√
3ı)/2.

`1 = [−λ+ x, λy + z]

`2 = [−λ−1 + x, λ−1y + z]

`3 = [−λ+ y, λx+ z]

`4 = [−λ−1 + y, λ−1x+ z]

It is seen that the configuration of these for lines is a 2×2
i.e. each line intersects two of the others and is skew from
the third, see [5], which is one of the few subconfigurations
of lines in the cubic which is known to be a complete inter-
section. We will find a minimal H-basis and verify this last
fact.

By concatenating the 20 × 4 matrix D3(p̂1) with D3(p̂2)
we get the 20 × 8 matrix D3(p̂1, p̂2). Applying HBasis to
get S(I12, 3) and then HBasis we get a minimal H-basis for
I12 the ideal of the union `1 ∪ `2. This numerical minimal
H-basis is again very close to the exact

I12 = 〈1 + x+ x2, xy + z,−y + z + xz, y2 − yz + z2〉
which is not a complete intersection.

Likewise

I123 =〈xy + z, λ+ λx+ λx2 − y + z + xz,

− λ−1 − λ−1x− λ−1x2 + y2 − yz + z2〉
I =〈xy + z, 1 + x+ x2 + y + y2 − z − xz − yz + z2〉.

where I123 is the ideal of `1∪ `2∪ `3 and I is the ideal of the
union of all 4 lines. Note that I is given by two generators
as claimed.

7. CONCLUSION
By carefully distinguishing between local and global duals

and exploiting the connection between the two we can work
with positive dimensional ideals. Although further analy-
sis and experience working with these heuristic methods is
necessary one can be optimistic that these methods will be
useful working with algebraic sets given numerically and ac-
curately.
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ABSTRACT
This paper reports an interval least-squares (ILS) algorithm
that computationally approximates an interval function, in
which both dependent and independent variables are inter-
val valued. An initial version of this algorithm and its im-
plementation were developed as a computational scheme for
the stock market variability forecast with significantly im-
proved results reported in [16] and [18]. The computational
scheme then applied to predict mortgage rate [12], crude
oil price [31], and network bandwidth [23]. In all of these
applications, the interval least squares approach improved
computational results significantly in terms of much higher
accuracy and stability comparing against that of traditional
confidence interval forecasts with point-valued ordinary least
squares.

In this paper, we modify the scheme as a general pur-
pose ILS algorithm for interval function approximation with
clearly defined concepts and quantitative quality assessment.
A summary of its application on a real world multi-variable
time series is also included.

Categories and Subject Descriptors
G.1.0 [Numerical Analysis]: General–Interval arithmetic;
G.1.2 [Approximation]: Least Squares Approximation

General Terms
Algorithms, Theory

Keywords
Interval function, interval least squares, error and accuracy
of interval estimation, uncertainty, variability forecast.

1. INTRODUCTION

1.1 Interval function and the problem we ad-
dress
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personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
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In this paper, we use boldfaced letters to specify an inter-
val or an interval vector. We use an under- and an over- lines
to denote the lower and upper bounds of an interval, respec-
tively. For example, x is an interval (or interval vector), and
its lower and upper bounds are x and x, respectively.

We repeat the definition of an interval function in [14]:
Definition 1: Let X and Y be the sets of intervals X =
{x : x ⊂ Rn,x is an interval vector} and Y = {y : y ⊂
R,y is an interval}. If for any x ∈ X there is a unique
interval y ∈ Y correspondent to x, then we say that X and
Y define an interval function y = f(x).

In applications, the analytic form of an interval function
y = f(x) may not be provided explicitly. Instead, one may
only be able to work on a set of interval-valued observations
(x,y), where x ⊂ Rn and y ⊂ R.

The problem we address in this paper is to find an interval
function that best fits the observations in a least squares
sense.

1.2 Motivation of this study
The motivation of this study comes from the following

observations mainly.
First, data observed and recorded in finite precision are of-

ten imprecise. Using intervals to contain uncertainty as well
as observational and rounding errors, one may probe the
reliability of computational results of applications including
function approximation. In 1998, Hu et al reported their ini-
tial investigation on interval polynomial interpolation and its
Lagrange solution of univariate functions [14]. Their numeri-
cal examples evident that even with a very small percentage
of error, from ∓0.1% to ∓0.5%, for only five or six point
valued nodes, the interval Lagrange interpolation could vary
widely. This implies unreliability and instability of compu-
tational results.

Second, in studying variability of natural and/or social
phenomena within a specified time period, the typical objec-
tive is not to project the instantaneous value at a particular
time spot but rather to estimate the range of the function
within the time period. For example, the annual precipi-
tation in a city during the decade 2010-2019 would be pre-
dicted more reasonably as an interval rather than a point.
Traditionally, people have applied statistics and probability
theory to generate confidence interval predictions. However,
the confidence interval approach does not work well in many
cases. For example, in forecasting the stock market annual
variation from 1940-2004, the 95% confidence interval fore-
casts reaches the average accuracy ratio1 only about 13%.

1See Definitions 5 and 6 in section 3.5 of this paper.
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But, the interval function approach with the same dataset
the same economical model reaches the average accuracy
above 64% and achieves much higher stability in terms of
less standard deviation [11], [16], and [18]. In [15], Hladik
and Cerny also discussed finding interval regression param-
eters.

Finally, many real-world phenomena, even at the atomic
level, are better described as intervals. The International
Union of Pure and Applied Chemistry has very recently
adopted as a standard that atomic mass, one of the most
fundamental scientific concepts, as an interval rather than
as a point. For instance, the atomic mass of chlorine is now
[35.446, 35.457], not 35 (or 35.453) .

Again, in many real world applications, the explicit form
of an interval function is unavailable. The best one can do
is probably to find a reasonable estimation from a collection
of interval-valued pairs (x,y). The linear least squares prin-
ciple has been arguably most broadly applied in function
approximation. Therefore, we study interval least squares
approximation in this paper.

1.3 Organization of the rest of this paper
The rest of this paper is organized as the follows. We

define the interval least squares problem in section 2 and
present a practical algorithm with quantitative quality as-
sessment in section 3. We report a successful real-world ap-
plications as a sample in section 4. We conclude the paper
with possible future studies in section 5.

2. INTERVAL LEAST SQUARES (ILS)

2.1 The linear ordinary least squares
The interval least squares (ILS) is closely related to tra-

ditional linear ordinary least squares (OLS). Therefore, we
briefly review the point-valued OLS first. A more detailed
summary can be found in [24].

With a selected set of base functions Φ = {ϕ0, ϕ1, . . . , ϕm}
and N data points (xi, yi), where i ∈ {1, 2, . . . , N}, the ob-
jective of linear OLS is to find a vector α = (α0, α1, . . . , αm)
that minimizes

NX
i=1

0@yi −
X

0≤j≤m

αjϕj(xi)

1A2

.

To computationally determine the coefficient vector α, one
needs to evaluate the basis functions ϕj(x) at xi for all 1 ≤
i ≤ N and 1 ≤ j ≤ m and then to form the design matrix

X =

0BBBBB@
ϕ0(x1) ϕ1(x1) · · · ϕm(x1)
ϕ0(x2) ϕ1(x2) · · · ϕm(x2)
· · · · · · · · · · · ·

ϕ0(xi) ϕ1(xi) · · · ϕm(xi)
· · · · · · · · · · · ·

ϕ0(xN ) ϕ1(xN ) · · · ϕm(xN )

1CCCCCA (1)

A classical approach to obtain the α is to solve the linear
system of equations, the normal equations,

XTXα = XT y,

where y = (y1, y2, . . . , yN )T .
Instead of solving the normal equations, a more recent

computational approach [24] applies a sequence of House-
holder transformations to both sides of the system Xα ≈ y

aimed to transform X to an upper triangular matrix R. One
can then determine α to avoid possible ill-conditioning of the
matrix XTX in the normal equations.

Using the α obtained with OLS, one may can approximate

yi with
X

0≤j≤m

αjϕj(xi). The average and standard devia-

tion of the absolute error, |yi−
X

0≤j≤m

αjϕj(xi)|, can then be

used to form confidence interval. Such that, one may have
certain statistic and probabilistic confidence on that, for a
provided x, the y will be within the confidence interval.

We emphasize it again, in traditional OLS confidence in-
terval approach, point-values are used in entire calculation.
On at the end of computation, a certain percentages of stan-
dard deviation (or error) are subtracted from and added to
the point estimation to form intervals.

2.2 Interval least squares
Different from OLS, the concept of interval least-squares

(ILS) derives an interval-valued approximation starting from
interval valued input at the very beginning. In other words,
an ILS interval estimates an interval function.

One of the primary objectives in previous studies on ILS,
including [1], [8], and others, is to bound the norm of Xα−y.
However, our goal in this paper is to practically minimize
the overall absolute error of an approximation of an interval
function.

Prior to our discussion on computational approaches to
estimate the α in ILS, we need to define the meaning of
interval least squares in this paper. Let us define the absolute
error of interval estimation first.

Definition 2: Let interval yest = [y
est
, yest] be an esti-

mation of an interval y = [y, y]. The left and right absolute
errors are EL = |y

est
− y| and ER = |yest − y|, respec-

tively. The absolute error of the estimation is the sum of
the left and right absolute errors, that is, E = EL + ER =
|y

est
− y|+ |yest − y|, respectively.

For example, if one uses [−1.02, 1.95] to estimate the in-
terval [−1.0, 2.0], then the left and right absolute errors of
the estimation are EL = |(−1.02) − (−1.0)| = 0.02 and
ER = |1.95− 2.0| = 0.05, respectively. The absolute error of
the estimation is EL + ER = 0.07.

Using the concept of absolute error of interval estimation,
we define linear interval least squares as the follow:

Definition 3: Let S be a set of N interval valued ob-
servations of an interval function y = f(x), i. e., S =
{(x,y) : x ⊂ Rn,y ⊂ R,both x and y are compact}. Pro-
vided Φ = {ϕ0, ϕ1, . . . , ϕm} be a set of basis functions.
We say that a linear combination of the basis functions,X
0≤j≤m

αjϕj(x), is an interval least squares approximation of

f(x) if the linear combination minimizes:

NX
i=1

E2
L +

NX
i=1

E2
R,

where

NX
i=1

E2
L =

NX
i=1

0@y
i
−

X
0≤j≤m

αjϕj(xi)

1A2

, (2)

and

NX
i=1

E2
R =

NX
i=1

0@yi −
X

0≤j≤m

αjϕj(xi)

1A2

. (3)
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2.3 Interval arithmetic
Similar to the OLS, it is required to find the vector α

that minimizes the sum of (2) and (3) in solving an ILS.
A significant difference between OLS and ILS is that, the
ILS approximates an interval function y = f(x) but the
OLS estimates a point-valued function. With interval valued
data, we need to use interval arithmetic as defined in [25]:

Let a = [a, a] and b = [b, b] be two nonempty in-
tervals and op be an operator (+,−, ∗,÷). Then,
a op b = {a op b : a ∈ a, b ∈ b}. If op is ÷, then
0 6∈ b.

That is:
a + b = [a+ b, a+ b],
a− b = [a− b, a− b],
a∗b = [min{a∗b, a∗b, a∗b, a∗b},max{a∗b, a∗b, a∗b, a∗b}],
and
a÷b = [min{a/b, a/b, a/b, a/b},max{a/b, a/b, a/b, a/b}], pro-
vided 0 6∈ b.

There are numerous well tested interval software tools
that can perform interval arithmetic reliably and evaluate
interval fundamental functions. These tools are available in
mainstream programming languages such as C [21], C++
[2], [22], [27], Fortran [20], Python [19], as well as in inte-
grated computational environment like the interval toolbox
[30] in matlab.

3. A PRACTICAL ILS ALGORITHM

3.1 Interval valued design matrix
With preselected base functions Φ and interval data, it

is straightforward to evaluate (1) and to obtain the inter-
val valued design matrix X by using available interval soft-
ware. However, it is a computational challenge to find the
α such that Xα ≈ y. Because neither directly solving the
interval normal equations XT Xα = y nor performing the
QR-factorization on the interval design matrix is easy.

Reported in the §4.3 of [17], an interval linear equation
Az = b may not have an exact solution at all (i.e., for a
given interval matrix A and an interval vector b, there may
not exist an interval vector z such that Az = b.) Most
available interval linear solvers, if not all, try to find a z
such that Az ⊃ b. The solution set of an interval linear
system of equations is mostly irregularly shaped and non-
convex [26]. A naive application of interval linear solver to
bound the solution vector α, in the interval normal equa-
tions XT Xα = y, may cause severe overestimation. Hence,
the interval least squares approximation could become prac-
tically meaningless.

It is much harder to apply the QR approach on the system
Xα ≈ y. A non-trivial interval subtract itself, according
to the definition of interval arithmetic, is no longer zero.
Hence, to the best of our knowledge, there is not interval
Householder transformation that can transform a non-zero
interval vector to the form of [a, 0, . . . , 0]T .

Moreover, even if one can find the α vector from the in-
terval valued design matrix X, there is no theory to ensure
that the α so computed minimizes the sum of (2) and (3).
Therefore, we try to construct a practical approach to solve
an ILS computationally.

3.2 Initial solutions

Our approach begins with the interval normal equations.
Traditionally, the solution set to Az = b is defined as {z| ∃A ∈
A, ∃b ∈ b : Az = b}. Using this approach, one may obtain
an interval vector z that is over-sized. Instead, we apply the
computational method reported in the §4.3 of [17].

When an interval linear system of equations does not have
an exact solution, one can find a satisfactory approximated
solution to meet our needs. Applying the concept of vol-
ume of an interval vector z = (z1,z2, . . . , zn), which is

v(z) =
Y

1≤i≤n

(zi − zi), the notion ratio of estimation for

an approximated solution of interval linear systems Az = b
is defined in [17] as:

Definition 4: The ratio of estimation of an approximated
solution of Az = b is:

r =

8>>>>>>>>>><>>>>>>>>>>:

0% if Az ∩ b = ∅;
100% if Az = b;
v(b)

v(Az)
if Az ⊃ b;

v(Az)

v(b)
if Az ⊂ b;

v(Az ∩ b)

v(Az ∪ b)
otherwise.

(4)

The greater the ratio r is, the better an estimated solu-
tion is. Considering the interval normal equation XT Xα =
XT y, we may try to find the α that maximizes the ratio of
estimation. Although the α may not minimize the sum of
(2) and (3), it would well fit the normal equation of ILS.

A computational approach is suggested in Example 4 of
[17], in which an initial midpoint solution is calculated. Then
an ε-inflation [29] is performed to enlarge the ratio of estima-
tion. In the interval normal equation XT Xα = XT y, we try
to find the midpoint vector of α first. This intuitively sug-
gests matching the center of the two interval vectors XT Xα
and XT y.

Let (XTX)mid and (XT y)mid be the midpoint matrix of
XT X and the midpoint vector of XT y, respectively. The
linear system of equations (XTX)mid α = (XT y)mid is a
point (not interval) linear system. We call its point-valued
solution α an initial point solution. Directly applying the ini-
tial point solution in y ≈P0≤j≤m αjϕj(x), one may obtain
interval valued results. Because of the independent variable
x is interval-valued. The initial point solution can provide
relative positions of XT Xα and XT y for one to calculate
the ratio of estimation defined in (4).

There is an alternative way to obtain an initial point so-
lution of α. Let Xmid and ymid be the midpoint matrix of
interval design matrix (1) and the midpoint vector of y, re-
spectively. By performing a sequence of Householder trans-
formations on Xmidα = ymid that makes Xmid right trian-
gular, we can obtain an initial point solution of α to avoid
possible ill-conditioned matrix (XTX)mid.

If we apply the sequence of Householder transformations
to Xmidα = y, we get an initial interval solution of α. How-
ever, the initial interval solution of α can be severely over-
estimated because of the collapsing of the interval design
matrix (1) to its mid-point without any adjustment on the
interval vector y.

The QR-factorization approach can produce both initial
point and interval solutions. It is preferable to the normal
equation approach.
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3.3 Width adjustment
The initial point solution is probably too narrow because

it collapse an interval valued α to a point. The initial interval
solution may be too wide due to the midpoint collapsing of
the interval design matrix (1). In either case, we need to
adjust the width of α.

Width adjustments on initial point or interval solutions
of α can be done through inflation (for the point one) or
deflation(for the interval one) experimentally.

For the initial point solution, we may perform a sequence
of ε-inflations, [17] and [29], to form various interval-valued
α. For example, we may use a sequence of ε values of
1%, 2%, . . . , 10%. By adding to or subtract from the point-
valued α, we obtain multiple interval-valued α’s. For each
of them, we can calculate the ratio of estimation as defined
in (4) or directly the sum of squares as in Definition 3 with
provided data. Similarly, we can perform a sequence of de-
flations on the initial interval solution.

By comparing the sum of squares (or ratio of estimation),
we can choose a preferable interval-valued α. One may also
use a hybrid approach by combining both initial point and
interval solutions in different weights to construct experi-
ments.

Instead of adjusting the width of α, another approach is to
approximate the interval function y = f(x) with the initial

solutions of α directly in yest ≈
X

0≤j≤m

αjϕj(x) and then

perform width adjustment on yest. We call this scheme post
adjustment of width. In the application of the stock market
interval forecasts reported in Section 4 of this paper, we
have applied moving average of width within a time window
to perform the post adjustment of width successfully.

3.4 A practical interval least squares algorithm
Summarizing the above discussion, we form an interval

least squares algorithm for interval function approximation
with the following main steps:

Algorithm 1. Given a preselected set of base functions
Φ = {ϕ0, ϕ1, . . . , ϕm} and a set of interval valued pairs
(xi,yi).

1. Evaluate the design matrix X, as defined in (1), with
interval arithmetic.

2. Perform the QR-factorization2 on the midpoint matrix,
Xmid, of X such that Xmid = Q ∗R.

3. Calculate z = QT y.

4. Find an initial α with one or both of the followings:

(a) Compute an initial point solution of α by solving
Rα = zmid with backward substitution.

(b) Compute an initial interval solution of α by solv-
ing Rα = z with interval arithmetic.

5. Perform width adjustments on the initial point and/or
interval solutions, and select the α that achieves the
least of the sums of (2) and (3) among experiments.

2For computational efficiency, it is not necessary to calcu-
late the Q matrix explicitly but performing the sequence of
Householder transformations to accomplish both steps (3)
and (4) of this algorithm.

6. Apply yest ≈
X

0≤j≤m

αjϕj(x) to approximate y ≈ f(x)

and then perform the post adjustment of width.

The algorithm above does provide a computational ap-
proach to experimentally find an ILS approximation of an in-
terval function . Practically, it can probably produce mean-
ingful computational solution for some applications as re-
ported in the next section of this paper. However, it neither
mathematically nor computationally guarantees the mini-
mization of the sum of squares of (2) and (3).

3.5 Accuracy - a quantitative quality assess-
ment of interval approximation

The steps 4 and 5 of Algorithm 1 suggest multiple values
of α in yest =

P
0≤j≤m αjϕj(x). To positively assess the

quality of an approximation of y = f(x), we may examine
the overlap between yest and y. The larger the overlap be-
tween the two intervals, the better the approximation should
be. By the same token, the less the non-overlap between the
two intervals, the more accurate the forecast is. In addition,
the accuracy of an interval estimation should be between 0%
and 100%. By using the notion of interval width, which is
the difference between the upper and lower bounds of an in-
terval, we can measure the intersection and the union (or the
convex hull) of the two intervals. The function w( ) returns
the width of an interval. We define the concept, named the
accuracy ratio of an interval approximation, as the follow.

Definition 5: Let yest be an approximation for the in-
terval y. The accuracy ratio of the approximation is

acc(y,yest) =

8>>>>><>>>>>:

100% if y = yest

w(y ∩ yest)

w(y ∪ yest)
if (y ∩ yest) 6= ∅

0 otherwise.

(5)

For example, if we use [−1.02, 1.95] to approximate the
interval [−1.0, 2.0], the accuracy ratio is
w([−1.02, 1.95] ∩ [−1.0, 2.0])

w([−1.02, 1.95] ∪ [−1.0, 2.0])
=
w([−1.0, 1.95])

w([−1.02, 2.0])
= 97.68%.

To quantitatively assess the quality of an interval function
approximation on a set of N interval pairs (xi,yi), we may
use the average accuracy ratio defined as the follow:

Definition 6: Let yest(x) =
P

0≤j≤m αjϕj(x) be an ap-

proximation of an interval function y = f(x). For a provided
set of N interval pairs (xi,yi), the average accuracy of the
approximation is

accavg =

NX
i=1

acc(yi,yest(xi))

N
. (6)

The average accuracy ratio is a quality measurement in
addition to the sum of squares of left and right errors as
defined in (2) and (3). Maximizing the average accuracy
ratio and minimizing the sum of squares are inter-connected.
The higher the average accuracy ratio is, the smaller the
sum and the better the approximation. An interval function
approximation is more accurate than others in average if its
mean accuracy ratio is higher and/or its mean absolute error
is less than that of the rests. However, the two concepts are
defined very differently.
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In addition to average accuracy and total errors (in terms
of least squares), we can calculate the standard deviation of
the absolute errors and/or accuracy ratios on the N observa-
tions. The smaller the standard deviations of accuracy ratio
and/or absolute error are, the stabler an approximation is.
Use these indicators, we can practically assess the overall
quality of an interval approximation quantitatively further.
We report a real world application of the Algorithm 1 with
quality comparisons in the following section.

4. AN APPLICATION ON TIME SERIES
ANALYSIS

4.1 Time series analysis
A time series is a chronologically ordered sequence of ob-

servations of natural and social phenomenon. Time series
analysis aims to understand, predict, and perhaps optimally
control natural and social phenomena. The ordinary least
squares algorithm has been commonly applied in the litera-
ture of time series analysis with point-valued data.

A typical approach of analyzing time series is to separate
possible trends and random noise first. Then, by adding
to and subtracted from the trend a factor of standard de-
viation, one can make predictions with some probabilistic
confidence [7]. Though significant achievements have been
made, scientists are very much aware of the limitations of
this approach. In some cases, the confidence interval predic-
tion can be very wide and meaningless. In some other cases,
the actual event can be completely outside of predicted inter-
val though its probabilistic confidence is considerably high.
After reviewing the progress of time series forecasting dur-
ing the past 25 years, Gooijer and Hyndman [9] concluded:
“Clearly, the area of improved forecast intervals requires fur-
ther research.’’

Our initial investigations on analyzing a time series with
75 years of macroeconomic data, from January 1930 to De-
cember 2004, reveal that the limitations are deeply rooted
in using point data and point computing [16] and [12]. With
the interval least squares approach, we are able to signifi-
cantly improve the quality of forecast intervals of the stock
market.

4.2 The time series and the model of forecast
The real world time series for total of 75 years of macroe-

conomic data is provided by a domain expert in computa-
tional finance. The dataset contains monthly observations
of six macroeconomic parameters3:

• SPt: the overall stock market value;

• IPt: the growth rate variations of seasonally adjusted
Industrial Production Index;

• DIt: changes in expected inflation;

• UIt: changes in unexpected inflation;

• DFt default risk premiums; and

• TMt: unexpected changes in interest rates.

3More detailed descriptions of these parameters can be found
in [11] and [13]. The complete dataset is available at:
http://sun0.cs.uca.edu/interval/projects/finance.html.

The objective is to forecast the annual variability of the
overall stock market as SPt intervals. This has both theo-
retical and practical importance.

In computational finance, the arbitrage pricing theory (APT)
[28] provides a framework that identifies macroeconomic vari-
ables that significantly and systematically influence stock
prices. By modeling the relationship between the stock mar-
ket and relevant macroeconomic variables, one may forecast
the overall level of the stock market. The model by Chen,
Roll, and Ross [3] is broadly accepted in studying the fi-
nancial market. According to the model, the changes in the
overall stock market value SPt are linearly determined by
the five macroeconomic factors: IPt, DIt, UIt, DFt, and
TMt as

SPt = α0 +α1IPt +α2UIt +α3DIt +α4DFt +α5TMt (7)

In traditional point approach, one samples the data annually
with 12-month interval, say every January (or other month,
say July or December) and then fits (7) with ordinary least
squares. By adding and subtracting a factor of the stan-
dard deviation, an annual confidence interval forecast will
be produced.

However, computational experiments with this application
suggest that the quality of confidence interval forecast is very
poor. As an alternative, by using the annual minimum and
maximum time series to forecast the annual lower and upper
bounds of the stock market [11], respectively, some improve-
ments have been made. But, the ILS algorithm achieves
significantly improved quality of forecasts as reported in Ta-
bles 1 and 2 of this paper.

4.3 The ILS stock market interval forecasting

4.3.1 Interval data formulation
To perform an ILS annual interval forecast of the stock

market, we need to approximate the interval function (7).
The first step is to construct interval-valued input data from
the monthly observed points. We take the following two
approaches to form the annual interval for each of the six
parameters.

The first one to use observed annual minimum and maxi-
mum within a given year as lower and upper bounds to form
the annual interval for each of the six attributes. We call it
min-max interval. The min-max interval has an advantage of
inclusion of all monthly observations within a year, however,
it does not consider randomness in the observations at all.
The other approach is to form annual confidence interval for
each of the six parameters. Using different confidence levels,
we may form various interval-valued time series for the study
and gain more information [18].

4.3.2 Time window
There is a general consensus in the financial literature that

relationships between financial market and macroeconomic
variables are time-varying [6]. This means that the rela-
tionship is valid only for a limited time period. Therefore,
in applying function approximation on a time series, one
should use only data inside an appropriate time window to
estimate the relationship. Professor L. He, a domain expert,
suggested we use a time window of ten years in our study.
Further study in [4] and [5] have justified computationally
that the window size of ten years is reasonable.

4.3.3 In- and out-of- sample ILS interval forecasts
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Within the fixed time window of ten years, we perform
the ILS algorithm to obtain the initial point solutionα in
the equation (7). Using the α and the equation (7) with the
annual interval of each parameter within the time window,
we make an in-sample forecast of the annual SP interval
for the last year in the time window. Using the α and the
equation (7) with the annual interval of each parameter im-
mediately follows the time-window, we make out-of-sample
forecast of annual SP interval in the first year following the
time window. We then apply the post width adjustment with
the average width of SP intervals within the window. This
is motivated by the auto regressive moving average method
in time series forecast. We carry out the computation with
C++ implementation of the ILS algorithm. The C++ in-
terval BLAS package [27] is applied to perform interval com-
puting.

4.4 Computational results and comparison

4.4.1 Computational results
By slicing the time window (also called“rolling”), reported

in [6] and others, we obtain 66 in-sample and 65 out-of-
sample annual ILS interval forecasts from 1939 and 1940
to 2004, respectively. For the purpose of comparison, we
obtain annual interval forecasts of the SP with the following
computational approaches:

• Ordinary Least Squares (OLS) 95% confidence interval
forecast which is probably the most commonly applied
one in the literature;

• OLS forecast of lower and upper bounds4 with sequences
of annual minimum and maximum;

• Interval Least Squares (ILS) forecast with annual min-
max interval as input, and

• ILS forecast with annual 92% confidence interval (ob-
tained with mean ∓1.75 ∗ std.) as input.

Being able to compare the overall quality of the above com-
putational approaches, we use the following quantitative in-
dicators for both in-sample and out-of-sample forecasts of
the stock annual variability.

• Absolute mean error:

Emean =

PN
i=1 Ei

N
,

where Ei = ELi +ERi and the EL and ER are defined
in Definition 2;

• Standard deviation of absolute forecast error:

σE =

sPN
i=1(Ei − Emean)2

N − 1
;

• Average accuracy ratio as defined in (6); and

• Number of forecasts with accuracy ratio 0% as defined
in (5).

We summarize the statistics of these quality indicators,
with each of these computational approaches in Tables 1
and 2 above, respectively.
4There are very few instances, in which the computed lower
bound is greater than the upper bound. For them, we swap
the numbers to form proper forecasting interval.

Absolute Std of Avg. acc. Zero
mean err error ratio acc.

OLS 95% 0.243321 0.142537 0.245407 5
OLS low-up 0.064642 0.037364 0.469168 0
ILS min-max 0.043211 0.027064 0.686426 0
ILS 92% conf. 0.045594 0.027383 0.674752 0

Table 1: Quality comparison of the the stock market
in-sample annual variability forecasts (1939-2004)

Absolute Std of Avg. acc. Zero
mean err error ratio acc.

OLS 95% 0.723505 0.311973 0.125745 18
OLS low-up 0.066643 0.040998 0.461700 0
ILS min-max 0.051662 0.032238 0.641877 0
ILS 92% conf. 0.051206 0.029988 0.645526 0

Table 2: Quality comparison of the the stock mar-
ket out-of-sample annual variability forecasts (1940-
2004)

4.4.2 Comments on computational results
The above computational results show clear advantages

of the ILS algorithm compare against traditional OLS-based
approaches. The much lower mean absolute error of ILS
forecasts on the stock market annual variability presents the
overall better precision than that of OLS-based confidence
interval forecasts. The relatively smaller standard deviation
of the absolute error indicates the higher stability of the ILS
forecasts than that of OLS-based calculation.

More significantly, it is reported [18] that, using confi-
dence interval as input in the stock market annual variabil-
ity least squares prediction, the forecast interval statistically
preserves the same confidence level as that of the input.

5. CONCLUSION AND FUTURE WORK
Using the notion of interval functions, we can model a type

of applications, in which the range of variability is more im-
portant than specific point value at a typical time spot in
a specific location. In solving many real world applications,
one may not have explicit analytical form of an interval func-
tion available but only a collection of interval valued obser-
vations. Therefore, approximating an interval function has
practical importance.

In this paper, we defined related concepts for interval func-
tion approximation including error approximation, linear in-
terval least squares, and accuracy ratio. A practical algo-
rithm presented in this paper can computationally find in-
terval function approximations with reasonable quality. The
applications of the algorithm to the stock market annual
variability forecasts have produced significantly improved ac-
curacy and stability. We have also observed similar quality
improvements in the forecasts of mortgage rates [12], net-
work bandwidth variability prediction [23], and crude oil
prices [31]. These experiments have demonstrated the po-
tential of this ILS computational approach.

Future work in this direction may include, but not limited
to, the followings. First, further theoretical investigations
on interval function least squares approximation are needed.
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The practical algorithm has produced significantly improved
computational results. However, we should explore the the-
oretical insights and implications of the algorithm. Another
direction is related to the algorithm refinement. Chen re-
ported her initial studies on window size selection using dis-
crete Fourier transformation and width adjustment with pre-
diction in [4] and [5]. However, the results were inconclusive.
Investigations on practical schemes of width adjustment may
have the potential to further improve computational quality.
Of course, one may try to apply the algorithm to solve more
real world applications and obtain more empirical results for
further investigation of this algorithm.
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ABSTRACT
In this paper we calculate the rate of linear convergence of
non-linear transformed sequences. Using symbolic compu-
tation new results are derived which quantify the conver-
gence acceleration effects of the Aitken transformation S,
the iterated Aitken transformation S(2) and the Shanks trans-
formation S2 for subclasses of linearly convergent sequences.
The results are applied to linearly convergent fixed-point
iteration methods, i.e. sequences {xn}n≥0 generated by
xn+1 = φ(xn), where the iteration function φ(x) possesses
a certain number of continuous derivatives. We verify the
findings by numerical examples.

Categories and Subject Descriptors
G.1.2 [Numerical Analysis]: Approximation—rational ap-
proximation; G.4 [Mathematics of Computing]: Mathe-
matical Software—algorithm analysis; I.1.4 [Symbolic and
Algebraic Manipulation]: Applications
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Keywords
Aitken transformation, iterated Aitken transformation,
Shanks transformation, rate of linear convergence, conver-
gence acceleration, fixed-point iteration methods, symbolic
computation

1. INTRODUCTION
The speed at which a convergent sequence {xn}n≥0 ap-

proaches its limit is of great importance for practical compu-
tations. A basic concept to quantify the convergence
speed is introduced in numerical analysis by the following
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Definition. Consider a sequence {xn}n≥0 in R with
lim

n→∞
xn = ξ and xn 6= ξ for all n ∈ N. The sequence is

said to have convergence order p ≥ 1 if there exists a con-
stant 0 < ρ < ∞ such that

lim
n→∞

|en+1|
|en|p = ρ.

Here {en} is the sequence of errors en = xn − ξ. ρ is called
asymptotic error constant. If p = 1, then 0 < ρ < 1 is
required and {xn}n≥0 is said to converge linearly and ρ is
the rate of linear convergence. For p = 2 the convergence
is called quadratic. In the numerical literature the order p
is called more precisely the Q-order of convergence. The
Q stands for quotient, because the definition uses the quo-
tient between two successive error terms [1]. Many numeri-
cal methods may be regarded as special cases of fixed-point
iterations xn+1 = φ(xn), n ≥ 0. The convergence order of
fixed-point iterations can be determined if φ(x) is sufficiently
many times continuously differentiable in a neighborhood of
the fixed point.

Theorem 1. Let {xn}n≥0 be a convergent iteration
method, i.e. xn+1 = φ(xn) and lim

n→∞
xn = ξ. Assume

that the real iteration function φ(x) is p times continuously

differentiable in a neighborhood of ξ with D(k)(φ)(ξ) = 0,

k = 1 . . . p− 1, D(p)(φ)(ξ) 6= 0 (|D(φ)(ξ)| < 1 for p = 1)
and φ(ξ) = ξ. Then the iteration method is of order p and

ρ =

˛̨̨
D(p)(φ)(ξ)

˛̨̨
p!

.

This Theorem follows directly from the Taylor series expan-
sion of φ(x) in the neighborhood of ξ and the assumptions
(see ref. [1], p. 623, Theorem 6.1.8). In 1926 Aitken in-
troduced the famous ∆2 process [2], a simple but effective
convergence acceleration method. The ∆2 process is a se-
quence transformation, i.e. a mapping S : {xn} → {x′n},
where x′n = xn − (∆ xn)2

∆2 xn
=

xn xn+2 − x2
n+1

xn+2 − 2 xn+1 + xn
. Here,

the ∆ operator generates the forward difference sequence
∆ xn = xn+1− xn. Aitken’s ∆2 process (whose name comes
from the ∆2 operator in the denominator) combines three
successive elements of the sequence {xn} in a non-linear way.
A basic result due to Henrici [3] shows that the Aitken trans-
formed sequence {x′n} derived from a linearly convergent
sequence {xn} converges faster to the limit than the
sequence {xn}.
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Theorem 2. Let {xn}n≥0 be a linearly converging
sequence in R with lim

n→∞
xn = ξ, i.e. there exists a constant

0 < |λ| < 1 and a sequence {εn} with en+1 = (λ + εn) · en

and εn → 0 for n → ∞. Then the Aitken transformed
sequence {x′n} converges faster to ξ than the sequence {xn}
in the sense that

x′n − ξ
xn − ξ

→ 0 for n →∞.

For a proof see ref. [3] (p. 73, Theorem 4.5). Convergence
acceleration methods and in particular the Aitken transfor-
mation as perhaps the most popular one are studied exten-
sively in monographs from Wimp [4], Weniger [5] , Brezinski
and Zaglia [6], and Sidi [7]. Numerical comparisons of non-
linear convergence accelerators were published by Smith and
Ford [8, 9]. In addition, several acceleration methods have
been made available in computer algebra systems [10, 11,
12].

In the following we use the Maple software [11] for sym-
bolic and numerical calculations, but the results could also
be reproduced with other modern computer algebra systems.
This paper also aims to demonstrate the capabilities of com-
puter algebra systems for studying numerical methods in the
sense of the recent articles of Gander et al. [13, 14]. Quan-
titative results become possible which are hard to find with
paper and pencil only. In Maple we implement infinite se-
quences {xn} as functions on N. Aitken’s transformation S,
the difference operator ∆ and the composition operator ∆2

are defined as functional operators:

> S:=x -> (n -> x(n) - Delta(x)(n)^2/

(Delta@@2)(x)(n));

S := x 7→
„

n 7→ x(n)− ∆(x)(n)2

∆2(x)(n)

«
(1)

> Delta:=x -> (n->x(n+1) - x(n));

∆ := x 7→ (n 7→ x(n + 1)− x(n)) (2)

> ’Delta(x)(n)’ = Delta(x)(n);

∆(x)(n) = x(n + 1)− x(n) (3)

> ’(Delta@@2)(x)(n)’ = (Delta@@2)(x)(n);

∆2(x)(n) = x(n + 2)− 2 x(n + 1) + x(n) (4)

Hence, the elements of the transformed sequence are com-
puted by

> ’S(x)(n)’=normal(S(x)(n));

S(x)(n) =
x(n) x(n + 2)− x(n + 1)2

x(n + 2)− 2 x(n + 1) + x(n)
(5)

In this paper we also use the more familiar notation S(xn)
for the transformed sequence elements S(x)(n).

2. RATE OF LINEAR CONVERGENCE OF
AITKEN TRANSFORMED SEQUENCES

The following result quantifies the convergence accelera-
tion effect of Aitken’s ∆2 process in terms of the rate of
convergence of the given sequence {xn}. We make an as-
sumption as to how fast εn approaches to 0 in the error
term of the linearly convergent sequence {xn}.

Theorem 3. Let {xn}n≥0 be a linearly convergent
sequence in R with lim

n→∞
xn = ξ, i.e. there exists a constant

0 < |λ| < 1 and a sequence {εn} with en+1 = (λ+εn)·en and

εn → 0 for n →∞. If εn = ωn ·e(p−1)
n with p ∈ N, p > 1, and

ωn → ω 6= 0 for n →∞, then the rate of linear convergence
of the transformed sequence {S(xn)} is |λ|p.

Proof. Firstly, we introduce two successive error terms
of the transformed sequence:

> tau[n]:=’S(x)(n)-xi’;

τn := S(x)(n)− ξ (6)

> tau[n+1]:=’S(x)(n+1)-xi’;

τn+1 := S(x)(n + 1)− ξ (7)

Substituting xn+i = en+i + ξ, i = 0 . . . 3, we get for the quo-
tient

τn+1
τn

> tau[n]:=subs(seq(x(n+i) = e[n+i]+xi,

i=0..2),tau[n]):

> tau[n+1]:=subs(seq(x(n+i) = e[n+i]+xi,

i=0..3),tau[n+1]):

> ’tau[n+1]/tau[n]’ = tau[n+1]/tau[n];

τn+1

τn
=

en+1 − (en+2 − en+1)
2

en+3 − 2 en+2 + en+1

en − (en+1 − en)2

en+2 − 2 en+1 + en

(8)

Next, the error terms en+i, i = 1 . . . 3, are replaced by

> for i from 1 to 3 do

e[n+i]:=(lambda+epsilon[n+i-1])*e[n+i-1]:

end do;

en+1 := (λ + εn) · en

en+2 := (λ + εn+1)(λ + εn) · en

en+3 := (λ + εn+2)(λ + εn+1)(λ + εn) · en

(9)

and we arrive at the following factored expression

> factor(rhs((8)));

(εn+1 − εn+2)

(εn − εn+1)
×

(λ + εn+1)
`
λ2 + λ εn + λ εn+1 + εn+1εn − 2 λ− 2 εn + 1

´
(λ2 + λ εn+1 + εn+2λ + εn+2εn+1 − 2 λ− 2 εn+1 + 1)

(10)

Now, the assumption εn = ωn · en
(p−1) is substituted recur-

sively in expression (10), starting with εn+2:

25



> subs(seq(epsilon[n+i] = omega[n+i]*e[n+i]^(p-1),

i=2..0,-1),(10));““
ωn+1

`
(λ + ωnen

p−1)en

´p−1

− ωn+2

`
(λ + ωn+1((λ + ωnen

p−1)en)p−1)`
λ + ωnen

p−1´en

´p−1
”
×“

λ + ωn+1

`
(λ + ωnen

p−1)en

´p−1
”
×“

λ2 + λ ωnen
p−1 + λ ωn+1

`
(λ + ωnen

p−1)en

´p−1

+ ωn+1

`
(λ + ωnen

p−1)en

´p−1
ωnen

p−1

− 2 λ− 2 ωnen
p−1 + 1

””ffi
““

ωnen
p−1 − ωn+1((λ + ωnen

p−1)en)p−1
”
×“

λ2 + λ ωn+1((λ + ωnen
p−1)en)p−1

+ ωn+2((λ + ωn+1((λ + ωnen
p−1)en)p−1)

(λ + ωnen
p−1)en)p−1λ

+ ωn+2((λ + ωn+1((λ + ωnen
p−1)en)p−1)

(λ + ωnen
p−1)en)p−1ωn+1((λ + ωnen

p−1)en)p−1

− 2 λ− 2 ωn+1((λ + ωnen
p−1)en)p−1 + 1

””

(11)

For n → ∞ we have en → 0 and ωn+i → ω, i = 0 . . . 2,
according to the assumption. A direct calculation of this
multi-dimensional limit is too complex. The numerator and
denominator of expression (11) are polynomials in en with
coefficients depending on λ and ωn+i, i = 0 . . . 2. In order to
get non-vanishing constant terms we multiply the polynomi-

als by 1
en

(p−1) and calculate the limit separately. Assuming

p ∈ N and p > 1 we get:

> LN:=limit(numer((11))/e[n]^(p-1),e[n]=0)

assuming p::integer,p>1:

> LN:=factor(expand(limit(LN,

{seq(omega[n+i]=omega,i=0..2)})));

LN :=
λp ω (λ− 1)2 (λp − λ)

λ
(12)

> LD:=limit(denom((11))/e[n]^(p-1),e[n]=0)

assuming p::integer,p>1:

> LD:=factor(expand(limit(LD,

{seq(omega[n+i]=omega,i=0..2)})));

LD :=
ω (λ− 1)2 (λp − λ)

λ
(13)

With the assumptions 0 < |λ| < 1 and ω 6= 0 it follows for
the limit:

> ’limit(tau[n+1]/tau[n],n=infinity)’ = LN/LD;

lim
n→∞

τn+1

τn
= λp (14)

Next, we compare the error terms τn of the Aitken trans-
formed sequence with the error terms en of the given se-
quence. Under the assumption of Theorem 3, i.e. with
εn = ωn · en

(p−1), p ∈ N, p > 1, the quotient τn

en
p converges

to the following limit:

> tau[n]:=subs(seq(epsilon[n+i]=

omega[n+i]*e[n+i]^(p-1),i=1..0,-1), tau[n]):

> Q:=limit(simplify(tau[n]/e[n]^p),e[n]=0)

assuming p::integer,p>1:

> Q:=limit(Q,{seq(omega[n+i]=omega,i=0..1)}):

> ’limit(tau[n]/e[n]^p,n=infinity)’=factor(Q);

lim
n→∞

τn

en
p

=
ω (λp − λ)

(λ− 1)2
(15)

Eq. (15) generalizes a result of Traub ([15], p. 267) for p = 2:

> simplify(subs(p=2,’(15)’));

lim
n→∞

τn

en
2

=
λ ω

λ− 1
(16)

Now, we apply Theorem 3 to linearly convergent fixed-point
iteration methods.

Corollary 1. Let {xn}n≥0 be a convergent iteration

method, i.e. xn+1 = φ(xn) and lim
n→∞

xn = ξ. Assume that

the real function φ(x) is p times continuously differentiable in

a neighborhood of ξ with 0 < |D(φ)(ξ)| < 1, D(k)(φ)(ξ) = 0,

k = 2 . . . p− 1, D(p)(φ)(ξ) 6= 0 and φ(ξ) = ξ. Then the rate
of linear convergence of the transformed sequence {S(xn)} is
|D(φ)(ξ)|p.

Proof. Using the Taylor series of φ(x) around ξ with
expansion order p and the assumptions in Corollary 1 we
get

en+1 = xn+1 − ξ

= φ (xn)− ξ

= D(φ)(ξ) · (xn − ξ) +
D(2)(φ)(ξ)

2
· (xn − ξ)2 + ...

+
D(p)(φ)(ηn)

p!
· (xn − ξ)p

= D(φ)(ξ) · en +
D(p)(φ)(ηn)

p!
· ep

n

=

„
D(φ)(ξ) +

D(p)(φ)(ηn)

p!
· e(p−1)

n

«
· en

Here en = xn − ξ and ηn lies in the interval determined by

xn and ξ. Setting λ = D(φ)(ξ) and ωn =
D(p)(φ)(ηn)

p!
we

have ωn → D(p)(φ)(ξ)
p!

6= 0 for n → ∞. Then Corollary 1

follows from Theorem 3.

A direct proof of Corollary 1 using eq. (8) requires the ap-
plication of the chain rule to higher derivatives, i.e.
Faà di Bruno’s formula [16, 17] has to be used, and therefore
is more complex. Furthermore, it should be mentioned that
the obtainment of the asymptotic error constant |D(φ)(ξ)|p
is a theoretical result which quantifies the convergence im-
provement of the transformed sequence {S(xn)}. In a truly
numerical setting the fixed-point ξ is usually not known.
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3. NUMERICAL EXAMPLES:
AITKEN TRANSFORMED
ITERATION SEQUENCES

As a first example we consider a fixed-point iteration
method xn+1 = φ(xn), n ≥ 0, with starting value x0 = 5
and iteration function

> phi:=x->exp(-x);

φ := x 7→ e−x (17)

The equation for the fixed point φ(x) = x is calculated sym-
bolically.

> xi:=solve(phi(x)=x,x);

ξ := W (1) (18)

The limit of the iteration sequence {xn}n≥0 is the value of
Lambert’s W function at x = 1.

> plot([LambertW(x),[[1,LambertW(1)]]],x=-1..3,

style=[line,point], symbol=circle,

symbolsize=20,color=black);

The Lambert W function satisfies the equation
W (x) · eW (x) = x. In the literature the value W (1) is also
known as Ω constant [18] with the property Ω = e−Ω:

> alias(Omega=LambertW(1)):

> simplify(Omega-exp(-Omega));

0 (19)

> Omega=evalf(Omega,10);

Ω = 0.5671432904 (20)

We compute the first and second derivative of φ(x) at the
fixed point x = Ω:

> seq(simplify((D@@k)(phi)(Omega)),k=1..2);

−Ω, Ω (21)

Theorem 1 implies that {xn} converges linearly with the
convergence rate ρ = |D(φ)(Ω)| = Ω. From Theorem 2 it
follows that Aitken’s ∆2 process accelerates the convergence
of this sequence. We study the convergence speed of {xn}
and {S(xn)} numerically using functional programming in
Maple:

> x:=n->(phi@@(n))(5.0);

x := n 7→ φ(n)(5.0) (22)

> e:=n->x(n)-xi:

> tau:=n->S(x)(n)-xi:

> Digits:=40:

> seq(printf("%5d %10.7f %13.10f %9.6 %9.6f\n",

n,x(n),S(x)(n),abs(tau(n+1)/tau(n)),

tau(n)/e(n)^2),n=0..20);

0 5.0000000 0.8305245652 0.168238 0.013403

1 0.0067379 0.6114541051 0.331139 0.141093

2 0.9932847 0.5818163093 0.302829 0.080800

3 0.3703582 0.5715866996 0.327725 0.114744

4 0.6904870 0.5685995062 0.316821 0.095718

5 0.5013319 0.5676046509 0.323933 0.106522

6 0.6057234 0.5672927405 0.320213 0.100408

7 0.5456796 0.5671911462 0.322421 0.103878

8 0.5794479 0.5671587201 0.321200 0.101911

9 0.5602076 0.5671482464 0.321903 0.103027

10 0.5710905 0.5671448858 0.321508 0.102395

11 0.5649091 0.5671438033 0.321733 0.102753

12 0.5684118 0.5671434554 0.321605 0.102550

13 0.5664243 0.5671433435 0.321678 0.102665

14 0.5675512 0.5671433075 0.321637 0.102600

15 0.5669120 0.5671432959 0.321660 0.102637

16 0.5672745 0.5671432922 0.321647 0.102616

17 0.5670689 0.5671432910 0.321654 0.102628

18 0.5671855 0.5671432906 0.321650 0.102621

19 0.5671194 0.5671432905 0.321652 0.102625

20 0.5671569 0.5671432904 0.321651 0.102623

Sequence element x(20) shows 4 correct decimal places of
the limit ξ = Ω

> ’xi’=evalf(Omega,10);

ξ = 0.5671432904 (23)

whereas S(x)(20) already has 10 valid decimal places. The
rate of convergence |λ| = Ω of the fixed-point iteration xn+1 =
φ (xn) is improved by Aitken’s ∆2 process to |λ|2:

> abs(lambda)^2=evalf(Omega^2,10);

|λ|2 = 0.3216515118 (24)

With ω =
D(2)(φ)(Ω)

2!
=

Ω

2
and λ = D(φ)(Ω) = −Ω we get

for the limit (16):

> simplify(subs(omega=Omega/2,lambda=-Omega,(16)));

lim
n→∞

τn

en
2

=
Ω2

2 (Ω + 1)
(25)

> evalf((25),10);

lim
n→∞

τn

en
2

= 0.1026235169 (26)

In addition, Corollary 1 is verified by calculating the rate
of convergence of the transformed sequence {S(xn)} symbol-
ically:

> ’tau[n+1]/tau[n]’=(S(x)(n+1)-Omega)/
(S(x)(n)-Omega);

τn+1

τn
=

x(n + 1)− (x(n + 2)− x(n + 1))2

x(n + 3)− 2 x(n + 2) + x(n + 1)
− Ω

x(n)− (x(n + 1)− x(n))2

x(n + 2)− 2 x(n + 1) + x(n)
− Ω

(27)
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Using the substitutions xn+i = φ(i)(xn), i = 1 . . . 3, and
xn → Ω for n →∞ we obtain

> subs(seq(x(n+i)=(phi@@i)(x(n)),i=1..3),x(n)=xn,

rhs((27))):

> ’limit(tau[n+1]/tau[n],n=infinity)’=

simplify(limit(%,xn=Omega));

lim
n→∞

τn+1

τn
= Ω2 (28)

As second example we consider the fixed-point iteration
method xn+1 = φ(xn), n ≥ 0, with iteration function

> phi:=x->sin(x)/2+x^3/12;

φ := x 7→ sin(x)

2
+

x3

12
(29)

> plot(phi(x),x=-5..5);

φ has the fixed point

> xi:=fsolve(phi(x)=x,x)

ξ := 0. (30)

We compute the first eight derivatives at ξ = 0:

> seq((D@@k)(phi)(0),k=1..8);

1

2
, 0, 0, 0,

1

2
, 0, −1

2
, 0 (31)

Thus, the iteration sequence xn+1 = φ(xn) converges lin-

early with λ = 1
2 . Corollary 1 implies that the rate of linear

convergence of the Aitken transformed sequence {S(xn)} is

improved to λ5 =
1

32
(p = 5). Using ω =

D(5)(φ)(0)

5!
=

1

2 · 5!
=

1

240
and λ =

1

2
we obtain for the limit (15):

> subs(p=5,omega=1/240,lambda=1/2,(15));

lim
n→∞

τn

en
5

= − 1

128
(32)

In the following table the convergence behavior is reproduced
numerically using xn+1 = φ(xn) with starting value x0 = 2.0:

> x:=n->(phi@@n)(2.0);

x := n 7→ φ(n)(2.0) (33)

> seq(printf("%5d %8.5f %4.2e %11.8f %11.8f\n",

n,x(n),S(x)(n),abs(tau(n+1)/tau(n)),

tau(n)/e(n)^5),n=0..15);

0 2.00000 -3.74e-01 0.03760516 -0.01169437

1 1.12132 -1.41e-02 0.03261119 -0.00793844

2 0.56783 -4.59e-04 0.03148140 -0.00777431

3 0.28416 -1.44e-05 0.03129998 -0.00779830

4 0.14209 -4.52e-07 0.03126200 -0.00780866

5 0.07104 -1.41e-08 0.03125297 -0.00781152

6 0.03552 -4.42e-10 0.03125074 -0.00781225

7 0.01776 -1.38e-11 0.03125018 -0.00781244

8 0.00888 -4.31e-13 0.03125005 -0.00781248

9 0.00444 -1.35e-14 0.03125001 -0.00781245

10 0.00222 -4.21e-16 0.03125000 -0.00781250

11 0.00111 -1.32e-17 0.03125000 -0.00781250

12 0.00056 -4.11e-19 0.03125000 -0.00781250

13 0.00028 -1.29e-20 0.03125000 -0.00781250

14 0.00014 -4.02e-22 0.03125000 -0.00781250

15 0.00007 -1.26e-23 0.03125000 -0.00781250

For comparison we compute the numerical values of the con-
vergence rate of the transformed sequence {S(xn)}

> lambda^5=evalf(1/2^5,10);

λ5 = 0.03125000000 (34)

and of limit (32)

> evalf((32),10);

lim
n→∞

τn

en
5

= −0.007812500000 (35)

4. RATE OF LINEAR CONVERGENCE OF
S2 TRANSFORMED SEQUENCES

In 1955 Shanks introduced a generalization of Aitken’s
transformation [19]. The Shanks transforms Sk(xn), k ≥ 1,
can be represented as the ratio of Hankel determinants

Sk(xn) =
|Hk+1(xn)|
|Hk(∆2xn)| . Here Hk(i, j) = Vi+j−1, 1 ≤ i, j ≤ k

is a Hankel matrix of order k and the vector V is given
by V = [xn, xn+1, ..., xn+2 k] in the numerator and
V = [∆2xn, ∆2xn+1, ..., ∆

2xn+2 k−2] in the denominator.
The Shanks transforms Sk(xn) may be constructed symbol-
ically by the following procedure:

> Shanks:=proc(k::posint,n,x)

local Delta,H1,H;

uses LinearAlgebra;

Delta:=x->(m->x(m+1)-x(m));

H1:=HankelMatrix(Vector(2*k+1,i->x(n+i-1)));

H:=HankelMatrix(Vector(2*k-1,i->

(Delta@@2)(x)(n+i-1)));

Determinant(H1)/Determinant(H);

end proc:

For k = 1 we get Aitken’s transformation, i.e. S1(xn) =
S(xn):

> S[1]:=x->(n->Shanks(1,n,x)):

> ’S[1](x)(n)’=S[1](x)(n);

S1(x)(n) =
x(n) x(n + 2)− x(n + 1)2

x(n + 2)− 2 x(n + 1) + x(n)
(36)

28



> S[2]:=x->(n->Shanks(2,n,x)):

> ’S[2](x)(n)’=S[2](x)(n);

S2(x)(n) =
“
x(n) x(n + 2) x(n + 4)− x(n) x(n + 3)2

+ 2 x(n + 1) x(n + 3) x(n + 2)

− x(n + 1)2 x(n + 4)− x(n + 2)3
”ffi

“
x(n + 2) x(n + 4) + 2 x(n + 3) x(n + 2)

− 3 x(n + 2)2 − 2 x(n + 1) x(n + 4)

+ 2 x(n + 1) x(n + 3) + 2 x(n + 1) x(n + 2)

+ x(n) x(n + 4)− 2 x(n) x(n + 3)

+ x(n) x(n + 2)− x(n + 3)2 − x(n + 1)2
”
(37)

Aitken’s transformation S1 depends on three successive
sequence elements, whereas Shanks’ transformation S2 needs
five successive sequence elements. In another context formu-
lae (36) and (37) were already used by James Clerk Maxwell
in his treatise on electricity and magnetism [20] . The fol-
lowing result quantifies the convergence acceleration effect of
the S2 transformation in terms of the rate of convergence of
the given sequence {xn}. The assumption for the subclass of
linearly convergent sequences εn = ωn · en, lim

n→∞
ωn = ω 6= 0

is chosen more simple than in Theorem 3 because of the
computational complexity.

Theorem 4. Let {xn}n≥0 be a linearly convergent
sequence in R with lim

n→∞
xn = ξ, i.e. there exists a constant

0 < |λ| < 1 and a sequence {εn} with en+1 = (λ + εn) · en

and εn → 0 for n → ∞. If εn = ωn · en with ωn → ω 6= 0
for n →∞, then the rate of linear convergence of the trans-
formed sequence {S2(xn)} is |λ|3.

Proof. We have to calculate the ratio of two successive
error terms of the transformed sequence:

> tau[n]:=’S[2](x)(n)-xi’;

τn := S2(x)(n)− ξ (38)

> tau[n+1]:=’S[2](x)(n+1)-xi’;

τn+1 := S2(x)(n + 1)− ξ (39)

Substituting xn+i = en+i + ξ, i = 0 . . . 5, we get for the quo-
tient

τn+1
τn

> tau[n]:=subs(seq(x(n+i) = e[n+i]+xi,

i=0..4),tau[n]):

> tau[n+1]:=subs(seq(x(n+i) = e[n+i]+xi,

i=0..5),tau[n+1]):

> ’tau[n+1]/tau[n]’ = tau[n+1]/tau[n];

τn+1

τn
=
“`

en+1 en+3 en+5 + 2 en+2 en+4 en+3 − en+3
3

− en+1 en+4
2 − en+2

2 en+5

´ ×`
2 en+1 en+3 + en+2 en+4 − 3 en+2

2 − en+3
2

+ 2 en+3 en+2 − 2 en+1 en+4 + en en+2 − en+1
2

+ 2 en+1 en+2 + en en+4 − 2 enen+3

´”ffi
“`

en+1 en+3 − en+4
2 + 2 en+2 en+4 − en+2

2

− 3 en+3
2 + en+3 en+5 + 2 en+4 en+3 − 2 en+2 en+5

+ 2 en+3 en+2 + en+1 en+5 − 2 en+1 en+4

´ ×`
2 en+1 en+3 en+2 − en en+3

2

− en+1
2 en+4 − en+2

3 + en en+2 en+4

´”
(40)

Next, the error terms en+i, i = 1 . . . 5, are replaced by

> for i from 1 to 5 do

e[n+i]:=(lambda+epsilon[n+i-1])*e[n+i-1]:

end do;

en+1 := (λ + εn) · en

en+2 := (λ + εn+1)(λ + εn) · en

en+3 := (λ + εn+2)(λ + εn+1)(λ + εn) · en

en+4 := (λ + εn+3)(λ + εn+2)(λ + εn+1)(λ + εn) · en

en+5 := (λ + εn+4)(λ + εn+3)(λ + εn+2)(λ + εn+1)(λ + εn) · en

(41)
> Q1:=factor(rhs((40))):

Now, the assumption εn = ωn · en is substituted recur-
sively in expression Q1, starting with εn+4:

> Q2:=subs(seq(epsilon[n+i]=omega[n+i]*e[n+i],

i=4..0,-1),Q1):

For n → ∞ we have en → 0 and ωn+i → ω, i = 0 . . . 4,
according to the assumptions. The numerator and denomi-
nator of expression Q2 are polynomials in en with low degrees

> ldegree(numer(Q2),e[n]);

3 (42)

> ldegree(denom(Q2),e[n]);

3 (43)

and coefficients depending on λ and ωn+i, i = 0 . . . 4. As in
the proof of Theorem 3 we calculate the limit separately for
the numerator and denominator. Therefore, we determine
the first non-vanishing terms of the polynomials by Taylor
expansion:

> LN:=factor(limit(convert(taylor(numer(Q2),e[n],5),

polynom),seq(omega[n+i]=omega,i=0..4)));

LN := 2 λ6ω4 (λ + 1)3 (λ− 1)8 · en
4 (44)

> LD:=factor(limit(convert(taylor(denom(Q2),e[n],5),

polynom),seq(omega[n+i]=omega,i=0..4)));

LD := 2 λ3ω4 (λ + 1)3 (λ− 1)8 · en
4 (45)
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Then, with the assumptions 0 < |λ| < 1 and ω 6= 0 it follows
for the limit

> ’limit(tau[n+1]/tau[n],n=infinity)’ =

limit(LN/LD,e[n]=0);

lim
n→∞

τn+1

τn
= λ3 (46)

Again, Theorem 4 is readily applied to linearly convergent
fixed-point iteration methods.

Corollary 2. Let {xn}n≥0 be a convergent iteration

method, i.e. xn+1 = φ(xn) and lim
n→∞

xn = ξ. Assume that

the real function φ(x) is two times continuously differentiable

in a neighborhood of ξ with 0 < |D(φ)(ξ)| < 1, D(2)(φ)(ξ) 6= 0
and φ(ξ) = ξ. Then the rate of linear convergence of the
transformed sequence {S2(xn)} is |D(φ)(ξ)|3.

Proof. Using the Taylor series of φ(x) around ξ with
expansion order 2 and the assumptions in Corollary 2 we
get

en+1 = xn+1 − ξ

= φ (xn)− ξ

= D(φ)(ξ) · (xn − ξ) +
D(2)(φ)(ξ)

2
· (xn − ξ)2

= D(φ)(ξ) · en +
D(2)(φ)(ηn)

2!
· e2

n

=

„
D(φ)(ξ) +

D(2)(φ)(ηn)

2!
· en

«
· en

Here en = xn − ξ and ηn lies in the interval determined

by xn and ξ. Setting λ = D(φ)(ξ) and ωn =
D(2)(φ)(ηn)

2!
we

have ωn → D(2)(φ)(ξ)
2!

6= 0 for n → ∞. Then Corollary 2

follows from Theorem 4.

Next, we calculate the limit of the quotient
τn

e3
n

for

n → ∞, where τn is the error term of a S2 transformed
sequence and en is the error term of the given convergent
sequence. If the sequence is generated by a three times con-
tinuously differentiable iteration function φ(x), then en+1

can be expressed in terms of a cubic polynomial in en:

en+1 =

„
D(φ) (ξ) +

D(2) (φ) (ξ)

2!
en +

D(3) (φ) (ηn)

3!
en

2

«
· en

Setting λ = D (φ) (ξ), ω =
D(2) (φ) (ξ)

2!
, θn =

D(3) (φ) (ηn)

3!
and assuming 0 < |λ| < 1 and ω 6= 0 we obtain a lin-
early convergent sequence with en+1 = (λ + εn) · en and
εn = ω ·en +θn ·en

2. Now, polynomial εn is substituted into
the error expression τn.

> tau1[n]:=subs(seq(epsilon[n+i]=omega*e[n+i]+

theta[n+i]*e[n+i]^2,i=3..0,-1),tau[n]):

Considering θn → θ =
D(3) (φ) (ξ)

3!
for n → ∞ we calculate

the first term of the Taylor series with respect to en:

> factor(limit(convert(taylor(tau1[n],e[n]=0,7),

polynom),seq(theta[n+i]=theta,i=0..3)));

λ4
`
λ2θ − λ θ + 2 ω2

´
(λ + 1) (λ− 1)2

· en
3 (47)

Hence, the limit is evaluated to

> ’limit(tau[n]/e[n]^3,n=infinity)’=

limit((47)/e[n]^3,e[n]=0);

lim
n→∞

τn

en
3

=
λ4
`
λ2θ − λ θ + 2 ω2

´
(λ + 1) (λ− 1)2

(48)

Limit (48) corresponds to eq. (16), the result of Traub (ref.
[15]) for Aitken transformed iteration sequences. It depends
on the first three derivatives of the iteration function φ(x).
Higher order derivatives are not involved. For example, if
φ(x) is four times continuously differentiable and en+1 is rep-
resented as the fourth-order polynomial en+1 = (λ + εn) · en

with εn = ω · en + θ · en
2 + κn · en

3, κn =
D(4) (φ) (ηn)

4!
→

κ =
D(4) (φ) (ξ)

4!
for n → ∞, then Taylor expansion of τn

yields the same first non-vanishing term as in (47):

> tau2[n]:=subs(seq(epsilon[n+i]=omega*e[n+i]+

theta*e[n+i]]^2+kappa[n+i]*e[n+i]^3,i=3..0,-1),

tau[n]):

> factor(limit(convert(taylor(tau2[n],e[n]=0,7),

polynom),seq(kappa[n+i]=kappa,i=0..3)));

λ4
`
λ2θ − λ θ + 2 ω2

´
(λ + 1) (λ− 1)2

· en
3 (49)

5. NUMERICAL EXAMPLE:
S2 TRANSFORMED
ITERATION SEQUENCE

For the S2 transformation we reuse the fixed-point itera-
tion method analysed in the first example, i.e. we consider
the iteration function

> phi:=x->exp(-x);

φ := x 7→ e−x (50)

with fixed point

> xi:=fsolve(phi(x)=x,x);

ξ := Ω (51)

We compute the first six derivatives of φ(x) at the fixed point
x = Ω:

> seq(simplify((D@@k)(phi)(Omega)),k=1..6);

−Ω, Ω, −Ω, Ω, −Ω, Ω (52)

The iteration sequence xn+1 = φ (xn) converges linearly with
|λ| = Ω. Corollary 2 implies that the rate of linear conver-
gence of the transformed sequence {S2(xn)} is improved to

|λ|3 = Ω3. Using ω =
D(2)(φ)(Ω)

2!
=

Ω

2
, θ =

D(3)(φ)(Ω)

3!
=

−Ω

6
and λ = −Ω we obtain for the limit (48):
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> simplify(subs(omega=Omega/2,theta=-Omega/6,

lambda=-Omega,’(48)’));

lim
n→∞

τn

en
3

=
Ω6 (Ω− 2)

6 (Ω− 1) (Ω + 1)2
(53)

In the following table the convergence behavior is repro-
duced numerically using xn+1 = φ (xn) with starting value
x0 = 5.0:

> x:=n->(phi@@(n))(5.0):

> e:=n->x(n)-xi:

> tau:=n->S[2](x)(n)-xi:

> seq(printf("%5d %10.7f %11.8f %10.7 %10.7f\n",

n,x(n),S[2](x)(n),abs(tau(n+1)/tau(n)),

tau(n)/e(n)^3),n=0..20);

0 5.0000000 0.58000254 0.1706525 0.0001476

1 0.0067379 0.56494883 0.1680219 0.0124687

2 0.9932847 0.56751201 0.1877789 0.0047647

3 0.3703582 0.56707405 0.1783486 0.0090858

4 0.6904870 0.56715564 0.1844362 0.0065805

5 0.5013319 0.56714101 0.1811800 0.0079901

6 0.6057234 0.56714370 0.1830959 0.0071858

7 0.5456796 0.56714321 0.1820303 0.0076406

8 0.5794479 0.56714330 0.1826417 0.0073822

9 0.5602076 0.56714329 0.1822972 0.0075286

10 0.5710905 0.56714329 0.1824932 0.0074456

11 0.5649091 0.56714329 0.1823823 0.0074927

12 0.5684118 0.56714329 0.1824453 0.0074659

13 0.5664243 0.56714329 0.1824096 0.0074811

14 0.5675512 0.56714329 0.1824298 0.0074725

15 0.5669120 0.56714329 0.1824183 0.0074774

16 0.5672745 0.56714329 0.1824249 0.0074746

17 0.5670689 0.56714329 0.1824212 0.0074762

18 0.5671855 0.56714329 0.1824233 0.0074753

19 0.5671194 0.56714329 0.1824221 0.0074758

20 0.5671569 0.56714329 0.1824227 0.0074755

For comparison we compute the numerical values of the con-
vergence rate of the transformed sequence {S2(xn)}

> abs(lambda)^3=evalf(Omega^3,10);

|λ|3 = 0.1824224968 (54)

and of limit (53)

> evalf((53),10);

lim
n→∞

τn

en
3

= 0.007475611683 (55)

6. RATE OF LINEAR CONVERGENCE OF
S(2) TRANSFORMED SEQUENCES

The iterated Aitken transformation S(2) combines five suc-
cessive sequence elements in a non-linear way (see, for in-
stance, ref. [5], p. 225, or ref. [21]) just as the Shanks
transformation S2:

> ’(S@@2)(x)(n)’=normal(S(’S’(x))(n));

S(2)(x)(n) =
S(x)(n) S(x)(n + 2)− S(x)(n + 1)2

S(x)(n + 2)− 2 S(x)(n + 1) + S(x)(n)
(56)

where

> ’S(x)(n+i)’=normal(S(x)(n+i));

S(x)(n+i) =
x(n + i) x(n + i + 2)− x(n + i + 1)2

x(n + i + 2)− 2 x(n + i + 1) + x(n + i)
(57)

for i = 0..2. The following result quantifies the convergence
acceleration effect of the S(2) transformation in terms of the
rate of convergence of the given sequence {xn}.

Theorem 5. Let {xn}n≥0 be a linearly convergent
sequence in R with lim

n→∞
xn = ξ, i.e. there exists a constant

0 < |λ| < 1 and a sequence {εn} with en+1 = (λ + εn) · en

and εn → 0 for n → ∞. If εn = ωn · en with ωn → ω 6= 0
for n →∞, then the rate of linear convergence of the trans-
formed sequence {S(2)(xn)} is |λ|3.

Proof. For the error terms of the transformed sequence

> tau[n]:=’(S@@2)(x)(n)-xi’;

τn := S(2)(x)(n)− ξ (58)

> tau[n+1]:=’(S@@2)(x)(n+1)-xi’;

τn+1 := S(2)(x)(n + 1)− ξ (59)

similar calculations as in the proof of Theorem 4 lead to

> tau[n]:=subs(seq(x(n+i) = e[n+i]+xi,

i=0..4),tau[n]):

tau[n+1]:=subs(seq(x(n+i) = e[n+i]+xi,

i=0..5),tau[n+1]):

Q3:=normal(tau[n+1]/tau[n]):

for i from 1 to 5 do

e[n+i]:=(lambda+epsilon[n+i-1])*e[n+i-1]:

end do:

Q3:=factor(Q3):

Q4:=subs(seq(epsilon[n+i]=omega[n+i]*e[n+i],

i=4..0,-1),Q3):

> LN:=factor(limit(convert(taylor(numer(Q2),e[n],5),

polynom),seq(omega[n+i]=omega,i=0..4)));

LN := −λ6ω4 (λ + 1)3 (λ− 1)17 · en
4 (60)

> LD:=factor(limit(convert(taylor(denom(Q4),e[n],5),

polynom),seq(omega[n+i]=omega,i=0..4)));

LD := −λ3ω4 (λ + 1)3 (λ− 1)17 · en
4 (61)

> ’limit(tau[n+1]/tau[n],n=infinity)’ =

limit(LN/LD,e[n]=0);

lim
n→∞

τn+1

τn
= λ3 (62)

Theorem 4 and 5 show that the transformations S2 and S(2)

produce identical convergence improvements for the class of
linearly convergent sequences {xn} with εn = ωn · en and
ωn → ω 6= 0 for n → ∞. For fixed-point iteration methods
we have
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Corollary 3. Let {xn}n≥0 be a convergent iteration

method, i.e. xn+1 = φ(xn) and lim
n→∞

xn = ξ. Assume that

the real function φ(x) is two times continuously differentiable

in a neighborhood of ξ with 0 < |D(φ)(ξ)| < 1, D(2)(φ)(ξ) 6= 0
and φ(ξ) = ξ. Then the rate of linear convergence of the

transformed sequence {S(2)(xn)} is |D(φ)(ξ)|3.
Proof. Identical to the proof of Corollary 2.

Finally, we calculate the limit of the quotient
τn

e3
n

for

n → ∞, where τn is the error term of a S(2) transformed
sequence and en is the error term of the given convergent
sequence. We consider a linearly convergent sequence {xn}
with en+1 = (λ + εn) · en, 0 < |λ| < 1, εn = ω · en + θn · en

2,
ω 6= 0 and θn → θ for n →∞. Substituting the polynomial
εn into the error term τn and calculating the first term of
the Taylor series with respect to en we obtain

> tau3[n]:=subs(seq(epsilon[n+i]=omega*e[n+i]+

theta[n+i]*e[n+i]^2,i=3..0,-1),tau[n]):

> factor(limit(convert(taylor(tau3[n],e[n]=0,7),

polynom),seq(theta[n+i]=theta,i=0..3)));

λ4
`
λ θ − ω2

´
(λ + 1) (λ− 1)

· en
3 (63)

Thus, the limit is evaluated to

> ’limit(tau[n]/e[n]^3,n=infinity)’=

limit((63)/e[n]^3,e[n]=0);

lim
n→∞

τn

en
3

=
λ4
`
λ θ − ω2

´
(λ + 1) (λ− 1)

(64)

7. NUMERICAL EXAMPLE:
S(2) TRANSFORMED
ITERATION SEQUENCE

Corollary 3 implies that the iterated Aitken transforma-
tion S(2) improves the linear convergence rate |λ| = Ω of
{xn}, where xn+1 = φ (xn) and φ(x) = e−x, to |λ|3 = Ω3.

Using ω =
D(2)(φ)(Ω)

2!
=

Ω

2
, θ =

D(3)(φ)(Ω)

3!
= −Ω

6
and

λ = −Ω we obtain for the limit (64):

> simplify(subs(omega=Omega/2,theta=-Omega/6,

lambda=-Omega,’(64)’));

lim
n→∞

τn

en
3

=
Ω6

12 (1− Ω)
(65)

In the following table the convergence behavior is verified
numerically:

> x:=n->(phi@@(n))(5.0):

> e:=n->x(n)-xi:

> tau:=n->(S@@2)(x)(n)-xi:

> seq(printf("%5d %10.7f %13.10f %10.7 %10.7f\n",

n,x(n),(S@@2)(x)(n),abs(tau(n+1)/tau(n)),

tau(n)/e(n)^3),n=0..20);

0 5.0000000 0.57717931 0.0944980 0.0001152

1 0.0067379 0.56619491 0.2363218 0.0053886

2 0.9932847 0.56736741 0.1579987 0.0028962

3 0.3703582 0.56710788 0.1975730 0.0046469

4 0.6904870 0.56715029 0.1743446 0.0037284

5 0.5013319 0.56714207 0.1871501 0.0042793

6 0.6057234 0.56714352 0.1797916 0.0039754

7 0.5456796 0.56714325 0.1839302 0.0041507

8 0.5794479 0.56714330 0.1815726 0.0040522

9 0.5602076 0.56714329 0.1829062 0.0041084

10 0.5710905 0.56714329 0.1821487 0.0040766

11 0.5649091 0.56714329 0.1825779 0.0040946

12 0.5684118 0.56714329 0.1823344 0.0040844

13 0.5664243 0.56714329 0.1824725 0.0040902

14 0.5675512 0.56714329 0.1823942 0.0040869

15 0.5669120 0.56714329 0.1824386 0.0040888

16 0.5672745 0.56714329 0.1824134 0.0040877

17 0.5670689 0.56714329 0.1824277 0.0040883

18 0.5671855 0.56714329 0.1824196 0.0040880

19 0.5671194 0.56714329 0.1824242 0.0040882

20 0.5671569 0.56714329 0.1824216 0.0040881

The numerical values of the convergence rate of the trans-
formed sequence {S(2)(xn)} and of limit (65) are given by:

> abs(lambda)^3=evalf(Omega^3,10);

|λ|3 = 0.1824224968 (66)

> evalf((65),10);

lim
n→∞

τn

en
3

= 0.004088111042 (67)

8. CONCLUSION AND OUTLOOK
It is well-known that Aitken’s ∆2 process and its gener-

alization the Shanks transformation are powerful non-linear
convergence acceleration methods. In this paper we have
presented new results which quantify the convergence ac-
celeration effects of the Aitken transformation S, the iter-
ated Aitken transformation S(2) and the Shanks transforma-
tion S2 for subclasses of linearly convergent sequences. The
formal results are applied to fixed-point iteration methods,
i.e. sequences {xn} generated by xn+1 = φ(xn), where the
iteration function φ(x) possesses a certain number of contin-
uous derivatives. Furthermore, we have used the computer
algebra system Maple for symbolic and numerical calcula-
tions. It is shown how this powerful mathematical system
can be used for analysing numerical methods and gener-
ating results which are hard to find with paper and pen-
cil only. In addition, we have investigated how the three
transformations S, S(2) and S2 affect quadratically conver-
gent sequences. With minor variations of the Maple code
we could rerun the symbolic calculations in the proofs of
Theorems 3, 4 and 5 for second order sequences, i.e.
sequences {xn} with the convergence behavior en+1 = ρn·e2

n,
where ρn → ρ 6= 0 for n →∞. It turns out, that the trans-
formed sequences are again quadratically convergent with
the same asymptotic error constant ρ (see also ref. [15],
p. 268). Future studies will include the extension of the
subclasses of linearly convergent sequences, the higher order
transformations Sk and S(k), k ≥ 3, as well as special trans-
formations such as {Sk(xn)}k≥0 and {S(k)(xn)}k≥0, however
the computational demand increases rapidly.
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ABSTRACT
The Hensel series is a series expansion of multivariate al-
gebraic function at its singular point. The Hensel series is
computed by the (extended) Hensel construction, and it is
expressed in a well-structured form. In previous papers, we
clarified theoretically various interesting properties of Hensel
series in restricted cases. In this paper, we present a theory
of Hensel series in general case. In particular, we inves-
tigate the Hensel series arising from non-squarefree initial
factor, and derive a formula which shows “fine structure” of
the Hensel series. If we trace a Hensel series along a path
passing a divergence domain, the Hensel series often jumps
from one branch of the algebraic function to another. We
investigate the jumping phenomenon near the ramification
point, which has not been clarified in our previous papers.

Categories and Subject Descriptors
G.1.2 [Approximation]: Nonlinear approximation, approx-
imation of surfaces and contours; I.1.2 [Symbolic and Al-
gebraic manipulation]: Algebraic algorithms

General Terms
Theory, Experimentation

Keywords
multivariate algebraic function, series expansion, singular
point, convergence, many-valuedness

1. INTRODUCTION
Series expansion is a fundamental tool not only in math-

ematics but also in numerical as well as algebraic compu-
tations. So far, the Taylor series is used mostly but the
Taylor expansion breaks down when the expansion point is
a singular point. We can expand univariate algebraic func-
tions at singular points (critical points) by Newton-Puiseux’s
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method; see [21]. Newton-Puiseux’s method can be gener-
alized to multivariate algebraic functions recursively, giving
“multivariate Puiseux series” which are sums of monomials
of fractional powers w.r.t. each variable; see [10, 11, 1]. How-
ever, multivariate Puiseux series are not easy to use practi-
cally. in fact, even the convergence property is not known
yet.

In a series of papers [17, 18, 13, 5, 14, 15, 16], we have de-
veloped a method of expanding multivariate algebraic func-
tion into series at singular points, where the algebraic func-
tion is defined to be the roots of a given multivariate polyno-
mial. Since our method is based on the Hensel construction,
we named the series obtained by our method Hensel series.
For bivariate polynomials, our method computes Puiseux
series roots simultaneously and efficiently. For multivariate
polynomials which define multivariate algebraic functions,
the series obtained by our method are very different from
multivariate Puiseux series. In this paper, by Hensel series,
we always mean multivariate series.

The Hensel series was used so far to the analytic continu-
ation of algebraic functions via singular points [20], solving
multivariate algebraic equations in series forms [17, 18], the
multivariate polynomial factorization [4], the analytic fac-
torization of polynomials of more than two variables [6, 7],
and so on. For some other researches of utilizing series ex-
pansions at singular points, see [2, 9, 19, 12, 3].

The Hensel series has following remarkable properties.

1. Each term of Hensel series is well-structured. For ex-
ample, given F (x, u, v) = x2 − 2(u+v) x + (u2+v2)−
(u3−v3), our method computes the following Hensel
series (to the 2nd order w.r.t. an auxiliary variable ξ):

φ
(2)
± (u, v, ξ) = α± ± ξ u3−v3

2
√

2uv
∓ ξ2 (u3−v3)2

16uv
√

2uv
,

where α± = u+v ±√2uv.

2. A simple formula has been derived to express the gen-
eral term of Hensel series, which allows us to clarify
the convergence properties of the Hensel series consid-
erably; the convergence and the divergence domains
co-exist in any small neighborhood of the expansion
point, and the neighborhood is occupied mostly by the
convergence domain.

3. The Hensel series often jumps from one branch of alge-
braic functions to another when it passes through the
divergence domain.

The Hensel series is computed by the extended Hensel con-
struction (EHC in short) which is the multivariate Hensel
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construction at the singular point [8, 17, 18]. The most im-
portant concept in the EHC is Newton polynomial. So far,
we have investigate mostly the cases where the Newton poly-
nomial is squarefree and the given polynomial is either monic
[15] or nonmonic [16].

In Sect. 2, we survey the EHC briefly. In Sect. 3, we
explain the method of computing Hensel series in the gen-
eral case, in particular, the Hensel construction in mass and
roots, which we devised recently [14]. Furthermore, we con-
sider the Tschirnhaus transformation in nonmonic case and
present a method for expressing the roots of the Newton
polynomial in a series form. In Sect. 4, we investigate the
convergence property generally, in particular, we investigate
Hensel series arising from non-squarefree initial factor. In
Sect. 5, we investigate the behavior of Hensel series around
the ramification point, including the jumping phenomenon.

2. SURVEY OF EHC IN GENERAL CASE
Let F (x, u)

def
= F (x, u1, . . . , uℓ) ∈ C[x, u1, . . . , uℓ] be a

given multivariate polynomial. By deg(F ) and lc(F ), we
denote the degree and the leading coefficient, respectively,
w.r.t. x, of F (x, u). We put deg(F ) = n and lc(F ) = fn(u).
By tdeg(f), with f(u) ∈ C[u], we denote the total-degree
of f(u) w.r.t. sub-variables u1, . . . , uℓ; if T = c ue1

1 · · ·ueℓ
ℓ ,

c ∈ C, then tdeg(T ) = e1 + · · · + eℓ, and tdeg(f) is the
maximum of the total-degrees of terms of f(u). By ord(f)
we denote the order of f(u), i.e., the minimum of the total-
degrees of terms of f(u). For rational function N(u)/D(u)
we define the order to be ord(N)−ord(D). The order of
algebraic function is defined in Subsect. 3.3. By res(F, G)
and rem(F, G), we denote the resultant of F and G w.r.t.
x and the remainder of F divided by G, respectively. By
C{(u)} we mean a ring of infinite sum of rational functions
such as

P∞
k=0 Nk(u)/Dk(u), where Nk and Dk are homoge-

neous polynomials in u1, . . . , uℓ, satisfying ord(Nk/Dk) = k.
By F ′ we denote the partial derivative of F w.r.t. x. By
‖u‖ we denote the square norm (|u1|2 + · · ·+ |uℓ|2)1/2 after
substituting numbers for u1, . . . , uℓ. By ‖f(u)‖ = O(‖u‖a)
and ‖f(u)‖ = o(‖u‖a) we mean ‖f(u)‖/‖u‖a → nonzero-
number and ‖f(u)‖/‖u‖a → 0, respectively, as ‖u‖ → 0.

Without loss of generality, we assume that F (x, u) is irre-
ducible hence squarefree. Let ϕ(u) be an algebraic function
defined by a root w.r.t. x, of F (x, u): F (ϕ(u), u) = 0. Let

s
def
= (s1, . . . , sℓ) ∈ Cℓ be an expansion point of ϕ(u). If

fn(s) 6= 0 and F (x, s) is squarefree then the algebraic func-
tion defined by F (x, u) can be expanded into Taylor series
in u1−s1, . . . , uℓ−sℓ. Let the squarefree decomposition of
F (x, s) be F (x, s) = F̃0(x)

Ql
i=1[F̂i0(x)]mi , where F̃0(x) and

F̂i0(x) are squarefree, so we have gcd(F̂i0, F̂j0) = 1 (∀i 6= j),
and mi ≥ 2 for any i. Then, the Hensel construction shows
that F (x, u) is factored as F (x, u) = F̃ (x, u)

Ql
i=1 F̂i(x, u),

where F̃ (x, u), F̂i(x, u) ∈ C{{u}}[x], F̃ (x, s) = F̃0(x) and

F̂i(x, s) = [F̂i0(x)]mi for each i (the factors of lc(F ) may

be distributed among F̃ and F̂1, . . . , F̂l). In the rest of this

paper, we consider only one factor F̂i(x, u), by renaming it
to F (x, u), hence we have

F (x, s) = [F0(x)]m, F0(x) is squarefree and m ≥ 2.
(2.1)

Definition 1 (singularness). We call the expansion
point s ∈ Cℓ a singular point of algebraic function, or a sin-
gular point in short, if F (x, s) is not squarefree. If fn(s) = 0

then we say the leading coefficient is singular at s.

Without loss of generality, we assume that the origin u = 0
is a singular point or fn(u) is singular at the origin, and we
consider the series expansion at the origin. Note that at least
one root ϕ(u) of F (x, u) becomes infinity at any zero-point
of fn(u).

The conventional Hensel construction is unavailable to ex-
pand the roots of F (x, u) given in (2.1), and we are necessary
to adopt the EHC. The most important concept in the EHC
is the Newton polynomial, defined as follows.

Definition 2 (Newton polynomial). For each term

c xitjuj1
1 · · ·ujℓ

ℓ of F (x, tu), where c ∈ C and j = j1+· · ·+jℓ,
plot a dot at the point (i, j) in the (ex, et)-plane. The New-
ton polygon N for F (x, u) is a convex hull containing all the
dots plotted. Let the bottom sides of N , counted clockwise,
be L1, . . . ,Lq. We call L1, . . . ,Lq Newton lines. For each
i ∈ {1, . . . , q}, Newton polynomial FLi(x, u) is defined to be
the sum of all the terms plotted on Li; see Fig. 1.

Note that FLi(x, u) may or may not be squarefree.

-
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Fig. 1. Newton polygon N and Newton lines L1, . . . ,Lq,

FLi(x, u) = [sum of all the terms plotted on Li],

f
(0)
ni = [sum of the terms plotted on the left end of Li]/xni .

We sketch the EHC in C{(u)}[x]; see Sect. 3 for the EHC
for computing the Hensel series.

We explain the EHC on Newton line L1. Let the slope
of L1 be −λ (note the “−” sign). We see that FL1(x, u)
is homogeneous w.r.t. xλ and u1, . . . , uℓ. We say this that
FL1(x, u) is (λ, 1)-homogeneous. Let FL1(x, u) be factored
in C[x, u] as follows.

FL1(x, u) = F
(0)
0 (x)F

(0)
1 (x, u) · · ·F (0)

r (x, u), (2.2)

where F
(0)
0 (x) = xn1 and gcd(F

(0)
i , F

(0)
j ) = 1 (∀i 6= j). Since

FL1(x, u) is (λ, 1)-homogeneous, so are F
(0)
1 , . . . , F

(0)
r .

We first calculate Moses-Yun’s polynomials A
(l)
0 (x, u), . . . ,

A
(l)
r (x, u) (l = 0, 1, . . . , n−1), which are in C{(u)}[x], and

satisfy (if G
(0)
0 (x) = 1 then A

(l)
0 = 0)8<: A

(l)
0

FL1

F
(0)
0

+ A
(l)
1

FL1

F
(0)
1

+ · · ·+ A(l)
r

FL1

F
(0)
r

= xl,

deg(A
(l)
i ) < deg(F

(0)
i ) (i = 0, 1, . . . , r).

(2.3)

We next define ideals Ik (k = 1, 2, 3, . . . ). Let integers n̂
and ν̂ satisfy n̂ > 0, ν̂/n̂ = λ and gcd(|ν̂|, n̂) = 1 (n̂ := 1 if
λ = 0), then we define Ik as follows.

Ik = 〈xnt(k+0ν̂)/n̂, xn−1t(k+1ν̂)/n̂, . . . , x0t(k+nν̂)/n̂〉, (2.4)
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where 〈g1, . . . , gm〉 denotes the ideal generated by g1, . . . , gm

and t is the total-degree w.r.t. u1, . . . , uℓ. Below, we omit the
total-degree variable t in F (x, tu) etc., for simplicity. Note
that we have F (x, u) ≡ FL1(x, u) (mod I1).

Suppose we have calculated F
(k′)
1 , . . . , F

(k′)
r up to k′ =

k−1. Then, we calculate

δF (k) ≡ F − F
(k−1)
0 F

(k−1)
1 · · ·F (k−1)

r (mod Ik+1)

def
= δf

(k)
n−1(u)xn−1 + δf

(k)
n−2(u)xn−2 + · · ·+ δf

(k)
0 (u),

(2.5)

and construct F
(k)
i

def
= F

(k−1)
i + δF

(k)
i (i = 0, 1, . . . , r) as

δF
(k)
i = A

(n−1)
i δf

(k)
n−1 + A

(n−2)
i δf

(k)
n−2 + · · ·+ A

(0)
i δf

(k)
0 . (2.6)

Precisely, we must distribute the factors of leading coefficient

fn(u) among F
(k)
1 , . . . , F

(k)
r , but we omit the explanation;

see [4] for the distribution.
In order to factor F (x, u) in C{(u)}[x], we must per-

form the EHC q times from L1 to Lq. Let the right ends
of L1 be (n0, ν0) hence n0 = n, and the terms plotted on

(n0, ν0) be f
(0)
n (u)xn. Let the left ends of L1, . . . ,Lq be

(n1, ν1), . . . , (nq, νq), respectively, and the terms plotted on

these ends be f
(0)
1 (u)xn1 , . . . , f

(0)
q (u)x0, respectively (see

Fig. 1). For each i (1 ≤ i ≤ q), let the Newton polynomial
FLi(x, u) be factored in C[x, u] as(

FLi(x, u) = xniF
(0)
i1 (x, u) · · ·F (0)

iri
(x, u),

gcd(F
(0)
ij , F

(0)

ij′ ) = 1 (∀j 6= j′).
(2.7)

Then, we have the following theorem; see [13] for the proof.

Note that, since f
(0)
ni (u) appears on both the left end of Li

and the right end of Li+1, FLi(x, u) is divided by f
(0)
ni (u).

Theorem 1 (Sasaki-Inaba 2000). F (x, u) can be fac-
tored in C{(u)}[x] as8>>>><>>>>:

F (x, u) = f
(0)
0 (u)

qY
i=1

h
F

(∞)
i1 (x, u) · · ·F (∞)

iri
(x, u)/f (0)

ni
(u)
i
,

F
(∞)
ij (x, u) ∈ C{(u)}[x] (i = 1, . . . , q; j = 1, . . . , ri),

F
(k)
ij (x, u) → F

(0)
ij (x, u) ∈ C[x, u] as k → 0.

(2.8)
The decomposition is unique up to unit factors in C{(u)}.

Corollary 1. We can factor F (x, u) in C{(u)}[x] as
follows.(

f
(0)
n1 · · · f (0)

nq−1F (x, u) = F
(∞)
L1

(x, u)/xn1 · · ·F (∞)
Lq

(x, u)/xnq ,

F
(0)
Li

(x, u) = FLi(x, u) (i = 1, . . . , q).

(2.9)
Here, for each i ∈ {1, . . . , q}, only products of factors of

f
(0)
n1 (u), . . . , f

(0)
ni (u) appear in the denominators of terms of

F
(∞)
Li

(x, u). ♦

3. COMPUTING HENSEL SERIES
IN GENERAL CASE

In this section, we consider computing Hensel series, i.e.,

factoring each F
(∞)
ij (x, u) in (2.8) into linear factors w.r.t.

x, by renaming F
(∞)
ij to G (actually, we treat F

(k)
ij for a suf-

ficiently large k). The first problem we must solve is how
to treat the leading coefficient of G(x, u), and the second

problem is how to compute the Hensel series corresponding
to multiple roots of the Newton polynomial. On the other
hand, in order to compute and analyze the Hensel series sim-
ply, we have developed two techniques, Hensel construction
in mass and Hensel construction in roots, see [14, 15].

As for the first problem, if we use the conventional tech-
nique for treating the leading coefficient, then the Hensel
construction in mass and roots leads us to complicated ex-
pressions; see [14]. In [16], we found that, if we redefine the
Newton polynomial as follows, then the leading coefficient
can be treated simply and reasonably.

Definition 3 (Newton polynomial for G(x, u)).
Following Def. 2, construct the homogeneous Newton poly-
nomial GhNw(x, u) for G(x, u). The Newton polynomial
GNew(x, u) for G(x, u) is defined by replacing the leading
coefficient of GhNw(x, u) by lc(G).

Let GhNw(x, u) = g
(0)
n (u)xn + g

(0)
n−1(u) + · · · + g

(0)
0 (u).

The slope of the Newton line for G(x, u) is −λ, hence each
root αi(u) of GhNw(x, u) is such that ‖αi(u)‖ = O(‖u‖λ)

no matter how the coefficients of g
(0)
n and g

(0)
0 are small

compared with other coefficients. From the viewpoint of
applications, however, if ‖αn(u)‖ > 1000 ‖αi(u)‖ for ∀i < n

(this case occurs when ‖g(0)
n ‖ is very small) or ‖α1(u)‖ <

‖αi(u)‖/1000 for ∀i > 1 (this case occurs when ‖g(0)
0 ‖ is

very small), for example, then treating such roots equally is
unpractical. Therefore, we define normality and closeness.

Definition 4 (normality, closeness).

Let N = max{‖g(0)
i (u)‖/‖u‖ν+(n−i)λ | i = 0, 1, . . . , n} and

S be a given small positive number, 0 < S ≪ 1, specifying

the practical measure of smallness. If ‖g(0)
n (u)‖/‖u‖ν > SN

and ‖g(0)
0 (u)‖/‖u‖ν+nλ) > SN for generic u then we say

GhNw(x, u) is normal. Let αi(u) and αj(u) (i 6= j) be roots
of GhNw(x, u) or GNew(x, u). We say αi(u) and αj(u) are
mutually close if, for generic u such that ‖u‖ < S, we have
‖αi(u) − αj(u)‖ < S ‖αi(u)‖. Furthermore, we say u is
close to u0 if ‖u−u0‖ < S ‖u‖.

The second problem can be solve by the Tschirnhaus trans-
formation, see Subsect. 3.2 for details. However, if the New-
ton polynomial has close roots then the situation becomes
complicated. In Def. 3, we have defined the Newton polyno-
mial GNew(x, u) so that we have lc(GNew) = lc(G). If lc(G)
has higher order terms then GNew(x, u) is squarefree in most
cases. The reason is as follows. Let R = res(GNew, G′

New)
be considered as a polynomial in gn. Among the coefficients
of GNew(x, u), only gn has higher order terms, hence R be-
comes 0 identically iff every coefficient w.r.t. gn, of R is 0,
which is very rare. On the other hand, we are interested
in the behaviors of Hensel series near the expansion point,
where the Hensel series are determined mostly by GhNw(x, u)
defined in Def. 3. If GhNw(x, u) has multiple roots then
GNew(x, u) will have close roots. Therefore, we confine our-
selves to investigating the following two cases in this paper.

Case 1) GhNw(x, u) has neither multiple nor close root.
Case 2) GhNw(x, u) has multiple roots but no close root.

We do not investigate the case that GhNw(x, u) has close
roots, which will be a theme in approximate algebra.
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3.1 Case 1) Hensel construction
in mass and roots

The case 1) has been studied in [16], by assuming that
GNew(x, u) is squarefree. In order to make this paper self-
contained, we describe previous theories briefly.

Let the roots of GNew(x, u) be α1(u), . . . , αn(u), which
we often write as α1, . . . , αn.

GNew(x, u) = gn(u)(x− α1(u)) · · · (x− αn(u)),
αi(u) 6= αj(u) (∀i 6= j).

(3.1)

The αi(u) is usually an algebraic function. We define
G(x, u, ξ) by introducing an auxiliary variable ξ, as follows
(we put ξ = 1 after finishing the Hensel construction).(

G(x, u)
def
= GNew(x, u) + Gh(x, u),

G(x, u, ξ)
def
= GNew(x, u) + ξ Gh(x, u).

(3.2)

We factor GNew(x, u) as GNew = G
(0)
1 G̃(0), where G

(0)
1 (x, u)

= x−α1(u) and G̃(0)(x, u) = GNew(x, u)/(x−α1(u)). Then,

choosing G
(0)
1 (x, u) and G̃(0)(x, u) as initial factors, we per-

form the Hensel construction of G(x, u, ξ) w.r.t. modulus ξ
(Hensel construction in mass), obtaining(

G(x, u, ξ) ≡ G
(k)
1 (x, u, ξ) · G̃(k)(x, u, ξ) (mod ξk+1),

G
(k)
1 (x, u, ξ) = x− φ

(k)
1 (u, ξ), φ

(0)
1 (u, ξ) = α1(u).

(3.3)

The φ
(∞)
1 (u, 1) is the Hensel series corresponding to α1(u).

Actual Hensel construction is performed as follows. Sup-

pose we computed G
(k′)
1 and G̃(k′) up to k′ = k−1. Then,

we compute the k-th order residual ξkδG(k) as follows.

G(x, u, ξ)−G
(k−1)
1 (x, u, ξ)G̃(k−1)(x, u, ξ) (mod ξk+1)

≡ ξk [δg
(k)
n−1(u)xn−1 + δg

(k)
n−2(u)xn−2 + · · ·+ δg

(k)
0 (u)].

(3.4)

We compute the k-th order Hensel factors G
(k)
1 and G̃(k) by

the well-known formula

G
(k)
1 (x, u, ξ) = G

(k−1)
1 (x, u, ξ) + ξkPn−1

l=0 Al δg
(k)
l (u),

G̃(k)(x, u, ξ) = G̃(k−1)(x, u, ξ) + ξkPn−1
l=0 Bl δg

(k)
l (u).

(3.5)
Here, Al = Al(x, u) and Bl = Bl(x, u), 0 ≤ l ≤ n−1, are
determined to satisfy (An and Bn are unnecessary because

deg(δG(k)) ≤ n−1)8>>><>>>:
Al(x, u)

GNew(x, u)

x−α1
+ Bl(x, u)(x−α1) = xl,

Al(x, u), Bl(x, u) ∈ C(u)[x, α1],

degx(Al) < 1, degx(Bl) < n−1.

(3.6)

We express Al(x, u) and Bl(x, u) in α1, . . . , αn. Substitut-
ing α1 and αj (j ≥ 2) for x in (3.6), we obtain Al(α1, u) =
αl

1/
Qn

j=2(α1−αj) and Bl(αj , u) = αl
j/(αj−α1). By these,

Al(x, u) and Bl(x, u) are determined uniquely as follows.8>>><>>>:
Al(x, u) =

αl
1

G′
New(α1, u)

,

Bl(x, u) =
nX

j=2

αl
j

GNew(x, u)/(x−α1)(x−αj)

G′
New(αj , u)

.

(3.7)

Since δG(1)(x, u) = Gh(x, u), substituting the above ex-
pressions of Al(x, u) and Bl(x, u) for those in (3.5), we ob-

tain the following theorem (Hensel construction in roots).

Theorem 2 (Sasaki-Inaba 2009). If GNew(x, u) is

squarefree then the Hensel factors G
(∞)
1 and G̃(∞) in (3.3)

are expressed as follows.

G
(∞)
1 (x, u, ξ) = x− α1 +

∞X
k=1

ξk δG(k)(α1, u)

G′
New(α1, u)

, (3.8)

G̃(∞)(x, u, ξ) =
GNew(x, u)

x−α1
(3.9)

+
nX

j=2

GNew(x, u)

(x−α1)(x−αj)

“ ∞X
k=1

ξk δG(k)(αj , u)

G′
New(αj , u)

”
,

where δG(1) = Gh(x, u) and the k-th order residual δG(k)

(k ≥ 2) is given as follows.

δG(k)(x, u) = −
nX

j=2

GNew(x, u)

(x− α1)(x− αj)
(3.10)

×
“ k−1X

k′=1

δG(k′)(α1, u)

G′
New(α1, u)

δG(k−k′)(αj , u)

G′
New(αj , u)

”
.

The above formula (3.8) gives (we omit 1 in φ
(k)
1 (u, 1)).

φ
(∞)
1 (u) = α1 −

∞X
k=1

δG(k)(α1, u)

G′
New(α1, u)

. (3.11)

Definition 5 (rational, algebraic series).

If αi(u) ∈ C(u) then the truncated Hensel series φ
(k)
i (u),

k ≥ 1, is called rational, otherwise it is called algebraic.

3.2 Case 2) Tschirnhaus transformation
We can assume that the factorization in (2.7) is the square-

free decomposition. The squarefree factors of FL1(x, u) have
been treated in Case 1). Therefore, in Case 2), we have

only to consider such an H(x, u)
def
= F

(∞)
ij (x, u) that its ho-

mogeneous Newton polynomial HhNw(x, u) is of the form
HhNw(x, u) = [H0(x, u)]m, where m ≥ 2 and H0(x, u) is
irreducible in C[x, u]. Let deg(H0) = r and the roots of
H0(x, u) be ᾱ1, . . . , ᾱr:

H0(x, u) = h(0)
r (u) (x− ᾱ1(u)) · · · (x− ᾱr(u)). (3.12)

We first define the order of algebraic function α(u).

Definition 6. Let α(u) be a root of HNew(x, u) or
HhNw(x, u). We define the order of α(u) to be ord(α) = λ,
where −λ is the slope of the Newton line. We plot α(u)jxi

at point (i, λj) in the (ex, et)-plane defined in Def. 2.

Let deg(H) = n = mr. Since HhNw(x, u) has m multi-
ple roots, HNew(x, u) will have r clusters of m close roots.
Hence, we express the roots of HNew(x, u) as follows.(

HNew(x, u) = hn(u)
Qr

i=1(x− αi1(u)) · · · (x− αim(u)),

‖αij(u)− ᾱi(u)‖ = o(‖u‖λ) (i = 1, . . . , r; j = 1, . . . , m).
(3.13)

In the monic case, a procedure to handle H(x, u) was es-
tablished in [18]. We generalize the procedure to nonmonic
case.

If r = 1 then go to the following Tschirnhaus transforma-

tion. If r ≥ 2 then, putting H
(0)
i (x, u) =

Qm
j=1(x−αij(u))
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(i = 1, . . . , r), we perform the EHC of H(x, u), with initial

factors H
(0)
1 , . . . , H

(0)
r , obtaining (actually, we perform the

EHC only up to a finite order)(
H(x, u) = hn(u) H

(∞)
1 (x, u) · · ·H(∞)

r (x, u),

H
(∞)
i (x, u) ∈ C{(u)}[x, αi1, . . . , αim] (i = 1, . . . , r).

(3.14)

Let H
(∞)
i (x, u) = xm + hi,m−1x

m−1 + · · · + hi,0. We ap-
ply the following Tschirnhaus transformation to each factor

H
(∞)
i (x, u).

H
(∞)
i (x, u) 7→ Ȟi(x, u) = H

(∞)
i (x− hi,m−1

m
, u). (3.15)

Since αi1, . . . , αim are the roots of Newton polynomial for

H
(∞)
i , the above transformation maps the Newton polyno-

mial to xm. Therefore, we can apply the EHC to Ȟi(x, u);
let the slope of the Newton line for Ȟi be −λ′, then we have
λ′ > λ. If the homogeneous Newton polynomial for Ȟi is still
not squarefree, we apply the Tschirnhaus transformation to
Ȟi again.

Remark 1. The above formulation is, although consistent
with Def. 3, quite complicated from the viewpoint of computa-
tion. For easier computation, we may use the homogeneous

Newton polynomial HhNw = h
(0)
n (u)

Qr
i=1(x − ᾱi(u))m for

defining the initial factors of Hensel construction, and per-
form the Hensel construction to satisfy(

H(x, u) = hn(u)H
(∞)
1 (x, u) · · ·H(∞)

r (x, u),

H
(0)
i = (x− ᾱi)

m, H
(∞)
i ∈ C{(u)}[x, ᾱi] (i=1, . . . , r).

(3.16)
In the next sections, we consider only the homogeneous New-
ton polynomials.

3.3 Computing α1, . . . , αn in a series form
In the nonmonic case, we defined the Newton polynomial

GNew(x, u) so that lc(GNew) = lc(G) = gn(u). If gn(u) con-
tains higher order terms then the homogeneity of GNew(x, u)
is destroyed by gn(u). The behavior of the Hensel series near
the expansion point is determined mostly by GhNw(x, u) and
we want to know the behaviors of α1(u), . . . , αn(u) near the
expansion point. So, we consider a method to express the
roots in a series form.

Let gn(u) be split into lower and higher terms:

gn(u) = gl(u) + gh(u),

ord(gl) = tdeg(gl) < ord(gh).
(3.17)

Then, we can express G̃New
def
= gl/(gl+gh) GNew as follows.8><>:

G̃New = G̃New,l + G̃New,h,

G̃New,l = gl(u)xn + gn−1(u)xn−1 + · · ·+ g0(u),

G̃New,h = −(gh/gn)(gn−1(u)xn−1 + · · ·+ g0(u)).
(3.18)

Note that G̃New,l is (λ, 1)-homogeneous and G̃New,h can be

regarded to be of higher order than G̃New,l, because gh/gn =
gh/(gl+gh) = (gh/gl)[1− (gh/gl) + (gh/gl)

2 − · · · ].
Let the roots of G̃New,l be α

(0)
1 (u), . . . , α

(0)
n (u):

G̃New,l = gl(u) (x− α
(0)
1 (u)) · · · (x− α(0)

n (u)). (3.19)

Applying the EHC to G̃New, with initial factors (x−α
(0)
1 ) and

G̃New,l/(x−α
(0)
1 ), we can compute α1(u) in a series form, just

similarly as we have computed the power-series root φ
(k)
1 (u)

in the previous subsection. We show the resulting formula.

Theorem 3. If G̃New,l(x, u) is squarefree then α1(u) can
be expressed as follows.

α1(u) = α
(0)
1 (u)−

∞X
k=1

δG̃(k)(α
(0)
1 , u)

G̃′
New,l(α

(0)
1 , u)

, (3.20)

where δG̃(1) = G̃New,h(x, u) and the k-th order residual δG̃(k)

(k ≥ 2) is given as follows.

δG̃(k)(x, u) = −
nX

j=2

G̃New,l(x, u)

(x− α
(0)
1 )(x− α

(0)
j

×
“ k−1X

k′=1

δG̃(k′)(α
(0)
1 , u)

G̃′
New,l(α

(0)
1 , u)

δG̃(k−k′)(α
(0)
j , u)

G̃′
New,l(α

(0)
j , u)

”
.

(3.21)

4. CONVERGENCE PROPERTY
NEAR THE EXPANSION POINT

In this section, we study the convergence property of Hensel
series near the expansion point (= the origin). After survey-
ing some previous results in 4.1, we study the Hensel series
computed on different Newton lines in 4.2, and study the
Hensel series corresponding to multiple roots of the Newton
polynomial in 4.3. We will show that, in both Case 1) and
Case 2) mentioned in Sect. 3, the divergence domain of any
Hensel series occupies only a small part of the neighborhood
of the expansion point.

4.1 When the Newton polynomial
is squarefree

We consider G(x, u) defined at the beginning of Sect. 3,
the Newton polynomial which is factored as in (3.1). Theo-

rem 2 tells us that the Hensel series φ
(∞)
1 (u) corresponding

to α1(u) is expressed as in (3.11). Therefore, we can see

the convergence property of φ
(∞)
1 (u) by investigating the

behaviors of δG(k)(α1, u) and G′
New(α1, u). Such investiga-

tions were done in [15, 16], and we show several important
results (Theorem 6 is new). We put

G(x, u) = gn(u)xn + gn−1(u)xn−1 + · · ·+ g0(u). (4.1)

Note that at least one algebraic function diverges at the zero-
points of gn(u) and becomes 0 at the zero-points of g0(u).
We first show an important lemma; below, by o(‖u‖a) we
mean either O(‖u‖a+1) or less.

Lemma 1. We have the following order estimations near
the expansion point, so long as u is generic and not close to
the zero-points of gn(u) and αi(u)−αj(u) (∀i 6= j).

‖α1‖, ‖α1−αj‖ = O(‖u‖λ) (j = 2, . . . , n), (4.2)

‖G′
New(αi, u)‖ = O(‖u‖ν+(n−1)λ) (i = 1, . . . , n), (4.3)

‖Gh(αi, u)‖ = o(‖u‖ν+nλ) (i = 1, . . . , n). (4.4)

Let δφ
(k)
1 (u) be the coefficient of ξk-term of Hensel series

φ
(∞)
1 (u, ξ). We have the following order estimation near the

expansion point, so long as u is not close to the zero-points
of gn(u), g0(u) and αi(u)−αj(u) (∀i 6= j).

‖δφ(k)
1 (u)‖ = o(‖u‖λ+k−1). (4.5)
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Theorem 4. Assume that GhNw(x, u) is normal and has
no close roots. Except near the zero-points of gn(u), any di-

vergence domain of Hensel series φ
(∞)
1 (u) starts from the ex-

pansion point and runs outside radially along the zero-points
of α1(u)− αj(u), 2 ≤ j ≤ n.

Theorem 5. Let Sr be the surface of the hypersphere
‖u‖2 = r2, where r is a small real positive number. Suppose
Sr contains zero-points of gn(u) on which α1(u) diverges,
and let δSr be small neighborhood of the zero-points, on Sr.
Let Šr be Sr − δSr. Then, we have

[divergence area of φ
(∞)
1 (u) on Šr]

[convergence area of φ
(∞)
1 (u) on Šr]

→ 0 as r → 0.

(4.6)

Theorem 6. Assume that the Newton polynomial
GNew(x, u) is normal and has no close roots. Let αi(u) be
any root of GNew(x, u). Let Di be the divergence domain

of φ
(∞)
i (u) running along the zero-points of αi(u)−αj(u)

(i 6= j). Then, the spread of Di on the surface ‖u‖ = r, 0 <
r ≪ 1, is of order ‖Gh(αi, u)‖/‖GNew(αi, u)‖ for generic u.
Therefore, if ‖αi(u)−αj(u)‖ becomes small then Di on the
surface ‖u‖ = r spreads in proportion to 1/‖αi(u)−αj(u)‖
approximately.

Proof Consider formulas in Theorem 2. The initial term

of φ
(∞)
i (u) is αi(u) which does not diverge, because GNew is

normal. The order-estimations in (4.5) tells us that Di is de-
termined mostly by the second term Gh(αi, u)/G′

New(αi, u)
because u is near the origin. Hence, the theorem follows. ♦

It is remarkable that the Hensel series converges not only
in any small neighborhood of the expansion point but also
at almost all points of the small neighborhood.

4.2 Hensel series on different Newton lines
We consider the Hensel factors in (2.9) in details, by sep-

arating the Hensel factor on L1, for example, from F (x, u),
as follows.(

F (x, u) = F̂ (∞)(x, u)F̄ (∞)(x, u),

F̂ (0)(x, u) = xn1 , F̄ (0)(x, u) = FL1(x, u)/xn1 .
(4.7)

We use the Hensel construction in mass for this separation;
below, we omit the auxiliary variable ξ for simplicity. Moses-
Yun’s polynomials are expressed concisely, as follows.

Lemma 2 (Sasaki-Inaba 2000). Moses-Yun’s polynomi-

als A(l) and B(l) satisfying A(l)F̄ (0)(x, u) + B(l)xn1 = xl

(l = 0, 1, . . . , n−1), with deg(A(l)) < n1 and deg(B(l)) <
n−n1, are given uniquely as follows.8><>:

for l ≥ n1 : A(l) = 0, B(l) = xl−n1 ,

for l < n1 : A(l) = F̄Inv〈xn1−l〉x
l,

B(l) = [1− F̄Inv〈xn1−l〉F̄
(0)]/xn1−l.

(4.8)

Here, F̄Inv〈xm〉 is a polynomial in the main variable x, satis-

fying deg(F̄Inv〈xm〉) < m and F̄Inv〈xm〉F̄
(0) ≡ 1 (mod xm),

i.e., it is the inverse of F̄ (0)(x, u) modulo xm.

We can compute F̄Inv〈xm〉 by the power-series division of 1

by F̄ (0); note than F̄ (0) has a nonzero x0-term. Therefore,

only f
(0)
n1 (u) (= the x0-term of F̄ (0)) appears in the denom-

inators of A(l) and B(l) (l < n1).

We investigate the Hensel series arising from F̂ (∞)(x, u)

and F̄ (∞)(x, u) near the expansion point. We put

[1 − F̄Inv〈xn1−l〉F̄
(0)] = Ql(x, u)xn1−l. Note that F̄Inv〈xm〉

has 1/f
(0)
n1 (u) as the constant term w.r.t. x. Since F̄ (0)(x, u)

is (λ, 1)-homogeneous, F̄Inv〈xm〉(x, u) in (4.8) is (λ, 1)-
homogeneous, and Ql(x, u) is also (λ, 1)-homogeneous. Let

δF (k) ≡ F (x, u)− F̂ (k−1)(x, u)F̄ (k−1)(x, u) (mod ξk+1)

def
= δf

(k)
n−1(u)xn−1 + δfn−2(u)xn−2 + · · ·+ δf

(k−1)
0 (u).

(4.9)

Put F̂ (k) = F̂ (k−1) + δF̂ (k) and F̄ (k) = F̄ (k−1) + δF̄ (k). We
can compute δF̂ (k) and δF̄ (k) as δF̂ (k) =

Pn−1
l=0 A(l)δf

(k)
l and

δF̄ (k) =
Pn−1

l=1 B(l)δf
(k)
l . Substituting A(l) and B(l) into

these expressions and noting that F̄Inv〈xm〉 ≡ F̄Inv〈xn1 〉
(mod xm), which is valid for any m < n1, we obtain

δF̂ (k) =
Pn1−1

l=0 F̄Inv〈xn1−l〉 δf
(k)
l (u)xl (4.10)

≡ F̄Inv〈xn1 〉
hPn1−1

l=0 δf
(k)
l (u)xl

i
(mod xn1),

δF̄ (k) = δf
(k)
n−1(u)xn−n1−1 + · · ·+ δf (k)

n1 (u) (4.11)

+
Pn1−1

l=0 δf
(k)
l (u) Ql(x, u).

Let the slope of Newton line Li be −λi and put
deg(FLi(x, u)/xni) = di (i = 1, . . . , q). Let αi,1, . . . , αi,di be
the roots of FLi(x, u). The following lemma is essentially
the same as Corollary 1.

Lemma 3. For each i ∈ {1, . . . , q}, let φ
(∞)
i,j (j = 1, . . . , di)

be di Hensel series obtained by the EHC on the Newton line
Li, then they have αi,1(u), . . . , αi,di(u) as initial terms.

Proof Let F (x, u) = FLi(x, u) + Fh(x, u), and consider

the above δF̂ (k) and δF̄ (k). Since δF (1) = Fh(x, u), all the

terms of δF̂ (1) and δF̄ (1) contain coefficients of Fh(x, u), and

so are δF̂ (k) and δF̄ (k) (∀k ≥ 2). Hence, the homogeneous

Newton line for δF̄ (∞) is FL1(x, u). Since F̄Inv〈xn1 〉 is (λ, 1)-

homogeneous and F̄Inv〈xn1 〉 has the constant term 1/f
(0)
n1 (u),

the Newton polynomial for δF̂ (∞) is determined by the low-

est order terms of
Pn1−1

l=0 δf
(k)
l (u)xl. Hence, the Newton

polynomial in the range n2 ≤ ex ≤ n1 is FL2(x, u). This
discussion is available for FLi (i ≥ 3), too. ♦

By Lemma 3, we classify the n Hensel series of F (x, u)
into q sets, as follows.

{φ(∞)
i,1 (u), . . . , φ

(∞)
i,di

(u)} (i = 1, . . . , q), (4.12)

where φ
(∞)
i,j (u) = αi,j(u)+ higher-order-terms (j =1, . . . , di).

Theorem 7. Assume that Newton polynomials FL1(x, u),
. . . , FLq (x, u) have neither multiple nor close roots. Fur-
thermore, let u be not close to the zero-points of αi,1(u)−
αi,j(u) (i = 1, . . . , q; j = 1, . . . , di) and the zero-points of

f
(0)
n0 (u), f

(0)
n1 (u), . . . , f

(0)
nq (u). Then, near the expansion point,

the divergence domain of Hensel series φ
(∞)
i,j (u) is well sep-

arated from that of φ
(∞)

i′,j′(u) for any i′ 6= i, j and j′.

Proof We note that if u is close to a zero-point of αi,1−αi.j

(j > 1) then ‖F ′
Li

(αi,1, u)‖ becomes small, and the Hensel
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series φ
(∞)
i,1 (u) may diverge, see (3.8). Furthermore, if u is

close to a zero-point of f
(0)
ni−1(u) (or f

(0)
ni (u)) then some root

αi,j (1 ≤ j ≤ di) will be very large (resp. very small), but
such cases are excluded in the theorem. Then, the Hensel

series φ
(∞)
i,j (u) is dominated by its initial term αi,j(u) for

‖u‖ ≪ 1, and we have ‖αi,j(u)‖ = O(‖u‖λi) near the ex-

pansion point. The Hensel series φ
(∞)

i′,j′(u) is dominated by

its initial term αi′,j′(u) and ‖αi′,j′(u)‖ = O(‖u‖λi′ ) near
the expansion point. Since λi and λi′ are rational numbers
satisfying λi 6= λi′ , Theorem 6 with order-estimations in
Lemma 1 assures that, near the expansion point, divergence
domains are well separated one another. ♦
4.3 When the Newton polynomial

is not squarefree
We consider Hensel series arising from the Hensel factor

H
(∞)
i (x, u) in (3.16). We will see that the Hensel series is of

the form ᾱi + [higher-order-terms showing “fine structure”].

First, we consider denominators appearing in H
(∞)
1 (x, u),

which is constructed by the EHC with initial factors H
(0)
1 =

(x−ᾱ1)
m and H̃(0) = [H0(x, u)]m/(x−ᾱ1)

m, where H0(x, u)
= (x− ᾱ1) · · · (x− ᾱr).

Lemma 4. Except for denominators introduced by the sep-

aration of H
def
= F

(∞)
ij in (2.8), the denominators appearing

in the terms of H
(∞)
1 (x, u) are only powers of res(H0, H

′
0).

Proof Let A(l) and B(l) (0 ≤ l ≤ mr−1) be Moses-Yun’s

polynomials satisfying A(l)H̃(0)+B(l)H
(0)
1 = xl, deg(A(l)) <

m and deg(B(l)) < m(r−1). We can compute A(0) and B(0)

by the extended Euclidean algorithm and A(l) and B(l) (l ≥
1) as A(l) = rem(xlA(0), H

(0)
1 ) and B(l) = rem(xlB(0), H̃(0)).

The extended Euclidean algorithm allows us to express A(0)

and B(0) in C(u, ᾱ1)[x], where the denominators are

res(H
(0)
1 , H̃(0)) =

ˆ
res((x− ᾱ1), (x− ᾱ2) · · · (x− ᾱr))

˜m2

=

[(ᾱ1− ᾱ2) · · · (ᾱ1− ᾱr)]
m2

=
ˆ
H ′

0(ᾱ1, u)
˜m2

. We can com-
pute the inverse of H ′

0(ᾱ1, u) by the extended Euclidean
algorithm: let C(x, u) and D(x, u) be in C(u)[x], satis-
fying C(x, u)H0(x, u) + D(x, u)H ′

0(x, u) = 1, deg(C) <
deg(H ′

0) and deg(D) < deg(H0), then we have D(ᾱ1, u) =
[H ′

0(ᾱ1, u)]−1. The extended Euclidean algorithm tells us
that the denominator of D(x, u) is res(H0, H

′
0). ♦

Next, we consider the Hensel-series roots of H
(∞)
1 (x, u),

by renaming H
(∞)
1 , λ1 and ᾱ1 to H, λ and ᾱ, respectively.

The Tschirnhaus transformation for H(x, u) now is

H(x, u) 7→ Ȟ(x, u) = H(x+ᾱ, u). (4.13)

For simplicity, we assume that the Newton polynomial for
Ȟ(x, u) is squarefree; if not so then we separate the non-
squarefree factor again.

Let the slope of Newton line for Ȟ(x, u) be −λ̌, and the
roots of the Newton polynomial for Ȟ(x, u) be α̌1(u), . . . ,
α̌m(u). It is obvious that λ̌ > λ.

Lemma 5. Each root α̌i(u) (1 ≤ i ≤ m) is such that

‖α̌i(u)‖ = O(‖u‖λ̌) for generic u. Furthermore, α̌i(u) may
diverge on the zero-points of res(H0, H

′
0) and ᾱ1−ᾱj (j ≥ 2).

Proof The first claim is obvious because the Newton poly-
nomial for Ȟ(x, u) is (λ̌, 1)-homogeneous. Since res(H0, H

′
0)

appears in the denominators of the terms of Ȟ(x, u) except
for term xm, it may appear in some denominators of the
Newton polynomial for Ȟ(x, u). The same is true for the
EHC in (3.16). ♦

Theorem 8. If the Newton polynomial for Ȟ(x, u) is

squarefree and has no close root, then m Hensel-series φ
(∞)
i

(i=1, . . . , m) of H(x, u) are expressed as

φ
(∞)
i (u) = ᾱ(u)+α̌i(u) +

∞X
k=1

δφ(k)(u). (4.14)

where δφ(k) is the k-th order term which is computed just

similarly as in 3.1. The divergence domains of φ
(∞)
i (u) near

the expansion point start from the expansion point and run
outside radially along the zero-points of ᾱi(u)−ᾱj(u) (j 6=
i). The ratio defined by (4.6), showing the spread of the

divergence domain, is specified by ‖u‖λ (not by ‖u‖λ̌).

Proof Eq. (4.14) is obvious from the transformation in
(4.13). Lemma 4 tells us that H(x, u) (= the Hensel fac-

tor H
(∞)
1 (x, u)) is in C{(u)}[x] and the coefficients of higher

terms contain res(H0, H
′
0) and its powers in the denomina-

tors. Thus, the spread of divergence domain of φ
(∞)
i (u) is

specified by both ‖u‖λ and ‖u‖λ̌. Since λ < λ̌, the spread
is specified mostly by ‖u‖λ near the expansion point. ♦

Example 1 (fine structure of Hensel series)

F (x, u, v) = (x2−2ux+u2) (x−v) + u4+v4.

The Newton polynomial for F (x, u, v) is FNew = F
(0)
1 F

(0)
2 ,

where F
(0)
1 = (x−u)2 and F

(0)
2 = x−v, hence ᾱ = u. We

put D = u−v and Fh = u4 +v4. Performing the EHC of

F (x, u, v) with initial factors F
(0)
1 and F

(0)
2 , up to order 5,

we obtain

F
(5)
1 = (x−u)2 − (x−2u+v)Fh/D2 + (2x−3u+v)F 2

h /D5

+ · · · − (143x−198u+55v)F 5
h /D14,

F
(5)
2 = (x−v) + Fh/D2 − 2F 2

h /D5 + 7F 3
h /D8

− 30F 4
h /D11 + 143F 5

h /D14.

Applying the transformation x 7→ x+u to H(x, u, v)
def
=

F
(5)
1 (x, u, v), we obtain

Ȟ(x, u, v) = x2 − (x−u+v)Fh/D2 + (2x−u+v)F 2
h /D5

+ · · · − (143x−55u+55v)F 5
h /D14.

Note that D appears as denominator factor in Ȟ(x, u, v).
The Newton polynomial for Ȟ(x, u, v) and its roots are

x2+(u−v)Fh/D2 = (x−α̌)(x+α̌), α̌ =
p

(u4+v4)/(v−u).

Applying the EHC, we can compute the Hensel-series roots

φ̌
(5)
± (u, v) of Ȟ(x, u, v), as follows.

φ̌
(5)
± (u, v) =

u4 + v4

2(u− v)2
− (u4 + v4)2

(u− v)5
+

7(u4 + v4)3

2(u− v)8

± α̌

„
1− 5(u4 + v4)

8(u− v)3
+

231(u4 + v4)2

128(u− v)6

«
.

We put α̌± = ±α̌. We have res(F
(0)
1 , F

(0)
2 ) = (u−v)2, hence

Theorem 8 tell us that the divergence domain of φ̌
(k)
± (u, v)
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runs along the line u = v, where three branches of the alge-
braic function become equal as u=v → 0.

We check the convergence/divergence domains of φ̌
(5)
± (u, v).

Since we have now no formula of convergence domain, we
compute the following domains C and D for simulating the
convergence and divergence domains, respectively.

Cλ
T

def
= { (u, v) ∈ R2 | d(u, v)/(|u|2+|v|2)λ/2 < T },

d(u, v)
def
= mini=1,2,3{|ᾱ + φ̌

(5)
+ (u, v)− ϕi(u, v)|},

Dλ̌
T

def
= { (u, v) ∈ R2 | |φ̌(5)

+ (u, v)|/(|u|2+|v|2)λ̌/2 > T }.
(4.15)

Here, T is a positive number denoting the threshold, ϕi(u, v)
is a branch of the algebraic function defined by F (x, u, v),
and λ = 1 and λ̌ = 3/2 in this example. Since ᾱ = O(‖u‖1)
and α̌± = O(‖u‖3/2), we divide d(u, v) and |φ̌(5)

+ (u, v)| by N

and N3/2, respectively, where N = (|u|2+|v|2)1/2. We have
computed ϕ1(u), . . . , ϕ3(u) exactly by Mathematica.
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Fig. 2a Domain C1
0.01
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Fig. 2b Domain D3/2
0.1

Fig. 2a shows C1
0.01 (gray area), −0.3 < u, v < 0.3. We see

that the divergence domain runs along u−v = 0 and it is
very thin in a small neighborhood of the origin, as the theory

predicts. Fig. 2b shows D3/2
0.1 (gray area), −0.3 < u, v < 0.3.

(The thin line u = v appears because φ̌
(5)
+ diverges on the

line). Noting that the gray area shows “divergence domain”,
we may say that both figures are consistent with each other.

F (x, u, v) tells us that F (x, u, v) = FNew(x, u, v) on the
lines determined by u4 +v4 = 0. So, we compare numer-

ically u+ φ̌
(5)
+ (u, v) and ϕi(u, v) by transforming (u, v) to

(u′, v′) as (u, v) = (exp(i π/8)u′, exp(−i π/8)v′). Table I
shows the comparison, where we set v′ = 0.05 and u′ ∈
{−0.20, −0.15, −0.10, −0.05, 0.00, 0.05, 0.10, 0.15, 0.20}.
We see that the Hensel series with Tschirnhaus transforma-
tion approximates the algebraic function pretty well in the
region where we have investigated.

Table I: Numerical comparison of u+φ̌
(5)
+ and ϕi

where (u, v) = (exp(i π/8)u′, 0.05 exp(−i π/8))

u′ u+φ̌
(5)
+ (u, v)) ϕ1orϕ2orϕ3(u, v)

−0.20 −0.11719− 0.00256 i −0.11862− 0.00406 i
−0.15 −0.09730− 0.01490 i −0.09746− 0.01511 i
−0.10 −0.07259− 0.01833 i −0.07259− 0.01834 i
−0.05 −0.16864 + 0.46786 i − − − −

0.00 +0.01043− 0.00757 i +0.01043− 0.00759 i
+0.05 +0.04619 + 0.01913 i +0.04619 + 0.01913 i
+0.10 +0.10944 + 0.00937 i +0.11250 + 0.00822 i
+0.15 +0.17599 + 0.00132 i +0.17686 + 0.00974 i
+0.20 +0.25453− 0.00440 i +0.24339 + 0.00897 i

The results in this section may be summarized as follows.

1. The Hensel series are classified by Newton polynomi-

als FL1 , . . . , FLq ; see Fig.1. The Hensel series φ
(∞)
ij

(j = 1, . . . , deg(FLi)) arising from FLi(x, u) are char-

acterized as ‖φ(∞)
ij ‖ = O(‖u‖λi) for generic ‖u‖ ≪ 1,

where −λi is the slope of the Newton line Li.

2. When the Newton polynomial is not squarefree but
contains m multiple root ᾱ, the corresponding m Hensel
series are characterized by the second dominant terms
α̌1, . . . , α̌m which are the roots of reconstructed New-
ton polynomial. Divergence domains of m Hensel series
are nearly the same; they start the expansion point and
run radially along the zero-points of ᾱ1− ᾱj (j ≥ 2),
and their spreads are specified by the slope of Newton
line before the Tschirnhaus transformation.

3. The most part of small neighborhood of the expansion
point is occupied by the convergence domain.

5. HENSEL SERIES AROUND
THE RAMIFICATION POINT

If F (x, u) is irreducible over C then the algebraic function
defined by F (x, u) has mutually conjugate n branches, hence
it is n-valued. On the other hand, if the Newton polynomial
is factored as FNew = FNew,1FNew,2, for example, with FNew,1

and FNew,2 irreducible in C[x, u] and deg(FNew,1) = m <
n, then the Hensel series are divided into two classes, m
mutually conjugate series of m-valuedness and n−m mutually
conjugate ones of (n−m)-valuedness; see [17]. Then, one
may think that there occurs discrepancy between algebraic
functions and Hensel series on many-valuedness. Actually,
no discrepancy seems to occur: the Hensel series often jumps
from one branch of algebraic function to another when it
passes a divergence domain, removing the discrepancy.

The jumping has been studied considerably in [15, 16],
however the jumping is still a mysterious phenomenon, in
particular, around ramification points. In this section, we
investigate the jumping near the ramification point. For
simplicity, we assume that the leading coefficient has no zero-
point near the expansion point.

We first show an example of jumping; the next example is
the same as that given in [15], where we could not explain
how the jumping occurs actually.

Example 2 (jumping near the ramification point)

F (x, u, v) = (x−u)(x2−2ux+v2) + u4+v4.

The Newton polynomial is FNew = (x−u)(x2−2ux+v2),

and we have one rational Hensel series φ
(k)
1 (u, v) with initial

term α1 = u and two algebraic Hensel series φ
(k)
± (u, v) with

initial terms α± = u±√u2−v2:

φ
(∞)
1 = u +

u4 + v4

u2−v2
+

(u4 + v4)3

(u2−v2)4
+ · · · ,

φ
(∞)
± = u− u4 + v4

2(u2−v2)
− · · · ± ξ

h
1− 3(u4 + v4)2

8(u2−v2)3
− · · ·

i
,

where ξ =
p

u2 − v2.

We have res((x−u), (x2−2ux+v2)) = v2 − u2, hence the
Hensel series diverges along the lines u± v = 0.
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Let C0.1 : (u, v) = 0.1×(cos t, sin t) be a path on which we
trace the real parts of two Hensel series and three branches of
the algebraic function. In each of the following figures, black
curves show a Hensel series and three gray curves show three
algebraic functions. We change the parameter t in the range
0 ≤ t ≤ 2π.
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Fig. 3a Re(φ
(10)
1 ) traced along C0.1
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Fig. 3b Re(φ
(10)
− ) traced along C0.1

Observe that the lower gray curve is separated from upper
two. Hence, it is clear that the jumping occurs actually. The
gray curves show that the algebraic function on C0.1 has a
ramification point near the ramification points of algebraic
Hensel series, and it seems to be quite difficult to know from
which branch to another the Hensel series jumps. The figures
suggest that two upper gray curves and lower gray one seem

to correspond to φ
(10)
± and φ

(10)
1 , respectively, but it is wrong.

Then, how the jumping occurs? ♦

A key idea to answer the above question is to deform the
path along which we trace the Hensel series. Observation
A: the Hensel series is a continuous function in its conver-
gence domain, and the algebraic function is also continuous
except at the zero-points of the leading coefficient. Therefore,
by deforming the path so that it does not pass the divergence
domain, we can know the correspondence between the Hensel
series and the branches of algebraic function. Another use-
ful idea is to choose the deformed path near the expansion
point, where the theoretical analysis becomes simple because
the Hensel series (and the algebraic function, too) can be ap-
proximated well by lower order terms of the Hensel series.
Furthermore, we can choose the deformed path easily there
so that it does not pass the divergence domain, because most
area in the small neighborhood of the expansion point is the
convergence domain.

In the neighborhood of the expansion point, we can find
one-to-one correspondence among α1, . . . , αn and ϕ1, . . . , ϕn.

So, let ϕi corresponds to αi (i = 1, . . . , n). The item 2 at
the end of Sect. 4 says that any divergence domain near the
expansion point runs along a line on which two roots of the
Newton polynomial are equal. So, let D be a divergence do-
main running along the zero-points of αi(u)−αj(u) (i 6= j)
near the expansion point. Let C be a path passing D. We
assume that path C passes only the domain D. Let D be a
path which is obtained by deforming C so that it does not
pass D. Since we assumed that the leading coefficient has no
zero-point around the expansion point, we have three cases:
case 1) αi(u) and αj(u) cross each other,
case 2) αi(u) and αj(u) are tangent to each other, and
case 3) αi(u) and αj(u) are conjugate to each other.

What happens when we trace a Hensel series along path
C ? The above Observation A leads us to the followings.
Case 1): Jumping occurs between ϕi and ϕj . The reason is
as follows. When we are on path D, there is one-to-one cor-
respondence between the Hensel series and the n branches:

φ
(k)
i ⇔ ϕi (i−1, . . . , n). Consider that we trace the branch

ϕi along path C. Since ϕi(u) is continuous even in D, we
are always on ϕi during this tracing. On the other hand, ϕi

and ϕj cross in D. Hence, if we look ϕi and ϕj on the path
D, they look as if they represent a single Hensel series. In
other words, if we think that we are tracing the same Hensel
series, we must regard that the branch ϕi is renamed to be
ϕj after passing D. By the same reason, we have the next.
Case 2): Jumping does not occur.

In case 3), the situation is complicated because, at the
ramification point u0, we have αi(u0) = αj1(u0) = · · · =
αjm(u0), where αj1 , . . . , αjm are mutually conjugate roots
of the Newton polynomial. For example, in Example 2, we
have α+ − α1 =

√
u2−v2 = −(α− − α1). Observation A

tells us that, in this case too, jumping will occur to a branch

which is closest to φ
(k)
1 after passing D. We can determine

which branch is the closest by the numerical comparison of

φ
(k)
1 (u) and ϕi(u) (i=1, . . . , m). In Example 2, φ

(k)
1 is real

on path C0.1 while only one branch ϕ3 is real in the range

π/4 <∼ t <∼ 3π/4 of the path. Therefore, φ
(k)
1 jumps to ϕ3

after passing D.

So far, we have displayed the convergence domain and
jumping for curves which are rather smooth. The algebraic
function changes rapidly near the ramification point: two
real curves become complex conjugate just after passing the
point. So, one may wonder: does the Hensel series approxi-
mate algebraic function well around the ramification point?
Example 3 below will answer to this question.

Example 3 (Hensel series around ramification point)
We consider F (x, u) given in Example 2, and show behav-
iors of the Hensel series and three branches of the algebraic
function, by tracing them on the following path Cs:

Cs : (u, v) = 0.1× (cos t, si + sin t), 0 ≤ t ≤ 2π.

Figs. 4a, 4b, 4c and 4d (in the next page) show Re(φ
(10)
i ),

i ∈ {1, +,−}, traced along four circles C0.05, C0.10, C0.15

and C0.20, respectively. In each figure, black curve shows

φ
(10)
1 and gray curves show φ

(10)
± . Figs. 5a, 5b, 5c and 5d

show Re(ϕi), i ∈ {1, 2, 3}, traced along four circles C0.05,
C0.10, C0.15 and C0.20, respectively. In each figure, black

curve shows φ
(10)
1 and gray curves show ϕi (i = 1, 2, 3). We

see that three Hensel series approximate three branches of
the algebraic function pretty well. ♦
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φ
(10)
i (u) and ϕi(u) near ramification points
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Fig. 5a ϕi(u, v) on C0.05
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Fig. 5b ϕi(u, v) on C0.10

1

4
Π

1

2
Π

3

4
Π Π

5

4
Π

3

2
Π

7

4
Π 2 Π

-0.2

-0.1

0.1

0.2

Fig. 4c φ
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Fig. 5c ϕi(u, v) on C0.15
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Fig. 5d ϕi(u, v) on C0.20

The results in this section may be summarized as follows.

1. The correspondence among Hensel series φ
(k)
1 , . . . , φ

(k)
n

and branches ϕ1, . . . , ϕn of the algebraic function will
change if we trace them by passing the divergence do-
main of the Hensel series. This looks as if the Hensel
series jumps from one branch to another.

2. Although the algebraic function behaves complicatedly,
the Hensel series approximate all the branches pretty
well, in not only the region where algebraic function
behaves smoothly but also the region around the ram-
ification points.
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ABSTRACT
We approach the algebraic problem of computing topological
invariants for the singularities of a plane complex algebraic
curve defined by a squarefree polynomial with inexactly-
known coefficients. Consequently, we deal with an ill-posed
problem in the sense that, tiny changes in the input data
lead to dramatic modifications in the output solution.

We present a regularization method for handling the ill-
posedness of the problem. For this purpose, we first design
symbolic-numeric algorithms to extract structural informa-
tion on the plane complex algebraic curve: (i) we compute
the link of each singularity by numerical equation solving;
(ii) we compute the Alexander polynomial of each link by
using algorithms from computational geometry and combi-
natorial objects from knot theory; (iii) we derive a formula
for the delta-invariant and the genus. We then prove the con-
vergence for inexact data of the symbolic-numeric algorithms
by using concepts from algebraic geometry and topology.

Moreover we perform several numerical experiments, which
support the validity for the convergence statement.

Categories and Subject Descriptors
I.1.2 [Symbolic and Algebraic Manipulation]: algo-
rithms—algebraic algorithms; G.4 [Mathematics of Com-
puting]: Mathematical Software; G.1.2 [Numerical Anal-
ysis]: Approximation—approximation of surfaces, piecewise
polynomial approximation; G.1.0 [Numerical Analysis]:
General—numerical algorithms, stability (and instability)

General Terms
Algorithms, Design, Experimentation, Theory

Keywords
Plane curve singularity, ill-posed problem, regularization,
symbolic-numeric algorithms, link of a singularity, Alexan-
der polynomial, delta-invariant, genus
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1. INTRODUCTION
In this paper, we treat the algebraic problem of computing

topological invariants for each singularity of a plane complex
algebraic curve defined by a squarefree polynomial with co-
efficients of limited accuracy, i.e. the coefficients are both
exact and inexact data. The problem is ill-posed in the sense
that tiny changes in the input data cause huge changes in
the output solution. We employ an adapted regularization
method based on [7, 18] to handle the ill-posedness of the
problem. This regularization method allows us to construct
approximate solutions to the ill-posed problem, which are
stable under small changes in the initial data.

We first design symbolic-numeric algorithms for comput-
ing invariants for each singularity of a plane complex alge-
braic curve defined by a squarefree polynomial. We com-
pute the link of each singularity by intersecting the curve
with a sphere centered in the singularity and of a small ra-
dius, based on [4, 15]. The computation of the link of the
singularity allows us to analyze the local topology of each
singularity. We then compute the Alexander polynomial at-
tached to the link of the singularity using algorithms from
computational geometry [6] and combinatorial objects from
knot theory, based on [5, 13]. The Alexander polynomial is
a complete invariant for links of singularities, i.e. different
links of singularities have different Alexander polynomials
[22]. As applications, from the Alexander polynomial we de-
rive formulas for the delta-invariant of each singularity and
for the genus of the curve. In [2] a numerical method based
on homotopy continuation for computing the genus of any
one-dimensional irreducible component of an algebraic set is
presented, while in [17] the authors provide a formula for the
genus of an algebraic curve with all singularities affine and
ordinary.

We implement the designed symbolic-numeric algorithms
for invariants of plane curves singularities in the free library
called GENOM3CK-GENus cOMputation of plane Complex
algebraiC Curves using Knot theory-written in the free alge-
braic geometric modeler Axel [21] and in the free computer
algebra system Mathemagix [11].

We sketch the proof for the convergence for inexact data
property of the designed symbolic-numeric algorithms using
concepts from algebraic geometry and topology. We perform
several numerical experiments with the library GENOM3CK,
which confirm the convergence for inexact data property.

We organize this paper as follows. In Section 2 we define
the plane complex algebraic curves and their singularities.
We also introduce invariants for each singularity of a plane
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complex algebraic curve: the link of each singularity, the
Alexander polynomial attached to the link, and the delta-
invariant of each singularity. In Section 3 we present the
symbolic-numeric algorithms developed for the computation
of the defined invariants. Section 4 contains regularization
principles that we employ to handle the ill-posedness of the
problem. We also sketch the proof for the convergence for
inexact data property of the designed symbolic-numeric al-
gorithms. In Section 5 we discuss implementation issues and
we perform several test experiments. We give the conclusions
in Section 6.

2. PLANE COMPLEX ALGEBRAIC CURVES

2.1 Singularities of Plane Complex Algebraic
Curves

For our study, we define the (affine) plane complex alge-
braic curves following [19]:

Definition 1. Let C be the algebraically closed field of
complex numbers, and A2(C) = {(z, w) ∈ C2} the affine
complex plane. Let p(z, w) ∈ C[z, w] be an irreducible poly-
nomial in z and w with coefficients in C of degree m. An
affine plane algebraic curve over C of degree m defined by
p(z, w) is the set of zeroes of the polynomial p(z, w), i.e.

C = {(z, w) ∈ A2(C)|p(z, w) = 0}.
We consider P2(C) = {(z : w : u)|(z, w, u) ∈ C3\{0, ..., 0}},

with (z : w : u) = {(αz, αw, αu)|α ∈ C \ {0}}, the projec-
tive plane over C. We consider p∗(z, w, u) the homogenized
polynomial of p(z, w) in u with p∗(z, w, u) = pm(z, w) +
pm−1(z, w)u + ... + p0(z, w)um.

We define the singular points of a plane complex algebraic
curve in the following way:

Definition 2. Let C be a plane complex algebraic curve
defined by the irreducible polynomial p(z, w) ∈ C[z, w]. We
denote by ∂zp := ∂p(z, w)/∂z and by ∂wp := ∂p(z, w)/∂w
the partial derivatives of p(z, w) with respect to z and w.
The set of singular points (or singularities) of C is defined as

Sing(C) = {(z0, w0) ∈ A2(C)|p(z0, w0) =
∂zp(z0, w0) = ∂wp(z0, w0) = 0}.

The points of a plane complex algebraic curve that are
not singular are called nonsingular or regular points. An ir-
reducible plane complex algebraic curve has at most finitely
many singular points, and if it has none it is called nonsingu-
lar (or smooth). For simplicity reasons we denote the affine
complex plane by C2. Since C2 is isomorphic with R4, we
consider a plane complex algebraic curve C ⊂ C2 as a real
two-dimensional object in R4. For visualization purposes, we
cannot draw this object in R4, but we sketch the equivalent
curve in R2.

An important observation is that computing the singular-
ities of a plane complex algebraic curve is an ill-posed prob-
lem, in the sense that small changes in the defining polyno-
mial of the curve lead to dramatic changes in the topology
(shape) of the curve itself.

Example 1. In Figure 1 the red inner curve represents the
topology of C = {(z, w) ∈ R2 : z3 + z2 − w3 = 0}, and
the blue outer curve the topology of D = {(z, w) ∈ R2 :
z3 + z2 − w3 − 0.1w2 = 0}. The curves C and D have a

Figure 1: Example of ill-posedness of the singularity
(0, 0) of z3 + z2−w3. Picture produced with Axel, see
Section 5 for more information.

singularity in the origin, i.e. C has a cusp in the origin
and D has a double point in the origin. We notice that the
singularity of C changes its type under small changes of the
defining polynomial of C obtaining the singularity of D.

2.2 Invariants of Plane Complex Algebraic
Curves

First, we define an homeomorphism in the following way:

Definition 3. Two subsets U ⊂ Rk, V ⊂ Rn are topologi-
cally equivalent or homeomorphic if there exists a bijective
function ϕ : U → V such that both ϕ and its inverse are
continuous. In this case, ϕ is called an homeomorphism.

A pair (X, A) of spaces is a topological space together with
a subspace A ⊆ X. A mapping ϕ : (X, A)→ (Y, B) of pairs
is a continuous mapping ϕ : X → Y with ϕ(A) ⊆ B. A
homeomorphism ϕ : (X, A) → (Y, B) of pairs is a mapping
of pairs which is a homeomorphism ϕ : X → Y and induces
a homeomorphism ϕ/A : A→ B.

In this paper, the (topological) invariants of a plane com-
plex algebraic curve C are those properties of C and its singu-
larities that are unchanged under homeomorphism of small
disks around 0 mapping the first curve onto the second curve.

We consider the stereographic projection from R3 to R2

as a mapping that projects a sphere onto a plane. It is
constructed as follows: we take a sphere; we draw a line from
the north pole N of the sphere to a point P̂ in the equator
plane to intersect the sphere at a point P . The stereographic
projection of P̂ is P . The stereographic projection gives
an explicit homeomorphism from the unit sphere minus the
north pole to the Euclidean plane.

For our study, we use the stereographic projection from R4

to R3 to project objects from R4 to R3 by preserving their
topological properties.

Link of a Plane Curve Singularity
We introduce notions from knot theory, which are useful for
the purpose of this paper. First, we define a knot and a link:

Definition 4. A knot is a piecewise linear or a differen-
tiable simple closed curve in R3 and a link is a finite union
of disjoint knots, see Figure 2. The knots that make up a
link are called the components of the link, and thus a knot
is a link with one component.

We define the equivalence of two links as follows:

Definition 5. We say that two links are equivalent if there
exists an orientation-preserving homeomorphism on R3 that
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Figure 2: Examples of links/knot. From left to right:
the Hopf link, the Borromean rings, the trefoil knot

maps one link onto the other. This equivalence is called
(ambient) isotopy.

We introduce some preliminary notions: a polygonal curve
P is a curve specified by a sequence of points (p1, p2, ..., pn)
called its vertices such that the curve consists of the segments
connecting the consecutive vertices. A polygonal curve is
simple if each segment intersects exactly two other segments
only at their endpoints. A polygonal curve is closed if the
first vertex coincides with the last vertex. In this paper,
we approximate knots by simple closed polygonal curves in
R3, but we usually draw them as smooth curves that do not
intersect themselves in R3. We use the following terminol-
ogy: if we approximate a knot by the simple closed polyg-
onal curve P represented by (p1, p2, ..., pn), then the points
(p1, p2, ..., pn) of P are called the vertices of the knot and
the segments of P are called the edges of the knot.

When we work with knots we actually work with their reg-
ular projections in R2. We consider that a regular projection
of a knot is a linear projection for which no three points on
the knot project to the same point, and no vertex projects
to the same point as any other point on the knot. A cross-
ing point is the image of two knot points of such a regular
projection to R2.

For our study, we work with (knot) diagrams: (i) a dia-
gram is the image under regular projection, together with
the information on each crossing point telling which branch
goes over and which goes under, see Figure 3. (ii) a diagram
together with an arbitrary orientation of each knot in the
link is called an oriented diagram.

We introduce the elements of an oriented diagram as fol-
lows: (i) a crossing is called lefthanded (denoted with −1)
if the underpass traffic goes from left to right or it is called
righthanded (denoted with +1) if the underpass traffic goes
from right to left as indicated by the dotted round arrow in
Figure 4; (ii) an arc is the part of a diagram between two
undercrossings. Whether lefthanded or righthanded, each
crossing is determined by three arcs and we denote the over-
going arc with i, and the undergoing arcs with j and k, as
indicated in Figure 4. We notice that the number of arcs
equals the number of crossings in a diagram, see Figure 5.

Figure 3: Example of a trefoil knot and its diagram
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Figure 4: Types of crossings: lefthanded (-1) and
righthanded (+1), together with the labels for the 3
arcs of a crossing
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Figure 5: Oriented diagram of the trefoil knot with
3 arcs denoted with {1, 2, 3} and 3 crossings denoted
{c1, c2, c3}. Example of arcs labeling for the crossing
denoted c1, which is lefthanded.

We employ the following theorem, which asserts that the
equivalence class of a special type of link determines the
homeomorphism type of the singularity:

Theorem 1. (Milnor[15]) Let V ⊂ Cn+1 be a hypersur-
face in Cn+1, i.e. an algebraic variety defined by a single
polynomial f. Assume ~0 ∈ V and ~0 is an isolated singular-
ity, i.e. there is no other singularity on a sufficiently small
neighborhood of (0, 0); Sǫ is the sphere centered in ~0 and of

radius ǫ; and Dǫ is the disk centered in ~0 of radius ǫ. Then,
for sufficiently small ǫ, Xǫ = Sǫ∩V is a (2n−1)-dimensional
nonsingular set and the pair (Dǫ, Dǫ ∩ V ) is homeomorphic
to the pair consisting of the cone over Sǫ and the cone over
Xǫ = Sǫ ∩ V.

For the case n = 1, Milnor’s theorem says that there exists
ǫ0 ∈ R>0 such that for any ǫ1, ǫ2 ∈ R>0 with ǫ1 < ǫ0 and
ǫ2 < ǫ0, the images of Xǫ1 ⊂ Sǫ1 and Xǫ2 ⊂ Sǫ2 through
stereographic projection are links and they are are equiva-
lent, i.e. Dǫ1∩C and Dǫ2∩C are homeomorphic. In addition,
for any 0 < ǫ < ǫ0 the image of Xǫ through stereographic
projection is called the link L of the singularity of f (or of C)
at (0, 0) and it is well-defined up to homeomorphism of pairs.
In this case, the link defined as the image of Xǫ ⊂ Sǫ through
stereographic projection determines the topological type of
the singularity (0, 0) of C. In theory, a link is called algebraic
if it is equivalent to the link of a plane curve singularity.

Under the same hypotheses from Theorem 1 and consid-
ering S1 the unit circle, Milnor fibration theorem states that
the mapping φ : Sǫ \ L → S1, φ(z, w) = f(z, w)/|f(z, w)| is
a fibration, i.e. the complement Sǫ \ L is a union of smooth
surfaces, each being the preimage of one point.
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Alexander Polynomial of a Plane Curve Singularity
An important result of Yamamoto [22] says that the Alexan-
der polynomial is a complete invariant for the algebraic links,
i.e. the Alexander polynomial uniquely defines all the alge-
braic links up to an (ambient) isotopy. In this way, we can
use the Alexander polynomial of the link of a singularity to
distinguish the topological type of the singularity itself. In
[9] we present a straightforward algorithm to compute the
Alexander polynomial attached to the link of a singularity
by using combinatorial objects from knot theory such as the
diagram of the link, i.e. its arcs and its crossings. For intro-
ducing the Alexander polynomial, we need some preliminary
definitions based on [13]:

Definition 6. Let D(L) be an oriented link diagram with
r components and n crossings xq : q ∈ {1, ..., n}. We denote
the arcs of D(L) with the labels {1, ..., n} and separately
the crossings of D(L) with {1, ..., n}. We denote the label-
ing matrix of D(L) with LM(L) ∈ M(n, 4, Z). We define
LM(L) = (bql)q,l with q ∈ {1, ..., n}, l ∈ {1, ..., 4} row by
row for each crossing xq as follows: (i) at bq1 store the type
of the crossing xq (+1 or − 1); (ii) at bq2 store the label of
the arc i of xq in D(L); (iii) at bq3 store the label of the arc
j of xq in D(L); (iv) at bq4 store the label of the arc k of xq

in D(L), see Figure 5 for an example.

Definition 7. Let D(L) be an oriented link diagram with
r components and n crossings xq : q ∈ {1, ..., n}. We de-
note the arcs and the crossings of D(L) as in Definition 6.
We consider LM(L) the labeling matrix of D(L) as in Def-
inition 6. We denote the prealexander matrix of L with
PM(L) ∈M(n, n, Z[t1, t1, ..., tr]). If D(L) has no crossings,
then PM(L) ∈ M(0, 0, ∅), otherwise we define PM(L) row
by row for each crossing xq depending on LM(L). For xq we
consider the variable ts, where s ∈ {1, ..., r} is the s-th knot
component of D(L), which contains the overgoing arc that
determines the crossing xq. Then: (i) if xq is righthanded,
i.e. bq1 = +1 in LM(L), then at position bq2 of PM(L) store
the label 1− ts, at position bq3 store −1 and at position bq4

store ts; (ii) if xq is lefthanded, i.e. bq1 = −1 in LM(L),
then at position bq2 of PM(L) store the label 1− ts, at posi-
tion bq3 store ts and at position bq4 store −1; (iii) if two or all
of the positions bq2, bq3, bq4 have the same value, then store
the sum of the corresponding labels at the corresponding
position. All other entries of the matrix are 0.

We define the Alexander polynomial of D(L) depending
on the number of knot components in L:

Definition 8. Let D(L) be an oriented link diagram with
r components and n crossings, LM(L) be its labeling matrix
as in Definition 6 and PM(L) be its prealexander matrix as
in Definition 7. Then: (i) the univariate Alexander poly-
nomial [13] ∆L(t1) ∈ Z[t±1

1 ] is the normalized polynomial
computed as the determinant of any (n− 1)× (n− 1) minor
of the prealexander matrix of D(L). A normalized polyno-
mial is a polynomial in which the term of the lowest degree
is a positive constant; (ii) the multivariate Alexander poly-
nomial [5] ∆L(t1, ..., tr) ∈ Z[t±1

1 , ..., t±1
r ] is the normalized

polynomial computed as the greatest common divisor of all
the (n − 1) × (n − 1) minor determinants of the prealexan-
der matrix of D(L). If PM(L) ∈ M(0, 0, ∅), then we define
∆L(t1) = 1 and ∆L(t1, ..., tr) = 0.

In Definition 8, the univariate polynomial computed as the
determinant of any (n− 1)× (n− 1) minor of the prealexan-

der matrix of D(L) depends on the choice of the original
diagram D(L) of a knot and its labelings. Alexander’s re-
sult [1] is that although the choice of the original diagram of
a knot and its labelings may produce different polynomials,
any of them will differ by a multiple of ±tk

1 , for some integer
k. Thus, if we normalize the polynomial to have a positive
constant term, the resulting Alexander polynomial will be a
knot invariant. A similar argument follows from [5] for the
multivariate polynomial.

Delta-Invariant of a Plane Curve Singularity
From the Alexander polynomial we derive a formula for the
delta-invariant of the singularity of a plane complex algebraic
curve in the following way:

Definition 9. (based on Milnor[15]) Let ∆L(t1, . . . , tr) be
the Alexander polynomial of the link of the isolated singu-
larity P = (0, 0) of a plane complex algebraic curve. Let r
be the number of variables in ∆L and let µ be the degree of
∆L. If r = 1, then the delta-invariant of P is computed as
δP = µ/2, otherwise δP = (µ + r)/2.

We can derive a formula for the genus of a plane complex
algebraic curve as described in [15]:

Definition 10. Let C be a plane complex algebraic curve
in the projective plane as introduced in [20]. We denote
by Sing(C) the singularities of C, and by δP ∈ N the delta-
invariant of the singularity P. The genus of C, genus(C) ∈ Z,

is defined as: genus(C) = ((m−1)(m−2))/2−
X

P∈Sing(C)
δP .

Approximate Invariants of a Plane Curve Singularity
We have previously introduced several invariants for a plane
complex algebraic curve C with an isolated singularity, i.e.
the Alexander polynomial attached to the link of the singu-
larity, the delta-invariant of the singularity and the genus of
the curve. We notice that the computation of these invari-
ants is conditioned by the computation of the image of Xǫ

through stereographic projection, which is the link L of the
singularity and which depends on the parameter ǫ ∈ R+.

Hence we are motivated to define the ǫ-invariants of a
plane complex algebraic curve with an isolated singularity,
which depend on a parameter ǫ ∈ R>0:

Definition 11. Let C be a plane complex algebraic curve
defined by the squarefree polynomial p(z, w) ∈ C[z, w]. Let
P = (z0, w0) ∈ C2 be an isolated singularity of C and let
Sǫ(P ) = {(z, w) ∈ C2 : |z − z0|2 + |w − w0|2 = ǫ2} be
the sphere centered in P of radius ǫ ∈ R>0. We take Y =
C ∩ Sǫ(P ). We consider π(ǫ,N) the stereographic projection
of the sphere Sǫ(P ) from its north pole N, which does not
belong to C and which is defined as:

π(ǫ,N) : Sǫ \ {N} ⊂ R4 → R3

(a, b, c, d)→ (x, y, z) = ( a
ǫ−d

, b
ǫ−d

, c
ǫ−d

)
. (1)

If π(ǫ,N)(Y ) has no singularities, then:

• we call Lǫ := π(ǫ,N)(Y ) the ǫ-link of the singularity of
p(z, w) (or of C) at P. We call Lǫ an ǫ-algebraic link.

• we define the ǫ-Alexander polynomial of C at P as the
Alexander polynomial of Lǫ.

• we define the ǫ-delta-invariant of P as the delta-invariant
of the ǫ-Alexander polynomial of C at P.
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3. SYMBOLIC-NUMERIC ALGORITHMS
FOR INVARIANTS OF PLANE CURVE
SINGULARITIES

We shortly describe the symbolic-numeric algorithms we
design for computing the ǫ-invariants of a plane complex
algebraic curve as introduced in Subsection 2.2. For more
information on these algorithms see [9, 10].

Problem 1. Given the following: (i) a squarefree polyno-
mial p(z, w) ∈ C[z, w] that defines a plane complex algebraic
curve C ⊂ C2; (ii) a parameter ǫ ∈ R>0 that determines the
sphere Sǫ centered in the origin (0, 0) of radius ǫ.
our goal is: (1) to compute the singularities of C in C2; (2) to
compute a set of ǫ-invariants of C, i.e. the ǫ-algebraic link,
the ǫ-Alexander polynomial, the ǫ-delta-invariant as intro-
duced in Definition 11;

We describe an algorithm for computing the set of singu-
larities Sing(C) of the plane complex algebraic curve C of de-
gree m defined by a squarefree polynomial p(z, w) ∈ C[z, w].
From Definition 2, it follows that to compute Sing(C) we
need to solve the following overdeterminate system:

p(z0, w0) = ∂zp(z0, w0) = ∂wp(z0, w0) = 0. (2)

We compute the roots of the system (2) in R2 with subdi-
vision methods [16]. These methods take as input the poly-
nomials defining the system (2), a box B = [−a, a]×[−b, b] ⊂
R2, and a positive real number δ. The box B has to be big
enough to contain all the roots of (2). The output of the
subdivision methods is a set of boxes S in R2 smaller than
δ, which contains all the roots of (2), and a set M containing
the middle points of all the boxes from S.

We compute the real singularities of the plane algebraic
curve defined by the squarefree polynomial p(z, w) ∈ C[z, w]
in the projective space by homogenizing and dehomogeniz-
ing the polynomial p(z, w) w.r.t different variables and mak-
ing sure not to return solutions in the overlaps twice. We
consider the projective plane over the real numbers P2(R) =
Uz∪Uw∪Uu, where Uz, Uw, Uu are homeomorphic to R2 and

Uz = {(1 :
w

z
:

u

z
)}, Uw = {( z

w
: 1 :

u

w
)}, Uu = {( z

u
:

w

u
:

1)}. Without loss of generality we assume |u| ≥ |z|, |w|. We
notice that any point from P2(R) is in Bz, Bw, Bu, where
Bz ⊆ Uz, Bw ⊆ Uw, Bu ⊆ Uu and Bz = Bw = Bu =
[−1, 1] × [−1, 1]. Thus using subdivision methods, we com-
pute a list of δ-boxes S in B = [−1, 1]× [−1, 1] ⊂ R2 smaller
than a given tolerance δ, and a list M of middle points for
all the boxes in S with two properties: (1) each real singu-
larity of the plane algebraic curve is contained in one of the
δ-boxes from S; (2) the value of p and its first derivatives in
each point from M are small.

In the same way, we can use subdivision methods to find
the complex singularities of C in the projective plane: we
consider z = z1 + iz2, w = w1 + iw2, u = u1 + iu2 and
the projective plane over the complex numbers P2(C) =
Uz∪Uw∪Uu, where Uz, Uw, Uu are homeomorphic to C2 and

Uz = {(1 :
w

z
:

u

z
)}, Uw = {( z

w
: 1 :

u

w
)}, Uu = {( z

u
:

w

u
:

1)}. We assume |z1| ≥ |z2|, |w1|, |w2|, |u1|, |u2| and we show
that any point from P2(C) is in Bz, Bw, Bu, where Bz ⊆ Uz

and Bz = {(w, u) ∈ C2|w1, w2, u1, u2 ∈ [−1, 1]} (we obtain
equivalent formula for Bw, Bu). For instance, we consider

Uz = {(1 :
w

z
:

u

z
)} and Re(

w

z
) the real part of the com-

plex number
w

z
. We rewrite Re(

w

z
) = Re

„
w1 + iw2

z1 + iz2

«
=

Re

„
(z1 − iz2)(w1 + iw2)

z2
1 + z2

2

«
=

z1w1 + z2w2

z2
1 + z2

2

. We get:

|Re(
w

z
)| =

˛̨̨̨
z1w1 + z2w2

z2
1 + z2

2

˛̨̨̨
≤ |z1||z1|+ |z1||z1|

2|z1|2 =
2|z1|2
2|z1|2 = 1.

In our implementation, we apply the subdivision methods
for the real case. As discussed before, we can apply the
subdivision methods to the complex case, but this is not
available yet in our current implementation.

Algorithm 1 Singularities of an algebraic curve:
SING(f, p, C)
Input: p(z, w) ∈ C[z, w] a squarefree polynomial,
m the degree of p(z, w), δ ∈ R>0 positive real number,
C = {(z, w) ∈ C2|p(z, w) = 0)} a plane algebraic curve
Output: a list of points M ⊂ R2 such that for every s ∈
Sing(C) there exists a unique m ∈M such that d(m, s) ≤ δ,
where Sing(C) is the set of real singularities of C in the
projective plane

1. Homogenize p(z, w) w.r.t. u obtaining p∗(z, w, u);

(a) Dehomogenize p1(z, w) := p∗(z, w, 1)

(b) Get S1 by solving p1 = ∂zp1 = ∂wp1 = 0 with
subdivision methods.

(c) Homogenize S1 = {(z0, w0) ∈ R2} to get S
′
1 =

{(z0 : w0 : 1) ∈ P2(R)}.
(d) Dehomogenize p2(w, u) := p∗(1, w, u)

(e) Get S2 by solving p2 = ∂wp2 = ∂up2 = u = 0
with subdivision methods.

(f) Homogenize S2 = {(w0, u0) ∈ R2} to get S
′
2 =

{(1 : w0 : u0) ∈ P2(R)}.
(g) Dehomogenize p3(z, u) := p∗(z, 1, u)

(h) Get S3 by solving p3 = ∂zp3 = ∂up3 = z = u = 0
with subdivision methods.

(i) Homogenize S3 = {(z0, u0) ∈ R2} to get S
′
3 =

{(z0 : 1 : u0) ∈ P2(R)}.

2. Return Sing(C) = S
′
1 ∪ S

′
2 ∪ S

′
3

Example 2. We consider C the plane complex algebraic
curve defined by the squarefree polynomial p(z, w) = z2w +
w4 ∈ C[x, y]. We compute Sing(C). We homogenize p(z, w)
w.r.t. the variable u obtaining p∗(z, w, u) = z2wu + w4.
We replace u = 1 in p∗ and obtain p1(z, w) = z2w + w4.
We solve the overdeterminate system z2

0w0 + w4
0 = 2z0w0 =

z2
0 + 4w3

0 = 0 and get S1 = {(0, 0)}. We homogenize S1 and

get S
′
1 = {(0 : 0 : 1)}.

We replace z = 1 in p∗ and obtain p2(w, u) = wu +
w4. Similarly as in (2) we solve the overdeterminate sys-
tem w0u0 + w4

0 = u0 + 4w3
0 = w0 = u0 = 0 and obtain S2 =

{(0, 0)}. We homogenize S2 and we get S
′
2 = {(1 : 0 : 0)}. We

replace w = 1 in p∗ and obtain p3(z, u) = z2u+1. We notice
that S3 = ∅. We return Sing(C) = {(0 : 0 : 1), (1 : 0 : 0)}.

We describe the algorithm APPROXLINK(p,C, P, ǫ) for com-
puting the ǫ-algebraic link Lǫ of the singularity P of the
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plane complex algebraic curve C defined by the squarefree
polynomial p(z, w) ∈ C[z, w]. The parameter ǫ denotes the
radius of the sphere Sǫ ⊂ C2 which we intersect with the
zero set of p(z, w), as described in Definition 11.

Algorithm 2 ǫ-link of the singularity P of the plane curve
C defined by p(z, w): APPROXLINK(p,C, P, ǫ)

Input: p(z, w) ∈ C[z, w] a squarefree complex polynomial,
C = {(z, w) ∈ C2|p(z, w) = 0} a plane algebraic curve,
P = (z0, w0) a numerical singularity of C,
ǫ ∈ R>0 a positive real number
Output: G, H ∈ R[x, y, z]
where the common zero set of G, H equals Lǫ.

1. Translate the singularity (z0, w0) in the origin by sub-
stituting z ← z+z0, w ← w+w0 in p(z, w). In the new
polynomial p(z, w) set the terms of degree 0, 1 to zero.

2. Substitute z ← a+ ib, w ← c+ id in p(z, w) and obtain

p(a, b, c, d) = R(a, b, c, d) + iI(a, b, c, d),

with R, I ∈ R[a, b, c, d].

3. Extract R(a, b, c, d) = I(a, b, c, d) = 0 which define

C = {(a, b, c, d) ∈ R4 : R(a, b, c, d) = I(a, b, c, d) = 0}.

4. Compute the inverse of π(ǫ,N) from Definition 1:

π−1
(ǫ,N) : R3 → Sǫ \ {N} ⊂ R4

(x, y, z) 7→ (a, b, c, d) = ( 2xǫ
n

, 2yǫ
n

, 2zǫ
n

, −ǫ+x2ǫ+y2ǫ+z2ǫ
n

),

where n = 1 + x2 + y2 + z2 .

5. Define α =: ( 2xǫ
n

, 2yǫ
n

, 2zǫ
n

, −ǫ+x2ǫ+y2ǫ+z2ǫ
n

),

6. Substitute (a, b, c, d)← α in C to get R(α) = I(α) = 0.

7. Eliminate the denominators in R(α) = I(α) = 0 to get
gǫ(x, y, z) = hǫ(x, y, z) = 0, with gǫ, hǫ ∈ R[x, y, z]. For
Y = C ∩ Sǫ(P ) these 2 equations define

π(ǫ,N)(Y ) = {(x, y, z) ∈ R3 :
gǫ(x, y, z) = hǫ(x, y, z) = 0}.

8. If π(ǫ,N)(Y ) has no singularities, then

• return G =: gǫ(x, y, z) and H =: hǫ(x, y, z).

• else return “failure”.

We implement the algorithm APPROXLINK in the Axel [21]
system as Axel offers a wide range of algebraic and geometric
functions for manipulating algebraic curves and surfaces.

We notice that the ǫ-link of the singularity Lǫ computed by
the algorithm APPROXLINK is an implicit smooth space alge-
braic curve given as the intersection of two implicit surfaces
S1, S2 with defining equations gǫ, hǫ ∈ R[x, y, z]. For visual-
ization reasons, we also compute the surfaces defined by the
sum S1 +S2 and the difference S1−S2. Thus Lǫ is at the in-
tersection of any two of the surfaces {S1, S2, S1+S2, S1−S2},
that are all part of the Milnor fibration. We employ subdivi-
sion methods [12] from Axel to compute the certified piece-
wise linear approximation (topology) of the implicit smooth
space algebraic curve Lǫ. This approximation of Lǫ is com-

puted as a graph Graph(Lǫ). The data structure Graph(Lǫ)
is given as a set of vertices V together with their Euclidean
coordinates in R3, and a set of edges E connecting them. In
addition Graph(Lǫ) = 〈V, E〉 is isotopic to Lǫ. In Figure 6
we visualize the link (trefoil knot) of the singularity (0, 0) of
the plane complex algebraic curve C defined by the polyno-
mial p(z, w) = z3 −w2. By using subdivision methods, Axel
computes the piecewise linear approximation of the trefoil
knot as a graph data structure.

Figure 6: Piecewise linear approximation of the
trefoil knot, computed as the intersection of two
implicit surfaces with algorithm APPROXLINK in
Axel

We next manipulate the approximation Graph(Lǫ) sym-
bolically to compute the ǫ-Alexander polynomial of Lǫ. We
first design an algorithm to compute the diagram D(Lǫ) of
the approximation Graph(Lǫ), as defined in Subsection 2.2.
We based this algorithm on computational geometry algo-
rithms [6]. The algorithm requires as input the approxi-
mation Graph(Lǫ) = 〈V, E〉, and it returns as output the
diagram D(Lǫ), and that is: (1) the list of n crossings of
D(Lǫ) computed as all the intersections of the edges from
E; (2) the list of n pairs of edges containing each intersec-
tion point. Each pair of edges (ei, ej) is ordered, i.e. ei is
under ej in R3; (3) the r lists of edges from E for all the r
knot components of D(Lǫ); (4) the list of arcs of D(Lǫ) and
the type of each crossing. For more details on this algorithm
see [10]. In Figure 7 we visualize the diagram D(Lǫ) of the
approximation Graph(Lǫ) of the trefoil knot.

2

1 3

c1

c2

c3

Figure 7: Diagram with 3 crossings and 3 arcs of the
piecewise linear approximation of the trefoil knot

We now give the algorithm APPROXALEXPOLY(D(Lǫ), r, n)
for computing the ǫ-Alexander polynomial of the diagram
D(Lǫ) with r components and n crossings. We base this
algorithm on Definition 8 from Subsection 2.2. For more
details on this algorithm and an example see [9].
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Algorithm 3 ǫ-Alexander polynomial of the diagram D(Lǫ)
of the APPROXALEXPOLY(D(Lǫ), r, n)

Input: D(Lǫ) oriented algebraic link diagram of Lǫ with r
components, n crossings
Output: ∆ǫ(t1, ..., tr) ∈ Z[t±1

1 , ..., t±1
r ]

where ∆ǫ(t1, ..., tr) is the ǫ-Alexander polynomial of Lǫ with
diagram D(Lǫ).

1. Denote the arcs and separately the crossings of D(Lǫ)
with {1, ..., n};

2. Compute LM(Lǫ) the labeling matrix of D(Lǫ) ;

3. Compute PM(Lǫ) the prealexander matrix of D(Lǫ);

4. If r = 1 then:

(a) Compute M any (n−1)×(n−1) minor of PM(Lǫ);

(b) Compute D the determinant of the minor M ;

(c) Return ∆ǫ(t1) = Normalize(Dǫ);

5. If r ≥ 2 then:

(a) Compute all the (n − 1) × (n − 1) minors of
PM(Lǫ);

(b) Compute G the greatest common divisor of all the
computed minors in 5.(a);

(c) Return ∆ǫ(t1, ...tr) = Normalize(G).

We now present the algorithm APPROXDELTA(∆ǫ, µ, r) for
computing the ǫ-delta-invariant from the ǫ-Alexander poly-
nomial of degree µ and with r variables.

Algorithm 4 ǫ-delta-invariant of the singularity P of the
plane curve C defined by p(z, w): APPROXDELTA(∆ǫ, µ, r)

Input: ∆ǫ(t1, ..., tm) the ǫ-Alexander polynomial of Lǫ,
Lǫ the ǫ-algebraic link of the singularity P = (z0, w0),
µ the degree of ∆ǫ, r the number of variables in ∆Lǫ

Output: δǫ ∈ Z>0

where δǫ is the ǫ-delta-invariant of P = (z0, w0).

1. If r = 1 then return δǫ = µ/2.

2. If r ≥ 2 then return δǫ = (µ + r)/2.

4. REGULARIZATION PRINCIPLES

4.1 Basic Notations
We denote by I the set of coefficient vectors of all the

squarefree polynomials from C[z, w] of degree bounded by
some natural number m ∈ N \ {0}. The set P := {Z[t1] ∪
Z[t1, t2] ∪ ... ∪ Z[t1, ..., ti] ∪ ...} represents the set of all nor-
malized Alexander polynomials either in the t1 variable, or
in the t1, t2 variables, or in the t1, t2, ...ti sequence of vari-
ables with i ∈ N \ {0}, etc. We denote by O the discrete set
of integer coefficient vectors of all the polynomials from P.
For a polynomial p(x, y) of fixed degree we denote with p
its corresponding coefficient vector. The sets I, O are metric
spaces by the Euclidean distance of coefficient vectors, de-
noted with || · ||. The notation | · | represents the absolute

value function.
For p(z, w) ∈ C[z, w] we denote by:

Mp(z, w) :=

 
∂zp(z, w) ∂wp(z, w)

z w

!
the two-by-two matrix formed by the partial derivatives of
p(z, w) with respect to z and w, and by the complex conju-
gates z, w. We denote by Zeroes(p) the set of zeroes of the
polynomial p(z, w).

4.2 Definitions
First we establish a general framework for handling ill-

posed algebraic problems using adapted regularization prin-
ciples from [7, 18]. We then apply these principles to Prob-
lem 1 from Section 3, which we treat in this paper.

We define a well-posed problem as it was first formulated
by J. Hadamard: a problem is said well-posed if: (i) there
exists a solution to the problem (existence); (ii) the so-
lution is unique (uniqueness); (iii) the solution depends
continuously on the data in some given topological space
(stability). Otherwise the problem is called ill-posed.

We consider the discontinuous function:

E : X → Y, f 7→ E(f), (3)

on the metric spaces X, Y with metrics given by the Eu-
clidean norm. The problem of computing E(f) ∈ Y for
given f ∈ X is ill-posed as the computed output does not
continuously depend on the input, i.e. the stability state-
ment from the definition of well-posed problems does not
hold. We define a perturbation function as follows:

Definition 12. A perturbation of f ∈ X is defined as the
function f− : R>0 → X, δ 7→ fδ with ||f−fδ|| ≤ δ for all δ ∈
R>0. In this case f is called the exact data, fδ the perturbed
data and δ the noise level (error, tolerance).

In this framework we define a regularization as follows:

Definition 13. For any ǫ ∈ R>0, let:

Rǫ : X → Y, f 7→ Rǫ(f)

be a continuous function. The function Rǫ is called a reg-
ularization if there exists a bijective, monotonic function
ǫ = α(δ), α : R>0 → R>0 with:

lim
δ→0

α(δ) = 0, (4)

such that for any f ∈ X and for any perturbation function
f− with ||f − fδ|| ≤ δ for all δ ∈ R>0, the following property
holds:

lim
δ→0

Rα(δ)(fδ) = E(f) (5)

The function α is called a parameter choice rule, ǫ is called
the regularization parameter and Rα is called the regularized
solution of E. The equation (5) is called the convergence
for noisy data property of Rα. The pair (Rα, α) is called a
regularization method for solving the ill-posed problem E if
the equations (4) and (5) hold.

For our problem, we consider X the set I of coefficient
vectors of squarefree polynomials p(z, w) ∈ C[z, w] of degree
bounded by some natural number m ∈ N \ {0} and Y the
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set O of integer coefficient vectors of normalized Alexander
polynomials. In addition, we let:

E : I → O, f 7→ E(f) (6)

be the exact algorithm for computing the Alexander poly-
nomial of a plane curve singularity. Since O is a discrete
set, the function E is discontinuous. Therefore, the problem
of computing the Alexander polynomial E(f) ∈ O for given
f ∈ I is ill-posed.

For every ǫ ∈ R>0, we denote by:

Aǫ : U ⊂ I → O, p 7→ Aǫ(p) (7)

the symbolic-numeric algorithm that computes the ǫ-Alexander
polynomial Aǫ(p) for given (p, ǫ) ∈ I × R>0, as described in
Section 3. This polynomial arises as the intersection of the
sphere Sǫ with the curve C defined by p. We notice that Aǫ

is a partial function, because it is not defined in case the
intersection Sǫ ∩ C has singularities. Still the function Aǫ is
continuous in its domain of definition denoted by U .

We wish to show that Aǫ is a regularization function for
every (p, ǫ) ∈ U ⊂ I × R>0. Therefore, from Definition 13
we need to find a parameter choice rule ǫ = α(δ) with prop-
erty (4) and that satisfies equation (5). Consequently, the
pair (Aα, α) would be a regularization method for solving
the ill-posed Problem 1.

4.3 Convergence Results
In this subsection, we include the lemmas and the theo-

rems that we formulate to prove the convergence for noisy
data property of the algorithm Aǫ considered in (7). In this
subsection, we sketch the main steps of the proofs. A com-
plete proof would be beyond the scope of this submission.

Remark 1. We denote with SK the sphere centered in
(0, 0) of radius K, and with LK the K-link of the singular-
ity (0, 0) of the plane complex algebraic curve specified by
the polynomial f(z, w) ∈ C[z, w] with exact coefficients (i.e.
integer or rational numbers). From Theorem 1 for the case
n = 1, we know that there exists K sufficiently small such
that the K-link denoted LK , which is defined as the image
through stereographic projection of Zeroes(f)∩SK , coincide
with the link of the singularity (0, 0). From Definition 4, LK

has no singularities. Since the stereographic projection is an
homeomorphism, we obtain that Zeroes(f)∩SK has no sin-
gularities. In the same setting, we formulate the following
proposition: the intersection Zeroes(f) ∩ SK has no singu-
larities if and only if the equations f(z, w) = |z|2 + |w|2 =
det(Mf )(z, w) = 0 have no common solutions. The proof of
this proposition is beyond the scope of this submission.

First we set the general mathematical setting required for
our study. Let f(z, w) be arbitrary but fixed. For simplicity
we denote fδ(z, w) := g(z, w) ∈ C[z, w] with ||g − f || ≤ δ.
Based on Remark 1, we take K > 0 such that the system:

f(z, w) = det(Mf )(z, w) = 0 (8)

has no common solution except for (0, 0) in the closed ball

BK :=
n

(z, w) ∈ C2 :
“
|z|2 + |w|2

”1/2

≤ K
o

of radius K

around (0, 0) ∈ C2. Thus the following relation holds:

f(0, 0) = det(Mf )(0, 0) = 0, (9)

and BK ∩ Zeroes(f) has no singularities except for (0, 0).

To prove the convergence for noisy data property, we re-
quire a preliminary lemma.

Lemma 1. There exists N > 0 such that for all δ > 0,
and for all g with ||g − f || ≤ δ there exists no zero for
the system of polynomial equations determined by g(z, w) =

det(Mg)(z, w) = 0 whose length is greater than δ1/N and less
than K.

To prove Lemma 1 we prove the equivalent statement:

∃N > 0 ∀δ > 0 ∀g : ||g − f || ≤ 0 ∀(z, w) :
g(z, w) = det(Mg)(z, w) = 0 and“

|z|2 + |w2|
”1/2

≤ K ⇒
“
|z|2 + |w2|

”1/2

≤ δ1/N .

(10)

We take δ > 0 and g with ||g − f || ≤ δ.
First, we define the set Zδ of “special” zeroes of g :

Zδ =
n“

(z, w), g
”

: ||g − f || ≤ δ,

g(z, w) = det(Mg)(z, w) = 0,“
|z|2 + |w|2

”1/2

≤ K
o

.

(11)

We introduce the function:

τ : BK × I → R≥0“
(z, w), g

”
7→ τ

“
(z, w), g

”
=
“
|z|2 + |w|2

”1/2

.
(12)

By using the theorem on Euclidean extreme values of real-
valued functions, we prove that τ attains its maximum and
we define the monotonic, semialgebraic function:

β : R>0 → R≥0

δ 7→ β(δ) = max {τ(a) : a ∈ Zδ}. (13)

Secondly, we prove the convergence of β by using the the-
orem of Bolzano-Weierstrass on compact sets.

Finally, we show that the function β is bounded from
above. We use the following theorem for estimating the rate
of growth of a semialgebraic function of one variable:

Theorem 2. ([3]) Let f : (a,∞)→ R be a semialgebraic
function (not necessarily continuous). There exists b ≥ a
and an integer N ∈ N such that |f(x)| ≤ xN for all x ∈
(b,∞).

Moreover, we use the following theorem for ensuring the
piecewise continuity of a semialgebraic function:

Theorem 3. ([14]) Let F be a real closed field and f :
F → F be a semialgebraic function. Then, we can partition
F into I1 ∪ ...Im ∪X, where X is finite and Ij are pairwise
disjoint open intervals with endpoints in F ∪{±∞} such that
f is continuous on each Ij with j ∈ {1, ..., m} and m ∈ N.

We get that there exists N ∈ N \ {0}, b ∈ R+ such that:

βr(δ) ≤ δ1/N ,

for all δ < η = b−1, where βr is the restriction of β to the
first open interval.

We use Lemma 1 as a tool for proving the convergence for
noisy data statement (5) and for ensuring the existence of a
parameter choice rule (4) for Aǫ. This convergence statement
is given by the following theorem:

Theorem 4. There exists N > 0 and η ∈ R>0 such that
for all δ > 0 with δ < η, for all g with ||g−f || ≤ δ and for all

ǫ ∈ [δ1/N , K], the following property holds: Aǫ(g) = E(f).
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We prove Theorem 4 by constructing the isotopy:

gt : C2 × [0, 1]→ C
(z, w)→ gt(z, w) = tf(z, w) + (1− t)g(z, w),

(14)

with gt continuous function for all 0 ≤ t ≤ 1, and g0 = g,
g1 = f, and by showing that Aǫ(gt) is an ǫ-algebraic link
based on Lemma 1.

From Theorem 4 it follows that ǫ = δ1/N is a parameter
choice rule for Aǫ, for which the convergence for noisy data
statement (5) of Aǫ holds. Still, this parameter choice rule
depends on N which is unknown. The following lemma pro-
vides us with an upper bound for δ1/N which is independent
on N :

Lemma 2. For all N > 0 there exists θ ∈ R+ such that

for all δ > 0 with δ < θ, the inequality δ1/N ≤ 1

|lnδ| is true.

We prove Lemma 2 by basic calculus and by using l’Hôpital
rule. The preceding two lemmas allow us to formulate the
following theorem concerning the existence of a parameter
choice rule for Aǫ which only depends on the given δ ∈ R+:

Theorem 5. The function α : R>0 → R>0, α(δ) =
1

|lnδ|
is a parameter choice rule, i.e.

lim
δ→0

Aα(δ)(fδ) = E(f) (15)

The theorem is true based on Lemma 1, Theorem 4 and
Lemma 2.

Remark 2. The parameter choice rule indicates that the
“degree of ill-posedness” is rather high (cf. with linear reg-

ularization theory [18], where α(δ) = δ1/2 frequently oc-
curs). For fixed input instance f , the smallest function
α : R>0 → R>0 such that (noisy convergence) is true is
equal to the function β from Lemma 1. The choice of α was
done in order to ensure that α dominates β for every possi-
ble f . Here is an example that shows that a semi-algebraic
parameter choice rule cannot be used as a choice rule.

Example 3. Let n > 0 be an integer. Let f(z, w) = z2 −
wn+2. We consider the perturbation g(z, w) = fδ(z, w) =
z2−wn+2 + δw2, for δ ∈ (0, 1). Then we have a special zero

of (g, Mg) at (z, w) = (0, δ1/n). A closer analysis shows that
the ǫ-link of g is the Hopf link for every sphere with radius
less than δ1/n, while the link of f is equal to the torus link
(2, n + 2). Consequently, β(δ) > δ1/n for this choice of f .
Since n can be arbitrary, no function which is dominated by
a function of the from δ 7→ δ1/m for some m can be chosen
as a parameter choice rule.

5. IMPLEMENTATION

5.1 A Library for Algebraic Curves
We implemented the symbolic-numeric algorithms for com-

puting invariants of a plane complex algebraic curve de-
scribed in Section 3 in the free library GENOM3CK [8]-
GENus cOMputation of a plane Complex algebraiC Curve
using Knot theory-written in the Axel free algebraic geo-
metric modeler [21] and in the Mathemagix free computer
algebra system [11], i.e. in C++ using Qt Script for Appli-
cations and OpenGL. By using Axel, we integrate symbolic,

numeric and graphical capabilities into a single library. To-
gether with its main functionality to compute the genus,
the library performs operations in topology, algebraic geom-
etry and knot theory. More information on GENOM3CK at:
http://people.ricam.oeaw.ac.at/m.hodorog/software.html.

5.2 Test Experiments
We include several experiments performed with the library

GENOM3CK in Axel. In Figure 8 we consider the plane
complex algebraic curve defined by the squarefree polyno-
mial p(z, w) = z3 − w3, with a singularity in the origin and
the input parameter ǫ = 1.00. From left to right, we vi-
sualize: (1) the link Lǫ of the singularity computed as the
intersection of two implicit surfaces S1, S2; (2) the two sur-
faces S1, S2; (3) the four surfaces S1, S2, S1 + S2, S1 − S2,
which are all part of the Milnor fibration of the singularity.

The test experiments indicate the convergence for noisy
data property of the regularization method as proved in
Section 4. In Table 1 we consider several input curves de-
fined by squarefree polynomials, which have the singular-
ity in the origin. The first column indicates the defining
polynomial of the curve, the second one the value for ǫ
and the next columns contain the computed values for the
ǫ-link, the ǫ-Alexander polynomial and respectively the ǫ-
delta-invariant of the singularity. We emphasize that for
the curves C and D defined by p(z, w) = z3 + z2 − w3 and
p̃(z, w) = z3 +z2−w3−0.1w2 from Example 1, the singular-
ity (0, 0) of C changes its type under small perturbations of
p(z, w). By using the algorithm APPROXLINK we observe that
for ǫ = 0.25 the link of (0, 0) of C coincide with the link of
(0, 0) of D.

6. CONCLUSION
We presented symbolic-numeric algorithms for computing

invariants for each singularity of a plane complex algebraic
curve: the link of each singularity, the Alexander polyno-
mial, and the delta-invariant. We implemented the algo-
rithms in a free library that combines graphical, numerical
and symbolic capabilities. We employed regularization prin-
ciples to handle the ill-posedness of the problem.
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ABSTRACT
We present MapReduce-SSA, an integer multiplication al-
gorithm using the ideas from Schönhage-Strassen algorithm
(SSA) on MapReduce. SSA is one of the most commonly
used large integer multiplication algorithms. MapReduce
is a programming model invented for distributed data pro-
cessing on large clusters. MapReduce-SSA is designed for
multiplying integers in terabit scale on clusters of commod-
ity machines. As parts of MapReduce-SSA, two algorithms,
MapReduce-FFT and MapReduce-Sum, are created for com-
puting discrete Fourier transforms and summations. These
mathematical algorithms match the model of MapReduce
seamlessly.

Categories and Subject Descriptors
I.1.2 [Computing Methodologies]: Algorithms—symbolic
and algebraic manipulation; F.2.1 [Theory of Computa-
tion]: Numerical Algorithms—computation of fast Fourier
transforms; G.4 [Mathematics of Computing]: Mathe-
matical Software

General Terms
Algorithms, distributed computing

Keywords
Integer multiplication, multiprecision arithmetic, fast Fourier
transform, summation, MapReduce

1. INTRODUCTION
Integer multiplication is one of the most critical operations

in arbitrary precision arithmetic. Beyond its direct applica-
tions, the existence of fast multiplication algorithms run-
ning in essentially linear time and the reducibility of other
common operations such as division, square root, logarithm,
etc. to integer multiplication motivate improvements in tech-
niques for its efficient computation at scale [4, 8]. For terabit
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scale integer multiplication, the major application of it is the
computation of classical constants, in particular, the compu-
tation of π [21, 1, 18, 7, 5].

The known, asymptotically fastest multiplication algorithms
are based on fast Fourier transform (FFT). In practice, mul-
tiplication libraries often employ a mix of algorithms, as the
performance and suitability of an algorithm vary depending
on the bit range computed and on the particular machine
where the multiplication is performed. While benchmarks
inform the tuning of an implementation on a given com-
putation platform, algorithms best suited to particular bit
ranges are roughly ranked both by empirical and theoretical
results. Generally, the näıve algorithm performs best in the
lowest bit range, then the Karatsuba algorithm, then the
Toom-Cook algorithm, and multiplication in the largest bit
ranges typically employs FFT-based algorithms. For details,
see [3, 13].

The Schönhage-Strassen algorithm (SSA) is one such FFT-
based integer multiplication algorithm, requiring

O(N logN log logN)

bit operations to multiply two N -bit integers [15]. There
are other FFT-based algorithms asymptotically faster than
SSA. In 2007, Fürer published an algorithm with running
time

O(N(logN)2log∗ N )

bit operations [11]. Using similar ideas from Fürer’s algo-

rithm, De et al. discovered another O(N(logN)2log∗ N ) al-
gorithm using modular arithmetic while the arithmetic of
Fürer’s algorithm is carried out over complex numbers [9].
As these two algorithms are relatively new, they are not
found in common software packages and the bit ranges where
they begin to outperform SSA are, as yet, unclear. SSA re-
mains a dominant implementation in practice. See [12, 6]
for details on SSA implementations.

Algorithms for multiplying large integers, including SSA,
require a large amount of memory to store the input operands,
intermediate results, and output product. For in-place SSA,
the total space required to multiply to N -bit integers ranges
from 8N to 10N bits; see §3.1. Traditionally, multiplication
of terabit-scale integers is performed on supercomputers with
software customized to exploit its particular memory and in-
terconnect architecture [5, 7, 18]. Takahashi recently com-
puted the square of a 2 TB integer with 5.15 trillion decimal
digits in 31 minutes and 41 seconds using the 17.5 TB main
memory on the T2K Open Supercomputer [17].

Most arbitrary precision arithmetic software packages as-
sume a uniform address space on a single machine. The
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precision supported by libraries such as GMP and Magma
is limited by the available physical memory. When mem-
ory is exhausted during a computation, these packages may
have very poor performance or may not work at all. Such
packages are not suited to terabit scale multiplication, as the
memory available in most machines is insufficient by orders
of magnitude. Other implementations such as y-cruncher
[20] and TachusPI [2] use clever paging techniques to scale a
single machine beyond these limits. By using the hard disk
sparingly, its significantly higher capacity enables efficient
computation despite its high latencies. According to Yee, y-
cruncher is able to multiple integers with 5.2 trillion decimal
digits using a desktop computer with only 96 GB memory
in 41.6 hours [19].

In this paper, we present a distributed variety of SSA for
multiplying terabit integers on commodity hardware using a
shared compute layer. Our prototype implementation runs
on Hadoop clusters. Hadoop is an open source, distributed
computing framework developed by the Apache Software
Foundation. It includes a fault-tolerant, distributed file sys-
tem, namely HDFS, designed for high-throughput access to
very large data sets in petabyte scale [16]. It also includes
an implementation of MapReduce, a programming model de-
signed for processing big data sets on large clusters [10].

Our environment is distinguished both from the supercom-
puter and single machine variants described in the preceding
paragraphs. Unlike these settings, our execution environ-
ment assumes that hardware failures are common. The fixed
computation plan offered by our host environment is de-
signed for multi-tenant, concurrent batch processing of large
data volumes on a shared storage and compute grid. As
a sample constraint, communication patterns between pro-
cesses are fixed and communicated only at their conclusion,
to ensure execution plans remain feasible should a machine
fail. While the problem of memory remains a central and
familiar consideration of the implementation, some of the
challenges posed and the advantages revealed by our pro-
gramming paradigm and execution environment are unique.
We learned that not only SSA, but FFT and other arbi-
trary precision routines like summation match the MapRe-
duce programming model seamlessly. More specifically, the
FFT matrix transposition, which is traditionally difficult in
preserving locality, becomes trivial in MapReduce.

The rest of the sections are organized as follows. More
details on computation environment are given in §2. SSA is
briefly described in §3. A new algorithm, MapReduce-SSA,
is presented in §4. The conclusion is in §5.

2. COMPUTATION ENVIRONMENT
In this section, we first describe our cluster configurations,

and then give a short introduction of MapReduce.

2.1 Cluster Configurations
At Yahoo!, Hadoop clusters are composed of hundreds or

thousands of commodity machines. All the machines in the
same cluster are collocated in the same data center. Each
machine typically has

• 2 quad-core CPUs,

• 6 GB or more memory, and

• 4 hard drives.

The machines are connected with a two-level network topol-
ogy shown in Figure 1. There are 40 machines connected to a
rack switch by 1-gigabit links. Each rack switch is connected
to a set of core switches with 8-gigabit or higher aggregate
bandwidth.

Figure 1: Network topology

For terabit scale integer multiplication, the data involved
in the matrix transposition step in parallel FFT is terabyte
scale. Small clusters with tens of machines are inadequate
to perform such operation, even if individual machines are
equipped with high performance CPUs and storage, since
the network bandwidth is a bottleneck of the system. The
benefits of adding machines to a cluster are twofold: it in-
creases the number of CPUs and the size of storage, and also
increases the aggregate network bandwidth. From our expe-
rience, clusters with five hundred machines are sufficient to
perform terabit scale multiplication.

2.2 MapReduce
In the MapReduce model, the input and the output of a

computation are lists of key-value pairs. Let kt be key types
and vt be value types for t = 1, 2, 3. The user specifies two
functions,

map : (k1, v1) −→ list〈k2, v2〉, and

reduce : (k2, list〈v2〉) −→ list〈k3, v3〉.
When a job starts, the MapReduce framework launches map
tasks. A map task transforms one or more inputs in (k1, v1)
to intermediate outputs in (k2, v2) according to map( · ).
Once all map tasks have completed, the framework begins
a process called shuffle. It puts all intermediate values with
the same key into a list, launches reduce tasks and sends
the keys with the corresponding list to the reduce tasks. A
reduce task uses reduce( · ) to process one or more of the
key-list pairs in (k2, list〈v2〉) and outputs key-value pairs in
(k3, v3). The job is finished when all reduce tasks are com-
pleted. Figure 2 shows a diagram of the MapReduce model.

Figure 2: MapReduce model

The number of map tasks is at least one but the number
of reduce tasks could possibly be zero. For a map-only job,
shuffle is unnecessary and is not performed. The output from
the map tasks becomes the output of the job.

The MapReduce framework included in Hadoop is highly
parallel, locality-aware, elastic, flexible and fault tolerant.
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Operators routinely add new machines and decommission
failing ones without affecting running jobs. Hadoop provides
a flexible API and permits users to define various compo-
nents, including input/output formats that define how data
is read and written from HDFS. Hardware failures are com-
mon, so the framework must also detect and gracefully tol-
erate such events. As a MapReduce application, recovery is
transparent as long as it conforms to the assumptions and
conventions of the framework.

3. SCHÖNHAGE-STRASSEN
We describe SSA briefly in this section. For more detailed

discussions, see [15, 8, 3].
The goal is to compute

p = ab, (1)

where a, b ∈ Z are the input integers and p is the product of
a and b. Without loss of generality, we may assume a > 0
and b > 0. Suppose a and b are N -bit integers for N a power
of two. Write

N = KM = 2kM,

where K and M are also powers of two. Let

A(x)
def
=

K−1X
i=0

aix
i for 0 ≤ ai < 2M and

B(x)
def
=

K−1X
i=0

bix
i for 0 ≤ bi < 2M

be polynomials such that A(x), B(x) ∈ Z[x], a = A(2M ) and
b = B(2M ). There are M bits in each coefficient ai and
bi. The number of coefficients in each polynomial A(x) and
B(x) is K. Let

D
def
= 2K = 2k+1.

The strategy is to compute the product polynomial

P (x)
def
= A(x)B(x)

def
=

D−1X
i=0

pix
i for 0 ≤ pi < 22M+k.

Then, we have p = P (2M ). Consider polynomials A, B and
P as D-dimensional tuples,

a
def
= (0, . . . , 0, aK−1, . . . , a0),

b
def
= (0, . . . , 0, bK−1, . . . , b0), and

p
def
= (pD−1, . . . , p0).

Then p is the cyclic convolution of a and b,

p = a× b.

By the convolution theorem,

a× b = dft−1(dft(a) ∗ dft(b)), (2)

where ∗ denotes componentwise multiplication, dft(·) and
dft−1(·) respectively denote the discrete Fourier transform
and its inverse. All the operations on the right hand side of
equation (2) are performed over the ring Z/(2n + 1)Z. The
integer 2n +1 is called the Schönhage-Strassen modulus. The
exponent n must satisfy the following conditions,

(C1) D | 2n, and

(C2) n ≥ 2M + k.

Thus, n is chosen to be the smallest integer satisfying both
conditions (C1) and (C2). At last, the componentwise mul-
tiplications are computed by recursive calls to the integer
multiplication routine, and dft (or dft−1) is calculated by
forward (or backward) FFT.

There are some well-known improvements on the original
SSA. For example, condition (C1) can be relaxed to D | 4n
using the

√
2 trick; see [12].

3.1 Memory Requirement
For multiplying two N -bit integers, the total input size is

2N bits. The output size is 2N bits as well. The values
of dft(a) and dft(b) in equation (2) are the intermediate
results. We have

dft(a) ∈
„

Z
(2n + 1)Z

«D

,

a D-dimension tuple. By condition (C2), the size is

|dft(a)| ≥ nD ≥ (2M + k)D > 4MK = 4N.

It is possible to choose the SSA parameter such that the
DFT size is within the (4N, 5N ] interval. Therefore, the
total space required for the multiplication is in (12N, 14N ]
if the buffers for the input, the intermediate results and the
output are separated. For an in-place implementation, i.e.
the buffers are reused, the total required space decreases to
(8N, 10N ]. As an example, the required memory is from
1 TB to 1.25 TB for multiplying two 1-terabit integers with
an in-place implementation; see also §4.4 and Table 2.

4. MapReduce-SSA
In our design, we target on input integers in terabit scale.

SSA is a recursive algorithm. The first level call has to pro-
cess multi-terabit data. The parameters are selected such
that the data in the recursive calls is only in megabit or gi-
gabit scale. Therefore, the recursive calls can be executed
in a single machine locally. MapReduce framework is used
to handle the first level call so that the computation is dis-
tributed across the machines and executed in parallel.

4.1 Data Model
In order to allow accessing terabit integers efficiently, an

integer is divided into sequences of records. An integer x is
represented as a D-dimensional tuple

x = (xD−1, xD−2, . . . , x0) ∈ ZD

as illustrated in §3. It is customary to call the components
of x the digits of x. Let

D = IJ. (3)

where I > 1 and J > 1 are powers of two. For 0 ≤ i < I,
define a J-dimensional tuple

x(i) def
= (x(J−1)I+i, x(J−2)I+i, . . . , xi) ∈ ZJ (4)

so that0BBBBBB@
x(0)

x(1)

...

x(I−1)

1CCCCCCA =

0BBBBBB@
x(J−1)I x(J−2)I . . . x0

x(J−1)I+1 x(J−2)I+1 . . . x1

...
...

. . .
...

x(J−1)I+(I−1) x(J−2)I+(I−1) . . . xI−1

1CCCCCCA .
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We call (x(0), . . . ,x(I−1))t the (I, J)-format of x.

Each x(i) is represented as a sequence of J records and
each record is a key-value pair, where the key is the index
and the value is the value of the digit as shown in Table 1.
There are I sequences for the entire tuple x.

Record # <Key, Value>

0 <i, xi>

1 <J + i, xJ+i>

...
...

J − 1 <(J − 1)I + i, x(J−1)I+i>

Table 1: The representation of x(i)

We give a few definitions in the following. A tuple

x = (xD−1, . . . , x0)

is normalized if 0 ≤ xt < 2M for all 0 ≤ t < D. The input
tuples of the algorithm are assumed to be normalized and
the output tuple returned is also normalized. Define the left
component-shift operator �, for m ≥ 0,

x� m
def
= (xD−m−1, xD−m−2, . . . , x0, 0, . . . , 0| {z }

m

). (5)

By definition, x � 0 is a no-op. Let y = (yD−1, . . . , y0).
Define the addition with carrying operator ⊕ as below,

x⊕ y
def
= (sD−1 mod 2M , . . . , s0 mod 2M ), (6)

where s−1 = 0 and st = xt + yt +
¨ st−1

2M

˝
for 0 ≤ t < D.

4.2 Algorithms
Using the notations in §3, SSA consists of four steps,

S1: two forward FFTs, â
def
= dft(a) and b̂

def
= dft(b);

S2: componentwise multiplication, p̂
def
= â ∗ b̂;

S3: a backward FFT, p = dft−1(p̂); and

S4: carrying, normalizing p.

S1 first reads the two input integers, and then runs two for-
ward FFTs in parallel. Forward FFTs are performed by
the MapReduce-FFT algorithm described in §4.2.2. It is
clear that the componentwise multiplication in S2 can be
executed in parallel. Notice that the digits in â and b̂ are
relatively small in size. For terabit integers, the size of the
digits is only in the scale of megabits. Thus, multiplications
with these digits can be computed by a single machine. We
discuss componentwise multiplication in §4.2.3. In S3, the
backward FFT, which is very similar to forward FFT, is
again calculated by MapReduce-FFT. The carrying in S4
can be done by MapReduce-Sum as shown in §4.2.4.

4.2.1 Parallel-FFT
There is a well-known algorithm, called parallel-FFT, for

evaluating a DFT in parallel. As before, let

â
def
= (âD−1, âD−2, . . . , â0)

def
= dft(a).

By the definition of DFT,

âj =

D−1X
i=0

aiζ
ij for 0 ≤ i < D, (7)

where ζ is a principle Dth root of unity in Z/(2n + 1)Z. We
may take

ζ = 22n/D (mod 2n + 1).

Rewrite the summation, for all 0 ≤ j0 < J and 0 ≤ j1 < I,

âj1J+j0 =

I−1X
i0=0

J−1X
i1=0

ζ(i1I+i0)(j1J+j0)ai1I+i0

=

I−1X
i0=0

ζi0j1
I

 
ζi0j0

J−1X
i1=0

ζi1j0
J ai1I+i0

!
,

where ζI
def
= ζJ and ζJ

def
= ζI are principle Ith and Jth roots

of unity in Z/(2n + 1)Z, respectively. For 0 ≤ i < I, let

a(i) def
= (a(J−1)I+i, a(J−2)I+i, . . . , ai)

and da(i) def
=
“da(i)

J−1,da(i)
J−2, . . . ,da(i)

0

”
def
= dft(a(i)). (8)

These I DFTs with J points can be calculated in parallel.
For 0 ≤ i < I and 0 ≤ j < J , define

zjI+i
def
= ζij da(i)

j , (9)

z[j] def
= (zjI+(I−1), zjI+(I−2), . . . , zjI), (10)cz[j] def
= dft(z[j]). (11)

Notice that we use [ · ] in equation (10) in order to emphasize

the difference between z[j] and z(j). The J DFTs with I
points in equation (11) can be calculated in parallel. Finally,

âj1J+j0 =

I−1X
i0=0

ζi0j1
I zj0I+i0 = dz[j0]

j1 .

4.2.2 MapReduce-FFT
We may carry out parallel-FFT on MapReduce. For for-

ward FFT, the input a is in (I, J)-format — it is divided

into a(i) for 0 ≤ i < I as in §4.1. There are I map and J
reduce tasks in a job. The map tasks execute I parallel J-
point FFTs as shown in equation (8), while the reduce tasks
run J parallel I-point FFTs as shown in equation (11). For
0 ≤ j < J , the output from reduce task j is

â(j) = (â(I−1)J+j , â(I−2)J+j , . . . , âj) = cz[j].

The output â is written in (J, I)-format. The mapper and
reducer algorithms are shown in Algorithms 1 and 2. Note
that equation (9) computed in (f.m.3) indeed is a bit-shifting
since ζ is a power of two. Note also that the transposi-

tion of the elements from ζijda(i) in equation (9) to z[j] in
equation (10) is accomplished by the shuffle process, i.e. the
transition from map tasks to reduce tasks.

Algorithm 1 (Forward FFT, Mapper).

(f.m.1) read key i, value a(i);

(f.m.2) calculate a J-point DFT by equation (8);
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(f.m.3) componentwise bit-shift by equation (9);

(f.m.4) for 0 ≤ j < J , emit key j, value (i, zjI+i).

Algorithm 2 (Forward FFT, Reducer).

(f.r.1) receive key j, list [(i, zjI+i)]0≤i<I ;

(f.r.2) calculate an I-point DFT by equation (11);

(f.r.3) write key j, value cz[j].

Backward FFT is similar to forward FFT except that (1)
it uses ζ−1 instead of ζ in the computation, and (2) it has an
extra scale multiplication by 1

D
. In backward FFT, the roles

of I and J are interchanged. The input is p̂ in (J, I)-format
and the output p is in (I, J)-format, where p = dft−1(p̂).
There are J map tasks executing J parallel I-point FFTs
and I reduce tasks running I parallel J-point FFTs. We skip
the detailed equations and provide brief mapper and reducer
algorithms in Algorithms 3 and 4. Similar to (f.m.3), we may
perform (b.m.3) and (b.r.3) by bit-shifting since ζ−1 and D
are also powers of two.

Algorithm 3 (Backward FFT, Mapper).

(b.m.1) read key j, value p̂(j);

(b.m.2) calculate an I-point DFT inverse;

(b.m.3) perform a componentwise bit-shifting;

(b.m.4) emit results.

Algorithm 4 (Backward FFT, Reducer).

(b.r.1) receive the corresponding map outputs;

(b.r.2) calculate a J-point DFT inverse;

(b.r.3) componentwise bit-shift for scaling by 1
D

;

(b.r.4) write key i, value p(i).

We end the section by discussing the data size involved in
MapReduce-FFT. Suppose the input is an integer with 1 TB
(i.e. N = 243) and, say, D = 222. Then, the exponent in the
Schönhage-Strassen modulus is

n =
5D

2
= 10, 485, 760.

The size of each component in the tuple is 1.25 MB. If

I = J = 211 = 2048,

each task, map or reduce, processes a 2048-dimensional tuple
with 2.5 GB data uniformly in all FFTs. If I and J are
distinct, the machines running the tasks with smaller count
have to process more data. Suppose I = 4096 and J = 1024.
In the forward FFTs, each map task processes only 1.25 GB
data but each reduce task has to process 5 GB data. On the
other hand, each map and reduce task respectively processes
5 GB and 1.25 GB data in the backward FFT. See also
Table 3 in §4.4.

4.2.3 Componentwise Multiplication
Componentwise multiplication can be easily done by a

map-only job with J map tasks and zero reduce tasks. The
mapper j reads â(j) and b̂(j), computes

p̂(j) def
= â(j) ∗ b̂(j) (12)

over Z/(2n +1)Z and then writes p̂(j). Componentwise mul-
tiplication indeed can be incorporated in Algorithm 3 to
eliminate the extra map-only job. We replace Step (b.m.1)
with the following.

Algorithm 5 (Componentwise-Mult).

(b.m.1.1) read key j, value (â(j), b̂(j));

(b.m.1.2) compute p̂(j) by equation (12).

Note that a careful implementation can avoid loading both
â(j) and b̂(j) in the memory at the same time. We may read,
multiply and deallocate the digits pair-by-pair.

4.2.4 Carrying
Since p = (pD−1, . . . , p0) is the cyclic convolution of a and

b, we have

0 ≤ pt < 22M+k for 0 ≤ t < D.

The tuple p is not normalized and the carries may affect one
or more following components. The carrying operation is to
normalize p. It is straightforward to perform carrying se-
quentially but non-trivial to execute it in parallel efficiently.
We reduce carrying to a summation of three normalized tu-
ples. The summation can be done by MapReduce-Sum given
in §4.2.5.

It is obvious that SSA is inefficient for k ≥M , so we only
have to consider k < M . In practice, k is much smaller than
M . For 0 ≤ t < D, write

pt = pt,222M + pt,12M + pt,0 (13)

such that 0 ≤ pt,s < 2M for s = 0, 1, 2. Recall that� and ⊕
are the left component-shift and the addition with carrying
operators defined in equations (5) and (6). Let

p[s]
def
= (pD−1,s, . . . , p0,s)� s (14)

be D-dimensional normalized tuples. The dropped digits are

pD−1,1 = pD−1,2 = pD−2,2 = 0.

If these digits are not all zeros, the integer product p ≥ 22N ,
which is absurd. The sum

p̃
def
= p[0] ⊕ p[1] ⊕ p[2] (15)

is the normalized form of p. With equations (4), (13) and
(14), it is not hard to see that the tuples

p[0]
(i), p[1]

((i+1) mod I) and p[2]
((i+2) mod I)

can be constructed by rearranging the digits of p(i). The
steps for splitting p(i) into three tuples can be incorporated
in Algorithm 4. We replace Step (b.r.4) with the following.

Algorithm 6 (Splitting).

(b.r.4.1) construct the tuples p[0]
(i), p

((i+1) mod I)

[1] and

p
((i+2) mod I)

[2] from p(i) by equations (4), (13) and (14);

(b.r.4.2) write key i, value (p[0]
(i), p[1]

((i+1) mod I),

p[2]
((i+2) mod I)).
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4.2.5 MapReduce-Sum
Let m > 1 be an integer constant, which is much smaller

then N . For 0 ≤ s < m, let

y[s]
def
= (yD−1,s, . . . , y0,s)

be m normalized tuples. Extending the definition (6) of
addition with carrying, define sum with carrying

y[0] ⊕ · · · ⊕ y[m−1]
def
= (sD−1 mod 2M , . . . , s0 mod 2M ),

where s−1 = 0 and, for 0 ≤ t < D,

st = yt,0 + · · ·+ yt,m−1 +
jst−1

2M

k
. (16)

If y[s]’s are considered as integers y[s] as in §3, then y[0] ⊕
· · · ⊕ y[m−1] is the normalized representation of the integer
sum

m−1X
s=0

y[s] (mod 2DM ).

The classical addition algorithm is a sequential algorithm
because the carries in the higher digits depend on the carries
in the lower digits. It is not suitable to our environment since
the entire D-dimensional tuple is in terabyte scale. Process-
ing it with a single machine takes too much time.

An observation is that it is unnecessary to have the entire
digit sequence for determining the carries

¨ st−1
2M

˝
in equa-

tion (16). The carries can be obtained using a much smaller
data set. For 0 ≤ t < D, let

zt
def
= yt,0 + · · ·+ yt,m−1, (17)

rt
def
= zt mod 2M , (18)

ct
def
=

j zt

2M

k
(19)

be the componentwise sums, the remainders and the inter-
mediate carries, respectively. Note that ct may not equals to¨

st

2M

˝
since, when ct’s are added to the digits, overflow may

occur. Then carrying is required again in such case. Define
the difference

dt =

(
2M − rt, if 2M − rt < m;

m, otherwise.
(20)

Notice that 0 < dt ≤ m. We also have

0 ≤ ct ≤
j st

2M

k
< m. (21)

The last inequality is due to the fact that the input tuples
y[s]’s are normalized. The sizes of the tuples (cD−1, · · · , c0)
and (dD−1, · · · , d0) are in O(D), given m a constant by as-
sumption. Similar to [12, equation (3)], we have

D ≤
√

8N. (22)

The data size is reduced from O(N), for classical addition

algorithm, toO(D) = O(
√
N); i.e. from terabits to megabits.

So these two tuples can be sequentially processed in a single
machine efficiently. For 0 ≤ t < D, let

c′t =

(
ct + 1, if t > 0 and c′t−1 ≥ dt;

ct, otherwise.
(23)

Then, c′0, . . . , c
′
D−1 are the carries as shown below.

Theorem 7. Let

yt =

(
r0, if t = 0;

(rt + c′t−1) mod 2M , if 1 ≤ t < D.
(24)

Then,

(yD−1, . . . , y0) = y[0] ⊕ · · · ⊕ y[m−1].

Proof. We prove by induction that c′t =
¨

st

2M

˝
for 0 ≤

t < D. Clearly,

c′0 = c0 =
j z0

2M

k
=
j s0

2M

k
.

Assume c′t =
¨

st

2M

˝
for 0 ≤ t < D − 1. By equation (21),

c′t < m. Then,

st+1 = zt+1 +
j st

2M

k
= ct+12M + rt+1 + c′t (25)

by equations (16), (18) and (19). Since m is much smaller
than 2M by assumption, we have

0 ≤ rt+1 + c′t < 2M +m < 2M+1.

Then, —
rt+1 + c′t

2M

�
=

(
1, if rt+1 + c′t ≥ 2M ;

0, otherwise.
(26)

Suppose dt+1 = m. By equation (20), 2M − rt+1 ≥ m. We
have

rt+1 + c′t = rt+1 +
j st

2M

k
< rt+1 +m ≤ 2M .

Divide equation (25) by 2M ,jst+1

2M

k
= ct+1 +

—
rt+1 + c′t

2M

�
= ct+1 = c′t+1

by equations (23) and (26). Suppose dt+1 < m. Then,
equation (23) becomes

c′t+1 =

(
ct+1 + 1, if rt+1 + c′t ≥ 2M ;

ct+1, otherwise;

by substituting dt+1 = 2M − rt+1. By equations (26) and
(25),

c′t+1 = ct+1 +

—
rt+1 + c′t

2M

�
=
jst+1

2M

k
.

Finally, by equation (24),

y0 = r0 ≡ z0 ≡ s0 (mod 2M )

and, for 1 ≤ t < D,

yt ≡ rt + c′t−1 ≡ zt +
jst−1

2M

k
≡ st (mod 2M ).

The theorem follows.

We present MapReduce-Sum below. All tuples are repre-
sented in the (I, J)-format described in §4.1. Two jobs are
involved in MapReduce-Sum. The first job for component-
wise summation (Algorithm 8) is a map-only job, which has
I map and zero reduce tasks. The mapper i reads input tu-
ples y[s]

(i) for 0 ≤ s < m, and writes the remainders r(i),

the intermediate carries c(i) and the differences d(i).

Algorithm 8 (Componentwise Sum, Mapper).
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(s.m.1) read key i, value (y[0]
(i), . . . ,y[m]

(i));

(s.m.2) compute z(i) by equation (17);

(s.m.3) compute r(i) by equation (18);

(s.m.4) compute c(i) by equation (19);

(s.m.5) compute d(i) by equation (20);

(s.m.6) write key i, value (r(i), c(i),d(i)).

The second job for carrying (Algorithms 9 and 10) has
a single map task and I reduce tasks. The mapper reads
all the intermediate carries and all the differences, and then
evaluates the actual carries. The reducers receive the actual
carries from the mapper, read the corresponding remainders
and then compute the final output. For single-map jobs, we
may use the null key, denoted by ∅, as the input key.

Algorithm 9 (Carrying, Mapper).

(c.m.1) read key ∅, value
n

(i, c(i),d(i)) : 0 ≤ i < I
o

;

(c.m.2) compute c′ by equation (23);

(c.m.3) for 0 ≤ i < I, emit key i, value c′((i−1) mod I)
.

Algorithm 10 (Carrying, Reducer).

(c.r.1) receive key i, singleton list [c′((i−1) mod I)
];

(c.r.2) read r(i);

(c.r.3) compute y(i) by equation (24);

(c.r.4) write key i, value y(i).

4.3 Summary
The input of MapReduce-SSA is two integers a and b,

which are represented as normalized tuples a and b in (I, J)-
format. The output is also in (I, J)-format, a normalized
tuple p̃, which represents an integer p such that p = ab.
MapReduce-SSA has the following sequence of jobs:

J1: two concurrent forward FFT jobs (Alg. 1 & 2);

J2: a backward FFT job with componentwise multiplica-
tion and splitting (Alg. 3 with 5, & 4 with 6);

J3: a componentwise summation job (Alg. 8);

J4: a carrying job (Alg. 9 & 10).

4.4 Choosing Parameters
In SSA, once D, the dimension of the FFTs, is fixed, all

other variables, including the exponent n in the Schönhage-
Strassen modulus 2n + 1, are fixed consequently. The stan-
dard choice is D ≈ √N .

In MapReduce-SSA, there is an additional parameter I,
defined in equation (3). It determines the number of se-
quences in the integer representation, the numbers of tasks
in the jobs and the memory required in each task. Therefore,
the choice of I depends on the cluster capacity, i.e. the num-
bers of map and reduce tasks supported, and the available
memory in each machine.

Denote the number of map and reduce tasks in the forward
FFTs by Nf,m and Nf,r, and the number of map and reduce
tasks in the backward FFT by Nb,m and Nb,r. Then,

Nf,m = Nb,r = I and Nf,r = Nb,m = J.

Excluding the memory overhead from the system software
and the temporary variables, let Mf,m and Mf,r be the num-
ber of bits of the required memory in map and reduce tasks
in forward FFT, and Mb,m and Mb,r be the number of bits of
the required memory in map and reduce tasks in backward
FFT. Then,

Mf,m = Mb,r = Jn and Mf,r = Mb,m = In.

We always choose I ≤ J so that Mb,m = In ≤ Jn, in order
to have more memory available for running Algorithm 5 in
the map tasks of the backward FFT. In Tables 2, 3 and 4, we
show some possible choices of the parameters D and I, and
the corresponding values of some other variables forN = 240,
243 and 246. The memory requirement is just 0.56 GB per
task for N = 240. For N = 246, it requires 12 GB per task.

N = 240 J n In Jn

D = 219, I = 29 210 16.5D 0.52GB 1.03GB

D = 220, I = 210 210 4.5D 0.56GB 0.56GB

D = 221, I = 210 211 1.5D 0.38GB 0.75GB

D = 222, I = 211 211 0.5D 0.50GB 0.50GB

Table 2: Possible parameters for N = 240

N = 243 J n In Jn

D = 220, I = 210 210 32.5D 4.06GB 4.06GB

D = 221, I = 210 211 8.5D 2.13GB 4.25GB

D = 222, I = 211 211 2.5D 2.50GB 2.50GB

D = 223, I = 211 212 D 2.00GB 4.00GB

Table 3: Possible parameters for N = 243

N = 246 J n In Jn

D = 222, I = 211 211 16.5D 16.5GB 16.5GB

D = 223, I = 211 212 4.5D 9.0GB 18.0GB

D = 224, I = 212 212 1.5D 12.0GB 12.0GB

D = 225, I = 212 213 0.5D 8.0GB 16.0GB

Table 4: Possible parameters for N = 246

4.5 A Prototype Implementation
The program DistMpMult is a prototype implementation,

which includes DistFft, DistCompSum and DistCarrying as
subroutines. DistFft implements Algorithms 1, 2, 3 and 4
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with Algorithms 5 and 6, while DistCompSum implements
Algorithm 8 and DistCarrying implements Algorithms 9 and
10. We have verified the correctness of the implementation
by comparing the outputs from DistMpMult to the outputs
of the GMP library.

Since DistFft is notably more complicated than DistComp-
Sum and DistCarrying, we have measured the performance
of DistFft on a 1350-node cluster. Each node has 6 GB
memory, and supports 2 map tasks and 1 reduce task. The
cluster is installed with Apache Hadoop version 0.20. It is
a shared cluster, which is used by various research projects
in Yahoo!. Figure 3 shows a graph of the elapsed time t
against the input integer size N in base-2 logarithmic scales.
The elapsed time includes the computation of two parallel
forward FFTs and then a backward FFT. From the range
232 ≤ N ≤ 236, the elapsed time fluctuates between 2 to 4
minutes because of the system overheads. The utilization is
extremely low in these cases. From the range 236 ≤ N ≤ 240,
the graph is almost linear with slope ≈ 0.8 < 1, which indi-
cates that the cluster is still underutilized since FFT is an
essentially linear time algorithm. Unfortunately, the 1350-
node cluster is unable to run DistFft for N ≥ 241 due to the
memory limitation configured in the cluster, so that it limits
the aggregated memory usage of individual jobs.
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Figure 3: Actual running time of DistFft on a 1350-
node cluster

For N = 240, we choose D = 220 and I = 210. Then,
J = I and

n = 4.5D = 4, 718, 592

as shown in Table 2. In a forward FFT job, the average
durations of a map, a shuffle and a reduce task are 157,
223 and 90 seconds, respectively. Although the total is only
7.83 minutes, the the job duration is 15.38 minutes due to
scheduling and other overheads. In a backward FFT job,
the average durations for a map, a shuffle and a reduce task
are 251, 483 and 77 seconds, and the job duration is 18.17
minutes. The itemized details are shown in Table 5. It shows
that the computation is I/O bound. The CPU intensive
computation only contributes 10% to 15% of the elapsed
time excluding the system overheads.

Since there are already benchmarks showing that Hadoop
is able to scale adequately on manipulating 100-TB data on
a large cluster [14], we estimate that DistFft will be able
to process integers with N = 246 in some suitable clusters.
Such integers have 21 trillion decimal digits and require 8 TB
space. A suitable cluster may consists of 4200 nodes with
16 GB memory in each machine or 2100 nodes with 32 GB
memory in each machine according to the parameters sug-
gested in Table 4.

N = 240 Step Duration

Forward
FFT

Mapper
(Alg. 1)

(f.m.1) 12s

(f.m.2) 24s

(f.m.3) 1s

(f.m.4) 120s

Total 157s

Shuffle 223s

Reducer
(Alg. 2)

(f.r.1) 19s

(f.r.2) 22s

(f.r.3) 49s

Total 90s

Backward
FFT

Mapper
(Alg. 3)

(b.m.1) 89s

(b.m.2) 70s

(b.m.3) 2s

(b.m.4) 90s

Total 251s

Shuffle 483s

Reducer
(Alg. 4)

(b.r.1) 20s

(b.r.2) 20s

(b.r.3) 24s

(b.r.4) 13s

Total 77s

Table 5: Average duration for each step in
MapReduce-FFT with N = 240

5. CONCLUSION
An integer multiplication algorithm, MapReduce-SSA, is

designed for multiplying integers in terabit scale on clusters
with many commodity machines. It employs the ideas from
Schönhage-Strassen algorithm in the MapReduce model. We
first introduce a data model which allows efficiently access-
ing terabit integers in parallel. We show forward/backward
MapReduce-FFT for calculating DFT and the inverse DFT,
and describe how to perform componentwise multiplications
and carrying operations. Componentwise multiplication is
simply incorporated in the backward FFT step. The carry-
ing operation is reduced to a summation, which is computed
by MapReduce-Sum. A MapReduce-SSA computation in-
volves five jobs — two concurrent jobs for two forward FFTs,
a job for a backward FFT, and two jobs for carrying. In
addition, we discuss the choices of the parameters and the
impacts on cluster capacity and memory requirements.

We have developed a program, DistMpMult, which is a
prototype implementation of the entire MapReduce-SSA al-
gorithm. It includes DistFft, DistCompSum and DistCarry-
ing as subroutines for calculating DFT/inverse DFT, com-
ponentwise summation and carrying, respectively. All rou-
tines run on Apache Hadoop clusters. The correctness of the
implementation has been verified by comparing the outputs
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from DistMpMult to the outputs of the GMP library. Our
experiments demonstrate that DistFft is able to process ter-
abit integers efficiently using a 1350-node cluster with 6 GB
memory in each machine. With the supporting data from
benchmarks on Hadoop, we estimate that DistFft is able to
process integers with 8 TB in size, or, equivalently, 21 trillion
decimal digits, on some large clusters.
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ABSTRACT
We compute an approximate greatest common divisor (GCD)
of co-prime polynomials over integers by changing their co-
efficients slightly over integers so that the input polynomials
still remain over integers. In this paper, we give an improved
algorithm with a new lattice construction process by which
we can restrict the range of perturbations in some cases.

Categories and Subject Descriptors
I.1 [Symbolic and algebraic manipulation]: Misc.

General Terms
Algorithms

Keywords
Approximate Polynomial GCD, Numerical Polynomial GCD

1. INTRODUCTION
In this paper, we improve an algorithm to compute the

following approximate GCD over integers. For this problem,
there are only a limited number of studies by the author[2,
3] and von zur Gathen and Shparlinski[5, 4].

Definition 1. (Approximate GCD Over Integers)
Let f(~x) and g(~x) be polynomials in variables ~x = x1, . . . , xℓ

over Z, and let ε be a small positive integer. If they satisfy
f(~x) = t(~x)h(~x) + ∆f (~x), g(~x) = s(~x)h(~x) + ∆g(~x) and ε =
max{‖∆f‖, ‖∆g‖} for some polynomials ∆f ,∆g ∈ Z[~x], then
we say that the above polynomial h(~x) is an approximate
GCD over integers. We also say that t(~x) and s(~x) are
approximate cofactors over integers, and we say that
their tolerance is ε. ( ‖p‖ denotes a suitable norm of p(~x).)⊳

1.1 Approx. GCD by Lattice Basis Reduction
We review the known result[2, 3] briefly. Let f(~x) and

g(~x) have total degrees n = tdeg(f) and m = tdeg(g), re-
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spectively. We call the following mapping Sr(f, g) the sub-
resultant mapping of f(~x) and g(~x) of order r.

Sr(f, g) :
Pm−r−1 × Pn−r−1 → Pn+m−r−1

(s(~x), t(~x)) 7→ s(~x)f(~x) + t(~x)g(~x)

where r = 0, . . . , min{n, m} − 1 and Pd denotes the set of
polynomials in variables x1, . . . , xℓ, of total degree d. We
construct the coefficient vector ~p of polynomial p(~x) by the
lexicographic ascending order. To see the number of ele-
ments of a coefficient vector, we define the notation: βd,r =`

d−r+ℓ
ℓ

´
. The number of terms xi1

1 · · ·xiℓ
ℓ satisfying i1 + · · ·+

iℓ ≤ d is denoted by βd,0. The k-th convolution matrix

Ck(f) is defined to satisfy Ck(f)~p =
−→
fp for any polynomial

p(~x) of total degree k− 1, where ~p ∈ Zβk−1,0×1 and Ck(f) ∈
Zβn+k−1,0×βk−1,0 . We have the matrix representation of the
subresultant mapping: Sylr(f, g) = (Cm−r(f) Cn−r(g)) of
size (βn+m−1,r)× (βm−1,r + βn−1,r), satisfying

Sr(f, g) :
Pm−r−1 × Pn−r−1 → Pn+m−r−1

( ~s ~t )t 7→ −−−−→
sf + tgt = Sylr(f, g)( ~s ~t )t.

By computing s(~x) and t(~x) such that the mapping is
not injective, we can compute candidates of approximate
GCD. Hence, finding the approximate GCD is reduced to
finding short vectors by the well-known LLL algorithm[1].
For this, we construct the lattice generated by row vectors
of L(f, g, r, c) which is defined as the following matrix where
r denotes the order of the subresultant mapping.

L(f, g, r, c) = (Eβn−1,r+βm−1,r | c · Sylr(f, g)t)

where Ei denotes the identity matrix of size i × i and c ∈
Z. The size of L(f, g, r, c) is (βn−1,r + βm−1,r) × (βn−1,r +
βm−1,r + βn+m−1,r). However, the short vectors found are
only candidate cofactors t(~x) and s(~x) ∈ Z[~x] such that
s(~x)f(~x) + t(~x)g(~x) ≈ 0, and f(~x) and g(~x) may not be
divisible by h(~x). To compute an approximate GCD from
the candidate cofactors, we apply the LLL algorithm again
to the following matrix H(f, g, r, c, t, s) of size (βr+1,0 +1)×
(βn,0 + βm,0 + βr+1,0 + 1).

H(f, g, r, c, t, s) =

„
Eβr+1,0+1

˛̨̨̨
c · −→f t c · −→g t

c · Cr+2(−t)t c · Cr+2(s)
t

«
where ~f and ~g denote the coefficient vectors of f(~x) and g(~x),
respectively.

For example, we compute an approximate GCD of the
following very simple polynomials for easy understanding.

f(x) = 28x2 − x−14 = (7x + 5)(4x− 3) + 1,
g(x) = 42x2 + 65x+27 = (7x + 5)(6x + 5) + 2.
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We construct the following matrix L(f, g, r, c) with r = 0 and
c = 1, and apply the LLL algorithm to the lattice generated
by row vectors of L(f, g, r, c).0B@1000−14 −1 28 0

0100 0−14−128
0010 27 65 42 0
0001 0 27 6542

1CA→

0B@−5−6−3 4−11 2 0 0
4 4 2−3 −2−11−3−14
6 6 3−4 −3 −3 28 0
4 5 2−3 −2−25−4 14

1CA .

We take the first row vector as candidate cofactors since the
right hand part of the first row is the smallest. We construct
the following matrix H(f, g, r, c, t, s) with c = 1 and apply
the LLL algorithm, to compute an approximate GCD. 

1 0 0 −14 −1 28 27 65 42
0 1 0 −3 4 0 5 6 0
0 0 1 0 −3 4 0 5 6

!
→
 

0 1 0 −3 4 0 5 6 0
0 0 1 0 −3 4 0 5 6
1 −5 −7 1 0 0 2 0 0

!
.

Hence, we get 7x + 5 as an approximate polynomial GCD
over integers and 4x−3 and 6x+5 as approximate cofactors.
We note that there are more complicated examples, some
lemmas and techniques for decreasing the computing-time
(see [2, 3]) though we omit them here.

2. DIGITS-WISE LATTICE
The algorithms introduced in [2, 3] work well according to

the numerical experiments therein. However, they can not
detect any approximate GCD of the following polynomials.

f(x) = 28x2 − x−5 = (7x + 5)(4x− 3) + 10,
g(x) = 42x2 + 65x+45 = (7x + 5)(6x + 5) + 20.

Although this is very difficult in general since the tolerance
is 10

√
5 in 2-norm, using our digits-wise lattice we can detect

it if we assume that all the coefficients have a priori error on
only the limited number of digits. The above pair of polyno-
mials is the case since they have a priori error on the second
digit only. One may think that this seems a odd example.
However, this is important for simplifying algebraic expres-
sions, computing with multi-precision integers with a priori
error (e.g. each element of the array has error) and so on.

We construct the following matrix similar to L(f, g, r, c)
and consider the lattice generated by their row vectors.0BBBBBB@

1 0 0 0 0 −5 0 −1 2 8 0 0
0 1 0 0 0 0 0 −5 0 −1 2 8
0 0 1 0 4 5 6 5 4 2 0 0
0 0 0 1 0 0 4 5 6 5 4 2
0 0 0 0 −1 10 0 0 0 0 0 0
0 0 0 0 0 0 −1 10 0 0 0 0
0 0 0 0 0 0 0 0 −1 10 0 0
0 0 0 0 0 0 0 0 0 0 −1 10

1CCCCCCA ⋆
⋆
⋆
⋆

There are two differences between this matrix and L(f, g, r, c):
1) each column represents only a digit of coefficients, 2) extra
row vectors (last 4 rows) represent carry and borrow digits.
In this case, we assume that only the second digit has a pri-
ori error hence we multiple the columns corresponding to the
second digit by 100 as penalty terms. The LLL algorithm
gives the following result for the lattice generated by row
vectors of this scaled matrix.0BBBBBBBB@

0 −1 2 −1 9 0 9 0 2 0 −7 0
−5 −6 −3 4 −11 0 2 0 0 0 0 0
−5 2 1 2 7 0 15 0 3 0 14 0
10 0 0 0 −5 0 −1 0 28 0 0 0
−1 −4 −1 1 −4 0 0 100 0 −100 −7 0
−6 −3 −2 2 −6 0 −2 100 −12 100 0 0

5 2 1 −2 2 0 −4 0 5 0 −3 200
−4 1 −1 1 −2 −500 −2 −100 −9 0 7 0

1CCCCCCCCA

We take the second row vector as candidate cofactors and
construct the following matrix similar to H(f, g, r, c, t, s) as
above.0BBBBBBB@

1 0 0 0−5 0−1 2 8 4 5 6 5 4 2
0 1 0 0−3 0 4 0 0 0 5 0 6 0 0
0 0 1 0 0 0−3 0 4 0 0 0 5 0 6
0 0 0−1 10 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0−1 10 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0−1 10 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0−1 10 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0−1 10 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0−1 10

1CCCCCCCA
⋆
⋆
⋆
⋆
⋆
⋆

As above, we multiple the columns corresponding to the
second digit by 100 as penalty terms. The LLL algorithm
gives the following result for the lattice generated by row
vectors of this scaled matrix.0BBBBBBBBBB@

1−5−7 1 0 0 0 0 0 2 0 0 0 0 0
−1 5−3−1 0 3 0−4 0−2 0−5 0−6 0
−1−5 7 2 0−4 0 0 0−7 0−6 0 0 0

1−1−2 0−200 0 100 2 0 4 0 5−100 3 0
0−4 3 1 200−3 500 1 200−2 0−1 100 2−200
0−4 2 1 200−2−200 1−200−2 0−1−400 1 200
0 4 3−1−200 1−300 1 200 2 0 4−100 2−200
0−3 0 1−100−1−200 0 0−2500−2 200 0 0
0 0−4 0 0 1 200−2 400 0 0−2 0−3 600

1CCCCCCCCCCA
Hence, we get 7x + 5 as an approximate polynomial GCD

over integers and 4x−3 and 6x+5 as approximate cofactors.

3. REMARKS
The digits-wise lattice is based on the preliminary presen-

tation about computing approximate GCD of integers (not
polynomials) by the author in Research Institute for Math-
ematical Sciences, Kyoto University in 2010. The example
above treats only 2 digits for each coefficients. It can be used
for more number of digits easily. Moreover, in this paper, we
use the decimal base only but this lattice can be extended to
any base numbers (e.g. computing with multi-precision erro-
neous integers). Theoretical treatments are now in progress.
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ABSTRACT
We present an automatic treatment of the Stokes phenome-
non for the computation and the graphical representation of
solutions of linear ODEs in the neighborhood of an irregular
singularity in the complex plane. More precisely, given a ba-
sis of formal solutions, our programs detect the Stokes rays,
compute the associated Stokes matrices, compute the formal
monodromy, combine these matrices to specify the continu-
ation of any actual solution given by linear combination in
one sector to the whole Riemann surface of the logarithm.
The graphical representation permits to visualize the results
and to compare them with the use of convergent series.
In the last part of the paper we report on a first attempt to
obtain certified values of the Stokes constants.

Categories and Subject Descriptors
G.1.7 [Numerical Analysis]: Ordinary Differential Equa-
tions—Convergence and stability ; I.1.2 [Symbolic and Al-
gebraic Manipulation]: Algorithms—Algebraic algorithms

General Terms
Algorithms, Theory

Keywords
Ordinary Differential Equations, Stokes matrices, graphical
visualization, Computer Algebra.

1. INTRODUCTION
This paper deals with the computation and the graphical

representation of complex functions of the complex variable,
solutions of linear differential equations with polynomial co-
efficients.
Since the 80’s, algorithms of Computer Algebra have been
developed to find a basis of formal solutions of these equa-
tions in the neighborhood of singularities [2]. If the singu-
larity is irregular, these solutions contain in general diver-
gent series, but in particular thanks to the theory of Gevrey
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personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SNC 2011, June 7-9, 2011, San Jose, California.
Copyright 2011 ACM 978-1-4503-0515-0 ...$10.00.

asymptotics and multisummability [8, 9, 10, 11], it is possi-
ble to associate to each divergent series appearing in a for-
mal solution an analytic function, asymptotic to the series in
some sector. In case of k-summability, this leads to effective
algorithms of summation [19, 20], and so we can compute
actual solutions of the ODE on sectors (whose vertex is the
singular point). In order to continue one particular solution
on a large sector, beyond the critical directions, a control of
the Stokes phenomenon is necessary.
The sectors in which these actual solutions are defined are
overlapping one another, in such a way that the same basis
of formal solutions gives rise to two basis of actual solutions
on the intersection of two adjacent sectors. The line, which
is the bissector of the intersection, is called a Stokes ray,
and the matrix which express the change of basis is called
the associated Stokes matrix.
It is well known that the problem of computing the entries
of the Stokes matrices is closed since the publication of [22],

where Écalle’s accelero-summation process is used to show
that the entries of the Stokes matrices may be approximated
up to n decimal digits in time O(n log4 n log log n). Neverth-
less this theoretical study does not lead yet to a practical
implementation.
In [6], we have proposed a completely different approach for
the numerical computation of the Stokes matrices. The algo-
rithm is based on the analysis of the singularities of the Borel
transforms of the divergent series, and needs to sum only
convergent series. In the current version, it works under
the hypotheses that the equation is of single rank k (where
k is any positive rational number) and the Borel transforms
do not have irregular singularities and do not have many sin-
gularities aligned on a half line issued from the origin (this
last point is a technical, practical limitation, not a serious
one), but it allows in the Borel plane any polar, ramified or
logarithmic singularities. It is implemented in our new ver-
sion of Desir package, written in Maple [18].
The objective of this paper is double.
First we want to show how to use these matrices in an au-
tomatic way to continue a particular solution on the whole
Riemann surface of the logarithm near the singularity. For
this purpose, we introduce and compute the matrix of for-
mal monodromy. The graphical representation in the com-
plex plane is used to visualize the results and some examples,
classical or less studied, are treated.
Secondly we will explain how to replace the analytic con-
tinuation of convergent series, performed in [6] by the use
of Padé approximants, by a certified method of summation.
And so we will obtain certified Stokes constants.
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2. GRAPHICAL REPRESENTATION OF
COMPLEX FUNCTIONS

Along this paper, we will use a graphical tool, well adapted
to represent multivalued complex functions and to compare
different numerical methods used to compute them.
The first implementation of such a graphical toolbox was
dedicated to solutions of linear differential equation with sin-
gularities and is described in [16]. A new version of the 2D
functionalities is now written in Maple [17].
The principle of the representation is the following: it con-
sists in plotting the image under the considered function f of
a circle or a circular arc around the singularity, in general 0.
The color is used to associate a point in the domain and its
image: each point f(x) is plotted with a color corresponding
to the argument of x.
As the studied functions are in general multi-valued, we con-
sider them in the neighborhood of 0 as functions on the Rie-
mann surface of the logarithm and points in the domain are
represented by their Euler coordinates, whereas the image
points are computed in cartesian coordinates. So we have to
manipulate two types of colored points : (ρ, θ, color) and
(x, y, color). Two functions draw_rhotheta and draw_xy

are associated to plot lists of such points. The function
create_circle(ρ, θ−, θ+, nbpoints) creates an arc of cir-
cle around 0, of radius ρ, as a list of nbpoints of modulus ρ
and argument between θ− and θ+.

Example: we consider the special Bessel function Jν , with
ν = 1

4
. This function is known by maple and can be com-

puted in the complex plane, so that 0 is a branch point and
the negative real axis is the branch cut. The values on the
branch cut are assigned such that the function is continuous
in the direction of increasing argument (equivalently, from
above).

> circ1:=create_circle(2.,-3.1,Pi,50):

> draw_rhotheta(circ1,"Domain");

1

0

2

2

1

−1

0

−2

−1−2

Domain

Figure 1: Domain (circle of radius 2.)
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Range (image  by J_1/4)

Figure 2: Range (image by J1/4)

> seq1:=map(proc(pp) local x,y;
x:=pp[1]*(cos(pp[2])+I*sin(pp[2]));
y:=BesselJ(nu,x);
[Re(y),Im(y),pp[3]] end proc,circ1):

> draw_xy(seq1,"Range (image by J_1/4)");

In fact, this function can be extended by analytic contin-
uation on the whole Riemann surface of the logarithm. It is
solution of the linear ODE

x2y′′(x) + xy′(x) + (x2 − ν2)y(x) = 0. (1)

At the origin, this equation admits a basis of solutions of the
form:

f1(x) = x−1/4(1− 3

2
x2 + O(x3)),

f2(x) = x1/4(1− 1

5
x2 + O(x3)).

It is well known that the series f1 and f2 are convergent
(and their convergence radii are infinite).
In this basis, we express Jν = 1

2νΓ(ν+1)
f2. Such a relation

can be found either in [1], or by the series expansion at
the origin of Jν in maple.
This expression proves that J 1

4
(xe2iπ) = iJ 1

4
(x).

So we obtain (Fig. 3) the image of the arc of circle of
radius 2., the argument describing the range [−2π, 4π],
with the following commands:

> circ2:=create_circle(2.,-2*Pi,4*Pi,50):

> Order:=21:
> seq2:=compute_solution(sol0,

<0,1/(2^nu*GAMMA(nu+1))>,circ2,
linestyle=2):

> draw_xy([op(seq1),op(seq2)],"Turning 3 times"):

Here we use the function
compute_solution(sol,combli,circ,options): it compu-
tes the image of the list of points circ by the function defined
as the fixed linear combination combli of the solutions in sol

(basis of solutions obtained by the software Desir, [14, 18]).
The last parameter options is optional: it permits to change
the line style or the line thickness. If the series appearing in
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Figure 3: Image of a multiple arc of circle

sol are convergent, they are truncated at the order fixed by
the Maple global variable Order.
So, on this figure, the series f2 is truncated at order 21 and
the image is plotted with dotted line. The curve obtained is
superposed with the one obtained with the internal BesselJ
function of Maple on the first circle. This permits to con-
clude that the result is the same for |arg(x)| < π.
Of course, the “complete” image would be obtained by a ro-
tation of 4 turns around the origin.

3. STOKES PHENOMENON:
THE PROBLEM

Let us explain this well-known phenomenon in the case of
a linear differential equation of rank one at the origin.
Let (E) be such a linear homogeneous ODE, with polyno-
mial coefficients, of order d. Suppose that it has an irregular
singularity of rank one at 0 and that a basis of formal so-
lution is ŷj(x) = exp(

ωj

x
)xλj ϕ̂j(x), j = 1, . . . , d, ωj , λj ∈ C

and ϕ̂j ∈ xC[[x]].
Consider the series ϕ̂i. It is solution of a linear ODE (E1)
with polynomial coefficients, whose other solutions are

exp(
ωj−ωi

x
)xλj−λi ϕ̂j(x). The Newton polygon of this equa-

tion (E1) has a unique edge of non null slope (namely 1),
so ϕ̂i is 1-summable. Its Borel transform Bϕ̂i is conver-
gent in the neighborhood of the origin and the singularities
of Bϕ̂i are among ωi − ωj . This means precisely that ϕ̂i

is 1-summable in all directions, but the singular directions
dθj ; θj = arg(ωi − ωj).
Let dθ be a nonsingular direction. The Laplace transform of
B(ϕ̂i)

ϕi(x) =

Z
dθ

exp(
−ζ

x
)Bϕ̂i(ζ)dζ

defines an analytic function in the sector |arg(x)− θ| < π
2

1.

The product yi(x) = exp(ωi
x

)xλiϕi(x) is then an actual so-
lution of the initial ODE (E) in the same sector.
By moving the direction of summation θ between two consec-
utive singular directions θk−1 and θk, we obtain an analytic
continuation on the sector θk−1 − π

2
< arg(x) < θk + π

2
.

The function so obtained is defined as the sum of ϕ̂i on this
sector.
We can do the same with a direction of summation varying
between θk and θk+1, but (in general) the function obtained
on the sector θk − π

2
< arg(x) < θk+1 + π

2
is not an analytic

continuation of the previous one.
In other words, if we are interested in the calculation of one
particular solution of the ODE (E), we have to represent it
as linear combination of the basis solutions in some precise
sector, taking into account all the singular directions of the
series appearing in the basis solutions. In general, this linear
combination is not valid in the adjacent sectors.
We illustrate this phenomenon, known as the Stokes phe-
nomenon, on the example of the previous section.
At infinity, the equation (1) has an irregular singularity and
admits as basis of formal solutions, with z = 1/x:

ĝ1(z) =
e−i/z

√
z

ϕ̂1(z); ϕ̂1(z) = z

„
1 +

3i

32
z − 105

2048
z2 + O(z3)

«
;

ĝ2(z) =
ei/z

√
z

ϕ̂2(z); ϕ̂2(z) = z

„
1− 3i

32
z +

105

2048
z2 + O(z3)

«
.

The series ϕ̂1 and ϕ̂2 are divergent, but 1-summable. Their
Borel transforms are convergent, with respectively only one
singularity at 2i and −2i. The Laplace transforms of Bϕ̂1

and Bϕ̂2 can be defined in all directions, but respectively
iR+ and iR−. An actual solution of the differential equation
can then be defined on the sector ] − π, π[ by linear combi-
nation of the sums obtained with a direction of summation
varying in ] − π

2
, π

2
[. If we compute the sums with a direc-

tion of summation beyond π
2
, and combine them with the

same coefficients, we obtain an other solution, which is not
an analytic continuation of the first one. We illustrate this
fact on the following figure (Fig. 4).

It has been obtained with the following sequence of
instructions:

> circ3:=create_circle(2.,-Pi,5*Pi/4,50):

> seq3:=compute_solution(sol_inf,
<exp(3/8*I*Pi)/sqrt(2*Pi),
exp(-3/8*I*Pi)/sqrt(2*Pi)>,circ3):

4

4

> draw_xy([op(seq2),op(seq3)],"At infinity"):

Here sol_inf is the basis of solutions computed by Desir
in the neighborhood of infinity, i.e. the two solutions ĝ1 and
ĝ2. Thus, the call to compute_solution sums the two series
appearing in ĝ1 and ĝ2 and combine them with the fixed

1An open sector on the Riemann surface of logarithm is de-
fined as a set {0 < |x| < R, α < arg(x) < β}, for some
fixed values R > 0, α, β ∈ R. In all the paper, we focus
on the limits on the argument, on the aperture of the sector
β − α and forget the radius R. The sentence “this function
is defined on the sector α < argx < β” means “there exists
a radius R such that the function is defined on the sector
{0 < |x| < R, α < arg(x) < β}”.
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Figure 4: Image using divergent series

linear combination giving Jν on the sector ]− π, π[:

Jν(x) =
1√
2π

ei( ν
2 + 1

4 )π ĝ1(1/x) +
1√
2π

e−i( ν
2 + 1

4 )π ĝ2(1/x).

The summation method used is the most basic one: the
so called “sommation des astronomes” or summation at the
smallest term [15] (here four terms are used). We think
that it is suffisant to highlight our purpose. The curve thus
obtained (seq3) is plotted in solid line. We see that it follows
the “exact” curve (seq2) for arguments of x between −π and
π, but that it is not the case for argument of x between π
and 5π

4
.

4. STOKES MATRICES: A SOLUTION
Let us return to the equation (E). Consider three consec-

utive singular directions θk−1, θk, θk+1. Let y−i be the actual
solutions obtained by summation of ϕi with a direction of
summation varying between θk−1 and θk and y+

i be the ac-
tual solutions obtained by summation of ϕi with a direction
of summation varying between θk and θk+1. The two sets of
solutions are then defined on the sector θk − π

2
< arg(x) <

θk + π
2
. By definition, the Stokes matrix associated to the

Stokes line θk is the transition matrix Sθk which express
the change of basis from the basis y−i to the basis y+

i . In
this way, knowing the coordinates of a particular solution
in the basis y−i (i.e. on the sector ]θk−1 − π

2
, θk + π

2
[), we

can transport them into the basis y+
i (i.e. into the sector

]θk − π
2
, θk+1 + π

2
[).

The difficult point is to compute these matrices.
Some computations have been made “by hand” on classi-
cal examples (Airy equation [16], hypergeometric confluent
equation [10], confluent generalized hypergeometric equa-

tions [3]). In [22], Écalle’s accelero-summation process is
used in all generality to show that the entries of the Stokes

matrices may be approximated up to n decimal digits in time
O(n log4 n log log n). But this theoretical study does not lead
yet to a practical implementation.
We proposed in [6] an alternative approach, which is valid in
the current version in more restricted cases, but which leads
to explicit and completely automatic calculations. Indeed,
the Stokes constants can be numerically computed by the
analysis of the singularities of the Borel transform of the di-
vergent series. Using formal and numerical tools in the Borel
plane, introduced in [7] and [5], we showed how to obtain the
Stokes matrices for a large class of differential equations. We
refer to this reference for the details.
This leads to the function StokesMatrices, written in maple.
In the current version, it takes two arguments: a list (basis)
of formal solutions, and a list of two integers, fixing the order
of the Padé approximants used to sum the convergent series
appearing in the process. The output is a description of the
Stokes phenomenon as a list of objects [arg, M arg]: arg is
the argument of a Stokes ray and M arg is the correspond-
ing Stokes matrix.
For example, for the Bessel equation, the result is the fol-
lowing: "

[−π/2,

"
1 0

6.5 10−11 − 1.414213562 i 1

#
],

[π/2,

"
1 −6.5 10−11 − 1.414213562 i

0 1

#
]

#
.

On this elementary example, the result is known exactly:
the Stokes constant is −√2i [21].
In this paper, our goal is to show how these matrices can be
used, in combination with others – the matrix of formal mon-
odromy and the matrices of actual monodromy – to compute
any particular solution on C•, the whole Riemann surface of
logarithm. And particularly, that it can now be done in an
easy manner by a user, not expert in divergent series, Stokes
phenomenon or Ecalle’s alien calculus.
In this paper, we start from the following data: a list of in-
creasing arguments in [−π, π[ defining the critical directions
θ1, . . . , θp and the corresponding Stokes matrices computed
relatively to the formal basis ŷi. We put θ0 = θp − 2π and
θp+1 = θ1 + 2π. Implicitely, this defines the following sec-
tors of summation: ]θ0, θ1[, ]θ1, θ2[, . . . , ]θp, θp+1[, numbered
respectively 0, 1, . . . , p. Then we have defined a function
(in Maple) which calculates automatically, for a particular
solution f , a suitable linear combination, depending on the
sector.

For this purpose, we need to define and calculate the ma-
trices of formal and actual monodromy.

4.1 Formal monodromy and actual monodro-
my

In this section, we do no assumption on the formal solutions
constituing the basis. They can be of the most general form:

eQ(1/t)tλϕ̂(t), ϕ̂ ∈ C[[t]][log t], x = tn, n ∈ N∗.
Let (ŷ1, . . . , ŷd) be a basis of such formal solutions. By def-
inition, the formal monodromy relative to this basis is the
matrix M̂ (of order d and with complex elements) such that“

ŷ1(xe2iπ), . . . , ŷd(xe2iπ)
”

= (ŷ1(x), . . . , ŷd(x)) M̂.
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Let (y1, . . . , yd) a basis of analytic solutions of (E). The
actual monodromy relative to this basis is the matrix M (of
order d and with complex elements) such that“

y1(xe2iπ), . . . , yd(xe2iπ)
”

= (y1(x), . . . , yd(x))M.

The knowledge of the formal monodromy and of the Stokes
matrices permits to compute the matrices of actual mon-
odromy relative to the basis obtained by summation in all
the sectors ]θj , θj+1[, j = 0 . . . , p. Let (yj

1, . . . , y
j
d) the actual

solutions obtained by summation with a direction of summa-
tion varying in the sector numbered j and their analytic con-
tinuation on C•. By definition, in the sector ]θ1− π

2
, θ1 + π

2
],

we have:`
y0
1(x), . . . , y0

d(x)
´

=
`
y1
1(x), . . . , y1

d(x)
´
Sθ1 .

On the sector ]θp − π
2
, θp + π

2
], we have:`

y0
1(x), . . . , y0

d(x)
´

= (yp
1(x), . . . , yp

d(x))Sθp . . . Sθ1 .

As (yp
1(x), . . . , yp

d(x)) =
`
y0
1(xe−2iπ), . . . , y0

d(xe−2iπ)
´
M̂ , the

monodromy relative to the basis (y0
1 , . . . , y0

d) is the product

M̂Sθp . . . Sθ1 .

For example, for the Bessel equation, we have:

• near the origin, the formal monodromy in the basis
(f1, f2) is

M̂0 =

„ −i 0
0 i

«
.

But f1 and f2 are convergent series, so they define
analytic functions on C•. In the corresponding basis
(f1, f2), the actual monodromy and the formal mon-

odromy are the same: M0 = M̂0.

• near infinity, the formal monodromy in the basis (ĝ1, ĝ2)
is

M̂∞ =

„ −1 0
0 −1

«
.

The matrix of monodromy in the basis (g0
1 , g0

2) is M0
∞ =

M̂∞S
π
2 S

−π
2 . The matrix of monodromy in the basis

(g1
1 , g1

2) is

M1
∞ = M̂∞S

3π
2 S

π
2 = S

−π
2 M̂∞S

π
2 .

The matrix of monodromy in the basis (g2
1 , g2

2) is

M2
∞ = M̂∞S

5π
2 S

3π
2 = S

π
2 S

−π
2 M̂∞.

4.2 A variable linear combination on C•
Precisely, we define the function
combli_variable(nsector, combli, Monodromy, MStokes).
Input:

• nsector is an integer, defining a sector of summation
(as explained above);

• combli is a vector (of dimension d), it represents the
components of the studied solution f in the basis
(ynsector

1 , . . . , ynsector
d );

• Monodromy is the matrix of formal monodromy;

• MStokes is the list [[θj , S
θj ]].

Output: a function (denoted comb_var below), which has
one argument θ and returns a vector: the coefficients of a
linear combination, which permits to calculate f by summa-
tion of the ϕ̂j ’s in the direction θ.

The definition of this function is done in two steps:

1. First, we compute for each sector 0, 1, . . . , p two data:
the linear combination comblij valid on ]θj − π

2
, θj+1 +

π
2
[ (the components of f in the basis (yj

1, . . . , y
j
d)) and

the actual monodromy Mj in the basis (yj
1, . . . , y

j
d).

The vector comblinsector is equal to combli and the
others are obtained by application of the Stokes matri-
ces (if j >nsector) or their inverse (if j <nsector) to
combli.
The matrix M0 is computed as the product
M̂Sθp . . . Sθ1 . For j > 0, the matrix Mj is computed
using the same principle, and taking into account the
fact that Sθk+2π = M̂−1SθkM̂ . So, for example, M1 =
Sθ1M̂Sθp . . . Sθ2 .
This first step is independent of θ.

2. The second step depends on θ. Let θ̃ and k ∈ Z be such
that θ = θ̃+2kπ and −π < θ̃ ≤ π. Of course, θ̃ belongs
to some sector ]θj , θj+1]. Using the first step, we find
the linear combination valid on ]θj− π

2
, θj+1+

π
2
[, and in

order to obtain a suitable linear combination for θ, we
apply Mi k times to this linear combination (if k < 0,
this means that we apply the inverse of Mi).
In other words, we apply on the sector ]θj , θj+1], the
linear combination valid on ]θj − π

2
, θj+1 + π

2
[.

This linear combination is the result returned by
comb_var(θ).

Let us see the result on the Bessel function.

> MStokes:=StokesMatrices(sol_inf,[8,8]);

MStokes :=

"
[−π/2,

"
1 0

6.5 10−11 − 1.414213562 i 1

#
],

[π/2,

"
1 −6.5 10−11 − 1.414213562 i

0 1

#
]

#

> M_inf:=monodromy(sol_inf);

M inf :=

" −1 0

0 −1

#
> combli_Bessel:=combli_variable(1,

<sqrt(1/(2*Pi))*exp(I*(nu/2+1/4)*Pi),
sqrt(1/(2*Pi))*exp(-I*(nu/2+1/4)*Pi)>,
M_inf,MStokes):

> combli_Bessel(0):evalf(%);"
0.1526686012 + 0.3685746074 i

0.1526686012 − 0.3685746074 i

#
For 0, the result (denoted by combli1) is the linear

combination given on the sector 1, namely valid on ] −
π, π[.
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> combli_Bessel(Pi/2):evalf(%);"
0.1526686012 + 0.3685746074 i

0.1526686012 − 0.3685746074 i

#
For π

2
, we obtain the same result.

> combli_Bessel(3*Pi/4):evalf(%);" −0.3685746073 + 0.1526686011 i

0.1526686012 − 0.3685746074 i

#
For 3π

4
, the result is S

π
2 combli1.

> combli_Bessel(-Pi/2):evalf(%);"
0.1526686012 + 0.3685746074 i

−0.3685746073 − 0.1526686011 i

#
For −π

2
, the result is (S−

π
2 )−1combli1.

We are now ready to compute J 1
4
(x) using a combination

of the solutions ĝ1 and ĝ2, which depends on the sector
where x is. For this purpose, we call the same function
compute_solution with a function as second argument (in
place of a vector).

> seq4:=compute_solution(sol_inf,
combli_Bessel,circ2):

4

4

> draw_xy([op(seq2),op(seq4)],"Bessel variable"):
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20

Bessel variable

Figure 5: Image using divergent series and Stokes
matrices

The validity of the computation can be seen on the fact
that the two curves are exactly superposed, it is impossible
to distinguish them, even using a zoom (for example near the
origin, by specifying the graphical window [−1, 1] × [−1, 1]
as optional argument in the function draw_xy).

> draw_xy([op(seq2),op(seq4)],"Zoom",
-1,1,-1,1);
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Figure 6: Zoom near the origin

Two other classical examples, the Airy equation and the
exponential integrals have been studied with the same tools,
but the corresponding figures can not been inserted here by
lack of place. Both the Bessel function J 1

4
and the exponen-

tial integral present an actual monodromy. In both cases,
we have compared sucessfully the result obtained with con-
vergent series near the regular singularity (at 0 for the first
one, at infinity for the second one) and the result obtained
by summation of divergent 1-summable series near the ir-
regular singularity (at infinity for the first one, at 0 for the
second one). For the Airy equation, on one hand the study
is facilitated by the fact that the actual monodromy is triv-
ial, on the other hand it is complicated by the fact that the
divergent series at infinity are 3/2-summable (in the variable
z = 1/x).

We claim that our programs are not dedicated to special
functions and run on a lot of linear differential equations.
To illustrate this point, we will now run them on a “new”
example (rather simple, but less studied) [[23], p 43].

5. A NEW EXAMPLE
Consider the equation

x3y′′(x)− y(x) = 0. (2)

The origin is an irregular singularity and using the software
Desir,we compute as basis of solutions:

ĝ1(x) = e
−2√

x x3/4
“
1 + 3/16

√
x− 15

512
x + O

“
x3/2

””
ĝ2(x) = e

2√
x x3/4

“
1− 3/16

√
x− 15

512
x + O

“
x3/2

””
The series appearing in ĝ1 and ĝ2 are 1/2 summable in the
x-variable, 1-summable in the u-variable, with u =

√
x.

The infinity point is a regular singularity. We find the fol-
lowing basis of solutions:

f1(z) = 2 + z + 1/6 z2 +
1

72
z3 +

1

1440
z4 + O

`
z5´ ,

f2(z) = z−1

„
ln (z) (z + 1/2 z2 + 1/12 z3 +

1

144
z4) +
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1− 3/4 z2 − 7

36
z3 + O

`
z4´«

The series appearing in f1 and f2 are entire functions (the
radii of convergence of the series are infinite).

We compute the Stokes matrix in the basis (ĝ1, ĝ2),

MStokes := [[0,

"
1 1. 10−10 + 2.0 i

0 1

#
]]

and the matrix of formal monodromy at 0 in the same
basis:

M0 :=

"
0 −i

−i 0

#
So, we have all the matrices that permit to continue a par-
ticular solution around 0.
Precisely, we define the sector 0 as ]− 2π, 0[, and the sector
1 as ]0, 2π[. A particular solution will be specified by sum-
mation in the sector 0, i.e. by the linear combination valid
for arg(x) ∈]− 3π, π[2 or by summation in the sector 1, i.e.
by the linear combination valid for arg(x) ∈]− π, 3π[.
Our goal is now to compare the results obtained with the
divergent series at 0 with the results obtained with the con-
vergent series at infinity.
For this purpose, we need to do the connection between 0
and infinity. Only at this point, in order to control
the previous results, we will consider special functions
and in particular the knowledge about the Bessel functions
of integer order I and Y. Indeed:

F1 =
√

xBesselI

„
1, 2

1√
x

«
and F2 =

√
xBesselY

„
1,
−2 i√

x

«
are linearly independant solutions of the equation (2). A
complete study of these two functions leads to the definition
of a matrix of connection M between the basis (f1, f2) and
the basis (g0

1 , g0
2):

f1 =
−i√

π
g0
1 +

1√
π

g0
2 .

f2 =

√
π

2

`
(1− C1)g0

1 − i(1 + C1)g0
2

´
; C1 = −1+

1− 2γ

π
.

This allows us to specify any particular solution expressed
in the basis (f1, f2) as linear combination of the solutions
(g0

1 , g0
2).

Let F = f1 + f2. We represent F on the circle of radius 0.2,
with arguments describing [−3π, 3π] (seq5). First using the
convergent series at infinity (Fig. 7):

> seq5F_inf:=compute_solution(sol_inf,
<1,1>,seq5):

21
21

> draw_xy(seq5F_inf,"F with convergent series,
3 loops around 0");

Then we represent the same function using the divergent
series at 0 (Fig. 8). We compute the coordinates of F in the
basis (g0

1 , g0
2) and use them to specify F at 0 in the sector 0.

> <a,b>:=simplify(MatrixVectorMultiply(M,
<1,1>));

2The aperture of the sectors of validity is imposed by the
fact that the series are 1/2-summable.
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Figure 7: Image using convergent series

< a, b >:=

24 −3 i+2 π+2 iγ
2
√

π

3−2 γ
2
√

π

35
> combli_F:=combli_variable(0,<a,b>,M0,

MStokes):

> seq5F_0:=compute_solution(sol0,
combli_F,seq5,linestyle=2):

8
8

> draw_xy(seq5F_0,"F with divergent series,
3 loops around 0");

Finally we verify using a zoom (Fig. 9) that the two curves
are merged:

> draw_xy([op(seq5F_0),op(seq5F)],
"Comparison of the curves on a zoom",
-5.,5.,-5.,5.);

6. CERTIFIED STOKES CONSTANTS
In this section, we will explain how to obtain certified nu-

merical values for the Stokes constants.
The heart of the computation of the Stokes constants (with
our approach) is to perform the connection between two
regular singularities.
We consider a series ϕ̂, solution of a linear ODE with poly-
nomial coefficients (E1) and convergent at the origin.3

In general, the origin is a regular singularity of the equation
(E1).
We consider ω a finite non null singularity of (E1) and as-
sume that

• it is a regular singularity;

3In the current version of the algorithm, this series is the
Borel transform of a divergent series, appearing in a formal
solution of the considered basis. In a futur version, it could
be replaced by a series solution near a finite singularity of
the Fourier transform of the initial equation.
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Figure 8: Image using divergent series and Stokes
matrices

• a basis of solutions near ω can be obtained as
[f̂(x), f̂(x) ln(x− ω) + ĝ(x)]

• the series ϕ̂ is convergent on the disk |x| < |ω| and the

series f̂ and ĝ are convergent on the disk |x−ω| < |ω|.
The goal is to express ϕ̂(x) = λf̂(x)+µ

`
f̂(x) ln(x−ω)+ĝ(x)

´
and to obtain a numerical approximation of the coefficients λ
and µ. Indeed, the Stokes constant (to be put in the Stokes
matrix associated to the Stokes ray of argument arg(ω)) is
exactly 2iπµ.
To do this, we just have to obtain a certified evaluation of
ϕ̂, f̂ and ĝ at two points on the segment [0, ω] (or more gen-
erally in the intersection of the disks of convergence).
As the origin and ω are not regular points for (E1), the cur-
rent procedures available in Gfun4, and more precisely in
NumGfun [12], for the analytic continuation of holonomic
functions can not be used.
Neverthless, it is possible to obtain the wished result in the
following way.
Consider ϕ̂(x) =

P
n≥0 ϕnxn. The coefficients ϕn satisfy a

nonsingular homogeneous recurrence equation with polyno-
mial coefficients. Assuming that it is also reversible, from

[13] we can obtain constants A ∈ R+, κ ∈ Q, α ∈ Q
∗+

and
a function φ such that

∀n ∈ N, |ϕn| ≤ An!καnφ(n); (3)

with φ(n) = eo(n). The corresponding algorithms are imple-
mented in the function bound_rec, available in NumGfun.
Let v be the majorant series. Then it is possible to obtain
a closed form of the tail of the series vN;(x) =

P
n≥N vnxn,

which gives a majoration of |ϕN;(x)| by evaluating vN;(|x|).
Consider f̂(x) =

P
n≥0 fnxn. The coefficients fn satisfy the

same type of recurrence equation and we obtain a numerical
value of f̂(x) with a guaranted precision in the same man-
ner.

4http://algo.inria.fr/libraries/papers/gfun.html
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Figure 9: Zoom near the origin

The case of ĝ is more complicated.
An attempt to treat this case is done in [12], but is not yet
implemented.
The first idea was to obtain a differential equation with poly-
nomial coefficients satisfied by the series. This could be
done, knowing a differential equation satisfied by log and us-
ing the functions ‘diffeq*diffeq‘ and ‘diffeq+diffeq‘ of
the package gfun. Unfortunately, this leads to a differential
equation of higher order, introduces apparent singularities,
and the computations did not succeed for a simple example.
Let ĝ(x) =

P
n≥0 gnxn. The coefficients gn satisfy again

a recurrence equation, but this one is not homogeneous, it
presents a right hand side depending on the coefficients fn.
Precisely, we are now treating the case where the indicial
equation of (E1) near ω admits two roots with integer dif-
ference k (potentially null). Thus the sequence gn is defined
by its first terms g0, . . . , gk−1, 0 and a recurrence of the fol-
lowing form:

sX
j=0

pj(n)gn+j = −
sX

j=0

p′j(n)fn+j , n ≥ k − s + 1,

where pj are polynomial in n, p′j is the derivative of pj and
ps(n) has constant sign (it is a constant multiple c of (n +
s)(n + s− k)).
Suppose that we have obtained a majorant sequence for fn

of the type : Aαnφ(n).5 We put |gn| = αnbn, so that

|c|(n + s)(n + s− k)bn+s ≤
s−1X
j=0

|pj(n)|αj−sbn+j

+A
sX

j=0

|p′j(n)|αj−s|φ(n + j)|.

Now assume that φ(n) is a polynomial, we can bound all
the modules by replacing the coefficients of the polynomials

5As the series f̂ is convergent, we can assume that κ ≤ 0
in the majoration (3), and replace it by 0, for simplicity. It
is then possible to take κ into account, by putting |gn| =
αnn!κbn and obtaining a majorant sequence for bn.
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by their modules. Hence we obtain a recurrence equation
with polynomial coefficients for a majorant of the sequence
bn. Finaly, from this recurrence, we can construct an homo-
geneous one (function rectohomrec of Gfun), on which we
apply the previous process in order to obtain a majoration
of the tail bN;(|x|), and so we get an evaluation of ĝ(x) with
guaranted precision.
This method has been succesfully tested on the Bessel equa-
tion. The equation (E1) is of order 2, with 0 and 2i as regular

singularity. The functions ϕ̂, f̂ and ĝ have been evaluated
at 0.9i and 1.1i, by summing 80 terms in the series, which
guarantes a precision of 10−11. So the Stokes constant is
guaranted with a precision of 10−10, and indeed we verify
that we obtain −√2i with a precision of 10−12.
Moreover this method has been successfully tested on the
prolate spheroidal wave equation [4]. We can now guarantee
that the Stokes constant associated to the first eigenvalue,
whose numerical value is known in the tables as 0.319, is
null up to a precision of 10−6, but also improve the numerical
value of this eigenvalue: for this new value 0.31900005514689,
the Stokes constant is null up to a precision of 10−14.

7. CONCLUSION
In this paper, we proved that we have now the tools to per-

form automatic computations with divergent series around
an irregular singularity and to graphically visualize the re-
sults. So we will pursue our efforts to enlarge the class of
equations, for which we are able to compute the Stokes ma-
trices. The next step in this direction will be to treat equa-
tions which present aligned singularities in the Borel plane
(for example, it is the case of the confluent generalized hy-
pergeometric equations, for particular values of the param-
eters).
In the last section, we focused on the computation of the
Stokes constants with guaranted precision. This question
will also lead to further development in future work.
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1988.

[17] F. Richard-Jung. An implicit differential equation with
Maple and Irondel. In V. G. Ghanza, E. W. Mayr, and
E. V. Vorozhtsov, editors, 7th International Workshop
on Computer Algebra in Scientific Computing,
CASC’04, July, 2004, volume 4770, pages 383–397,
Saint Petersbourg, Russie, 2004.

[18] F. Richard-Jung. DESIR (new version, including
automatic computation of Stokes matrices). Software
LJK, http://www-ljk.imag.fr/CASYS/LOGICIELS/,
May 2009.

[19] J. Thomann. Resommation des séries formelles
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ABSTRACT
We study a variant of the univariate approximate GCD prob-
lem, where the coefficients of one polynomial f(x)are known
exactly, whereas the coefficients of the second polynomial
g(x)may be perturbed. Our approach relies on the properties
of the matrix which describes the operator of multiplication
by gin the quotient ring C[x]/(f). In particular, the struc-
ture of the null space of the multiplication matrix contains
all the essential information about GCD(f, g). Moreover, the
multiplication matrix exhibits a displacement structure that
allows us to design a fast algorithm for approximate GCD
computation with quadratic complexity w.r.t. polynomial
degrees.

Categories and Subject Descriptors
G.0 [Mathematics of Computing]: General
; G.1.2 [Mathematics of Computing]: Numerical Anal-
ysis—Approximation; G.1.3 [Mathematics of Comput-
ing]: Numerical Analysis—Numerical Linear Algebra; I.1.2
[Computing Methodologies]: Symbolic and Algebraic Ma-
nipulations—Algorithms

General Terms
Theory; Algorithms

Keywords
Approximate greatest common divisor; Approximate geom-
etry; Symbolic-numeric computation; Structured matrices

1. INTRODUCTION
The approximate polynomial greatest common divisor (de-

noted as AGCD) is a central object of symbolic-numeric
computation. The main difficulty of the problem comes from
the fact that is no universal notion of AGCD. One can find
different approaches and different notions for AGCD. We
will not give a review of all the existing work on this sub-
ject, but we will recall one of the most popular approaches
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personal or classroom use is granted without fee provided that copies are
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to show how our work brings a different point of view on the
problem.

The main approach to the computation of an AGCD con-
sists in considering two univariate polynomials whose coeffi-
cients are known with uncertainty. This uncertainty can be
the result of the fact that the polynomials have floating point
coefficients coming from previous computation (and so are
subject to round-off errors). The most frequently adopted
formulation is related to semi-algebraic optimization : given
f̃ and g̃ two approximate polynomials, find two polynomials
f and g such that ‖f̃ − f‖ and ‖g̃− g‖ are small (lower than
a given tolerance for instance) and such that the degree of
gcd(f, g) is maximal. That is, one looks for the most singu-

lar system close to the input (f̃ , g̃). An ε-gcd is obtained if

the conditions ‖f̃ − f‖ < ε and ‖g̃ − g‖ < ε are satisfied.
One can try to compute the tolerance on the perturbation
of the input polynomial thanks to direct computation (for
instance from a jump on singular values of particular matrix
for instance). This last approach has received a great inter-
est following the work of Zeng using Sylvester like matrices
([22]) following several previous work [3], [4], [7], [8], [16], [17]
and [18].

Here, we consider a slightly different problem. One of the
polynomials, say f , is known exactly (it is the result of an
exact model) and the second one, say g, is an approximate
polynomial (result of measures or previous approximation
for instance). This case occurs in applications such as model
checking (to compare results of an exact model and mea-
sures). There are many other instances of such a problem,
such as simplification of fractions when one of the polyno-
mial is known exactly but the other one is not.

We give a example of such a situation. When modeling
an electromagnetic filter, one might want to parametrize its
behavior with respect to the frequency. But one may need
to do so even if there are singularities and to do so one may
use Padé approximations of the electromagnetic signal at
each point as a function of the frequency. In some cases of
interest, one can know all the singularities and so compute an
exact polynomial called characteristic. Padé approximations
are computed independently for each point by a numerical
process and denominators may have a non trivial gcd with
the “characteristic” polynomial. The denominators are not
known exactly. So, in order to identify unwanted common
factors in denominators one has to compute approximate
gcds between an exact and non exact polynomials.

This AGCD problem can also be interpreted as an opti-
mization problem. Given f exactly and g̃ approximately,
compute a polynomial g close to g̃ such that g has a maxi-
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mal degree gcd with f . Our approach takes advantage of the
asymmetry of the problem and of the structure of the quo-
tient algebra C[x]/(f(x)) (more accurately, of the displace-
ment rank of the multiplication operator in this algebra).
So, we address the following problem :

Problem 1 Let f(x) ∈ C[x] a given polynomial and g(x) an-
other polynomial. Find g̃(x) close to g(x) (in a sense that will be
explained) such that f(x) and g̃(x) have a gcd of maximal degree.

This may be also an interesting approach when one has
two polynomials, one known with high confidence and an-
other with worse accuracy. This approach may take advan-
tage of this asymmetry which would not be possible for clas-
sical framework based on Sylvester or Bézout matrices.

All the previous methods allow to deform the two input
polynomials. They give a symmetrical role to those poly-
nomials. If one of them is known with high confidence, the
previous methods cannot take into account this information.
Here, the polynomial used to construct the quotient algebra
is supposed to be exact or known with higher confidence than
the one use to compute the multiplication matrix. Further-
more, just as in [17] and [18] we can translate our problem
to an optimization problem. This is important in order to
be able to design the numerical part of our algorithm. Both
the approach and the algorithm seem new since we address
a new problem.

The proposed algorithm is “fast” since the exponent of its
complexity is better than the classical linear algebra expo-
nent in the degree of the input polynomials.

Organisation of the paper: The second section is devoted
to some basic result on algebra needed after, the third section
gives an algebraic method for gcd based on linear algebra,
the fourth section recalls the Barnett’s formula allowing to
compute the multiplication matrix without division, the fifth
gives the displacement rank structure of the multiplication
matrix, the sixth describes the final algorithm and experi-
ments before finishing with conclusions and perpectives.

2. EUCLIDIAN STRUCTURE AND
QUOTIENT ALGEBRA

In this section, we recall basic algebraic results needed to
understand the principle of our approach. All material in
this section can be found (even in the non reduced case and
in the multivariate setting) in [19] for instance.

Assume that K is an algebraically closed field (here we
think about C). Let f(x) and g(x) ∈ K[x] and assume

that f(x) = fd
dQ
i=1

(x − ζi) and that ζi 6= ζj for all i 6= j

in {1, . . . , d}. Let A = K[x]/(f) and π : K[x] −→ A

be the natural projection. For i ∈ {1, . . . , d}, we define

Li(x) =

Q
j 6=i

(x−ζj)Q
j 6=i

(ζi−ζj)
, the ith Lagrange polynomial associated

with {ζ1, . . . , ζd}. Clearly, since deg(Li) < deg(f), we have
π(Li) = Li, for all i ∈ {1, . . . , d}. Let A∗ = HomK(A,K) be
the usual dual space of A. For all i ∈ {1, . . . , d}, we define
1ζi : A −→ K by 1ζi(p) = p(ζi) for all p ∈ A. The following
lemma is obvious from the definition of the polynomials Li

that for i and j ∈ {1, . . . , d}, we have Li(ζj) =


1 if i = j
0 else

.

This implies that the set {L1, . . . , Ld} is a basis of A. A well
known fact is that the set {1ζ1 , . . . ,1ζd} form a basisA∗ dual

of the basis {L1, . . . , Ld} of A. As a corollary, we have the
Lagrange interpolation formula : Each p ∈ A can be written

p(x) =
dP
i=1

1ζi(p)Li(x). A direct consequence is that if we

choose {L1, . . . , Ld} as a basis of A, for all g ∈ K[x], the
remainder π(g) resulting of the Euclidean division of g by f
is given by (g(ζ1), . . . , g(ζd)) in the basis {L1, . . . , Ld}, i.e.

r =
dP
i=1

g(ζi)Li(x). In other word, divide g by f is equivalent

to evaluate g at the roots of f .
The general philosophy of this last assertion will allow us

to make a lot of proof in a very simple way. For example,
it is very easy to see the different operation in A using this
representation. Let g and h be two elements in A, then we

have g+h =
dP
i=1

(g(ζi) +h(ζi))∗Li(x) and g ∗h =
dP
i=0

(g(ζi)∗
h(ζi))Li(x) in A. This allows us to avoid the use of the
section of the surjection π. In fact, the Lagrange polynomials
L1, . . . , Ld reveal a deeper structure on the algebra A : The
polynomials L1, . . . , Ld are the idempotents of A, i.e. Li ∗
Lj =


Li if i = j
0 otherwise.

.

Thanks to this description of the quotient algebra, it is
easy to derive algorithms for both polynomial solving and
gcd computation even though the problems are of very dif-
ferent nature.

Remark that we have expressed everything in the mono-
mial basis since it is the most widely used basis to express
polynomials. We can use other bases. A particular basis is
the Chebyshev basis where all results are exactly the same
since it is a graded basis.

3. AN ALGEBRAIC ALGORITHM FOR
GCD COMPUTATION

To first give an idea on how to exploit the section above
in order to design algorithm for gcd, We recall a classical
method for polynomial solving (see [6] for instance). Proofs
are given for the sake of completeness and because very sim-
ilar ideas will lead us to the AGCD computation.

3.1 Roots via eigenvalues
Let f(x) =

dP
i=0

fix
i ∈ C[x] be a polynomial of degree d.

Then we consider the matrix of the multiplication by x in
C[x]/(f). Its matrix in the monomial basis 1, . . . , xd−1 is
the following:

Frob(f) =

`
1 x x2 · · · xd−1

´0BBBBB@
1
x
x2

...
xd−1

1CCCCCA

0BBBBBB@

0 0 0 · · · − f0
fd

1 0 0 · · · − f1
fd

0 1 0 · · · − f2
fd

...
...

...
. . .

...

0 0 0 · · · − fd−1
fd

1CCCCCCA
well known as the Frobenius companion matrix associated
with f .

Proposition 1 Let f(x) ∈ C[x]be polynomial of degree d
with d distinct roots Z(f) = {z1, . . . , zd}, then the eigenval-
ues of Frob(f) are the roots of f(x), i.e. Spec(Frob(f)) =
{z1, . . . , zd}.
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Then, to compute the roots of f(x) one can compute the
eigenvalues of its Frobenius companion matrix. This is the
object of the method proposed (reintroduced) by Edelman
and Murakami [9] and revisited by Fortune [10] and many
others trying to use the displacement structure of the com-
panion matrix. In fact, often, the author realized that the
monomial basis of the quotient algebra is not the most suit-
able one and proposed to express the matrix of the same lin-
ear application but in other basis. In the case of the Cheby-
shev basis this algorithm was already known by Barnett [2]
and Cardinal later [6].

In the next section, we will also take advantage of the
structure of the quotient algebra to design an algorithm for
gcd computation mainly using linear algebra (eigenvalues are
used in theory and never computed).

3.2 Structure of quotient and gcd
Let f(x) and g(x) ∈ K[x] such that they are both monic.

As above, we denote A = K[x]/(f) and d = deg(f). We
denote {ζ1, . . . , ζd} the set of roots of f(x) and we assume
that f(x) is squarefree, i.e. ζi 6= ζj if i 6= j. We define

Mg :


A −→ A
h 7−→ π(gh)

where π(p) ∈ A denote the remainder

of p(x) ∈ K[x] divided by f(x). We denote Mg the matrix
of Mg in the monomial basis 1, x, . . . , xd−1 of A but other
bases can be used. A matrix representing the map Mg is
called an extended companion matrix.

Proposition 2 The eigenvalues ofMg are {g(ζ1), . . . , g(ζd)}.
Proof. It is a direct corollary of the proposition 1 since

if we write the matrix of this linear map in the Lagrange
basis associated with {ζ1, . . . , ζd}, then it is0B@ g(ζ1) · · · 0

...
. . .

...
0 · · · g(ζd)

1CA
and gives the wanted result.

Trivially, we have:

Corollary 1 We have corank(Mg) = deg(f)−rank(Mg) =
deg(gcd(f, g)).

The i-th column of the matrix Mg contains the coefficients
of π(xi−1 ∗ g(x)).

Let p1, . . . , pl be a basis of Ker(Mg) and let P1(x), . . . , Pl(x)
be the corresponding polynomials. First we remark that
AnnA(g) = {P (x) ∈ A|P (x) ∗ g(x) = 0} is an ideal of A.

Lemma 1 The ideal AnnA(g) is a principal ideal.

Proof. Let us define

v(x) =
Y

ζ∈Z(f)\(Z(f)∩Z(g))

(x− ζ).

For all h ∈ AnnA(g) it is clear that Z(h) ⊃ Z(f)\(Z(f) ∩
Z(g)) and then v divides h. Furthermore v ∈ AnnA(g) since
in the Lagrange basis

v(x) ∗ g(x) =

dX
i=1

v(ζi)g(ζi) ∗ Li(x) = 0.

This shows that AnnA(g) = (v).

To compute v(x), we built the matrix with columns formed
by p1, . . . , pl and we make a triangulation by operating only
on the columns. This way we obtain the polynomial of min-
imal degree as a linear combination of P1(x), . . . , Pl(x) and
it is easily seen that this v(x) up to a multiplicative scalar
factor.

Lemma 2 The first column of a column echelon form of the
matrix Kg built from a basis of Ker(Mg) is the generator of
AnnA(g), i.e. it is the vector of the coefficients of v(x) up
to a scalar multiplication.

Proof. Since the columns of a column echelon form of
the matrix Kg are linearly independent, they form a basis
of AnnA(g) as K-vector space. So v(x) is a linear combina-
tion of the polynomials associated with those columns. The
polynomial associated with the column echelon form of Kg

have all different degree (because it is an echelon form) and
so v(x) is a linear combination of those polynomial. Because
v(x) as the lowest degree possible, it is a scalar multiple of
the polynomial associated with the first column.

Proposition 3 gcd(f(x), g(x)) = f(x)
v(x)

.

Proof. By construction, we have v(x)∗g(x) = 0 mod f(x)

and so v(x) divide f(x). We also have gcd( f(x)
v(x)

, g(x)) =

gcd(f(x), g(x)) since the roots of f(x)
v(x)

are the root of f(x)

where g(x) vanishes. Since deg( f(x)
v(x)

) = deg(gcd(f(x), g(x))

we have the wanted result.

In all this section, we did not care if the polynomials are
known in monomial or Chebyshev basis for instance. In fact,
in order to have an algebraic algorithm, we only need to be
able to perform Euclidean division and this is always the
case if the polynomial basis is graduated (as for monomial,
Chebyshev, most of the orthogonal bases).

4. BEZOUTIAN AND BARNETT’S
FORMULA

A classical matricial formulation of resultant is given by
the Bézout matrix. In this part, we recall the construction
of the Bézout matrix and a special factorization of the mul-
tiplication matrix expressed in the monomial basis. This
factorization is called Barnett’s formula (see [2]). The Bar-
nett’s formula allows to build the classical extended compan-
ion matrix without using Euclidean division and only stable
numerical computations. Furthermore, this factorization re-
veals that the extended companion matrix has a special rank
structure and we will use this fact later to design a fast al-
gorithm to compute AGCD.

Definition 1 Let f and g ∈ C[x] of degree m and n respec-

tively (with n > m), we denote Θf,g(x, y) = f(x)g(y)−f(y)g(x)
x−y =P

i,j

θi,jx
iyj =

m−1P
j=0

κf,g,j(x)yj. The Bézout matrix associated

with f and g is Bf,g =
`
θi,j

´
i,j∈{0,...,m−1}.

Remark that since Θf,g(x, y) = Θf,g(y, x) the matrix Bf,g
is symmetric. The polynomials κf,g,j(x) are univariate poly-
nomials of degree at most m − 1. One particular case of
interest is when f = 1. In this case the Bézout matrix has a
Hankel structure, i.e. θi,j = θi−1,j+1. In this case we denote
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Hg,i(x) = κ1,g,i(x) for i ∈ {0, . . . ,m − 1} which are called
the Horner polynomials.

Proposition 4 Let i ∈ {0, . . . ,m− 1}, the polynomial
Hg,i(x) = c1,m−i + · · · + c1,mx

i has degree i and since they
have different degree, they form a basis of C[x]/(g). Fur-

thermore, Θ1,g(x, y) =
m−1P
i=0

Hg,m−i(x)yi.

Corollary 2 The matrix B1,g is the basis conversion from
the Horner basis H0, . . . ,Mm−1 to the monomial basis
1, x, . . . , xm−1 of C[x]/(g).

This leads us to the following theorem, known as Barnett’s
formula (see [2]):

Theorem 1 Let Mg be the multiplication matrix associated
with g in C[x]/(f) in the monomial basis, we have:

Mg = Bf,gB
−1
1,f .

Proof. We have Θf,g(x, y) = f(x) g(y)−g(x)
x−y +g(x) f(x)−f(y)

x−y
and so g(x) f(x)−f(y)

x−y ≡ Θf,g(x, y) in C[x, y]/(f(x)). So, for

each i ∈ {0, . . . , deg(f)−1}, we have Θf,g,i(x) ≡ g(x)Θ1,f,i(x).
This last equality means that Bf,g is the matrix of the mul-
tiplication by g(x) in C[x]/(f). The result follows directly
from this fact.

The Barnett’s formula reveals the rank structure of the
multiplication matrix. Furthermore, this formula is already
known if we choose Chebyshev basis instead of monomial ba-
sis to express the polynomials and the matrices have exactly
the same nature.

5. STRUCTURED MATRICES AND ASYMP-
TOTICALLY FAST ALGORITHMS

In this section, we briefly recall some basics on displace-
ment structured matrices and related algorithms. We are
especially interested in two forms of displacement structure:
Toeplitz-like and Cauchy-like structure. See [15] for a more
detailed treatment of this topic.

5.1 Displacement structure
Given an integer n and a complex number ϑ with |ϑ| = 1,

define the circulant matrix

Zϑn =

0BBBBBB@

0 ϑ
1 0

1
. . .

. . .
. . .

1 0

1CCCCCCA ∈ C
n×n.

Next, define the Toeplitz-like displacement operator as the
linear operator

∇T : Cm×n −→ Cm×n

∇T (A) = Z1
mA−AZϑn .

A matrix A ∈ Cm×n is said to be Toeplitz-like if ∇T (A) is a
small rank matrix (where “small” means small with respect
to the matrix size). The number α = rank(∇(A)) is called
the displacement rank of A. If A is Toeplitz-like, then there

exist (non-unique) displacement generators G ∈ Cm×α and
H ∈ Cα×n such that

∇T (A) = GH.

Other formally different (but essentially equivalent) defini-
tions of the Toeplitz-like displacement operator are found
in the literature; as a consequence, the exact displacement
rank of a given matrix may vary slightly depending on the
definition that has been chosen.

Toeplitz-like structure is a generalization of Toeplitz struc-
ture: indeed, it is easy to see that Toeplitz matrices are also
Toeplitz-like. Moreover, note that displacement structure
is preserved under inversion: the inverse of a Toeplitz-like
matrix is again Toeplitz-like, with the same displacement
rank. Sums and products of Toeplitz-like matrices are also
Toeplitz-like, even though the displacement rank may in-
crease.

More examples of Toeplitz-like matrices include:

• Toeplitz-block matrices, such as the Sylvester matrix
associated with two given polynomials;

• Bézout matrices (which can be defined via sums of
products of Sylvester matrices, see e.g. [2]),

• the multiplication matrix Mf (which is a product of
Bézoutians).

In particular, Mf has Toeplitz-like displacement rank equal
to 2, regardless of its size, with respect to the displacement
operator defined above.

A similar definition holds for Cauchy-like structure; here
the relevant displacement operator is

∇C : Cm×n −→ Cm×n
∇C(A) = D1A−AD2,

where D1 and D2 are diagonal matrices of appropriate size
with disjoint spectra. A matrix A is said to be Cauchy-
like if ∇C(A) has small rank. One can then define notions
of Cauchy-like displacement generators and Cauchy-like dis-
placement rank.

5.2 Fast solution of displacement structured
linear systems

Gaussian elimination with partial pivoting (GEPP) is
a well-known and reliable algorithm that computes the so-
lution of a linear system. Its arithmetic complexity for an
n×n matrix is asymptotically O(n3). But if the system ma-
trix exhibits displacement structure, it is possible to apply
a variant of GEPP with complexity O(n2). The main idea
consists in operating on displacement generators rather than
on the whole matrix; see [11] for a detailed description of the
algorithm (which will be denoted as GKO in the following).

Strictly speaking, the GKO algorithm performs GEPP (or,
equivalently, computes the PLU factorization) for Cauchy-
like matrices. However, several authors have pointed out (see
[11], [13], [20]) that Toeplitz-like matrices can be stably and
cheaply transformed into Cauchy-like matrices; the same is
true for displacement generators.

Consider, for instance, the case of square matrices, with
ϑ = 1. Recall that the Fourier matrix F of size n × n,
which defines the discrete Fourier transform, is such that
Fjk = 1√

n
e2πi(j−1)(k−1). We have the following result (taken

from [11]):

77



Proposition 5 Let A be an n× n Toeplitz-like matrix with
generators G and H. Denote by D0 the matrix
diag(1, eπi/n, . . . , e(n−1)πi/n) and let F be the Fourier matrix
of size n × n. Then the matrix FAD−1

0 FH is Cauchy-like,
of the same displacement rank as A, with respect to the dis-
placement operator defined by D1 =
diag(1, e2πi/n, . . . , e2πi(n−1)/n) and D2 =

diag(eπi/n, e3πi/n, . . . , e(2n−1)πi/n). Its Cauchy-like genera-

tors can be computed as Ĝ = FG and ĤH = FD0H
H .

Here MH denotes the transpose conjugate of a given ma-
trix M .

Generalization to the case of m × n rectangular matrices
is possible. In this case, the parameter ϑ should be chosen
so that the spectra of D1 and D2 are well separated (see [1]
and [5]).

We also point out that the GKO algorithm can be adapted
to pivoting techniques other than partial pivoting ([12], [21]).
This is especially useful in case of instability due to internal
growth of generator entries. A Matlab implementation of
the GKO algorithm that takes into account several pivoting
strategies is found in the package DRSolve described in [1].

In our implementation, we use the pivoting strategy pro-
posed in [12]. At each step, the displacement generators G
and B are redefined, so that the columns of the new first
generator G̃ are orthogonal. This result can be achieved by
computing the QR factorization G = QR, where Q has size
n × 2, and defining new generators G̃ = Q and H̃ = RH.
This ensures good conditioning of G̃. One then performs
pivoted Gaussian elimination on the matrix column corre-
sponding to the column of H̃ with maximum 2-norm. Such
a technique involves both row and column permutations; it is
not equivalent to complete pivoting, which would be too ex-
pensive, but numerical results show that it generally allows
a good choice of pivots and reduces the growth of generator
entries. Error analysis for this pivoting strategy shows that
the backward error essentially depends on the Cauchy-like
displacement operator and on the magnitude of the com-
puted upper triangular factor (but not on the magnitude of
the generators).

6. A STRUCTURED APPROACH TO AGCD
COMPUTATION

We propose here an algorithm that exploits the algebraic
and displacement structure of the multiplication matrix to
compute the AGCD of two given polynomials with real co-
efficients (as defined in Section 1).

6.1 Rank estimation
It has been pointed out in Section 3 that the rank defi-

ciency of the multiplication matrix equals the gcd degree. In
an approximate setting, a relevant notion is the approximate
rank (or ε-rank): recall that a matrix Mhas ε-rank k if there

exists a matrix M̃ of exact rank k such that
‚‚‚M̃ −M‚‚‚

2
≤ ε.

The AGCD degree can then be estimated using the approx-
imate rank of the multiplication matrix. Observe that the
technique of computing the AGCD degree via approximate
rank of a resultant (e.g., Sylvester) matrix is often exploited
in the literature: see for instance [7], [8], [16], [5].

Here we use the structured pivoted LU decomposition to
estimate the approximate rank of the multiplication matrix.
Recall that Mg has a Toeplitz-like structure with displace-

ment rank 2; it can then be transformed into a Cauchy-like
matrix M̂g as described in Section 5.2. Fast pivoted Gauss

elimination yields a factorization M̂g = P1LUP2, where L
is a square, nonsingular, lower triangular matrix with diag-
onal entries equal to 1, U is upper triangular and P1,2 are
permutation matrices. Inspection of the diagonal entries (or
of the row norms) of U allows to estimate the approximate

rank of M̂g and, therefore, of Mg.
Developing a reliable and numerically robust factorization-

based strategy to compute the AGCD degree is not an easy
task. As far as the LU factorization is concerned, we men-
tion that Gauss elimination with complete pivoting is rank-
revealing in the exact case, but in principle it might not
detect near rank-deficiency. Since we cannot expect the piv-
oting strategy we use to perform better than complete piv-
oting, we conclude that our strategy cannot ensure an a pri-
ori certification of approximate rank, nor of AGCD degree.
There is, however, a relationship between GKO pivots and
distance from a rank-deficient matrix. Indeed at any GKO
step we have

|a| ≤
‚‚‚Ũ‚‚‚

2
≤ k3/2ρ |a| ,

where eU ∈ Ck×k is the trailing matrix block that has not
yet been factorized, a is the current pivot and ρ is a positive
constant depending on the Cauchy-like displacement oper-
ator. This bound can be derived directly using the results
presented in [12]; see also [5].

We propose in the future to give a more detailed theoreti-
cal and numerical analysis of the effectiveness of our degree
estimation strategy; the proposed numerical experiments are
a first step in this direction.

6.2 Minimization of a quadratic functional
Let us suppose that:

• the polynomial f(x) =
Pn
j=0 fjx

j is exactly known,

• the polynomial g(x) =
Pm
j=0 gjx

j is approximately
known and may be perturbed, so that we consider its
coefficients as variables,

• the AGCD degree is known.

Then we can reformulate the problem of AGCD computation
as the minimization of a quadratic functional. Indeed, recall
that the cofactor v(x) with respect to f(x) is defined by the
“shortest” vector (i.e., the vector with the maximum number
of trailing zeros) that belongs to the null space of Mg. We
assume v(x) to be monic; we denote its degree as k and we
have

Mgv = Mg ·

0BBBBBBBBBB@

v0
...

vk−1

1
0
...
0

1CCCCCCCCCCA
=

0BBBBBBBBBBBBBB@

0
...
...
...
...
...
0

1CCCCCCCCCCCCCCA
.

Also observe that the entries of Mg are linear functions of
the coefficients of g(x). Then the equation Mgv = 0 can be
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rewritten as F(g, v)=0, where the functional F is defined as

F : Cm+1 ×Ck −→ R+

F(g, v) = ‖Mgv‖22.
For a preliminary study of the problem, we have chosen to
solve the equation F(g, v)=0 by means of Newton’s method,
applied so as to exploit structure. Denote by
z = [g0, . . . , gm, v0, . . . , vk−1]T the vector of unknowns; then
each Newton step has the form

z(j+1) = z(j) − J(g(j), v(j))†Mg(j)v
(j).

In particular, notice that the Jacobian matrix associated
with F is an n × (m + k + 1) Toeplitz-like matrix of dis-
placement rank 3. This property allows to compute a solu-
tion of the linear system J(g(j), v(j))y = Mg(j)v(j) in a fast
way; therefore, the arithmetic complexity of each iteration
is quadratic w.r.t. the degree of the input polynomials.

We propose in the future to take into consideration other
optimization methods in the quasi-Newton family, such as
BFGS.

6.3 Computation of displacement generators
In order to perform fast factorization of the multiplication

matrix Mg, we need to compute Toeplitz-like displacement
generators. It turns out that the range of ∇(Mg) is spanned
by the first and last column of the displaced matrix, and
the columns of indices from 2 to n − 1 are multiples of the
first one. Therefore, it suffices to compute a few rows and
columns of Mg in order to obtain displacement generators.
This can be done in a fast and stable way by using Barnett’s
formula. If we denote ej the j-th vector of the canonical

basis of C
n

, then the computation of the j-th column of
Mgcan be seen as
Mg(:, j) = B(f, g) · `B(1, f)−1ej

´
,

that is, it consists in solving a triangular Hankel linear sys-
tem and computing a matrix-vector product. For row com-
putation, recall that the Bezoutian is a symmetric matrix;
we have analogously:

Mg(j, :) = eTj ·B(f, g)·B(1, f)−1 =
`
B(1, f)−1B(f, g)ej

´T
,

so that the computation of a row of Mg amounts to perform-
ing a matrix-vector product and solving a Hankel triangular
system.

A similar approach holds for computation of displacement
generators of the Jacobian matrix J(g, v) associated with the
functional F(g, v).

6.4 Description of the algorithm

Input: coefficients of polynomials f(x) and g(x).
Output: a perturbed polynomial g̃(x) such that f and g̃ have
a nontrivial common factor.

1. Estimate the approximate rank k of Mg by computing a
fast pivoted LU decomposition of the associated Cauchy-
like matrix.

2. Again by using fast LU, compute a vector
v = [v0, v1, . . . ., vk−1, 1, 0, . . . ., 0]T in the approximate null
space of Mg.

3. Apply structured Newton with initial guess (g, v) and
compute polynomials g̃ and ṽ such that f and g̃ have
a common factor of degree deg f − k and ṽ is the monic
cofactor for f .

The algebraic complexity of step 1 is O(deg(f)2) and this
is also the complexity of step 2 and of each iteration of step
3. This asymptotic bound seems to be realistic even if the
degrees used for our experimentations are not large enough
to truly confirm it in practice. The number of Newton iter-
ations needed, in our tests, does not seem to grow with the
degree as far as our implementation allows us to go. So, in
our tests, the complexity of the rank computation dominates
the arithmetical cost of the algorithm.

6.5 Numerical experiments and computational
issues

We have written a preliminary implementation of the pro-
posed method in Matlab (available at the URL
http://www.unilim.fr/pages_perso/paola.boito/MMgcd.m).

The results of a few numerical experiments are shown be-
low. The polynomials f and g are monic and have random
coefficients uniformly distributed over [−1, 1] . They have
an exact GCD of prescribed degree. A perturbation is then
added to g. The perturbation vector has random entries uni-
formly distributed over [−η, η] and its norm is of the order
of magnitude of η. We show:

• the residual F(g̃, ṽ),

• the 2-norm distance between the exact and the com-
puted cofactor v,

• the 2-norm distance between the exact and the com-
puted perturbed polynomial g (which is expected to be
roughly of the same order of magnitude as η).

In the following table we have taken η =1e-5.
n,m, deg gcd(f, g) F(g̃, ṽ) ‖v − ṽ‖2 ‖g − g̃‖2
8, 7, 3 1.02e-15 1.19e-15 1.40e-5
15, 14, 5 1.51e-15 2.26e-15 1.35e-4
22, 22, 7 2.07e-13 1.40e-13 2.20e-4
36, 36, 11 1.19e-12 5.07e-14 0.0012

Here are results for η =1e-8:
n,m, deg gcd(f, g) F(g̃, ṽ) ‖v − ṽ‖2 ‖g − g̃‖2

8, 7, 3 5.49e-15 1.63e-15 5.85e-8
28, 27, 13 7.90e-14 8.98e-14 6.50e-7
38, 37, 13 4.88e-12 4.26e-12 2.30e-5
58, 57, 23 2.03e-12 4.40e-12 2.54e-4

There are several issues in our approach that deserve fur-
ther investigations. Let us mention in particular:

• The choice of a threshold (or a more refined technique)
for estimating approximate rank.

• Normalization of polynomials: here we mostly work
with monic polynomials, but other normalizations may
be considered.

• The structured implementation of the optimization step
(minimizing F(g, v)). We have used for now a heuris-
tic structured version of the Gauss-Newton algorithm.
Observe that each step of classical Gauss-Newton ap-
plied to our problem has the form z(j+1) = z(j) −
y(j), where z(j) is the vector containing the coefficients
of the j-th iterate polynomials g(j) and v(j), and y(j) is
the least-norm solution to the underdetermined system
J(g(j), v(j))y(j) = Mg(j)v(j). Computing this least-
norm solution in a structured and fast way is a dif-
ficult point that will require more work. Our imple-
mentation gives a solution which is not, in general, the
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least-norm one, even though it is typically quite close.
Further work will also include a study of other possi-
ble optimization methods that lend themselves well to
a structured approach.

7. CONCLUSIONS
We have proposed and implemented a fast structured matrix-

based approach to a variant of the AGCD problem, namely,
the problem of computing an approximate greatest common
divisor of two univariate polynomials, one of which is known
to be exact. To our knowledge, this variant has been so far
neglected in the existing literature. It may be also interest-
ing when one polynomial is known with high accuracy and
the other is not.

Our approach is based on the structure of the multipli-
cation matrix and on the subsequent reformulation of the
problem as the minimization of a suitably defined functional.
Our choice of the multiplication matrix Mg over other resul-
tant matrices (e.g., Sylvester, Bézout...) is motivated by

• the smaller size ofMg, with respect e.g. to the Sylvester
matrix,

• the strong link between the null space of Mg and the
gcd, and in particular the fact that the null space of
Mg immediately yields a gcd cofactor,

• the displacement structure of Mg,

• the possibility of computing selected rows and columns
of Mg in a stable and cheap way, thanks to Barnett’s
formula.

This is, however, a preliminary study. Further work will in-
clude generalizations of the proposed problem and a more
thorough analysis of the optimization part of the algorithm.
Furthermore, this approach can be generalized in several in-
teresting ways:

• using better bases than the monomial one,

• it can be extended to some multivariate setting to com-
pute the co-factor of a polynomial g in
C[x1, . . . , xn]/(f1, . . . , fn) when f1, . . . , fn define a com-
plete intersection since Barnett’s formula still holds,

• to compute the AGCD of f with g1, . . . , gk where f is
known with accuracy but g1, . . . , gk are inaccurate, one
can take g as a linear combination of g1, . . . , gk with
our method and succeed with a high probability.
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ABSTRACT
This paper extends earlier results on finding nearest poly-
nomials, expressed in various polynomial bases, satisfying
linear constraints. Results are extended to different bases,
including Hermite interpolational bases (not to be confused
with the Hermite orthogonal polynomials). Results are also
extended to the case of weighted norms, which turns out to
be slightly nontrivial, and interesting in practice.

Categories and Subject Descriptors
1.4 [Symbolic Manipulation]: Applications

General Terms
Algorithms

Keywords
Nearest polynomial; Lagrange basis; Hermite interpolational
basis

1. INTRODUCTION
Given a pair of polynomials f and g, the problem of finding

the smallest perturbations ∆f and ∆g such that f+∆f and
g+∆g have a nontrivial GCD has been well-studied since [2].
In particular, the paper [9] provides a complete and efficient
structured total least squares approach to this problem, when
the 2, 1, or ∞-norm is used and the polynomials (which
may be multivariate for their algorithm) are expressed in
the usual monomial basis.

As in [10], here we look at a related but somewhat simpler
problem, which was discussed in [14]. Our approach here
differs from other works in that it specifically allows weighted
p-norms for all values of p, not just 1, 2, or ∞, at the cost
of essentially restricting to the degree-1 GCD case, that is
x− r where we also allow r =∞ meaning degree reduction,
and it allows essentially arbitrary polynomial bases to be
used. Earlier papers discussing special cases of our result
include [2], [7], and [8].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SNC 2011, June 7–9, 2011, San Jose, California.
Copyright 2011 ACM 978-1-4503-0515-0 ...$10.00.

The use of degree reduction in the Bernstein-Bézier ba-
sis in the Computer-Aided Geometric Design literature is
widespread: see for example the recent work [16], but the
idea is well-understood and in many textbooks. Our ap-
proach differs in that the metric we advocate is a metric on
the vector of polynomial coefficients, whereas the standard
work uses a metric based on an integral function norm. At
this juncture it is not clear that our approach offers any real
advantage, although we believe that it might.

In [10] the problem was stated in four forms, which we
reproduce below. We suppose that we are given f ∈ P where

P ∼= Cn+1[x] = span{φ0(x), φ1(x), . . . , φn(x)}

where the φk(x) form a basis for the set of polynomials with
complex coefficients of degree less than n+ 1. We also sup-
pose that we are given a metric d : P × P −→ R+ ∪ {0}
measuring the distance between polynomials, and given a
complex number r (which, here unlike in [10], may be infin-
ity) that is the desired zero.

• Problem A. Find f̃ ∈ P with f̃(r) = 0 and d(f, f̃)
minimal.

• Problem B. Find f̃ as above but also insist that deg(f) =

deg(f̃).

• Problem C. Given a monic f (in a basis for which this

makes sense), find monic f̃ as above.

• Problem D. Given a polynomial with some intrinsic
(i.e. fixed) coefficients, and some empiric (i.e. con-
taminated by data error) coefficients, find the nearest

f̃ with the same intrinsic coefficients and f̃(r) = 0. For
example, sparse polynomials fit into this category: the
intrinsic coefficients are the zero coefficients.

The solution to Problem A was given in a lecture by
E. Kaltofen in August 1999, based on work by M. Hitz.
It was further studied in [14] in the case φk(x) = xk, the
monomial basis, and d(f1, f2) = ‖f1 − f2‖q, the q-norm of
the vector of coefficients, v, of the difference between f1
and f2:

The formulas of [14] were only implemented in the mono-
mial basis. In [10], following the same approach as [14], we
extended the problem to different bases such as Lagrange,
Bernstein and Chebyshev. In our 2007 SNC extended ab-
stract [3], we briefly discussed the weighted norm and ap-
plied it to this problem. This present paper extends those
results to the Hermite interpolational basis.

81



Table 1: Examples of polynomial bases allowed
Power basis φk(x) = xk

Chebyshev φk(x) = Tk(x)
Pochhammer φk(x) = (x+ a)n

Newton φk(x) = (x− τ1)(x− τ2) · · · (x− τk−1)
Bernstein-Bézier φk(x) =

`
n
k

´
(x− a)k(b− x)n−k/(b− a)n

Lagrange φk(x) = β(x)γk/(x− τk)

Hermite φi,j(x) = β(x)
Psi−1

j=k γi,j(x− τi)
k−j−1

As in that previous paper, we here define a weighted p-
norm with the weight vector w, that is continuous in p. We
make use of its weighted dual norm, the q-norm with the
dual weight vector w∗, where 1/p + 1/q = 1. There is a
uniform relation between the entries of w and w∗ for different
values of p. By using the weighted version, we can insist on
sparsity or on monicity. We may also smooth the polynomial
by lowering the degree of it iteratively. By exploiting the
differentiation matrix (see e.g. [15, Ch. 6]), we may also find
the nearest polynomial with a given derivative zero.

2. PROBLEM SET-UP
We suppose that we are given f ∈ P where

P ∼= Cn+1[x] = span{φ0(x), φ1(x), . . . , φn(x)}
where the φk(x) form a basis for the set of polynomials of
degree less than n+ 1 with complex coefficients. In this pa-
per, we allow the bases listed in table 1. We also suppose
that we are given a metric d : P × P −→ R+ ∪ {0} measur-
ing the distance between polynomials, and given a complex
number r that is the desired zero (it could be∞). So the our

goal is to find f̃ ∈ P with f̃(r) = 0 and d(f, f̃) minimal. This
problem can be stated as an unconstrained problem. We can
also insist on the monicity (in bases where this makes sense)

or sparsity of f̃ .

3. WEIGHTED DUAL NORM
The dual norm is a consequences of Hölder’s inequality. It

can be proved that a weighted norm satisfies a form of the
inequality. Therefore, we may define the dual of a weighted
norm and all the previous work goes through mutatis mu-
tandis.

Consider the weighted p-norm with the following defini-
tion.

Definition 1. Let w = [w0, w1, · · · , wn] be the weight vec-
tor. Then,

‖u‖p,w =


(
Pn

i=0 |wiui|p)1/p if p 6=∞
max0≤i≤n wi|ui| if p =∞ (1)

The weight vector w has for the moment strictly positive
components: wi > 0. Considering the above definition, we
can extend our algorithm for finding the nearest polynomial
with a give zero (NPGZ). An easy way to do this is as follows.

Step 1. Change the weighted problem to an unweighted prob-
lem by scaling.

Step 2. Solve the problem by the un-weighted theorem.

Step 3. Convert the achieved results back to the weighted ver-
sion.

Specifically, given a vector u with ‖u‖p,w = 1, define

û = (w0u0, · · · , wnun).

So for 1 ≤ p <∞ we will have,

‖û‖p =

 
nX

i=0

(|wiui|)p

!1/p

= ‖u‖p,w = 1 ,

and for p =∞

‖û‖p = ‖û‖∞ = max
0≤i≤n

|wiui| = ‖u‖p,w = 1.

Define v̂ as the witness vector with ‖v̂‖∗p = 1 and v̂ · û = 1.
Then if we define v by

v = (w0v̂0, · · · , wnv̂n)

we will have

û · v̂ =

nX
i=0

ûiv̂i =

nX
i=0

(wiui)(w
−1
i vi))

=

nX
i=0

uivi = u · v ,

Note wi > 0 so these all make sense. By the definition of
the dual norm we have

‖v̂‖∗p ≥ |û · v̂| = |u · v|

for 1 ≤ p <∞, with equality if and only if

v̂k =


γ|ûk|p−2 ¯̂uk if ûk 6= 0

0 if ûk = 0
, (2)

which is equivalent to

vk =


γwp

k|uk|p−2ūk if uk 6= 0
0 if uk = 0

. (3)

For p =∞

v̂k =


0 if k 6= k0

γ ¯̂uk0 if k = k0
(4)

which is equivalent to

vk =


0 if k 6= k0

γw2
k0 ūk0 if k = k0

(5)

So assuming wi > 0, define the dual weighted norm as
below.

‖v‖∗p,w = ‖v‖q,w∗

where w∗ = (w−1
0 , · · · , w−1

n ) is the weight vector in the dual
norm.
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So for the case 1 < p <∞ we will have

‖v‖∗p,w = ‖v‖q,w∗ = (

nX
i=0

(|w−1
i vk|)q)1/q

= (

nX
i=0

(|w−1
i γwp

i |ui|p−2ūi|)q)1/q

= (

nX
i=0

(wp−1
i |ui|p−1)q)1/q

= (

nX
i=0

(wp−1
i |ui|p−1)p/(p−1))1/q

= (

nX
i=0

|wiui|p)1/q = (‖u‖pp,w)1/q = 1.

for the case p =∞ (q = 1) we will have

‖v‖∗∞,w = ‖v‖1,w∗ =

nX
k=0

|w−1
k vk|

= w−1
k0
|vk0 | = |w−1

k0
γw2

k0 ūk0 |
= |wk0 ūk0 | = max

0≤i≤n
|wiui|

= ‖u‖p,w = 1.

and finally for the case p = 1 (q =∞) we get

‖v‖∗1,w = ‖v‖∞,w∗

= max
0≤k≤n

w−1
k |vk|

= max
0≤k≤n

|w−1
k wk|uk|−1ūk|

= max
0≤k≤n

1

= 1.

Now consider the following limits that show what happens
when the weight vector has components with a value of zero.
Three different cases are considered.

• (1 < p <∞)←→ (1 < q <∞) :

lim
wj−→0

‖v‖q,w∗ = lim
wj−→0

(

nX
i=0

|w−1
i vi|q)1/q

= lim
wj−→0

(

nX
i=0

w−q
i |vi|q)1/q

= lim
wj−→0

(

nX
i=0,i 6=j

w−q
i |vi|q)1/q + (w−q

j |vj |q)1/q

The second part dominates the limit and therefore the
above limit will be

lim
wj−→0

(w−q
j |vj |q)1/q = lim

wj−→0
w−1

j |vj |

• p = 1←→ q =∞ :

lim
wj−→0

‖v‖∞,w∗ = lim
wj−→0

max
0≤i≤n

w−1
i |vi|

= lim
wj−→0

w−1
j |vj |

• p =∞←→ q = 1 :

lim
wj−→0

‖v‖1,w∗ = lim
wj−→0

(

nX
i=0

w−1
i |vi|)

= lim
wj−→0

nX
i=0,i 6=j

w−1
i |vi|+ w−1

j |vj |

= lim
wj−→0

w−1
j |vj |

Since ‖v‖∗p,w∗ is bounded, in all three cases we must require
vj = 0 and therefore the definition of the weighted dual norm
is now complete.

Definition 2.

‖v‖∗p,w = ‖v‖q,w∗

where w∗ = (w−1
0 , · · · , w−1

n ) and if any wi = 0, then unless
vi = 0 as well, ‖v‖∗p,w = ∞.

The NPGZ algorithm finds the nearest polynomial to a
given zero in q-norm, while it minimizes the perturbations
which are built by the unit vector u in p-norm, where 1/p+
1/q = 1. Therefore, the weight vector used in the routine
is w, the weight vector in p-norm. When wi = 0 we have
w∗i = ∞. It is easier for the user to specify a zero than
infinity. Therefore we ask that the user specifies the dual
weights. In order to add the weight vectors to the algorithm
of NPGZ, we should therefore modify equations (21) and
(22). Here is the modified algorithm.

4. THE WEIGHTED VERSION OF NPGZ
Input: Polynomial f = a ·Φ(x) ∈ Pn, spanned by a basis

Φ, where a is the vector of coefficients, a given zero r (the
case where r =∞ is handled in the next section) and the q-
norm in which we wish to minimize the perturbations. The
vector w is the dual weight vector (in p-norm).

Output: The perturbed polynomial f̃ such that ‖f− f̃‖q,w∗
is minimal.

1. Compute p = q/(q − 1).

2. Let u = µΦ̃(r) where µ = 1
‖Φ‖p,w

and Φ̃i = wiΦi (Φ

is the basis in which f is defined).

3. Compute the minimal perturbations using equations (3)
and (5) and definition (2).

For p 6=∞

∆ak =


µ|f(r)|γwp

k|uk|p−2ūk if wkuk 6= 0
0 if wkuk = 0

, (6)

and for p =∞

∆ak =


0 if k 6= k0

µ|f(r)|γw2
k0ūk0 if k = k0

, (7)

where γ = −signum(f(r)) = − f(r)
|f(r)| and k0 is any, say

the least, index with |uk0 | = 1; there must be at least
one such, because ‖u‖∞ = 1. Then

‖v‖∗ = ‖v‖q = 1

and v · u = γ so |v · u| = 1.

4. For symbolic x, return f̃ = (a + ∆a) ·Φ(x).
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5. LOWER DEGREE
In some cases we are interested in finding the nearest poly-

nomial with a lower degree, i.e. with a root at ∞. How-
ever, we need to discuss this issue in the separate cases
when the polynomial basis is degree-graded, e.g. the mono-
mial basis, and the polynomial basis is not degree-graded,
e.g. Bernstein-Bézier, Lagrange, or Hermite interpolational
bases.

5.1 Degree-graded Bases
In this simple case, all we need to do is force the lead-

ing coefficient to be zero. This approach is used without
comment in many places (for example, in Chebyshev econo-
mization [12]).

Lemma 1. If f(x) =
Pn

k=0 ckφk(x), deg φk = k, then the
nearest polynomial of lower degree to f in any p-norm is
f̃(x) =

Pn−1
k=0 ckφk(x) .

Remark- In this Lemma, we want to force the leading co-
efficient to be zero. In fact we are using p =∞, which is the
second case of step 3 in NPGZ algorithm.

5.2 Bernstein-Bézier Basis
As is well-known given

p(x) =

nX
k=0

C
(n)
k B

(n)
k (x) ,

if p(x) truly is of lower degree, one can also express p(x) in
terms of Bernstein polynomials of lower degree,

p(x) =

n−1X
k=0

C
(n−1)
k B

(n−1)
k (x) .

This is called degree reduction [5]. The process uses the
recurrence in Lemma 2 below. This only works if p(x) really
has degree n− 1 or less.

Given a polynomial p(x) that has been computed by some
process involving errors, p(x) may not be of degree n−1, but
only close to such a polynomial. The purpose of our paper
is to introduce a procedure that can be used to guarantee
lower degree, before the formal process of degree reduction
is carried out.

The next lemma slightly generalizes those in section 3.2
of [5].

Lemma 2.

Cn+1
k =

8><>:
Cn

0 if k = 0
1

b−a

h
k

n+1
Cn

k−1 + (1− k
n+1

)Cn
k

i
if 1 ≤ k ≤ n

Cn
n if k = n+ 1

.

Proof: exercise. Remark. This recurrence relation can be
solved for the vector Cn

k given the vector Cn+1
k . This is what

is meant by ‘degree reduction’.
In Bernstein basis, the vector of leading coefficients will

be

[(−1)0
 
n

0

!
, · · · , (−1)k

 
n

k

!
, · · · , (−1)n

 
n

n

!
] .

After normalization, this vector is the limit of u from equa-
tion (8) as r → ∞. As before, we enforce lower degree by
the linear constraint

nX
k=0

(−1)k

 
n

k

!
Ck = 0

.

5.3 Lagrange Basis
We define the unit vector u to be

u =
Φ(r)

‖Φ(r)‖p , (8)

where p = q/(q−1) and Φ is the polynomial basis. The vec-
tor of leading coefficients of the Lagrange polynomials is pro-
portional to the vector of the barycentric weights, [β0, β1, . . . , βn]T ,
the limit of u from equation (8) as r →∞. We thus enforce
lower degree by the linear constraint

Pn
j=0 βjfj = 0. This is

mathematically equivalent to setting the leading coefficient
of f in the monomial basis

nX
j=0

βjfj =
f (n)(0)

n!

to zero.

5.4 Hermite Basis
Following the methods in [1], [4], and [6] we use the barycen-

tric forms of the Hermite interpolational basis: If the Her-
mite data f (j)(τi)/j! is known for 1 ≤ i ≤ n and 0 ≤ j ≤
si− 1, then the interpolational polynomial f(t) may be rep-
resented (in a numerically stable fashion, if the confluencies
si are not too large) as

f(t) = β(t)

nX
i=1

si−1X
j=0

jX
k=0

γijf
(k)(τi)(t− τi)

k−j−1/k! , (9)

where β(t) is given by (10) below,

β(z) =

nY
i=1

(z − τi)
si , (10)

or f(t) can be written in the “second barycentric form”

f(t) =

Pn
i=1

Psi−1
j=0

Pj
k=0 γijf

(k)(τi)(t− τi)
k−j−1/k!Pn

i=1

Psi−1
j=0 γij(t− τi)−j−1

.

(11)
Evaluating f(t) or its derivatives exactly (to floating-point
precision) at the nodes t = τi requires special treatment, but
this turns out not to be difficult. The coefficients γij appear-
ing in those formulae were computed via divided differences
in [13], but this is numerically unstable for some orderings of
the nodes, and the local series method of [4] is recommended
for stability.

6. EXAMPLES

6.1 Monomial Basis
Let f = 4x3− 1, r = 1/2, q = 2 and w = [0, 1, 0, 2]. There-

fore we have p = 2. Now we let

u = µ[1, r, r2, r3] = µ[1, 1/2, 1/4, 1/8]

where µ = 1
‖Φ(r)‖p,w

and Φ(r) = [1, r, r2, r3]. So ‖u‖p,w = 1.

Considering the previous discussions we get the perturbation
vector as below.

∆ai = µ|f(r)|vi = µ|f(r)|(γwp
i |ui|(p−2)ūi) = [0, 4/5, 0, 4/5].

As seen where wi = 0 the perturbation is zero as well and
therefore the coefficient remains the same.
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6.1.1 How can we use the weight vector to make the
perturbed polynomial monic?

According to this method, for getting a monic result, we
need to take two steps: Start with a monic polynomial (start-
ing with a non-monic polynomial, we need to divide the
polynomial by the leading coefficient in order to make it
monic) and then make the last component of the weight vec-
tor, which corresponds to the leading coefficient, zero. This
way, in fact we do not allow the routine to change the leading
coefficient by making its corresponding perturbation zero.

6.1.2 How can we use the weight vector to make the
perturbed polynomial sparse?

Using the same idea, for insisting on sparsity, we just need
to define a suitable weight vector, instead of modifying the
routine. Here is the recipe of such a vector.

wk =


1 if fk 6= 0
0 if fk = 0

(12)

The meaning of wk = 0 is that, the routine is not permitted
to change fk. And wk = 1 means it is permitted.

Obviously we can change the nonzero entries of w to any
wanted nonnegative number, according to what we wish to
see. This way we can unify our routines for different men-
tioned problems and look at the weight vectors as a sign of
the presence of some specific coefficients in the perturbed
polynomial.

6.1.3 Playing with Weights
Consider the same sparse polynomial f(x) = 1+5x−2x30

at the given zero r = 1 − 1
2
i. Let w be the weight vector

such that

wk =


1 if k = 0, 10, 30
0 otherwise

(13)

By letting w1 = 0, we mean that we want f1 = 5 to remain
untouched. Now the routine is allowed to work on the values
of {f̃0, f̃10, f̃10} for finding the perturbed polynomial.

Our routine NPGZ when q = 1 gives a polynomial very
close to

f̃ = 1 + 5x+ (−0.13− i0.18)x30

for q = 2 a polynomial very close to

f̃ = (1.00−i0.06)+5x+(−0.19−i0.01)x10+(−0.15−i0.18)x30

and for q =∞ a polynomial very close to

f̃ = (1.21−i1.62)+5x+(−1.63−i0.08)x10+(−0.36−i0.16)x30

In the polynomials found, as expected f̃1 = 5. For each
perturbed polynomial, we report ‖∆f‖k,w∗ for k = 1, k = 2,
and k = ∞, in Table 6.1.3. The diagonal entries should be
the smallest in each column.

If we change our weight vector to

w = [w0, 0, · · · , 0, w10, 0, · · · , 0, w30] = [2, 0, · · · , 0, 1, 0, · · · , 0, 4]
(14)

then NPGZ gives the following results.
For q = 1 a polynomial very close to

f̃ = 1 + 5x+ (−0.13− i0.18)x30

for q = 2 a polynomial very close to

f̃ = (1− i0.01) + 5x− (0.01 + i0.0006)x10− (0.13 + i0.18)x30

Table 2: Distances between f = −2x30 + 5x + 1 and
f̃ using weighted 1,2 and ∞ norms with the weight
vector (13).

q ‖∆f‖1,w∗ ‖∆f‖2,w∗ ‖∆f‖∞,w∗

1 1.8758 1.8758 1.8758
2 2.1162 1.8640 1.8522
∞ 4.9254 2.8437 1.6418

Table 3: Distances between f = −2x30 + 5x+ 1 and f̃
using weighted norms with the weight vector (14).

q ‖∆f‖1,w ‖∆f‖2,w ‖∆f‖∞,w

1 0.4689 0.4689 0.4689
2 0.4893 0.4687 0.4684
∞ 1.3470 0.7777 0.4490

and for q =∞ a polynomial very close to

f̃ = (1.11− i0.89)+5x− (0.44+ i0.02)x10− (0.21+ i0.17)x30

For each perturbed polynomial, we report ‖∆f‖k,w for k =
1, k = 2, and k = ∞, in Table 6.1.3. The diagonal entries
should be the smallest in each column.

6.2 Lagrange Basis
Suppose that we are given the values

f = [−26/27, 8/9,−22/27, 28/27]

of a polynomial on the nodes [−1,−1/3, 1/3, 1]. Suppose also
that we apply Newton’s iteration (just once, to exaggerate
the effect)

xn+1 = xn +

P3
k=0(βjfj)/(xn − zj)P3

k=0(βjfj)/(xn − zj)2
(15)

to the barycentric rational function R(z) = f(z)/`(z), start-
ing from an initial guess x0 = 0, and find the root x∗ ≈
0.01234567903. We deflate the polynomial by dividing each
fj by (x∗ − zj), giving a new vector of values,

g = [−.951220, 2.57143, 2.53846,−1.05] .

Obviously this is supposed to be of lower degree, and so we
may throw away one data point. But as is well known for
the monomial basis, deflation may introduce errors, and we
might be better off by first applying NPGZ for finding a
polynomial of lower degree. When we do this, we find

ĝ = [−.951204, 2.57141, 2.53848, 0.050015] ,

which differs from the first by about 1.5 · 10−5, and now
we may throw away any data point without fear of loss of
information because up to one ulp these are the values of a
degree 2 polynomial on this set of nodes.

6.3 Bernstein Basis
Suppose the coefficients of a degree 5 Bernstein expansion

on [0, 1] are

[0., 50.097,−25.006,−25.200, 50.214, 0.] .
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We suspect this is close to a degree 4 polynomial. If we sim-
ply apply the degree-reducing procedure, we get the vector
[0., 62.621,−83.423, 62.135, 0.]. If we first apply NPLD, with
weights given by the absolute values of the coefficients, then
after degree-reduction we get [0., 62.621,−83.423, 62.767, 0.].
These results do not differ much, but they do differ, and in-
deed the original unfiltered polynomial has a term 2.5 · x3

(after conversion to the monomial basis, which we avoid)
which may not appear negligible unless carefully considered.

6.4 Hermite Basis
Suppose that τ = [−1, r, 1], and we know the values of

the functions at these nodes and the derivative value at the
second node. We take these values to be y = [1, [1, 0], 1].
Here, β(z) = (z − 1)(z − r)2(z − 1). Then β(z)−1 has the
partial fraction expansion

1

(z − 1)(z − r)2(z − 1)
= −1/2

1

(1 + r)2 (z + 1)

−2
r

(1 + r)2 (r − 1)2 (z − r) + 1/2
1

(r − 1)2 (z − 1)

+
1

(1 + r) (r − 1) (z − r)2 .

Now we can write

P (z) = β(z)

3X
i=1

si−1X
j=0

jX
k=0

γijρik(z − τi)
k−j−1 , (16)

where ρik are the data values, i is the node index, and k
represents the derivative level, i.e. k = 0 shows the function
value and k = 1 represents the first derivative. If we expand
P (z) , we find that the basis function are

Φ0(z) = γ10(z − r)2(z − 1) (17)

Φ1(z) = γ20(z − r)(z + 1)(z − 1) + γ21(z + 1)(z − 1) (18)

Φ2(z) = γ21(z − r)(z + 1)(z − 1) (19)

Φ3(z) = γ30(z + 1)(z − r)2 . (20)

If we normalize these basis functions (divide by z3) and take
the limit when z →∞ , we get the barycentric weights.

In this example the coefficient of Φ1(z) is assumed to be
very uncertain. Therefore, we want to put less emphasis on
this coefficient. If we choose the weight associated with this
coefficient be very small, or equivalently, we choose a very
large dual weight, then we can apply our NPGZ routine to
get a zero at ∞ .

7. OBSERVATIONS ABOUT NUMERICAL
STABILITY

The barycentric weights may vary widely in magnitude, in
which case it is known that interpolation is very sensitive to
data errors. Likewise, the elements of the vector of leading
coefficients (−1)k

`
n
k

´
for the Bernstein case also vary widely

in magnitude, and the reader ought to be concerned for the
numerical stability of this process.

The one-row matrix formed by B = [(−1)k
`

n
k

´
] has only

one singular value σ1, and σ1 = O(2n). Thus, errors in coef-
ficients may be amplified by as much as 2n on multiplication
by this vector. One expects, in fact, that Bv ≈ 2nε. But we
are actually using the reverse of this process: we are looking
for a vector of deltas that satisfy B∆(f) = 0, and hence we
might expect to damp errors.

What really helps, though, is the fact that we have an
analytic solution to this minimization problem. The compu-
tation of the components of v involves only powers, absolute
values, multiplication, and division, and tests for zero. The
size of the resulting ∆(f) is proportional to the residual f(r)
(for a finite root), and this may be subject to large relative
errors if the residual is small, but we are going to add this
change to f , and hence the effect of the large errors is muted.

8. CONCLUSIONS
We have presented an algorithm here that finds the nearest

(in a weighted, parameterized vector coefficient norm) poly-
nomial that satisfies a linear constraint. To do so, we have
defined a dual norm and used the converse of the Hölder in-
equality. The algorithm has linear cost in the length of the
input polynomial coefficient (assuming, for example, that
the basis elements (and thus for example the barycentric
weights) are known). One might think of using this itera-
tively as a first approximation for finding the nearest poly-
nomial that satisfies several linear constraints, but if there
are too many then a direct linear algebraic approach as in [9]
would be preferable. One of the main contributions of this
article is the correct definition of a weighted dual norm.
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APPENDIX
A. THE NPGZ ALGORITHM

This algorithm was discussed in [11] and [10] in detail.
Input: Polynomial f = a ·Φ(x) ∈ Pn, spanned by a basis Φ
where a is the vector of coefficients, a given zero r and the
q-norm in which we wish to minimize the perturbations.
Output: The perturbed polynomial f̃ such that ‖f − f̃‖q
is minimal.

1. Compute p = q/(q − 1).

2. Let u = µΦ(r) where µ = 1
‖Φ(r)‖p .

3. Compute the minimal perturbations using Proposition 1.

For p 6=∞

∆ak =


µ|f(r)|γ|uk|p−2ūk if uk 6= 0

0 if uk = 0
, (21)

and for p =∞

∆ak =


0 if k 6= k0

µ|f(r)|γūk0 if k = k0
, (22)

where γ = −signum(f(r)) = − f(r)
|f(r)| and k0 is any, say

the least, index with |uk0 | = 1; there must be at least
one such, because ‖u‖∞ = 1. [The ambiguity if there
are more than one such k0 was addressed in [11, 10].]
Then

‖v‖∗ = ‖v‖q = 1

and v · u = γ so |v · u| = 1.

4. For symbolic x, return f̃ = (a + ∆a) ·Φ(x) .

Proposition 1. If 1 ≤ p <∞ and u is such that ‖u‖p =
1, define v so that

vk =


γ|uk|p−2ūk if uk 6= 0

0 if uk = 0
(23)

where γ is an arbitrary constant with |γ| = 1 and ūk is the
conjugate of uk.

If p =∞, take instead

vk =


0 if k 6= k0

γūk0 if k = k0
(24)

where k0 is any, say the least, index with |uk0 | = 1; there
must be at least one such, because ‖u‖∞ = 1. [The ambiguity
if there are more than one such k0 was not discussed in [14].]
Then

‖v‖∗ = ‖v‖q = 1

and v · u = γ so |v · u| = 1.
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ABSTRACT
We present a new certified and complete algorithm to compute
arrangements of real planar algebraic curves. Our algorithm
provides a geometric-topological analysis of the decompo-
sition of the plane induced by a finite number of algebraic
curves in terms of a cylindrical algebraic decomposition of
the plane. Compared to previous approaches, we improve in
two main aspects: Firstly, we significantly limit the types of
involved exact operations, that is, our algorithms only use re-
sultant and gcd computations as purely symbolic operations.
Secondly, we introduce a new hybrid method in the lifting
step of our algorithm which combines the use of a certified
numerical complex root solver and information derived from
the resultant computation. Additionally, we never consider
any coordinate transformation and the output is also given
with respect to the initial coordinate system.

We implemented our algorithm as a prototypical package
of the C++-library Cgal. Our implementation exploits
graphics hardware to expedite the resultant and gcd com-
putation. We also compared our implementation with the
current reference implementation, that is, Cgal’s curve anal-
ysis and arrangement for algebraic curves. For various series
of challenging instances, our experiments show that the new
implementation outperforms the existing one.

Categories and Subject Descriptors
I.1.2 [Symbolic and Algebraic Manipulation]: Algo-
rithms; G.4 [Mathematical Software]: Reliability and Ro-
bustness; D.2.13 [Software Engineering]: Reusable Soft-
ware
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General Terms
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Keywords
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1. INTRODUCTION
Computing the topology of a planar algebraic curve

C = V (f) = {(x, y) ∈ R2 : f(x, y) = 0} (1.1)

can be considered as one of the fundamental problems in real
algebraic geometry with numerous applications in compu-
tational geometry, computer graphics and computer aided
geometric design. Typically, the topology of C is given in
terms of a planar graph GC embedded in R2 that is isotopic
to C. For a geometric-topological analysis, we further require
the vertices of GC to be located on C. In this paper, we
study the general problem of computing an arrangement of
a given set of algebraic curves, that is, the decomposition
of the plane into cells of dimensions 0, 1 and 2 induced by
the given curves. The proposed algorithm is certified and
complete, and the overall arrangement computation is exclu-
sively carried out in the initial coordinate system. Efficiency
of our approach is shown by implementing our algorithm and
comparing it to the current reference implementation.

There exist a number of certified and complete approaches
to determine the topology of an algebraic curve; we refer
the reader to [12, 17, 22, 24, 29] for recent work and further
references. At present, only the method from [17] has been
extended to arrangement computations of arbitrary algebraic
curves [16]. Common to all existing approaches is that, in a
first step, they use eliminations techniques (e.g., resultants) to
project the x-critical points (i.e., points p ∈ C with fy(p) = 0)
of the curve into one dimension. In a second step, the fiber at
each of these projected points is computed. In general, this
lifting step has turned out to be the most time-consuming
part because it amounts to determining the real roots of a non-
square univariate polynomial f(α, y) ∈ R[y] with algebraic
coefficients. The high computational cost for computing the
roots of f(α, y) is mainly due to more comprehensive algebraic
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machinery such as subresultants (in [16, 17, 22]), Gröbner
basis or rational univariate representation (in [12]) in order
to obtain additional information on the number of distinct
real (or complex) roots of f(α, y) or the multiplicity of the
multiple roots of f(α, y). In addition, all except the method
from [12] consider a shearing of the curve which guarantees
that the sheared curve has no two x-critical points sharing
the same x-coordinate which in turn simplifies the lifting
step but for the price of giving up sparseness of the initial
input; an approach, which usually results in larger bitsizes of
the coefficients and considerably increased running times. In
a final connection step, arcs incident to the same x-critical
points are identified.

The high-level description of the algorithm presented in this
paper is almost identical to that of the existing methods, and,
similar to [16, 17], we reduce the arrangement computation
to the geometric-topological analysis of a single curve and
of a pair of curves. However, we improve the analyses in
the following two ways: Firstly, we considerably reduce the
amount of purely symbolic computations, that is, we only
use resultant and gcd computation. The main reason for
this approach is that we can outsource both computations
to graphics hardware [21, 19, 20], removing a bottleneck
of previous methods which was due to the high amount of
symbolic operations. Secondly, for curve analysis, we use a
result from Teissier [23, 36] to obtain additional information
for the number of distinct complex roots of f(α, y) along a
critical fiber (actually, an upper bound which matches the
exact number in most cases; see Section 2.3 for details). We
combine this information with a new certified complex root
solver [25] to isolate the roots of f(α, y). The latter symbolic-
numeric step applies as an efficient filter denoted FastLift
which fails only in very special instances. Each failure can be
recognized and in order to achieve completeness of our overall
method (i.e., for cases where FastLift fails), we modify the
method from [4] for solving bivariate polynomial systems in
order to isolate the roots of f(α, y).

We implemented our algorithm as a development branch
of Cgal’s1 bivariate algebraic kernel (Ak 2 for short) which
is based on the algorithms from [16, 17] for topology and ar-
rangement computation. Intensive benchmarks [17, 29] have
shown that Ak 2 can be considered as the current reference
implementation. For fair comparison, we run an Ak 2 with
GPU-enabled resultants and gcds against our implementation
on numerous challenging benchmark instances. Our experi-
ments show that the new curve analysis outperforms Ak 2
for all instances. More precisely, our method is, on average,
twice as fast for easy instances such as non-singular curves in
generic position. For hard instances, we typically improve by
large factors between 5 and 120 which is mainly due to the
new symbolic-numeric filter FastLift, the exclusive use of
resultant and gcd computations as the only symbolic opera-
tions and the absence of shearing. Computing arrangements
mainly benefit from the improved curve-analyses and from
avoiding subresultants and shears for harder instances. In
summary, the presented approach demonstrates the strength
of symbolic-numeric techniques. It further proves that, in
order to achieve practical efficiency, it is of great importance
to reduce the amount of symbolic operations and to consider
approximate operations whenever this is possible.

1Computational Geometry Algorithms Library, www.cgal.
org; see also http://exacus.mpi-inf.mpg.de/cgi-bin/
xalci.cgi for an online demo on arrangement computation.

Finally, we are confident that our new approach will have
positive impacts in the following respects: There exist several
non-certified (or non-complete) approaches either based on
subdivision [2, 11, 28, 30, 34, 35] or homotopy methods [27].
They show excellent behavior for most inputs. However,
in order to guarantee exactness for all possible inputs (e.g.,
singular curves), additional certification steps (e.g., worst
case separation bounds for subdivision methods) have to be
considered, an approach which has not shown to be effective
in practice so far. An advantage of the latter methods, com-
pared to elimination approaches, is that they are local and
do not need (global) algebraic operations. In our method, we
considerably reduced the amount of such algebraic operations
and outsourced the remaining computations to graphics card.
Hence, it seems reasonable that combining our algorithm with
a subdivision or a homotopy approach eventually leads to a
certified and complete method which shows excellent “local”
behavior as well. We further see numerous applications of our
method, in particular, when computing arrangements of sur-
faces. The actual implementation [7] for surface triangulation
is crucially based on planar arrangement computations of
singular curves. Thus, we are confident that the algorithm’s
efficiency can be considerably improved by using the new
algorithm for planar arrangement computation.

2. CURVE ANALYSIS

2.1 The Algorithm
The input of our algorithm is a planar algebraic curve C as

defined in (1.1), where f is a square-free, bivariate polynomial
f ∈ Z[x, y] with integer coefficients. If f is considered as
polynomial in y with coefficients fi(x) ∈ Z[x], its coefficients
typically share a trivial content h := gcd(f0, f1, . . .). A non-
trivial content h /∈ Z defines vertical lines at the real roots
of h. Our algorithm handles this situation by dividing out h
first and finally merging the vertical lines defined by h = 0
and the analysis of the curve C′ := V (f/h) at the end of
the algorithm; see [24] for details. Hence, throughout the
following considerations, we can assume that h is trivial, thus
C contains no vertical line.

The algorithm returns a planar graph GC that is isotopic2

to C, where all vertices V of GC are located on C. The
proposed algorithm follows a classical cylindrical algebraic
decomposition approach. We start with a high-level descrip-
tion of the three-step algorithm.

In the first step, the projection phase, we project all
x-critical points (α, β) ∈ C (i.e., f(α, β) = fy(α, β) = 0)
onto the x-axis by means of a resultant computation and root
isolation for the elimination polynomial. The set of x-critical
points comprises exactly the points where C has a vertical
tangent or is singular. It is well known (e.g., see [24, Theo-
rem 2.2.10] for a short proof) that, for any two consecutive
x-critical values α and α′, C is delineable over I = (α,α′),
that is, C|I×R decomposes into a certain number mI of dis-
joint function graphs CI,1, . . . , CI,mI . In the lifting phase,
we first isolate the roots of the (square-free) intermediate
polynomial f(qI , y) ∈ Q[y], where qI constitutes an arbitrary
chosen but fixed rational value in I. This computation yields
the number mI (= number of real roots of f(qI , y)) of arcs

2GC is isotopic to C if there exists a continuous mapping
φ : [0, 1] × C 7→ R2 with φ(0, C) = C, φ(1, C) = GC and
φ(t0, .) : C 7→ φ(t0, C) a homeomorphism for each t0 ∈ [0, 1].
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above I and corresponding representatives (qI , yI,i) ∈ CI,i
on each arc. We further compute all points on C that are
located above an x-critical value α, that is, we determine
the real roots yα,1, . . . , yα,mα of each (non square-free) fiber
polynomial f(α, y) ∈ R[y]. From the latter two computa-
tions, we obtain the vertex set V of GC as the union of all
points (qI , yI,i) and (α, yα,i). In the final connection phase ,
which concludes the topology analysis, we determine which
of the above vertices are connected via an arc of C. For
each connected pair (v1, v2) ∈ V , we insert a line segment
connecting v1 and v2. It is then straightforward to prove
that GC is isotopic to C; see [24, Theorem 6.4.4] for a proof.
We remark that we never consider any kind of coordinate
transformation, even in case where C contains two or more
x-critical points sharing the same x-coordinate.

We next describe the three phases in detail:

2.1.1 Projection Phase
In the projection step, we follow well-known techniques

from elimination theory, that is, we compute the resultant
R(x) := res(f, fy; y) ∈ Z[x] and a square-free factorization
of R. More precisely, we determine square-free and pair-
wise coprime factors ri ∈ Z[x], i = 1, . . . ,deg(R), such that

R(x) =
Qdeg(R)
i=1 (ri(x))i. We remark that, for some i ∈

{1, . . . ,deg(R)}, ri(x) ≡ 1. Yun’s algorithm [38, Alg. 14.21]
constructs such a square-free factorization by essentially com-
puting greatest common divisors of R and its higher deriva-
tives in an iterative way. Next, we isolate the real roots αi,j ,
j = 1, . . . , `i, of the polynomials ri which in turn are i-fold
roots of R. More precisely, we compute disjoint intervals
I(αi,j) ⊂ R with rational endpoints such that I(αi,j) con-
tains αi,j but no other root of ri, and the union of all I(αi,j),
j = 1, . . . , `i, contains all real roots of ri. For isolating the
real roots, we consider the Descartes method [15, 31] as a
well-suited algorithm. By further refining the isolating in-
tervals, we can achieve that all intervals I(αi,j) are pairwise
disjoint and, thus, also constitute isolating intervals for the
real roots of R. Then, for each pair α and α′ of consecutive
roots of R defining an open interval I = (α,α′), we choose
a separating rational value qI in between the corresponding
isolating intervals.

2.1.2 Lifting Phase
Isolating the roots of the intermediate polynomials f(qI , y)

is rather straightforward: since f(qI , y) is a square-free poly-
nomial with rational coefficients, the Descartes method di-
rectly applies. Determining the roots of f(α, y) ∈ R[y] at an
x-critical value α is more complicated because f(α, y) has
multiple roots and, in general, irrational coefficients. We
propose to run the following approach: We first consider a
method denoted FastLift which works as a filter for the
fiber computation. We will see in the experiments enlisted in
Section 4 that FastLift applies to all fibers for the majority
of all input curves and only fails for a small number of fibers
for some very special instances. In case of success, the fiber
at α is returned. If FastLift fails, we use a second method
denoted Lift which serves as a “backup” for FastLift. In
comparison to FastLift, Lift is a complete method which
applies to any input curve and any corresponding x-critical
value. The price is, however, that Lift is less efficient. Nev-
ertheless, our experiments show that even the exclusive use
of Lift significantly improves upon existing approaches.

Lift — a complete method for fiber computation: Lift is
based on our recent studies on solving a bivariate polynomial
system. In [4], we introduced a highly efficient method, de-
noted Bisolve, to isolate the real solutions of a system of
two bivariate polynomials f, g ∈ Q[x, y]. Its output consists
of a set of disjoint boxes B1, . . . , Bm ⊂ R2 such that each
box Bi contains exactly one real solution ξ := (x0, y0) of
f(x, y) = g(x, y) = 0, and the union of all Bi covers all so-
lutions. Furthermore, for each solution ξ, Bisolve provides
square-free polynomials p, q ∈ Z[x] with p(x0) = q(y0) = 0
and corresponding isolating (and refineable) intervals I(x0)
and I(y0) for x0 and y0, respectively. Comparing ξ with
another point ξ1 = (x1, y1) ∈ R2 given by a similar repre-
sentation is rather straightforward. Namely, let p̃, q̃ ∈ Z[x]
be corresponding defining square-free polynomials and I(x1)
and I(y1) isolating intervals for x1 and y1, respectively, then

we can compare the x- and y-coordinates of ξ and ξ̃ via gcd-
computation of the defining univariate polynomials and sign
evaluation at the endpoints of the isolating intervals (see [3,
Algorithm 10.44] for more details).

In order to compute the fiber at an x-critical value α of C,
we proceed as follows: We first use Bisolve to determine all
solutions pi = (α, βi), i = 1, . . . , l, of the system f = fy = 0
with x-coordinate α. Then, for each pi, we compute

ki := min{k : fyk (α, βi) =
∂kf

∂yk
(α, βi) 6= 0} ≥ 2.

The latter computation is done by iteratively calling Bisolve
for fy = fy2 = 0, fy2 = fy3 = 0, etc., and sorting the
solutions along the vertical line x = α. We eventually obtain
disjoint intervals I1, . . . , Il and corresponding multiplicities
k1, . . . , kl such that βj is a kj-fold root of f(α, y) which is
contained in Ij . The intervals Ij already separate the roots
βj from any other multiple root of f(α, y), however, Ij might
still contain ordinary roots of f(α, y). Hence, we further
refine each Ij until we can guarantee via interval arithmetic

that ∂
kj f

∂y
kj

(α, y) does not vanish on Ij . If this condition is

fulfilled, then Ij cannot contain any root of f(α, y) except
βj due to the mean value theorem, thus, Ij is isolating.

After refining all intervals Ij , it remains to isolate the ordi-
nary roots of f(α, y). For this purpose, we use the so-called
Bitstream Descartes isolator [18] (Bdc for short) which can
be considered as a variant of the Descartes method working
on polynomials with interval coefficients. This method can
be used to get arbitrary good approximations of the real
roots of a polynomial with “bitstream” coefficients, that is,
coefficients that can be approximated to arbitrary precision.
Bdc starts from an interval guaranteed to contain all real
roots of a polynomial and proceeds with interval subdivisions
giving rise to a subdivision tree. Accordingly, the approxi-
mation precision for the coefficients is increased in each step
of the algorithm. Each leaf of the tree is associated with
an interval I and stores a lower bound l(I) and an upper
bound u(I) on the number of real roots within this interval
based on Descartes’ Rule of Signs. Hence, u(I) = 0 im-
plies that I contains no root and thus can be discarded. If
l(I) = u(I) = 1, then I is an isolating interval for a simple
root. Intervals with u(I) > 1 are further subdivided. We
remark that, after a number of iterations, Bdc isolates all
simple roots of a bitstream polynomial, and intervals not
containing any root are eventually discarded. For a multiple
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Figure 2.1: The figure on the left shows a curve C with two x-extremal points and one singular point (red dots). In the projection phase,
these points are projected onto the x-axis and rational points separating the x-critical values are inserted (red crosses). In the lifting
phase, the fibers at the critical values (red dots) and at the rational points in between (red crosses) are computed. In the connection
phase, each pair of lifted points connected by an arc of C is determined and a corresponding line segment is inserted. The right figure
shows the final graph that is isotopic to C.

root ξ, Bdc constructs intervals I which approximate ξ to an
arbitrary good precision but never certifies such an interval
I to be isolating.

In our situation, we have already isolated the multiple
roots of f(α, y) by the intervals Ij . It remains to isolate
the simple roots of f(α, y). Therefor, we consider the fol-
lowing modification of Bdc : We discard an interval I if
one of following three cases applies: i) u(I) = 0, or ii) I
is completely contained in one of the intervals Ij , or iii) I
contains an interval Ij and u(I) ≤ kj . Namely, in each of
these situations, I cannot contain an ordinary root of f(α, y).
An interval I is stored as isolating for an ordinary root of
f(α, y) if l(I) = u(I) = 1 and I intersects no interval Ij . All
intervals which do not fulfill one of the above conditions are
further subdivided. In a last step, we sort the intervals Ij
(isolating the multiple roots) and the isolating intervals for
the ordinary roots along the vertical line.

We remark that Bisolve applied in Lift reuses the re-
sultant obtained in the projection phase of the algorithm.
Furthermore, it is a local approach in the sense that its cost
is proportional to the number of x-critical fibers considered.
This will turn out to be beneficial in the overall approach
where most fibers can successfully be treated by FastLift:

FastLift — a fast method for fiber computation: FastLift
is a hybrid method to isolate all complex roots and, thus,
also the real roots of f(α, y), where α is an x-critical value
of C. It combines a numerical solver to compute arbitrary
good approximations (i.e., complex discs in C) of the roots,
an exact certification step to certify the existence of roots
within the computed discs and the following result due to
Teissier [23, 36]:

Lemma 1 (Teissier). For an x-critical point p = (α, β)
of C = V (f), it holds that

mult(f(α, y), β) = Int(f, fy, p)− Int(fx, fy, p) + 1, (2.1)

where mult(f(α, y), β) denotes the multiplicity of β as root
of f(α, y) ∈ R[y], Int(f, fy, p) the intersection multiplicity3

of the curves implicitly defined by f = 0 and fy = 0 at p,
and Int(fx, fy, p) the intersection multiplicity of fx = 0 and
fy = 0 at p.

Remark. In the case, where fx and fy share a common
non-trivial factor h = gcd(fx, fy) ∈ Z[x, y], h does not vanish
on any x-critical point p of C. Namely, h(p) = 0 would imply

3The intersection multiplicity of two curves f = 0 and g = 0
at a point p is defined as the dimension of the localization of
C[x, y]/(f, g) at p, considered as a C-vector space.

that Int(fx, fy, p) =∞ and, thus, Int(f, fy, p) =∞ as well,
a contradiction to our assumption on f to be square-free.
Hence, we have Int(fx, fy, p) = Int(f∗x , f

∗
y , p) with f∗x := fx/h

and f∗y := fy/h and, thus, the following formula (which is
equivalent to (2.1) for trivial h) applies:

mult(f(α, y), β) = Int(f, fy, p)− Int(f∗x , f
∗
y , p) + 1, (2.2)

We come to the description of FastLift. In the first step,
we determine an upper bound m∗α for the actual number mα

of distinct complex roots of f(α, y) which matches mα in most
situations. We distinguish the cases deg f(α, y) 6= degy f and
deg f(α, y) = degy f . In the first case, C has a vertical
asymptote at α. Then, we define m∗α := deg f(α, y) which is
obviously an upper bound for mα. If C is in generic position,
f(α, y) has only ordinary roots and, thus, m∗α = mα.

We now consider the case deg f(α, y) = degy f . Then, due
to the formula (2.2), we have

mα = #{distinct complex roots of f(α, y)}
= degy f − deg gcd(f(α, y), fy(α, y))

= degy f −
X

β∈C:f(α,β)=0

(mult(f(α, y), β)− 1)

= degy f −
X
β∈C:

(α, β) is x-critical

`
Int(f, fy, (α, β))− Int(f∗x , f

∗
y , (α, β))

´
= degy f −mult(R,α) +

X
β∈C:

(α, β) is x-critical

Int(f∗x , f
∗
y , (α, β)) (2.3)

≤ degy f −mult(R,α) +
X
β∈C

Int(f∗x , f
∗
y , (α, β)) (2.4)

= degy f −mult(R,α) + mult(Q,α) =: m∗α (2.5)

where R(x) = res(f, fy; y) and Q(x) := res(f∗x , f
∗
y ; y). The

equality (2.3) is due to the fact that f has no vertical asymp-
tote at α and, thus, the multiplicity mult(R,α) equals the
sum

P
β∈C Int((f, fy, (α, β)) of the intersection multiplicities

of f and fy in the fiber at α. (2.5) follows by an analogous ar-
gument for the intersection multiplicities of f∗x and f∗y along
the vertical line at α. From the square-free factorization
of R, we already know mult(R,α), and mult(Q,α) can be
determined by computing Q, its square-free factorization and
checking whether α is a root of one of the factors. If the
curve C is in generic position,4 the inequality (2.4) becomes

4The reader may notice that generic position is used in a
different context here. It is required that all intersection
points of f∗x and f∗y above α are located on the curve C. We
remark that this requirement is usually fulfilled even if there
are two x-critical values sharing the same x-coordinate.
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an equality because then f∗x and f∗y do not intersect in any
point above α which is not located on C. Thus, in this case,
we have mα = m∗α.

In the second step of FastLift, we aim to isolate all
(complex) roots of f(α, y). The above computation of an
upper bound m∗α motivates the following ansatz: In order
to determine the roots of f(α, y), we combine a numerical
complex solver for f(α, y) and an exact certification step.
More precisely, we use the numerical solver to determine
disjoint discs D1, . . . , Dm in the complex space and an exact
certification step to certify the existence of a certain number
mi ≥ 1 of roots (counted with multiplicity) of f(α, y) within
each Di; see Section 2.2 for details. Increasing the working
precision and the number of iterations for the numerical
solver eventually leads to arbitrary well refined discs Di – but
without a guarantee that these discs are actually isolating!
Since m∗α constitutes an upper bound on the number of
distinct complex roots of f(α, y), we must have m ≤ mα ≤
m∗α at any time. Hence, if the number of discs m equals the
upper bound m∗α, we know for sure that all complex roots
of f(α, y) are isolated. Then, the isolating discs D1, . . . , Dm
are further refined until, for all i = 1, . . . ,m,

Di ∩ R = ∅ or D̄i ∩Dj = ∅ for all j 6= i, (2.6)

where D̄i := {z̄ : z ∈ Di} denotes the complex conjugate
of Di. The latter condition guarantees that each disc Di

which intersects the real axis actually isolates a real root of
f(α, y). In addition, for each real root isolated by some Di,
we further obtain its multiplicity mi as a root of f(α, y).

If m 6= m∗α, either one of the roots of f(α, y) is still not
isolated or it holds that mα < m∗α. In the case that we do not
succeed, that is, we still have m < m∗α after several iterations
with increasing precision,5 we stop FastLift and proceed
with Lift. In Section 2.3, we discuss the few failure cases.

We remark that the use of Teissier’s formula is not entirely
new when computing the topology of algebraic curves. In [12,
29], the formula (2.1) was used in its simplified form to
compute mult(β, f(α, y)) for a non-singular point p = (α, β)
(i.e., Int(fx, fy, p) = 0). In contrast, we use the formula in
its general form and sum up the information along the entire
fiber which eventually leads to the upper bound m∗α on the
number of distinct complex roots of f(α, y).

2.1.3 Connection Phase
Let us consider a fixed x-critical value α, the corresponding

isolating interval I(α) = (a, b) computed in the projection
phase and the points pi := (α, yα,i) ∈ C, i = 1, . . . ,mα,
located on C above α. Furthermore, let I = (α,α′) be the
interval connecting α with the nearest x-critical value to the
right of α (or +∞ if none exists) and Aj , j = 1, . . . ,mI , the
j-th arc of C above I with respect to vertical ordering. Aj
is represented by a point aj := (qI , yI,j) ∈ C, where yI,j
denotes the j-th real root of f(qI , y) and qI an arbitrary but
fixed rational value in I. To its left, Aj is either connected
to (α,±∞) (in case of a vertical asymptote) or to one of the
points pi. In order to determine the point to which an arc
Aj is connected, we consider the following two distinct cases:

5The threshold for the number of iterations should be chosen
based on the degree of f and its coefficient’s bitlengths. For
the instances considered in our experiments, we stop when
reaching 2048 bits of precision.

• The generic case, in which there exists exactly one real
x-critical point pi0 above α and deg f(α, y) = degy f .
The latter condition implies that C has no vertical
asymptote at α. Then, the points p1, . . . , pi0−1 must
be connected with A1, . . . , Ai0−1 in buttom-up fash-
ion, respectively, since, for each of these points, there
exists a single arc of C passing this point. The same
argument shows that pi0+1, . . . , pmα must be connected
to AmI−mα+i0+1, . . . , AmI in top-down fashion, respec-
tively. Finally, the remaining arcs in between must all
be connected to the x-critical point pi0 .

• The non-generic case: We choose arbitrary rational val-
ues t1, . . . , tmα+1 with t1 < yα,1 < t2 < . . . < yα,mα <
tmα+1. Then, the points p̃i := (α, ti) separate the pi’s
from each other. Computing such p̃i is easy since we
have isolating intervals with rational endpoints for each
of the roots yα,i of f(α, y). In a second step, we use
interval arithmetic to obtain intervals Bf(I(α) × ti)
with f(I(α) × ti) ⊂ Bf(I(α) × ti). As long as there
exists an i with 0 ∈ Bf(I(α)×ti), we refine I(α). Since
none of the p̃i is located on C, we eventually obtain a
sufficiently refined interval I(α) with 0 /∈ Bf(I(α)× ti)
for all i. It follows that none of the arcs Aj intersects
any line segment I(α) × ti. Hence, above I(α), each
Aj stays within the the rectangle bounded by the two
segments I(α)× ti0 and I(α)× ti0+1 and is thus con-
nected to pi0 . In order to determine i0, we compute
the j-th real root γj of f(b, y) ∈ Q[y] and the largest
i0 such that γj > ti0 . In the special case where γj < ti
or γj > ti for all i, it follows that Aj is connected to
(α,−∞) or (α,+∞), respectively.

For the arcs located to the left of α, we proceed in exactly
the same manner. This concludes the connection phase and,
thus, the description of our algorithm.

2.2 Numerical Solver with Certificate
In FastLift, we deploy a certified numerical solver for a

fiber polynomial to find regions certified to contain its com-
plex roots. Bini and Fiorentino presented a highly efficient
solution to this problem in their MPSolve package [8]. We
adapt their approach in a way suited to handle the case
where the coefficients are not known a priori, but rather in an
intermediate representation which can be refined to any arbi-
trary finite precision. The description given in this section is
high-level. For the details of an efficient implementation, we
refer the reader to [25]. In the following considerations, let
g(z) := f(α, z) =

Pn
i=0 giz

i ∈ R[z] be the fiber polynomial
at an x-critical value α and V (g) = {ζi}, i = 1, . . . , n, its
complex roots. Thus, g(z) = gn

Qn
i=1(z − ζi).

The main algorithm used in the numerical solver is the
Aberth-Ehrlich iteration for simultaneous root finding. Start-
ing from arbitrary distinct root guesses (zi)i=1,...,n, it is given
by the component-wise iteration rule z′i = zi if g(zi) = 0, and

z′i = zi − g(zi)/g
′(zi)

1− g(zi)/g′(zi) ·Pj 6=i
1

zi−zj

otherwise. As soon as the approximation vector (zi)i lies in
a sufficiently small neighborhood of some permutation of the
actual roots (ζi)i of g, this iteration converges with cubic
order [37]. In practice, Aberth’s method shows excellent
performance even if started from an arbitrary configuration
far away from the solutions.
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Figure 2.2: The left figure shows the generic case, where exactly one x-critical point (p3) above α exists. The bottom-up method connects
A1 to p1 and A2 to p2; the remaining arcs have to pass p3. In the second figure, the fiber at α contains two critical points p2 and p3. The
red horizontal line segments pass through arbitrary chosen points (α, ti) separating pi−1 and pi. The initial isolating interval I(α) = (a, b)
for α is not sufficient to determine the connections for all arcs since A1, A2, A3 intersect the segments I × {ti}. On the right, the refined
isolating interval I′(α) induces boxes I′(α)× (ti, ti+1) small enough such that no arc crosses the horizontal boundaries. By examination
of the y-coordinates of the intersections between the arcs and the fiber over the right-hand boundary of I′(α) (red crosses), we can match
arcs and critical points.

A straightforward implementation of [8] expects the coef-
ficients gi of g to be known up to some relative precision p,
that is, the input is a polynomial g̃ =

P
g̃ix

i whose floating
point coefficients satisfy |g̃i − gi| ≤ 2−p |gi|. In particular,
this requirement implies that we have to decide in advance
whether a coefficient vanishes. In general, though, the critical
x-coordinate α of the fiber polynomial, and thus the coeffi-
cients of g, are not rational. Thus, it translates to expensive
symbolic gcd computations of R and the coefficients of f as
a univariate polynomial in Z[y][x].

Instead, we work on a Bitstream interval representation
[18, 25] [g]µ of g. Its coefficients are interval approximations
of the coefficients of g, where we require the width |g+

i − g−i |
of each coefficient [g]µi = [g−i , g

+
i ] to be ≤ µ for a certain

absolute precision µ = 2−p. In this sense [g]µ represents
the set {g̃ : g̃i ∈ [g]µi } of polynomials in a µ-polynomial
neighborhood of g; in particular, g itself is contained in [g]µ.
Naturally, for the interval boundaries, we consider dyadic
floating point numbers (bigfloats). Note that we can easily
compute arbitrarily good Bitstream representations of f(α, z)
by approximating α to an arbitrary small error, for example
using the quadratic interval refinement technique [1].

Starting with some precision (say, µ = 2−53) and a vector
of initial approximations, we perform Aberth’s iteration on
some representative g̃ ∈ [g]µ. The natural choice is the
median polynomial with g̃i = (g−i + g+

i )/2, but we take
the liberty to select other candidates in case of numerical
singularities in Aberth’s rule (most notably, if g̃′(zi) = 0 in
some iteration).

After a finite number of iterations (depending on the degree
of g), we interrupt the iteration and check whether the current
approximation state already captures the structure of V (g).
We use the following result by Neumaier and Rump [32],
founded in the conceptually similar Weierstraß-Durand-Ker-
ner simultaneous root iteration:

Lemma 2 (Neumaier). Let g(z) = gn
Qn
i=1(z − ζi) ∈

C[z], gn 6= 0. Let zi ∈ C for i = 1, . . . , n be pairwise distinct
root approximations. Then, all roots of g belong to the union
D of the discs

Di := D(zi − ri, |ri|),

where ri :=
n

2
· ωi
gn

and ωi :=
g(zi)Q

j 6=i(zi − zj)
.

Moreover, every connected component C of D consisting of m
discs contains exactly m zeros of g, counted with multiplicity.

The above lemma applied to [g]µ using conservative interval
arithmetic yields a superset C = {C1, . . . , Cm} of regions
and corresponding multiplicities λ1, . . . , λm such that, for
each Ck ∈ C, all polynomials g̃ ∈ [g]µ (and, in particular,
g) have exactly λk roots in Ck counted with multiplicities.
Furthermore, once the quality of the approximations (zi)i
and [g]µ is sufficiently high, C converges to V (g).

In FastLift, where we aim to isolate the roots of g :=
f(α, y), we check whether m = m∗α. If the latter equality
holds, Teissier’s lemma guarantees that the regions Ck ∈ C
are isolating for the roots of g, and we stop. Otherwise,
we repeat Aberth’s iteration after checking whether 0 ∈
[g]µ(zi). Informally, if this holds the quality of the root guess
is not distinguishable from any (possibly better) guess within
the current interval approximation of g, and we double the
precision (µ′ = µ2) for the next stage.

Aberth’s iteration lacks a proof for convergence in the gen-
eral case and, thus, cannot be considered complete. However,
we feel this is a merely theoretical issue: to the best of our
knowledge, only artificially constructed, highly degenerate
configurations of initial approximations render the algorithm
to fail. Regardless of this assumption, the regions Ck ∈ C are
certified to comprise the roots of g at any stage of the algo-
rithm by Neumaier’s lemma and the rigorous use of interval
arithmetic. Furthermore, since we use the numerical method
as a filter only, the overall algorithm is complete.

2.3 Discussion
We conclude our description of the curve analysis algorithm

with the following discussion on our method FastLift in
the lifting step. FastLift is a certified method, that is, in
case of success, it returns the mathematical correct result.
However, the reader may notice that FastLift does not
apply in all cases, a reason why we additionally consider the
complete but less efficient backup method Lift for some of
the x-critical fibers. The failure of FastLift is either due to
a very special geometric situation along a certain fiber or due
to the behavior of the numerical solver. Special geometric
situations are:

(Geo1) C has a vertical tangent at x = α and f(α, y) is not
square-free, or

93



Figure 2.3: The two figures on the left show the topology analyses for the curves C = V (f) and D = V (g). The figure in the middle shows
the intersection of the two curves. For the curve pair analysis, critical event lines (at dots) are sorted and non-critical event lines (at
crosses) in between are inserted. Finally, for each event line x = α, the roots of f(α, y) and g(α, y) are sorted. The latter task is done by
further refining corresponding isolating intervals (blue or red intervals) and using the combinatorial information from the curve analyses
and the computation of the intersection points.

(Geo2) there exists an intersection point of f∗x = fx
gcd(fx,fy)

and f∗y =
fy

gcd(fx,fy)
above an x-critical value α of f

which is not located on C.

In case that none of the above special geometric situations
is given (or removed by applying a shear; see below), the
success of FastLift is guaranteed if the following conditions
on the numerical solver are fulfilled:

(Num1) The numerical solver is run for sufficiently many
iterations, and

(Num2) the approximations returned by the numerical solver
converge against the roots of f(α, y) when increasing
precision and number of iterations.

As already mentioned in Section 2.2, we consider (Num2)
as an exclusively theoretical problem. We further remark
that, alternatively, we can use an exact and complete complex
bitstream solver [33] to compute arbitrary good approxima-
tions of the fiber polynomial f(α, y), an approach which
can be considered as an extension of Bdc to complex roots.
However, for efficiency reasons, we decided to integrate a
numerical method into our implementation instead. (Num1)
is a practical problem and, in our implementation, we just
empirically set the maximal number of iterations and the
maximal precision as parameters depending on the degree
and the bitsize of the polynomials. We noticed that the
success of FastLift actually depends on these parameter
values and consider it an interesting research question how
they should be related to the given input to achieve optimal
running times.

It is worth mentioning that a complete and exact topology
computation can be fully based on FastLift if we allow
shearing (i.e., a coordinate transformation x 7→ x+ sy for a
s ∈ Q). Namely, for all but a finite number N of shearing
factors,6 (Geo1) and (Geo2) do not apply to the sheared curve.
Hence, when consideringN+1 distinct shearing factors one by
one in circular order and increasing the number of iterations
and the precision in the numerical solver for each factor,
FastLift eventually succeeds for all fibers.

In practice, as observed in our experiments presented in
Section 4, the failure conditions for FastLift are almost
negligible, as the method only fails for a few critical fibers

6In [24, Corollary 3.2.10], it is shown that there exist at
most n4 + n shearing factors such that the sheared curve has
covertical x-critical points. In analogous manner, one can
compute an upper bound for the number of shearing factors,
where the sheared curve is not in (Geo1) or (Geo2).

on very special instances. For the remaining fibers and for
all fibers of the majority of instances, FastLift is successful
and extremely fast.

3. ARRANGEMENT COMPUTATION
Cgal’s recent implementation for computing arrangements

of planar algebraic curves reduces all required geometric con-
structions (as intersections) and predicates (as comparisons
of points and x-monotone curves) to the geometric-topologi-
cal analysis of a single curve [17] and pairs of curves [16]; see
also [5] and Cgal’s documentation [39].

Beyond the improved curve analysis proposed in Section 2,
we aim to avoid subresultant sequences in general when
analysing pairs of curves (see illustration in Figure 2.3),
which is straightforward given the analyses of each single
curve and the common intersection points of the two curves
computed by Bisolve:

Let C = V (f) and D = V (g) be two planar algebraic
curves implicitly defined by the square-free polynomials f ,
g ∈ Z[x, y]. The curve analysis for C provides a set of critical
event lines x = α, where f(α, y) is non square-free. Each α is
represented as the root of a square-free polynomial ri, with ri
a factor ofRC := ( f, fy, y), together with an isolating interval
I(α). In addition, we have isolating intervals for the roots
of f(α, y). A corresponding result also holds for the curve
D with RD := res(g, gy; y). For the common intersection
points of C and D, a similar representation is known. That
is, we have critical event lines x = α′, where α′ is a root of
a square-free factor of RCD := res(f, g; y) and, thus, f(α, y)
and g(α, y) share at least one common root (or the their
leading coefficients both vanish for x = α). In addition,
isolating intervals for each of these roots are computed. The
curve-pair analysis now essentially follows from merging this
information. More precisely, we first compute merged critical
event lines (via sorting the roots of RC , RD and RCD) and,
then, insert merged non-critical event lines at rational values
qI in between. The intersections of C and D with a non-
critical event line at x = qI are easily computed by isolating
the roots of f(qI , y) and g(qI , y) and further refining the
isolating intervals until all isolating intervals are pairwise
disjoint. For a critical event line x = α, we refine the already
computed isolating intervals for f(α, y) and g(α, y) until the
number of pairs of overlapping intervals matches the number
m of intersection points of C and D above α. This number
is obtained from the output of Bisolve applied to f and g,
restricted to x = α. The information on how to connect the
lifted points is provided by the curve analyses for C and D.

We remark that, in the previous approach by Eigenwillig

94



and Kerber [16], m is determined via efficient filter methods,
too, while in general, a subresultant computation is needed
if the filters fail. This is, for instance, the case when two
covertical intersections of C and D occur.

4. IMPLEMENTATION & EXPERIMENTS

Setup.
We have implemented our algorithms as a branch of the

bivariate algebraic kernel released with version 3.7 in Oc-
tober 2010, and replaced the curve and curve-pair analyses
therein with our new methods based on FastLift, Lift
and Bisolve. As throughout Cgal, we follow the generic
programming paradigm, which allows us to choose among
various number types and methods to isolated the real roots
of integral univariate polynomials. For our setup, we rely on
the number types provided by Gmp 5.0.17 and the highly
efficient univariate solver based on the Descartes method
contained in Rs by Fabrice Rouillier [31],8 which is also the
basis for Isolate in Maple 13.

All experiments have been conducted on 2.8 GHz 8-Core
Intel Xeon W3530 with 8 MB of L2 cache on a Linux platform.
For the GPU-part of the algorithm, we have used the GeForce
GTX580 graphics card (Fermi Core). All test data sets are
available for download.9

Symbolic Speedups.
Our algorithm exclusively relies on two symbolic opera-

tions, that is, resultant and gcd computation. We outsource
both computations to the graphics hardware to reduce the
overhead of symbolic arithmetic which typically constitutes
the main bottleneck in previous approaches. Besides a quick
introduction given next, we refer the interested reader to [21,
19, 20] for more details.

Shortly, both approaches are based on the “divide-con-
quer-combine” principle used in the modular algorithms by
Brown [10] and Collins [14]. This principle allows us to
distribute the computation over a large number of processor
cores of the graphics card. At highest level, the modular
approach can be formulated as follows: 1. Apply modular
and/or evaluation homomorphisms to reduce the problem to
a large set of subproblems over a simple domain. 2. Solve
the subproblems individually in a finite field. 3. Recover
the result with polynomial interpolation (in case evaluation
homomorphism has been applied) and Chinese remaindering.

Altogether, the GPU realization is quite straightforward
and does not deserve much attention within the context of
this work. It is only worth noting that our implementa-
tion of univariate gcds on the graphics card is comparable
in speed with the one from Ntl10 5.5 running on the host
machine. Our intuition for this is because, in contrast to
bivariate resultants, computing a gcd of moderate degree
univariate polynomials does not provide a sufficient amount
of parallelism, and Ntl’s implementation is nearly optimal.
Moreover, the time for initial modular reduction of polyno-
mials, still performed on the CPU, can become noticeably
large, thereby neglecting the efficiency of the GPU algorithm.

7Gmp: http://gmplib.org
8Rs: http://www.loria.fr/equipes/vegas/rs
9http://www.mpi-inf.mpg.de/departments/d1/projects/
Geometry/DataSetsSNC-2011.zip

10Ntl, http://www.shoup.net/ntl

Yet, we find it very promising to perform the modular reduc-
tion directly on the GPU which should further speed-up our
algorithm.

Contestants.
We compare the new implementation with Cgal’s bivariate

algebraic kernel (see [5] and [6]) that has shown excellent per-
formance in exhaustive experiments over existing approaches,
namely cad2d11 and Isotop [22] which is based on Rs.
Both contestants were, except for few example instances,
less efficient than Cgal’s implementation, so that we omit
further tests with them. Two further reasons can be given:
Firstly, we enhanced Cgal’s kernel with GPU-supported
resultants and gcds, which makes it more competitive to
existing software, but also to our new software, in case of
non-singular curves, though slowdowns are still expected for
singular curves or curves in non-generic position due to the
need of subresultants sequences performed on the CPU. Sec-
ondly, the contestants based on Rs require as subtask Rs
to solve the bivariate polynomial system f = fy = 0 in the
curve-analysis. In [4], we learned that the GPU-supported
Bisolve was at least competitive to the current version of
Rs and even showed in most cases an excellent speed gain
over Rs. However, Rs is currently getting a very promising
polish based on Rational Univariate Representations and
modular arithmetic [9]. We are looking forward to compare
our algorithms with a preliminary version of the new Rs
quite soon. Moreover, we are confident that the authors will
support the computation of arrangements of algebraic curves
in a similar setup.

4.1 Curve Analysis
We first present the experiments comparing the analy-

ses of single algebraic curves for different families of curves:
(R) random curves of various degree and bit-lengths of their
coefficients, (I) curves interpolated through points on a grid,
(S) curves in the two-dimensional parameter space of a sphere,
(T) curves that were constructed by multiplying a curve
f(x, y) with f(x, y + 1), such that each fiber has more than
one critical point. (P) projections of intersections of algebraic
surfaces in 3D and, finally, (X) “special” curves of degrees
up to 42 with many singularities or high-curvature points
which we already considered in [4]. The non-random and
non-special curves are taken from [24, 4.3]. For the curve
topology analysis, we consider four different setups: (a) Bi-
solve is, strictly speaking, not comparable with the actual
curve analysis as it only computes the solutions of the system
f = fy = 0. Still, it is interesting to see that our new hybrid
method even outperforms this algorithm that only solves a
subproblem of the curve-analysis. (b) LiftAna exclusively
uses Lift for the fiber computations. (c) FastAna com-
bines FastLift and Lift in the fiber computations. More
precisely, it uses FastLift first, and if it fails for a certain
fiber, Lift is considered for this fiber instead, (d) Ak 2 is
the bivariate algebraic kernel shipped with Cgal 3.7, but
with GPU-supported resultants and gcds. FastAna is our
default setting, and its running time also includes the timing
for the fiber computations where FastLift fails and Lift is
applied instead.

Table 1 lists the running times for single-curve analyses.
We only give the results for representative examples. It is easy
to see that FastLift is generally superior to the existing

11http://www.usna.edu/Users/cs/qepcad/B/QEPCAD.html
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Table 1: Running times (in sec) for analyses of algebraic curves of
various families; timeout: algorithm timed out (> 400 sec)

(R) sets of five random curves

degree, bits Bisolve LiftAna FastAna Ak 2
dense curves

9, 10 0.83 0.73 0.24 0.66
9, 2048 4.17 9.00 2.24 3.43

15, 10 2.82 3.47 1.01 2.21
15, 2048 20.48 50.06 13.31 16.82

sparse curves
9, 10 0.25 0.33 0.11 1.00
9, 2048 0.25 0.39 0.15 0.98

15, 10 1.50 3.31 0.57 3.19
15, 2048 15.66 32.15 8.08 24.32

(I) curve interpolated through points on a grid

degree Bisolve LiftAna FastAna Ak 2
9 4.51 7.25 2.50 4.98

12 25.25 45.58 14.66 27.07

(S) parametrized curve on a sphere with 16bit-coefficients

degree Bisolve LiftAna FastAna Ak 2
6 6.52 8.17 2.49 14.65
9 51.92 78.09 24.14 45.66

(T) curves wih a vertically translated copy

degree Bisolve LiftAna FastAna Ak 2
6 5.27 3.15 0.83 12.89
9 14.78 14.91 2.97 159.22

(P) projected intersection curve of surfaces with 8bit-coefficient

degree(s) Bisolve LiftAna FastAna Ak 2
2 · 2 0.26 0.23 0.09 0.22
3 · 3 2.87 1.75 0.52 1.97
4 · 4 10.01 11.93 2.24 38.91
5 · 5 83.00 95.37 13.76 timeout

(X) special curves

name Bisolve LiftAna FastAna Ak 2
curve issac 2.89 2.30 0.44 2.96
SA 2 4 eps 0.35 2.18 0.64 73.00
grid deg 10 1.32 2.52 0.79 1.54

L6 circles 4.52 92.24 2.10 224.19
huge cusp 8.50 18.40 5.50 16.10

swinnerton 19.61 16.81 7.12 304.09
degree 7 surf 14.57 48.94 7.39 timeout

spider 57.09 195.21 26.26 timeout
FTT 5 4 4 11.70 44.27 32.23 timeout

challenge 12b 16.48 52.71 44.30 timeout
mignotte xy 260.61 270.70 136.54 timeout

kernel, even though Cgal’s implementation profits from
GPU-accelerated symbolic arithmetic. Moreover, while the
speed-up for curves in generic position is already considerable
(about half of the time), it becomes even more impressive for
projected intersection curves of surfaces and “special” curves
with singularities. The reason for this tremendous speed-
up is that, for singular curves, Ak 2’s performance drops
significantly with the degree of the curve when the time to
compute subresultants on the CPU becomes dominating. In
addition, for curves in non-generic position, the efficiency of
Ak 2 is affected because a coordinate transformation has to
be considered in these cases.

Recall that the symbolic-numerical filter in FastLift fails
for very few instances, in which case Lift is locally used
instead. The switch to the backup method is observable in
timings; see for instance, challenge 12b. As a result, the dif-

Table 2: Running times (in sec) for computing arrangements of
algebraic curves; timeout: algorithm timed out (> 4000 sec)

(P) increasing number of projected surface intersections

#resultants FastKernel Ak 2
2 0.21 0.49
3 0.48 0.93
4 1.03 1.64
5 2.44 3.92
6 5.14 7.84
7 13.65 21.70
8 22.69 35.77
9 41.53 67.00

10 58.37 91.84

(X) combinations of special curves

#curves FastKernel Ak 2
2 9.2 81.93
3 25.18 148.46
4 248.87 730.57
5 323.42 836.43
6 689.39 3030.27
7 757.94 3313.27
8 1129.98 timeout
9 1166.17 timeout

10 1201.34 timeout
11 2696.15 timeout

ference of the running times between Lift and FastLift are
considerably less than for instances where the filter method
succeeds for all fibers. In these cases, the numerical solver
cannot isolate the roots within a given number of iterations,
or we indeed have m < m∗α; see Section 2.3. Nevertheless,
the running times are still very promising and yet perform
better than Ak 2 for non-generic input, even though Lift’s
implementation is not yet mature enough, and we anticipate
a further performance improvement.

Similar as Ak 2 has improved on previous approaches when
it was presented in 2008, our new methods improve on Ak 2
now. That is, for random, interpolated and parametrized
curves, the speed gain is noticeable, while for translated
curves and projected intersections, we improve the more the
higher the degrees. On special curves of large degree(!), we
improve by a factors up to 100 and more.

4.2 Arrangements
For arrangements of algebraic curves, we compare two

implementations: (A) Ak 2 is Cgal’s bivariate algebraic
kernel shipped with Cgal 3.7 but with GPU-supported resul-
tants and gcds. (B) FastKernel is the same, but relies on
FastLift-filtered analyses of single algebraic curves. For the
curve pair analysis, FastKernel exploits Ak 2’s functional-
ity whenever subresultant computations are not needed (i.e.,
a unique transversal intersection of two curves along a critical
event line). For more difficult situations (i.e., two coverti-
cal intersections or a tangential intersection), the curve pair
analysis uses Bisolve as explained in Section 3. Our testbed
consists of sets of curves from different families: (F) ran-
dom rational functions of various degree (C) random circles
(E) random ellipses (R) random curves of various degree
and coefficient bit-length (P) sets of projected intersection
curves of algebraic surfaces , and, finally, (X) combinations
of “special” curves.

We skip the tables for rational functions, circles, ellipses
and random curves because the performance of both contes-
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tants are more or less equal: The linearly many curve-analyses
are simple and, for the quadratic number of curve-pair analy-
ses, there are typically no multiple intersections along a fiber,
that is, Bisolve is not triggered. Thus, the execution paths
of both implementations are almost identical, but only as we
enhanced Ak 2 with GPU-enabled resultants and gcds. In
addition, we also do not expect the need of a shear for such
curves, thus, the behavior is anticipated. The picture changes
for projected intersection curves of surfaces and combinations
of special curves whose running times are reported in Table 2.
The Ak 2 requires for both sets expensive subresultants to
analyze single curves and to compute covertical intersections,
while FastKernel’s performance is crucially less affected in
such situations.

Acknowledgments
Without Michael Kerber’s careful implementation of the
bivariate kernel in Cgal, this work would not have been
realizable in a reasonable time. We would like to use the
opportunity to thank Michael for his excellent work.

5. REFERENCES
[1] J. Abbott. Quadratic interval refinement for real roots,

2006. www.dima.unige.it/~abbott/publications/
RefineInterval.pdf.

[2] L. Alberti, B. Mourrain, and J. Wintz. Topology and
Arrangement Computation of Semi-Algebraic Planar
Curves. CAGD, 25(8):631–651, 2008.

[3] S. Basu, R. Pollack, and M.-F. Roy. Algorithms in Real
Algebraic Geometry, volume 10 of Algorithms and
Computation in Mathematics. Springer, 2006.

[4] E. Berberich, P. Emeliyanenko, and M. Sagraloff. An
elimination method for solving bivariate polynomial
systems: Eliminating the usual drawbacks. In ALENEX
’11, pages 35–47, San Francisco, USA, 2011. SIAM.

[5] E. Berberich, M. Hemmer, and M. Kerber. A generic
algebraic kernel for non-linear geometric applications.
In SoCG ’11, Paris, France, June 2011. To appear.

[6] E. Berberich, M. Hemmer, S. Lazard, L. Peñaranda,
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(78):285–362, 1973.

[37] P. Tilli. Convergence conditions of some methods for
the simultaneous computation of polynomial zeros.
Calcolo, 35:3–15, 1998.

[38] J. von zur Gathen and J. Gerhard. Modern Computer
Algebra. Cambridge University Press, New York, NY,
USA, 2003.

[39] R. Wein, E. Fogel, B. Zukerman, and D. Halperin. 2D
arrangements. In CGAL User and Reference Manual
3.7. CGAL Editorial Board, 2010.

APPENDIX
A. FURTHER EXPERIMENTS OF CURVE

ANALYSES

Table 3: Running times (in sec) for analyses of random algebraic
curves; timeout: algorithm timed out (> 400 sec)

(R) sets of five random curves

degree, bits Bisolve LiftAna FastAna Ak 2
dense curves

6, 10 0.38 0.39 0.15 0.36
6, 128 0.32 0.49 0.18 0.32
6, 512 0.55 0.89 0.35 0.55
6, 2048 1.85 3.50 0.99 1.71
9, 10 0.83 0.73 0.24 0.66
9, 128 0.57 0.90 0.31 0.55
9, 512 1.04 1.91 0.57 0.96
9, 2048 4.17 9.00 2.24 3.43

12, 10 2.18 2.21 0.69 1.77
12, 128 1.64 2.87 0.86 1.46
12, 512 2.84 6.09 1.56 2.55
12, 2048 12.07 30.26 7.06 9.96
15, 10 2.82 3.47 1.01 2.21
15, 128 2.36 4.55 1.29 2.06
15, 512 4.40 9.84 2.63 3.77
15, 2048 20.48 50.06 13.31 16.82

sparse curves
6, 10 0.17 0.21 0.12 0.22
6, 128 0.14 0.19 0.09 0.22
6, 512 0.21 0.36 0.12 0.39
6, 2048 0.73 1.13 0.39 1.06
9, 10 0.25 0.33 0.11 1.00
9, 128 0.25 0.39 0.15 0.98
9, 512 0.43 0.65 0.23 1.43
9, 2048 1.53 2.51 0.85 4.31

12, 10 0.41 0.83 0.19 1.67
12, 128 0.40 1.05 0.25 1.60
12, 512 0.78 2.16 0.50 2.53
12, 2048 3.82 10.54 2.82 9.94
15, 10 1.50 3.31 0.57 3.19
15, 128 1.48 3.98 0.72 2.99
15, 512 2.96 7.10 1.45 5.58
15, 2048 15.66 32.15 8.08 24.32
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Table 4: Running times (in sec) for analyses of algebraic curves
of various families; timeout: algorithm timed out (> 400 sec)

(I) curve interpolated through points on a grid

degree Bisolve LiftAna FastAna Ak 2
5 0.41 0.50 0.21 0.49
6 0.72 1.13 0.41 0.84
7 1.42 2.20 0.78 1.62
8 2.59 3.78 1.32 2.86
9 4.51 7.25 2.50 4.98

10 6.62 11.52 3.62 7.65
11 12.38 23.27 7.25 13.93
12 25.25 45.58 14.66 27.07
13 48.97 93.97 27.90 46.21
14 101.96 193.61 59.14 90.27
15 211.95 timeout 114.68 166.68
16 timeout timeout 236.39 314.61

(S) parametrized curve on a sphere with 16bit-coefficients

degree Bisolve LiftAna FastAna Ak 2
6 6.52 8.17 2.49 14.65
7 22.58 27.39 8.47 16.83
8 37.94 53.3 16.25 32.09
9 51.92 78.09 24.14 45.66

10 72.21 110.81 32.38 64.31

(T) curves with a vertically translated copy

degree Bisolve LiftAna FastAna Ak 2
5 3.95 1.93 0.6 5.61
6 5.27 3.15 0.83 12.89
7 7.31 6.14 1.28 33.97
8 9.66 7.99 1.75 73.59
9 14.78 14.91 2.97 159.22

10 17.03 15.78 3.36 timeout

(P) projected intersection curve of surfaces with 8bit-coefficient

degree(s) Bisolve LiftAna FastAna Ak 2
2 · 2 0.26 0.23 0.09 0.22
2 · 3 0.39 0.40 0.12 0.32
2 · 4 1.03 0.77 0.25 0.73
2 · 5 1.97 1.53 0.44 1.93
3 · 3 2.87 1.75 0.52 1.97
3 · 4 3.63 3.02 0.67 5.21
3 · 5 8.71 9.22 1.90 25.87
4 · 4 10.01 11.93 2.24 38.91
4 · 5 21.45 28.22 4.46 231.64
5 · 5 83.00 95.37 13.76 timout

(X) special curves (see Table 5, Appendix B for desciptions)

name Bisolve LiftAna FastAna Ak 2
curve issac 2.89 2.30 0.44 2.96

L4 circles 1.56 8.80 0.52 9.92
SA 2 4 eps 0.35 2.18 0.64 73.00
grid deg 10 1.32 2.52 0.79 1.54

ten circles 6.77 3.79 0.82 24.07
dfold 10 6 4.45 4.62 1.58 30.80
L6 circles 4.52 92.24 2.10 224.19

cov sol 20 8.68 12.16 3.38 65.05
curve24 14.07 15.61 4.07 50.73

huge cusp 8.50 18.40 5.50 16.10
swinnerton 19.61 16.81 7.12 304.09

degree 7 surf 14.57 48.94 7.39 timeout
challenge 12a 7.47 15.84 14.41 timeout

spider 57.09 195.21 26.26 timeout
FTT 5 4 4 11.70 44.27 32.23 timeout

challenge 12b 16.48 52.71 44.30 timeout
mignotte xy 260.61 270.70 136.54 timeout

B. DESCRIPTION OF SPECIAL CURVES

Table 5: Description of the special curves used in the experi-
ments of Section 4. Sources of curves are given where known.

Instance y-degree Description
curve issac 15 isolated points, high-curvature

points [13]
L4 circles 16 4 circles w.r.t. L4-norm;

clustered solutions
SA 2 4 eps 16 singular points with high tangencies,

displaced [26]
grid deg 10 10 large coefficients;

curve in generic position
ten circles 20 set of 10 random circles multiplied

together; rational solutions
dfold 10 6 30 many half-branches [26]
L6 circles 32 4 circles w.r.t. L6-norm;

clustered solutions
cov sol 20 20 covertical solutions
curve24 24 curvature of degree 8 curve;

many singularities
huge cusp 8 large coefficients;

high-curvature points
swinnerton 25 covertical solutions in x and y
degree 7 surf 42 silhouette of an algebraic surface;

covertical solutions in x and y
challenge 12a 30 many candidate solutions to be

checked [26]
spider 12 degenerate curve;

many clustered solutions
FTT 5 4 4 40 many non-rational singularities [26]
challenge 12b 40 many candidates to check [26]
mignotte xy 42 a product of x/y-Mignotte

polynomials, displaced;
many clustered solutions
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ABSTRACT
In [3], a generalized Sylvester matrix based subspace method
for computing the greatest common divisor (GCD) of a set
of univariate polynomials was derived. In this paper, we con-
sider the problem of computing the GCD of two polynomials
and establish a new Sylvester subresultant matrix based sub-
space method. Compared with the method proposed in [3],
our method has a lower computational cost.

Categories and Subject Descriptors
I.1.2 [Computing Methodologies]: Symbolic and Alge-
braic Manipulation-Algorithms

General Terms
Algorithms, Experimentation

Keywords
GCD, subspace method, subresultant matrix

1. SYLVESTER SUBRESULTANT MATRIX-
BASED SUBSPACE METHOD

Given two univariate polynomials:

Yi(x) = yi(0) + yi(1)x+ . . .+ yi(di)x
di , i = 1, 2. (1)

Assume that the GCD of Y1(x) and Y2(x) is C(x) with
degree N , i.e.,

Yi(x) = C(x)Hi(x), i = 1, 2, (2)

where Hi(x) is with degree Li = di −N, i = 1, 2, and H1(x)
and H2(x) are coprime. Denote

C(x) = c(0) + c(1)x+ . . .+ c(N)xN ,

Hi(x) = hi(0) + hi(1)x+ . . .+ hi(Li)x
Li , i = 1, 2.
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Given a vector u = [u(k), . . . , u(1), u(0)]T ∈ Rk+1 and a
positive integer l, we define

C(u, k, l) =

264 u(k) · · · u(0)
. . .

. . .

u(k) · · · u(0)

375
l×(l+k)

.

Then we can rewrite (2) in the matrix form:

SN = CHT , (3)

where

SN =
h
C(y1, d1, L2 + 1)T C(y2, d2, L1 + 1)T

i
,

C = C(c, N, L1 + L2 + 1)T ,

HT =
h
C(h1, L1, L2 + 1)T C(h2, L2, L1 + 1)T

i
,

yi = [yi(di), . . . , yi(1), yi(0)]T , i = 1, 2,

c = [c(N), . . . , c(1), c(0)]T ,

hi = [hi(Li), . . . , hi(1), hi(0)]T , i = 1, 2.

SN is called an N -th Sylvester matrix, or a subresultant
matrix, it relates GCDs deeply. See, for example [1, 2].

Theorem 1. With the GCD assumption (2), HT has full
row rank and SN has column rank of deficiency one.

Next we describe our subspace method:
Case I: d1 + d2 ≥ 3N
Let r = L1 + L2 + 1, SN = Ur+1ΣV T be the thin SVD,

where Σ is a diagonal matrix consisting of singular values
of SN , Ur+1 ∈ R(d1+d2−N+1)×(r+1), V ∈ R(r+1)×(r+1), and
UT

r+1Ur+1 = Ir+1, V TV = Ir+1. Partition Ur+1 as Ur+1 =
[Ur ur+1], where ur+1 is the last column of Ur+1. Then
R(Ur) = R(C), where R(·) denotes the range space of a
matrix. It follows that

uT
r+1C = 0. (4)

Equivalently, it holds that

Qr+1c = 0, (5)

where

Qr+1 =

26664
ur+1[1] ur+1[2] · · · ur+1[N + 1]
ur+1[2] ur+1[3] · · · ur+1[N + 2]

...
... · · ·

...
ur+1[r] ur+1[r + 1] · · · ur+1[d1 + L2 + 1]

37775 ,
∈ R(d1+d2−2N+1)×(N+1)

c = [c(N), . . . , c(1), c(0)]T .
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With the assumption d1 + d2 ≥ 3N , the row dimension of
Qr+1 is equal to or greater than the column dimension of
Qr+1. In this case, we extract c from the unique (up to a
constant scalar) minimal right singular vector of Qr+1.

Case II: d1 + d2 < 3N

Now we let SN = [Ur+1, U0]

»
Σ
0

–
V T be the full SVD,

where Ur+1, Σ and V are defined as before, [Ur+1, U0] is an
orthogonal matrix of order d1 + d2 − N + 1. As before, we
partition Ur+1 as Ur+1 = [Ur ur+1]. Then both (4) and (5)
still hold. However, with the assumption d1+d2 < 3N , Qr+1

has more columns than rows and the dimension of its null
space is larger than one in general. In this case, we single
out the desired null vector c from the null space as follows.

Partition U0 as U0 = [ur+2, . . . ,ud1+d2−N+1]. Note that
d1 + d2 −N + 1 = r +N and that uT

r+iC = 0, i = 2, . . . , N .
Starting with i = 2, we use ur+i to construct Qr+i such that
it has the same structure as that of Qr+1, and stack the

matrices Qr+1, . . . , Qr+i to get Q =
ˆ
QT

r+1, . . . , Q
T
r+i

˜T ∈
Ri(d1+d2−2N+1)×(N+1), until

i(d1 + d2 − 2N + 1) ≥ N + 1. (6)

Assume that when i = i0, (6) is achieved. Then we calcu-
late the second smallest singular value of Q. If this singular
value is larger than a given tolerance, then it confirms that
the nullspace of Q is of dimension one, we then extract c
from the minimal right singular vector of Q; Otherwise, we
continue to construct Qr+i0+1 and stack it to get a new

Q :=

»
Q

Qr+i0+1

–
, until we find a Q which has a nullspace

of dimension one.
Remark. We see that, in [3], c is essentially extracted

from the minimal right singular vector of the matrixh
UT

2d+2−N , . . . ,U
T
2d+1

iT

∈ RN(2d−N+1)×(N+1). (7)

See the definitions of U2d+2−N , . . . ,U2d+1 in Appendix.
In contrast, for our method, in Case I, Qr+1 is

(d1 + d2 − 2N + 1)× (N + 1);

in Case II, Q is formed by stacking Qr+1, . . . , Qr+i and is

i(d1 + d2 − 2N + 1)× (N + 1), where i ≤ N.
In the numerical tests, i equals i0, the smallest integer sat-
isfying (6). Thus, compared with the method in [3], the
matrix eigenvalue problems to be resolved in our method
have smaller sizes.

2. NUMERICAL EXPERIMENTS
We test the performance of our derived method in Maple

11 and set Digits= 16. For Cases I and II, we conduct
100 tests, respectively. At each test, the tested polynomi-
als Yi(x), i = 1, 2 are constructed by (2), where C(x) and
Hi(x), i = 1, 2 are randomly generated polynomials with
given degrees N,Li, i = 1, 2, respectively. Specifically, the
GCD vector c and cofactors vectors hi, i = 1, 2 are randomly
generated from the standard Gaussian distribution N (0, 1).
In the two cases, we apply our method to compute the GCD

of Yi(x), i = 1, 2. Then we test the error ‖ĉ−c‖
‖c‖ , where ĉ

denotes the computed coefficient vector of the GCD. In the
table, the reported error is the average error of 100 results in
each case. In Case II, at each test we stop stacking {Qr+i}

at i = i0 and form Q. The average of the second smallest
singular values of Q is about 0.085.

For each set of polynomials Yi, i = 1, 2, we also apply the
method in [3] to calculate the GCD vector ˆ̂c and test the

error ‖
ˆ̂c−c‖
‖c‖ . In most of tests, ‖

ˆ̂c−c‖
‖c‖ and ‖ĉ−c‖

‖c‖ have similar

magnitudes; however, there are two tests where ˆ̂c have large
errors 1.3 10−3 and 4.8 10−6, respectively. We mention that,
the matrices (7) in Cases I, II are of 510× 11 and 820× 21,
respectively, and they have much larger sizes than those of
Qr+1 and Q, as observed in the table.

Case I. Case II.

N, L1, L2
‖ĉ−c‖
‖c‖ size of Qr+1N,L1, L2

‖ĉ−c‖
‖c‖ size of Q

10, 15, 20 2.7 10−11 36× 11 20, 5, 10 3.3 10−13 32× 21
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APPENDIX
We summarize the method in [3] as follows. Denote d =
max(d1, d2) and define

ȳi = [yi(0), yi(1), . . . , yi(di), 0, . . . , 0]T ∈ Rd+1, i = 1, 2.

Step 1. Form the matrix Y =

» C(ȳ1, d, d+ 1)
C(ȳ2, d, d+ 1)

–
.

Step 2. Calculate the SVD: YT = [Ut U0]

»
Σt

0

–
[Vt V0]T ,

where t = rank(Y) = 2d + 1 − N , Σt contains t non-zero
singular values, Ut and U0 = [ut+1, . . . ,u2d+1] contain the
left principal and left null singular vectors, respectively.

Step 3. Form R =
P2d+1

i=t+1 UT
i Ui, where

Ui =

2664
ui[1] ui[2] · · · ui[N + 1]
ui[2] ui[3] · · · ui[N + 2]
· · · · · · · · · · · ·
ui[t] ui[t+ 1] · · · ui[2d+ 1]

3775.

Step 4. Extract c by the eigenvector of R corresponding
to the smallest eigenvalue.
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For an isolated breadth-one singular solution x̂e of a poly-
nomial system F = {f1, . . . , fn}, fi ∈ C[x1, . . . , xn] (breadth
one means the Jacobian JF (x̂e) is of corank one), in [6, 7]
we present a symbolic-numeric method to refine an approx-
imate solution x̂ with quadratic convergence if x̂ is close to
x̂e. A preliminary implementation performs well in case the
approximate Max Noether conditions computed are sparse,
but suffers from the evaluation of them when they are not.
In this paper we describe how to avoid the linear transfor-
mation and evaluate Max Noether conditions efficiently by
solving a sequence of least squares problems.

Categories and Subject Descriptors
I.2.1 [Computing Methodologies]: Symbolic and Alge-
braic Manipulation—Algorithms; G.1.5 [Mathematics of
Computing]: Numerical Analysis—Roots of Nonlinear Equa-
tions

General Terms
Algorithms, Theory, Experimentation

Keywords
root refinement, isolated singular solution, polynomial sys-
tem, evaluation, Max Noether condition

1. COMPUTING MAX NOETHER CONDI-
TIONS WITHOUT THE LINEAR TRANS-
FORMATION

In [6], we compute a non-trivial null vector

a1 = [a11, . . . , a1,n]

of JF (x̂e), then form a regular matrix R which has a1 as its
first column and perform the linear transformation H(z) =
F (Rz). The purpose is to ensure that the new system H(z)
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satisfies

∂H(ẑe)

∂z1
= 0,

where ẑe = R−1x̂e. Therefore, one can construct the k-
th order Max Noether condition incrementally for k from 2
to µ − 1 by formulas in [6, Theorem 3.1], where µ is the
multiplicity of ẑe.

In order to simplify discussions, without loss of generality,
we assume

|a1,1| ≥ |a1,j |, for 1 ≤ j ≤ n. (1)

Otherwise, one can perform changes of variables to guarantee
that (1) is satisfied. After normalizing a1 by a1,1, we modify
Theorem 3.1 in [6] as follows.

Theorem 1. Suppose L1 = ∂
∂x1

+a1,2
∂

∂x2
+ · · ·+a1,n

∂
∂xn

,

the k-th Max Noether condition of F at x̂e can be constructed
as

Lk = Pk + ak,2
∂

∂x2
+ · · ·+ ak,n

∂

∂xn
, (2)

where

Pk =
1

k

24 ∂

∂x1
Lk−1 +

nX
j=2

∂

∂xj

`
a1,jLk−1 + · · · + (k − 1)ak−1,jL1

´35 .

(3)

The parameters ak,j , j = 2, . . . , n are determined by solving

»
∂F (x̂e)

∂x2
, . . . ,

∂F (x̂e)

∂xn

–
·

264 ak,2

..

.
ak,n

375 = −

264 Pk(f1)x=x̂e

..

.
Pk(fn)x=x̂e

375 . (4)

When the linear system (4) has no solutions, we stop the
computation and set µ = k as the multiplicity of x̂e.

Theorem 1 can be used to compute the approximate Max
Noether conditions of F at an approximate solution x̂. How-
ever, a threshold has to be selected properly to determine
that the linear system (4) has no solution numerically.

2. EVALUATION OF MAX NOETHER CON-
DITIONS

According Theorem 1, in order to compute the k-th Max
Noether condition, we need to evaluate Pk(F ) at x̂e. To
do this, in [6], we first compute the differential operator Pk,
then obtain Pk(F ) and evaluate it at x̂e. Even if F is sparse,
Pk could still be very dense. Hence, evaluation of the vector
on the right side of (4) could be very expensive sometimes.
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Example 1. Consider a system F = {f1, . . . , fs}
fi = x3

i + x2
i − xi+1, if i < s,

fs = x2
s

with zero (0, . . . , 0) of the multiplicity 2s.

As shown in [6], for s = 6, about 17MB of memory is used
to store the Max Noether conditions and it takes about 3
hours to compute all of them. Moreover, for s = 7, we are
not able to obtain all Max Noether conditions in 2 days. It
is not a surprise that the computation is dominated by the
evaluation of Pk(F ) at x̂e in (4). This motivates us to design
a new method to remedy this drawback.

In fact, we can take advantage of (3) to construct Pk(F )
and Lk(F ) by

Pk(F ) =
k−1X
j=1

j

k
· JLk−j(F ) · aj and Lk(F ) = Pk(F ) + JF · ak,

where JLj(F ) is the Jacobian of the polynomial system Lj(F )

and aj = (0, aj,2, . . . , aj,n)T for j = 2, . . . , k − 1. Hence, we
can evaluate Pk(F ) at x̂e without computing and storing the
dense Max Noether conditions Lj .

We have implemented this method in Maple. In the fol-
lowing table, we show the time needed for computing all ai,j

in Example 1.

s 6 7 8 9 10
multiplicity 64 128 256 512 1024

time(sec.) 0.593 1.377 3.445 10.913 44.659

It should be noticed that the algorithm still suffer from
the denseness of the Max Noether conditions if we want to
store them in memory. Fortunately, for refining approximate
isolated singular solutions, we don’t need to store them [7].
Moreover, only the evaluations of Lµ−1(F ) and Pµ(F ) at x̂
are needed to construct the inverse system for refining x̂.
In order to avoid constructing Lj(F ) and Pµ(F ) repeatedly,
we propose below a more efficient method for computing the
two evaluations in every iteration.

We regard ak as unknowns and construct the µ polynomial
systems

F1(x,a1) = JF0 · a1,

F2(x,a1,a2) =
1

2
Jx

F1 · a1 + JF0 · a2,

· · ·

Fµ−1(x,a1, . . . ,aµ−1) =

µ−1X
j=1

j

µ− 1
· Jx

Fµ−1−j
· aj ,

Fµ(x,a1, . . . ,aµ−1) =

µ−1X
j=1

j

µ
· Jx

Fµ−j
· aj ,

where F0 = F , Jx
Fk

is the first n columns of the Jacobian JFk

with respect to x, a1,1 = 1 and ak,1 = 0 for k = 1, . . . , µ− 1.
For a given x̂, we solve the least square problem F1(x̂,a1) =
0 to get â1, then solve F2(x̂, â1,a2) = 0 to get â2, · · · , until
we obtain âµ−1. It’s clear that

Lµ−1(F )x=x̂ = Fµ−1(x̂, â1, . . . , âµ−1),

Pµ(F )x=x̂ = Fµ(x̂, â1, . . . , âµ−1).

For an updated x̂, we only need to solve the updated µ − 1
least square problems to obtain updated â1, . . . , âµ−1, then
compute Pµ(F )x=x̂ and Lµ−1(F )x=x̂ by above formulas.

NOTE A threshold has to be selected properly to obtain
the correct multiplicity µ in the first iteration.

3. DISCUSSION
The breadth one case root refinement has been studied in

[1, 2, 3, 4, 5]. In [7] we have proved the quadratic conver-
gency of our algorithm when x̂ is close to x̂e, but we also
notice that when x̂e is not well separated from other solu-
tions of F , it is difficult to ensure that the refined solution
will converge to x̂e. We plan to compute the certified bound
for the initial approximation to guarantee our algorithm con-
verges. In [8, 9] they studied the verified error bounds for
multiple roots of polynomial systems. We also plan to com-
pute the verified error bounds for breadth-one multiple roots
with arbitrary multiplicity.
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ABSTRACT
In this paper we discuss how to generate inequality invari-
ants for continuous dynamical systems involved in hybrid
systems. A hybrid symbolic-numeric algorithm is presented
to compute inequality invariants of the given systems, by
transforming this problem into a parameterized polynomial
optimization problem. A numerical inequality invariant of
the given system can be obtained by applying polynomial
Sum-of-Squares (SOS) relaxation via Semidefinite Program-
ming (SDP). And a method based on Gauss-Newton refine-
ment is deployed to obtain candidates of polynomials with
rational coefficients, and finally we certify that this polyno-
mial exactly satisfies the conditions of invariants, by use of
SOS representation of polynomials with rational coefficients.

Several examples are given to show that our algorithm can
successfully yield inequality invariants with rational coeffi-
cients.

Categories and Subject Descriptors: I.2.1 [Comput-
ing Methodologies]: Symbolic and Algebraic Manipulation
—Algorithms; G.1.2 [Mathematics of Computing]: Numeri-
cal Analysis—Approximation

General Terms: algorithms, verification

Keywords: semidefinite programming, sum-of-squares re-
laxation, program verification, differential invariant

1. INTRODUCTION
Complex physical systems are systems in which the tech-

niques of sensing, control, communication and coordination
are involved and interacted with each other. Among complex
physical systems, many of them are safety critical systems,
such as airplanes, railway, and automotive applications. Due
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to the complexity, ensuring correct functioning of these sys-
tems, e.g., spatial separation, especially collision avoidance,
of aircrafts during the entire flights, is among the most chal-
lenging and most important problems in computer science,
mathematics and engineering.

As a common mathematical model for complex physical
systems, hybrid systems [13, 3] are dynamical systems that
are governed by interacting discrete and continuous dynam-
ics [1, 13, 10]. Continuous dynamics is specified by differ-
ential equations, which is possibly subject to domain re-
strictions or algebraic relations resulting from physical cir-
cumstances or the interaction of continuous dynamics with
discrete control. For discrete transitions, the hybrid sys-
tem changes state instantaneously and possibly discontinu-
ously, for example, the instantaneous change of control vari-
ables like the acceleration (e.g., the changing of a by setting
a := −b with braking force b > 0).

The analysis of hybrid systems is an important problem
that has been studied extensively both by the control the-
ory, and the formal verification community for over a decade.
Among the most important analysis questions for hybrid
systems are those of safety, i.e., deciding whether a given
property ψ holds in all the reachable states, and the dual
problem of reachability, i.e., deciding if a state satisfying
the given property ψ is reachable. Both these problems are
closely related to the problem of generating invariants of hy-
brid systems.

An invariant [31] of a hybrid system is a property that
holds in all the reachable states of the system, or, in other
words, an over-approximation of all the reachable states of
the system. Invariants are useful facts about the dynamics of
a given system and are widely used in numerous approaches
to verify and understand systems. The invariants of hybrid
systems are used to establish temporal properties of systems
such as safety, stability, termination, progress and so on [19,
7, 28, 23].

The problem of generating invariants of an arbitrary form
is known to be computationally hard, intractable even for the
simplest classes. The usual technique for generating invari-
ants is to generate an inductive invariant, i.e., an assertion
that holds at the initial states of the system, and is pre-
served by all discrete and continuous state changes. There
has been a considerable volume of work towards invariant
generation for hybrid systems using techniques from convex
optimization, commutative algebraic and semi-algebraic ge-
ometry [36, 4, 32, 21, 22, 33, 23, 12, 33, 26, 24, 20, 27,
31]. Many of these techniques synthesize invariants of pre-
specified form by computing constraints on the unknown co-
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efficients of a single or fixed number of polynomial inequali-
ties with a bounded degree, that guarantee that any solution
will also be inductive. Carbonell and Tiwari [4] presented a
powerful computational method for automatically generat-
ing polynomial invariants, which does not assume bounded
degree, whereas their method is only applicable to linear
hybrid systems. In [2], Asarin et al. employed a numerical
approach based on conservative approximation to deal with
nonlinear systems. However, as pointed out in [25], numer-
ical errors resulted from numerical computation tended to
cause unsoundness of the verification of hybrid systems. Re-
cently, Platzer et al. proposed a powerful theorem-proving
framework [21, 22, 23, 26, 24, 27] for verifying properties
of hybrid systems through differential logic that extends dy-
namic logics using differential operators and quantifier elim-
ination [6]. However, it is well known that the bottleneck of
quantifier elimination algorithms lies in their high complex-
ity, which is doubly exponential.

In this work, we study how to generate inequality invari-
ants for nonlinear continuous systems given by polynomial
vector fields. In virtue of the efficiency of numerical com-
putation and the error-free property of symbolic computa-
tion, we present a symbolic-numeric hybrid method, based
on Sum-of-Squares (SOS) relaxation via semidefinite pro-
gramming (SDP) and exact SOS representation recovery, to
generate inequality invariants of continuous systems. More
specifically, computing inequality invariants of a continu-
ous system is transformed into solving a semi-algebraic sys-
tem with parameters, while the latter system is constructed
by predetermining the template of the polynomial invariant
with the given degree. It is noticed that SDP is applicable to
polynomial optimization problem by use of Sum-of-Squares
relaxation. Since Matlab packages, such as SOSTOOLS [29]
and Yalmip [18], that deal with SDP problem, are running
in the fixed precision, these algorithms yield only numeri-
cal solutions. However, numerical invariants may not be the
correct invariants of the given continuous system. In [14, 11],
Kaltofen et al. provided a symbolic-numeric hybrid method,
combined with the SDP solvers and rational vector recov-
ery techniques, to verify whether a multivariate polynomial
is positive semidefinite by demonstrating the corresponding
exact SOS representation. In this paper, we also deploy
this symbolic-numeric method to compute inequality-form
invariants of the given continuous systems. The idea is as
follows: (a) From the conditions of invariants, we construct
an SDP system to solve the associated semi-algebraic system
with parameters; (b) an exact invariant is obtained by re-
covering the exact SOS representation from the approximate
SOS representation yielded from the SDP solvers. During
the process of recovery step, we need apply Gauss-Newton it-
eration to refine the approximate SOS representation. More
details can be found in Section 3.

In comparison with other symbolic approaches of invari-
ant generation based on qualifier elimination theory, our ap-
proach is more efficient and practical, because the SDP sys-
tems constructed from the continuous system can be solved
in polynomial time. Furthermore, we apply Gauss-Newton
refinement technique and rational vector recovery to obtain
an exact invariant of the given system. Having the exact rep-
resentation of polynomials as sums of squares with rational
coefficients, the invariant obtained by our approach can be
easily verified to satisfy its constraints exactly. Therefore,
our approach is able to overcome the weakness of numer-

ical approaches on approximate invariant computation, as
claimed in [25], .

The rest of the paper is organized as follows. In Section 2,
we introduce the notions of hybrid systems and invariants.
Section 3 is devoted to illustrating a symbolic-numeric ap-
proach for generating invariants of continuous systems. In
Section 4, we show two examples of inequality invariant gen-
eration. Section 5 concludes the paper.

2. INVARIANTS
To model hybrid systems, we use hybrid automata [13,

33].

Definition 1 (Hybrid Systems). A hybrid system H :
〈V, L, T , Θ,D, ψ, ℓ0〉 consists of the following components:

• V , a set of real-valued system variables. A state is an
interpretation of V , assigning to each x ∈ V a real
value. An assertion is a first-order formula over V .
A state s satisfies an assertion ϕ, written as s |= ϕ,
if ϕ holds on s. We will also write ϕ1 |= ϕ2 for two
assertions ϕ1, ϕ2 to denote that ϕ2 is true at least in
all the states in which ϕ1 is true;

• L, a finite set of locations;

• T , a set of (discrete) transitions. Each transition τ :
〈ℓ1, ℓ2, ρτ 〉 ∈ T consists of a prelocation ℓ1 ∈ L, a post-
location ℓ2 ∈ L, and an assertion ρτ over V ∪ V ′ rep-
resenting the next-state relation, where V ′ denotes the
values of V in the next state;

• Θ, an assertion specifying the initial condition;

• D, a map that maps each location ℓ ∈ L to a differential
rule (also known as a vector field or a flow field) D(ℓ),

of the form ẋi = dxi
dt

= fi(V ) for each xi ∈ V , with
t the time variable. The differential rule at a location
specifies how the system variables evolve in that loca-
tion;

• ψ, a map that maps each location ℓ ∈ L to a loca-
tion condition (location invariant) ψ(ℓ), an assertion
over V ;

• ℓ0 ∈ L, the initial location; we assume that the initial
condition satisfies the location invariant at the initial
location, that is Θ |= ψ(ℓ0).

The following definition of invariants for hybrid systems
comes from [33].

Definition 2 (Invariant). [33, Definition 3] An invariant I
of a hybrid system at a location ℓ is an assertion I such that
for any reachable state 〈ℓ,x〉 of the hybrid system, x |= I.

The problem of generating invariants of arbitrary form is
known to be computationally hard, intractable even for the
simplest classes. The usual technique for generating invari-
ants is to generate inductive invariants, which are defined as
follows.

Definition 3 (Inductive Invariant). An inductive asser-
tion map I of a hybrid system H : 〈V, L, T ,Θ,D, ψ, ℓ0〉 is
a map that associates with each location ℓ ∈ L an asser-
tion I(ℓ) that holds initially and is preserved by all discrete
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transitions and continuous flows of H. More formally an
inductive assertion map satisfies the following requirements:

(i) [Initial] Θ |= I(ℓ0).

(ii) [Discrete Consecution] For each discrete transition
τ : 〈ℓ1, ℓ2, ρτ 〉, starting from a state satisfying I(ℓ1),
and taking τ leads to a state satisfying I(ℓ2). Formally,

I(ℓ1) ∧ ρτ |= I(ℓ2)
′,

where I(ℓ2)
′ represents the assertion I(ℓ2) with the

current state variables x1, . . . , xn replaced by the next
state variables x′1, . . . , x

′
n, respectively.

(iii) [Continuous Consecution] For every location ℓ ∈ L
and states 〈ℓ,x1〉, 〈ℓ,x2〉 such that x2 evolves from x1

according to the differential rule D(ℓ) at ℓ, if x1 |= I(ℓ)
then x2 |= I(ℓ).

Remark 1. Clearly, Definition 3 generalizes the notions of
invariants for both discrete and continuous dynamical sys-
tems. An assertion I is called a discrete (inductive) invari-
ant if I satisfies the conditions (i) and (ii); and I is called a
differential invariant if I satisfies the conditions (i) and (iii).

The usual way to compute invariants of hybrid systems
is to compute discrete invariants and differential invariants
separately. A lot of techniques are available for computing
invariants of discrete loop programs. The reader can refer
to [37, 8, 15, 9, 34, 30, 16, 5] for more details.

In this work, we only concentrate on how to compute dif-
ferential invariants of nonlinear continuous dynamical sys-
tems given by polynomial vector fields, i.e., systems of the
form

ẋ1 = p1(x1, . . . , xn), · · · , ẋn = pn(x1, . . . , xn) (1)

where pi ∈ R[x1, . . . , xn] for 1 ≤ i ≤ n.

[Convention] In what follows, we will adopt the following
notations:

(i) The boldfaced symbols x and p denote the vectors

(x1, . . . , xn) and (p1, . . . , pn),

respectively;

(ii) For a smooth function V (x) : Rn 7→ R, the nota-
tion dV denotes the 1 × n row vector ( ∂V

∂x1
, . . . , ∂V

∂xn
)

of partial derivatives of V with respect to the vari-
ables x1, . . . , xn;

(iii) The expression dV · p represents the inner product of
the vectors dV and p. Actually we have dV · p = dV

dt
.

We will study how to generate inequality-form invariants
of the system ẋ = p, i.e., invariants of the form F ≥ 0
where F is an expression in the system variables x1, . . . , xn

and the initial values x(0). The following lemma will be
needed in latter discussion.

Lemma 1. Let ẋ = p be a nonlinear dynamical system
with initial states Θ and state invariants ψ. For a poly-
nomial V (x) ∈ R[x], define

d0 = min{V (x(0)) : x(0) ∈ Θ},

and set r(x) = dV
dt

= dV · p. If the polynomial r(x) is
positive semidefinite within the state invariants ψ, meaning
that r(x) is positive semidefinite for all x such that ψ hold,
then the formula V (x)− d0 ≥ 0 is a differential invariant of
the dynamical system ẋ = p.

Remark 2. In order to compute the differential invariant
V (x) − d0 ≥ 0 as in Lemma 1, we need compute both the
polynomial V (x) and the constant d0. Actually, once V (x)
is obtained, there are several approaches to obtain the min-
imum d0 of V (x) in Θ. Hereafter, we will omit the discus-
sion of d0, and focus on computing polynomials V (x) such
that r(x) = dV · p is positive semidefinite within the state
invariants ψ. For simplicity, in the sequel, by saying V (x)
is a polynomial invariant we mean that the polynomial in-
equality V (x)−d0 ≥ 0 is an invariant of the given nonlinear
dynamical system, where d0 = min{V (x(0)) : x(0) ∈ Θ}.

3. POLYNOMIAL INEQUALITY INVARIANT
GENERATION

According to Lemma 1 and Remark 2, in order to com-
pute invariants of a nonlinear system ẋ = p with the state
invariants ψ, one may obtain a polynomial V (x) such that
r(x) = dV · p is positive semidefinite within ψ. In general,
we consider the state invariants ψ with the following form:

ψ1 ≥ 0 ∧ · · · ∧ ψk ≥ 0, (2)

where ψ1, · · · , ψk ∈ R[x]. The problem of computing polyno-
mial invariants can be transformed into the following prob-
lem

find V ∈ R[x]

s.t. r = dV · p ≥ 0 if ψ1 ≥ 0 ∧ · · · ∧ ψk ≥ 0. (3)

Our idea of computing V (x), based on SOS relaxation and
rational vector recovery, is as follows.

Step 1: Predetermine a template of polynomial invariants
with the given degree and convert the problem of com-
puting polynomial invariants to the associated (para-
metric) polynomial optimization problem. SOS relax-
ation method is then applied to obtain an approximate
polynomial invariant with floating point coefficients.

Step 2: Apply Gauss-Newton refinement and rational vec-
tor recovery on the approximate polynomial invariant
to get one polynomial with rational coefficients, which
satisfies exactly the conditions of invariants of the given
dynamical system.

Steps 1 and 2 will be explained in more details in Sections 3.1
and 3.2, respectively.

3.1 Sum of Squares Relaxation
To solve the problem (3), let us predetermine a template

of polynomial invariants with the given degree d, that is, we
assume

V (x) =
X

α

cαxα, (4)

where cα ∈ R are parameters, xα = xα1
1 · · ·xαn

n and α ∈ Zn
≥0

with
Pn

i=1 αi ≤ d.
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We first consider a simpler case where there exists no state
invariants. The problem then becomes computing a polyno-
mial V ∈ R[x] such that

r(x) = dV · p ≥ 0, ∀ x ∈ Rn.

It is obvious that a sufficient condition for r(x) to be positive
semidefinite for arbitrary value x ∈ Rn is that there exists
an SOS decomposition of r(x):

r(x) =
X

i

fi
2(x), with fi(x) ∈ R[x], (5)

or, equivalently, there exists a following representation of r(x):

r(x) = m(x)T ·W ·m(x),

whereW is a real symmetric and positive semidefinite matrix
andm(x) is a vector of terms in R[x] with degree ≤ d/2. The
SOS problem (5) can be further converted into the following
SDP program

inf
W

Trace(W )

s. t. r(x) = m(x)T ·W ·m(x)

W � 0,WT = W.

9>=>; (6)

(here Trace(W ) acts as a dummy objective function that is
commonly used in SDP for optimization problem with no
objective functions.)

Now let us consider the case where the state invariants
are given as in (2). Similar to the case with no state in-
variants, we predetermine the template (4) of V (x) with the
given degree d, where the coefficients cα are parameters. One
can certainly apply quantifier elimination methods to solve
the corresponding parametric semi-algebraic system. Some
Maple packages such as DISCOVERER [38] are available to
solve this kind of problems. For the given template, quan-
tifier elimination methods yield the necessary and sufficient
conditions for the existence of invariants with given degree.
However, quantifier elimination methods are of high com-
plexity since they rely on the cylindrical algebraic decom-
position (CAD) algorithm. Instead in this paper, we will
explore the SOS relaxation techniques based on semidefinite
programming to obtain polynomial invariants. These tech-
niques supply a sufficient condition for the existence of V (x).

Theorem 1. Let ẋ = p be a nonlinear dynamical system
with initial states Θ and state invariants

ψ := ψ1 ≥ 0 ∧ · · · ∧ ψk ≥ 0.

Suppose there exists a polynomial V (x) ∈ R[x] such that
r(x) = dV · p can be written as

r(x) =
kX

i=0

σiψi, (7)

where σ0, . . . , σk are SOSs and ψ0 = 1,

then the formula V (x)− d0 ≥ 0 with

d0 = min{V (x(0)) : x(0) ∈ Θ},
is a differential invariant of the dynamical system ẋ = p.

Proof. It is easy to verify that if r(x) has the form (7)
then r(x) ≥ 0 holds for any x ∈ Rn such that ψ holds. The
conclusion then follows from Lemma 1.

A weaker sufficient condition than (7) can be presented
using cross products of ψi’s, as described in the following
corollary:

Corollary 1. Under the assumptions of Theorem 1, if the
polynomial r(x) can be written as

r(x) =
X

µ∈{0,1}k

σµψµ where ψµ = ψµ1
1 · · ·ψµk

k (8)

σµ are all SOSs,

then the formula V (x)− d0 ≥ 0 with

d0 = min{V (x(0)) : x(0) ∈ Θ},
is a different invariant of the given dynamical system.

Given the degree bound 2N of σi(x) with N ∈ Z+, one
can easily construct an SOS program of the form (7), in
which the decision variables are the coefficients of V (x) and
σi(x), for 0 ≤ i ≤ k. Similar to (6), the SOS program (7) is
equivalent to the following SDP problem with a block form:

inf
W [0],...,W [k]

Pk
i=0 Trace(W [i])

s. t. r(x) =
Pk

i=0mi(x)T ·W [i] ·mi(x)ψi

W [i] � 0, (W [i])T = W [i], 0 ≤ i ≤ k.

9>>=>>; (9)

The SOS program corresponding to (8) would be obtained
likewise. Many Matlab packages of SDP solvers, such as
SOSTOOLS [29], YALMIP [18], and SeDuMi [35], are avail-
able to solve efficiently the problems (6) and (9).

3.2 Exact Certificate of Sum of Squares De-
composition

Since the SDP solvers in Matlab is running in fixed preci-
sion, the techniques in Section 3.1 will yield numerical solu-
tions to the associated SDP problems of (5, 7, 8), and there-
fore yield numerical solutions to (5, 7, 8), respectively. For
instance, applying an SDP solver to (9), we obtain a numer-
ical polynomial V ∗(x) with floating point coefficients and

some numerical positive semidefinite matrices W [i], which
satisfy approximately

r∗(x) ≈
kX

i=0

mi(x)T ·W [i] ·m(x)ψi and W [i] v 0, (10)

where r∗(x) = dV ∗(x) · p. However, due to round-off er-
rors, V ∗(x)− d0 ≥ 0 may not necessarily be an invariant of
the given dynamical system because r∗(x) may not be pos-
itive definite within ψ exactly. Therefore in the next step,
from the numerical polynomial V ∗(x) and the numerical pos-

itive semidefinite matrices W [i], we will try to recover a pol-
ynomial V (x) with rational coefficients, which satisfies (7)
exactly.

In [14, 11], the authors proposed a method to certify a
lower bound of global optimum of a polynomial via SOS
representation. In this paper, we will employ this method
to compute invariants of continuous dynamical systems. We
first recall the idea of this method. Given a multivariate pol-
ynomial f ∈ R[x], they first constructed the associated SOS
program and solve the SDP system to obtain an approxi-
mate lower bound r∗ and an approximate positive semidefi-
nite matrix W such that

f(x)− r∗ ≈ m(x)T ·W ·m(x) with W v 0.
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Next, they rounded r∗ to a nearby rational number r and,
for a given tolerance τ , applied Gauss-Newton iteration to
refine W such that

‖f(x)− r −m(x)T ·W ·m(x)‖ ≤ τ and W � 0.

In the end, a positive semidefinite matrix fW with rational
entries would be obtained by orthogonal projection method
or rational vector recovery method such that

f(x)− r = m(x)T ·fW ·m(x), with fW � 0. (11)

Therefore, r is a certified lower bound of the global optimum

of f because r and fW exactly satisfy (11).
In comparison with the problem of the lower bound veri-

fication in [14], finding a polynomial invariant V (x) of non-
linear continuous dynamical systems is a bit different. To
obtain a certified polynomial invariant V (x), we need con-
sider the following two problems:

P.1: Instead of obtaining a single rational number r, we
need find a rational vector v denoting the coefficient
vector of V (x).

P.2: V (x) should exactly satisfy (7) or (8), i.e., not only
the σi’s and σµ’s satisfy the equalities (7) and (8) re-
spectively, but also they have exact SOS representa-
tions simultaneously.

In Section 3.1, a numerical vector v∗ that denotes the
(numerical) coefficient vector of V ∗(x) is obtained by solv-
ing some SDP system. For the given bound of the common
denominator of v∗, we can recover the numerical vector v∗

to a vector v with rational entries by a simultaneous Dio-
phantine approximation algorithm [17]. This solves the first
problem.

Let us focus on the second problem. Here we only con-
sider the case (7), and the case (8) can be handled like-
wise. From (9), we will construct another SDP system given

by one big matrix W = diag(W[0], . . . ,W[k]), and, by use
of SDP solvers, some numerical positive semidefinite matri-
ces W [0], . . . ,W [k] and an approximate form of (9) will be

obtained. The recovery of W [0], . . . ,W [k] into rational pos-
itive semidefinite matrices is split into two steps: we first

recover fW [1], . . . ,fW [k] and then recover fW [0].
Step 1. Given the numerical positive definite matricesW [i],

1 ≤ i ≤ k, we find the nearby rational positive semidefinite

matrices fW [i]. In practice, all W [i] are very simple, and
by setting the small entries of W [i] to be zeros we easily

get the nearby rational positive semidefinite matrices fW [i]

for i = 1, . . . , k.

Step 2. Having v and fW [1], . . . ,fW [k], (9) is converted to

r(x)−Pk
i=1mi(x)T ·fW [i] ·mi(x)ψi

≈ m0(x)T ·W [0] ·m0(x),

W [i] � 0, 1 ≤ i ≤ k, W [0] v 0,

9=; (12)

where r(x) = dV (x) · p with V (x) the polynomial corre-
sponding to the coefficient vector v. Observing in (12), the

matrix W [0], obtained from the computation in Step 1, has

floating point entries, while the fW [i], 1 ≤ i ≤ k, are rational
positive semidefinite matrices. Therefore, the remaining task
of (P.2) is to find a nearby rational positive semidefinite ma-

trix fW [0] such that the equation in (12) holds exactly, which
is exactly the same problem as described in [14]. Therefore,

we can apply Gauss-Newton iteration to refine W [0], and

recover a rational positive definite matrix fW [0] from the re-
fined W [0] by orthogonal projection if W [0] is of full rank, or
by rational vector recovery method otherwise.

Remark 3. In practice, we will do as follows to fulfil the
above task of finding a rational positive semidefinite ma-

trix fW [0] that satisfies (12) exactly. First, using the ratio-
nal polynomial V (x) determined by the coefficient vector v,

and rational positive semidefinite matrices fW [1], . . . ,fW [k],
we will reconstruct an SDP system of the form (12), which
gives us a better initial point for Gauss-Newton iteration.
Then, we will compute numerical solutions for W [0] of (12)
using SDP solvers, and finally apply the method in [14] to

recover fW [0].

The above discussion leads to an algorithm of computing
the certified polynomial inequality invariants of the dynam-
ical system ẋ = p with state invariants ψ. As stated above,
we only present the case where the invariant V (x) satis-
fies (7), and the case of (8) is similar.

3.3 Algorithm

Algorithm Polynomial Inequality Invariant Generation

Input: ◮ ẋ = p: a continuous dynamical system.
◮ d ∈ Z>0: the degree bound of the candidate

polynomial invariant.
◮ D ∈ Z>0: the bound of the common denom-

inator of the coefficient vector of the polyno-
mial invariant.

◮ N ∈ Z≥0: the degree bound deg(σi) ≤ 2N
used to construct the SDP system.

◮ τ ∈ R>0: the given tolerance.
Output: ◮ V (x): a verified polynomial invariant.

1. Compute the candidates of polynomial invariants

(a) Case 1: the state invariant is empty:

(i) Predetermine the template of V (x) with de-
gree d and construct an SDP system of form (6).
• If the SDP system (6) has no feasible so-

lutions,
return ”we can’t find polynomial invari-
ants with degree ≤ d;”

• Otherwise,
obtain a numerical vector v∗ and a nu-
merical positive semidefinite matrix W .

(ii) For the common denominator bound D, com-
pute from v∗ a rational vector v by Diophan-
tine approximation algorithm, and then the
associated rational polynomial V (x).

(b) Case 2: the state invariant is given as

ψ : ψ1 ≥ 0 ∧ . . . ∧ ψk ≥ 0. (13)

(i) Set up the SDP system (9) by predetermin-
ing the template of V (x) with deg(V ) = d
and predetermining the template of σj with
deg(σj) ≤ 2N .
• If the SDP system (9) has no feasible so-

lutions,
return ”we can’t find polynomial invari-
ants with degree ≤ d;”
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• Otherwise,
obtain a numerical vector v and numerical
positive semidefinite matricesW [0] andW [i], 1 ≤
i ≤ k.

(ii) For the common denominator bound D, com-
pute a rational vector v using Diophantine
approximation algorithm and get the asso-
ciate rational polynomial V (x).

(iii) Convert all the W [i], 1 ≤ i ≤ k, into rational

matrices fW [i] that are positive semidefinite.

2. Compute the exact SOS decomposition

(a) Case 1: the state invariant is empty:

(i) Use V (x) to reconstruct an SDP system
of form (6) and get an approximate SOS
decomposition:

r(x) ≈ m(x)T ·W [0] ·m(x) (14)

with r(x) = dV (x) · p.

(ii) Apply Gauss-Newton iteration to refineW [0]

in (14).

Case 2: the state invariant is given as (13)

(i) Reconstruct an SDP system of the form (12)
to get an approximate positive semidefi-
nite matrix W [0] satisfying

r(x)−Pk
i=1mi(x)T ·fW [i] ·mi(x)ψi

≈ m0(x)T ·W [0] ·m0(x)
(15)

with r(x) = dV (x) · p.

(ii) Apply Gauss-Newton iteration to refineW [0]

in (15).

(b) From the refined W [0], compute a rational ma-

trix fW [0] satisfying (15) exactly by orthogonal

projection method if W [0] is of full rank, or by
rational vector recovery if W [0] is singular.

(c) Check whether fW [0] is positive semidefinite.

• If so, return V (x);

• Otherwise,
return ”we can’t find polynomial invariants
with degree ≤ d.”

Remark 4. Our algorithm cannot guarantee a rational so-
lution will always be found since there are some limitations
of the above algorithm such as choosing the degree bound N
and the common denominator bound D. Furthermore, it is
difficult to determine in advance whether there exists differ-
ential invariants with rational coefficients or not. Therefore,
even if our algorithm cannot find differential invariants, it
does not mean that the given dynamical system has no dif-
ferential invariants.

4. EXPERIMENTS
In this section, two examples are given to illustrate our

algorithm for computing polynomial inequality invariants.

Example 1. Consider the nonlinear system

ẋ1 = x1 + x2
2, ẋ2 = x2

1 + x2.

Assume that deg(V ) = 2k + 1 for k = 0, 1, 2, . . .. For
deg(V ) = 1, there exists no feasible solutions of the cor-
responding SDP system. Now set deg(V (x1, x2)) = 3 and
let the coefficients of V (x1, x2) be parameters. By solving
the associated SDP system, we obtain a numerical polyno-
mial V ∗(x1, x2) as follows

V ∗(x1, x2) =0.0778x3
1 + 0.1287x2

1x2 + 0.3406x2
1 + 0.1287x1x

2
2

− 0.06165x1x2 − 1.75× 10−6x1 + 0.0778x3
2

+ 0.3406x2
2 − 1.75× 10−6x2.

Let τ = 10−2, and round the coefficients of V ∗(x1, x2) to be
rational numbers with the common denominator bound 104.
We obtain a rational polynomial

V (x1, x2) =
33

424
x3

1 +
191

1484
x2

1x2 +
1011

2968
x2

1 +
191

1484
x1x

2
2

− 183

2968
x1x2 +

33

424
x3

2 +
1011

2968
x2

2.

Therefore,

r(x1, x2) =
dV

dt
=

99

212
x2

1x
2
2 +

255

1484
x3

1 +
191

742
x1x

3
2 +

396

371
x2

1x2

+
396

371
x1x

2
2 +

1011

1484
x2

1 +
191

1484
x4

2 +
255

1484
x3

2

− 183

1484
x1x2 +

191

1484
x4

1 +
191

742
x3

1x2 +
1011

1084
x2

2.

By running the algorithm in Section 3.3, we find that r(x1, x2)
can be written as an SOS of 4 polynomials with rational co-
efficients. The SOS representation of r(x1, x2) is given in
Appendix. Therefore,

V (x1, x2)− d0 ≥ 0,

with d0 = min{V (x1, x2) : (x1, x2) ∈ Θ}, is an invariant of
the given nonlinear system.

The next example shows how to compute polynomial in-
equality invariants for nonlinear systems with state invari-
ants.

Example 2. Consider the following nonlinear system

ẋ1 = x2 + x1x
2
2, ẋ2 = −x1 + x2

1x2.

Assume that the state invariant is x1 ≥ 0 ∧ x2 ≥ 0. Let
us assume that deg(V ) = 2k, k = 1, 2, . . .. According to
Corollary 1, we construct the associated SDP system as (8),
that is, the polynomial

dV · p− σ1(x1, x2)x1 − σ2(x1, x2)x2 − σ3(x1, x2)x1x2

can be written as an SOS, and σi(x1, x2), i = 1, 2, 3 can also
be written as SOSs.

Suppose the degree bounds of V (x1, x2) and of σi(x1, x2)
are all 2.

Solve the associated SDP system and find numerical solu-
tions:

V ∗(x1, x2) = 0.424x2
1 + 0.424x2

2 + · · ·+ 2.286× 10−13x2,

and

σ∗1(x1, x2) =− 1.171× 10−12x2
1 + · · ·+ 2.121× 10−5x2

2,

σ∗2(x1, x2) =1.426× 10−5x2
1 + · · ·+ 8.87× 10−13x2

2,

σ∗3(x1, x2) =2.917× 10−11x2
1 + · · ·+ 3.367× 10−11x2

2.
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Set τ = 10−2, and round the coefficients of V ∗(x1, x2) as
rational numbers with the common denominator bound 100.
We obtain a rational polynomial

V (x1, x2) =
14

33
x2

1 +
14

33
x2

2,

and

σi(x1, x2) = 0, i = 1, 2, 3.

It is easy to verify that

dV

dt
−σ1(x1, x2)x1−σ2(x1, x2)x2−σ3(x1, x2)x1x2 =

56

33
x2

1x
2
2,

and is thus positive semidefinite. So,

V (x1, x2)− d0 ≥ 0, or equivalently, x2
1 + x2

2 − d0 ≥ 0,

with d0 = min{V (x1, x2) : (x1, x2) ∈ Θ}, is an invariant of
the given nonlinear system with the state invariants x1 ≥ 0
and x2 ≥ 0.

For degree bounds 4 and 6 of the polynomial V (x1, x2),
the associated SDP systems have no feasible solutions.

Now suppose the degree bound of V (x1, x2) is 8. By solv-
ing the associated SDP system, we get numerical solutions

V ∗=0.228x4
1x

4
2+0.006x4

1x
3
2+0.197x4

1x
2
2+· · ·+0.251x4

2+0.829x2
2,

and

σ∗1 =8.80× 10−13 x5
1x2 + 0.741x2

1x
4
2 + · · ·+ 2.27× 10−6x6

2,

σ∗2 =1.80x6
1 + 0.765x4

1x
2
2 + · · · − 2.95× 10−12 x6

2,

σ∗3 =− 1.763× 10−12x6
1 + 0.602x4

1x
2
2 + · · · − 5.15× 10−13 x6

2.

Set τ = 10−2, and round the coefficients of V ∗ as ratio-
nal numbers with the common denominator bound 100. We
obtain the corresponding rational polynomial V (x1, x2) and
σi(x1, x2), i = 1, 2, 3:

V =
17

76
x4

1x
4
2 +

15

76
x4

1x
2
2 +

27

76
x4

1 +
4

19
x3

1x
3
2 − 15

38
x3

1x2

+
15

76
x2

1x
4
2 +

11

19
x2

1x
2
2 +

63

76
x2

1 +
15

38
x1x

3
2 +

1

4
x4

2 +
63

76
x2

2,

σ1 =
14

19
x2

1x
4
2, σ2 =

38

29
x4

1x
2
2, σ3 =

23

38
x4

1x
2
2 +

45

38
x2

1x
4
2.

Now let us verify whether the polynomial

dV

dt
− σ1(x1, x2)x1 − σ2(x1, x2)x2 − σ3(x1, x2)x1x2

is positive semidefinite. By running the algorithm in Sec-
tion 3.3, we find that the above polynomial can be written as
an SOS of 8 polynomials, and its SOS representation is listed
in Appendix. With the state invariants x1 ≥ 0∧x2 ≥ 0, it is
obvious that dV

dt
is always positive semidefinite. Therefore,

V (x1, x2)− d0 ≥ 0

with d0 = min{V (x1, x2) : (x1, x2) ∈ Θ}, is an invariant of
the given nonlinear system with the state invariants x1 ≥ 0
and x2 ≥ 0.

5. CONCLUSION
In this paper, we present a symbolic-numeric approach to

compute inequality invariants of nonlinear continuous sys-
tems in hybrid systems. Employing SOS relaxation and ra-
tional vector recovery techniques, it can be guaranteed that

an exact invariant, rather than a numerical one, can be ob-
tained efficiently and practically. This approach avoids both
the high complexity of symbolic invariant generation meth-
ods based on quantifier elimination, and the weakness of ap-
plying numerical approaches to verify correctness of hybrid
systems.
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Appendix
A solution to Example 1,

r =
1484

1011
f2
1 +

285776

193095
f2
2 +

11143727

1016838
f2
3 +

1508987592

30774371
f2
4

where
f1 = 1011

1484
x2 − 183

2968
x1 + 255

2968
x2

2 + 1209
2968

x1x2 + 375
2968

x2
1,

f2 = 193095
285776

x1 + 268305
2000432

x2
2 + 126945

285776
x1x2 + 194745

2000432
x2

1,

f3 = 1016838
11143727

x2
2 − 4931

454846
x1x2 − 1792057

22287454
x2

1

f4 = 30774371
1508987592

x1x2 − 30774371
1508987592

x2
1.

�

A solution to Example 2,

r =
38

15
f2
1 +

190

147
f2
2 +

2793

1010
f2
3 +

1919

4172
f2
4 +

4756080

7066109
f2
5

+
1074048568

1371482325
f2
6 +

104232656700

92227612763
f2
7 +

28037194279952

24255149844713
f2
8 ,

where
f1 = 15

38
x2

2 + 3
38
x1x2 + 3

38
x2

1 − 2
19
x2

1x2 + 15
38
x1x

3
2 + 4

19
x2

1x
2
2

− 3
38
x3

1x2 − 3
38
x3

1x
2
2,

f2 = 147
190

x1x2 + 11
95
x2

1 + 2
19
x1x

2
2 − 8

95
x2

1x2 − 3
190

x2
1x

2
2

− 11
95
x3

1x2 + 1
38
x2

1x
3
2 + 21

380
x3

1x
2
2,

f3 = 1010
2793

x2
1 + 250

2793
x1x

2
2 + 94

2793
x2

1x2 + 563
1862

x2
1x

2
2

− 1010
2793

x3
1x2 − 11

2793
x2

1x
3
2 + 1

133
x3

1x
2
2,

f4 = 4172
1919

x1x
2
2− 89

3838
x2

1x2− 1087
3838

x2
1x

2
2− 17

404
x2

1x
3
2− 119

1919
x3

1x
2
2,

f5 = 7066109
4756080

x2
1x2 − 1391293

4756080
x2

1x
2
2 − 175701

3170720
x2

1x
3
2

− 12287
113240

x3
1x

2
2,

f6 = 1371482325
1074048568

x2
1x

2
2 + 23684501

268512142
x2

1x
3
2 − 4029727

537024284
x3

1x
2
2,

f7 = 92227612763
104232656700

x2
1x

3
2 − 110608051

208465313400
x3

1x
2
2,

f8 = 24255149844713
28037194279952

x3
1x

2
2.

�
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ABSTRACT
Elimination methods are highly effective for the solution of
linear and nonlinear systems of equations, but there are im-
portant examples where reversing the elimination idea can
improve global convergence of iterative methods, that is their
convergence from the start. We believe that these examples
reveal a direction that the algorithm designers should explore
systematically, and we show this principle at work for the
approximation of a single root (zero) of a univariate polyno-
mial of a degree n. We reduce the latter task to the solution
of a multivariate polynomial system of n equations with n
unknowns and achieve faster and more consistent global con-
vergence of Newton’s iteration applied to the system rather
than a single equation. Global convergence behavior of our
algorithms is similar to that of Durand–Kerner’s (Weier-
strass’) iteration, but we direct convergence to a single root
and use linear arithmetic time per iteration loop. Having
m processors one can apply the algorithms concurrently, to
approximate up to m roots within the same parallel time.
Technically the computations boil down to solving Sylvester
or generalized Sylvester linear systems of equations, linked
to partial fraction decompositions. By solving these tasks
efficiently, we arrive at effective algorithms for polynomial
root-finding.

Categories and Subject Descriptors
F.2.1 [Theory of Computation]: Analysis of Algorithms
and Problem ComplexityNumerical Algorithms and Problem

General Terms
Algorithms
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1. INTRODUCTION

1.1 Principle of Arming with Constraints for
polynomial root-finding and beyond

Elimination of variables is a fundamental technique, em-
ployed by Gauss, Macaulay and more recently Buchberger
for the solution of linear and polynomial systems of equa-
tions. This is a natural, popular and highly successful tool,
but we are going to demonstrate some benefits of reversing
the elimination principle for the classical problem of univari-
ate polynomial root-finding (see McNamee (1993, 1997, 2002
and 2007)).

Its study has begun at least four millennia ago and still
remains a highly important subject of modern computations
because of its applications to algebraic and geometric compu-
tations and signal processing. The algorithms of Pan (1995,
1996, 2001a, and 2002) solve both problems (as well as the
related problems of polynomial factorization and root isola-
tion) by using arithmetic and Boolean time which is optimal
up to polylogarithmic factors in the input size under both se-
quential and parallel models of computing. The algorithms
extend the work of Schönhage (1982), whose solution was
slower by order of magnitude.

The cited papers of both authors employ Newton’s iter-
ation and invest substantial and relatively costly effort to
ensure its global convergence (that is convergence from the
start) for the worst case input. The users, however, skip this
initial stage because empirically convergence of Newton’s as
well as some other popular iterations is rather satisfactory
under various heuristic initialization policies. In this paper
we concur with users’ preference and focus on refining New-
ton’s iteration towards improving its convergence power.

We first recall the extension of Schönhage’s algorithms in
Kirrinnis (1998), based on approximating and refining the
associated partial fraction decompositions and, as in Schön-
hage (1982), directed to factorization of a degree n polyno-
mial into the product of n linear factors. Hereafter we will
use the acronym “PFD” for “partial fraction decomposition”.

Such a factorization is an important goal in its own right
due to its applications to the time series analysis, Weiner fil-
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tering, noise variance estimation, covariance matrix compu-
tation, and the study of multi-channel systems (see Wilson
(1969), Box and Jenkins (1976), Barnett (1983), Demeure
and Mullis (1989 and 1990), Van Dooren (1994)).

We can see a major advantage of approximating such a
factorization rather than a single root because of implicit
engagement of n independent equations versus the single
polynomial equation p(x) = 0.

Indeed Newton’s iteration

xi+1 = xi − p(xi)

p′(xi)
(1.1)

as well as other known iterations for a single univariate equa-
tion readily lose their direction to a root unless the current
approximation is already close to it. With additional equa-
tions we can expect to arrive at a larger system, which is
more stable and cannot be so easily pushed astray from its
trajectory.

This expectation has been consistently confirmed by the
statistics of global convergence of univariate polynomial root-
finders based on Viète’s (Vieta’s) equations such as Durand–
Kerner iteration (traced back to Weierstrass (1903) and here-
after referred to as the WDK iteration) and Ehrlich–Aberth
iteration (also called Aberth’s) as well as matrix methods in-
volving eigenvectors and thereby again reduced to systems of
n equations for their coordinates (see Pan and Zheng (2011)
and the bibliography therein on these methods).

These and other data and observations suggest conjecting
the following general Principle of Arming with Constraints,
for which we will use the acronym PAC: one can strengthen
global convergence of iterative root-finders by competently
immersing the input equations into a larger system of equa-
tions.

This principle is well reflected in the proverbs “One’s as
good as none”, “There’s strength in numbers”, “One man
does not make a team”, “Odin v pole ne voin” (Russian)
(“One man does not make an army”), “Unus homo non facit
choream ”(medieval Latin) (“One man does not make a dance
ensemble”), “One swallow does not a summer make” (the
Aristotelian), but seems to have never been stated formally
in mathematics or computational sciences.

In addition to the cited support for some ad hoc appli-
cations of this principle to polynomial root-finding, one can
recall similar statistics for the SNTLN techniques of Park,
Zhang and Rosen (1999), Rosen, Park and Glick (1996 and
1999) and the efficiency of application of dual linear and
nonlinear programming.

Our present work should motivate systematic exploration
of the PAC. For yet another demonstration of its power we
substantially advance Newton’s approximation of a single
root of a polynomial equation by redefining the task via n
constraints.

1.2 Polynomial root-finding for a single root
and many roots

We link Kirrinnis’ algorithm to the WDK iteration, which
empirically has strong global convergence. Both algorithms
have been devised for the approximation of all n zeros of a
polynomial p(x) of a degree n, but can we employ them for
approximating a single zero?

We do not mind to approximate the other n − 1 zeros as
by-product, but the arithmetic cost per an iteration loop in-
creases from linear in (1.1) to nonlinear in Kirrinnis (1998)

and quadratic in the WDK iteration, and both of the lat-
ter algorithms assume some additional initial information
besides a single approximate root (zero).

Fortunately we readily fix these discrepancies by comput-
ing the solutions and least squares solutions of the associated
structured linear systems of equations. Our Laser Versions
of WDK and Kirrinnis’ algorithms approximate a single root
by using linear arithmetic time per iteration loop and pre-
serve their fast and consistent global convergence. Surely
one can concurrently apply our Laser WDK root-finder on
m processors to approximate up to m roots for 1 < m ≤ n.

Devising our algorithms we follow the PAC: we employ
the factorization equation p = L1 · · ·Lm, which imposes n
constraints on the coefficients and for m = 2 enables us
to recover the factor L1 where we are given L2 and vice
versa. The factor can be recovered as a rather noncostly least
squares solution of the associated structured linear system
of equations, but we further simplify this stage in Section 8.

Every step of Newton’s iteration for the associated mul-
tivariate polynomial system of equations boils down to the
solution of a Sylvester linear system of equations, and we
exploit their structure and their association with PFDs to
solve these systems efficiently.

1.3 Structured linear systems of equations
and PFDs

Our association of Sylvester and generalized Sylvester lin-
ear systems of equations with PFDs immediately implies ex-
tension of the celebrated formula of Gohberg and Semencul
(1972) from Toeplitz to Sylvester and generalized Sylvester
matrix inverses.

Furthermore, we solve a nonsingular Sylvester linear sys-
tem of n equations and compute the associated PFD by us-
ing a linear number of arithmetic operations O(n) in the
important case where one of the two polynomials defining
the matrix of this system has a constant degree.

We extend our algorithm to generalized Sylvester linear
systems, defined by a PFD for the reciprocal of a polynomial
factorized into the product of m nonconstant factors L1,
. . . , Lm provided

n− degLm = O(1) . (1.2)

In the important case of two basic polynomials one of
which is linear, the associated Sylvester matrix turns into
a scaled and shifted companion matrix. In this case we solve
the associated Sylvester linear system of n equations with
Gaussian elimination by using 6n− 5 arithmetic operations.

Furthermore, we follow Pan and Zheng (2011) and numer-
ically stabilize the elimination stage of this solution where
p = L1L2 and one of the factors is linear.

1.4 Organization of the paper and further re-
search

We organize our presentation as follows. Having intro-
duced definitions in the next section, we recall Kirrinnis’ ex-
pressions for Newton’s updates of polynomial factorization
and PFD in Section 3. We relate PFDs and the solution of
Sylvester linear systems of equations in Section 4. In Sec-
tions 5 and 6 we present their fast solution under (1.2) and in
Section 7 recall some initialization policies for root-finding.
In Sections 8 and 10 we compute approximate solutions of
a Cauchy convolution linear system and apply them in our
root-finding construction. In Section 9 we recall some details
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of Kirrinnis’ algorithm and link it to the WDK iteration.
Section 11 is left for a summary and discussion.

We plan further theoretical and experimental study of our
approach and its extensions, in particular further applica-
tions of the PAC.

2. DEFINITIONS AND PRELIMINARIES
We use the acronyms “PFD” for “partial fraction decom-

position, “WDK” for “ Weierstrass–Durand–Kerner”, “GCD”
for “greatest common divisor”. We use the abbreviation “op”
for “arithmetic operation”.

We represent a polynomial u(x) with its coefficient vector
u and write u to denote such a polynomial wherever this
causes no confusion.

deg u denotes its degree.
gcd(u, v) denotes the monic GCD of two polynomials u =

u(x) and v = v(x).
p denotes a monic polynomial

p = p(x) =

nX
i=0

pix
i = pn

nY
j=1

(x− zj) , pn = 1 . (2.1)

prev denotes the reverse polynomial

prev =

nX
i=n

pn−iy
i = pn

nY
j=1

(zjy − 1) , pn = 1 . (2.2)

We write

VL = V mod L

for two polynomials L and V .
Given five polynomials F = F (x), D = D(x), N = N(x),

L = L(x) and G = G(x) such that

FD = N + LG , degF < degL ,

and D and L are coprime, we write

F = (N/D) mod L

and then observe that

F = (NL/DL) mod L ,

(N(x)/D(x)) mod (x− z) = N(z)/D(z) , (2.3)

and if N = QL+R and degR < degL , then

F = QL +R/DL mod L .

Fact 2.1. One can multiply and divide a pair of polyno-
mials of degrees at most n by using O(n logn) ops.

Proof. See, e.g. Pan (2001a), Sections 2.4 and 2.5.

Fact 2.2. Given three polynomials N , D, and L where D
and L are coprime, we can compute the polynomial

F = (NL/DL) mod L

by using O(k log2 k + n logn) ops provided k = degL and
n = max{degD,degN}.

Proof. Fact 2.2 follows from Fact 2.1 and Pan (2001a),
Theorem 2.9.3.

MT denotes the transpose of a matrix or vector M ; MH

is its Hermitian transpose.
[M1 |M2 | . . . |Ms] is a 1×s block matrix with the blocks

M1, . . . ,Ms .
diag(M1,M2, . . . ,Ms) is an s × s block diagonal matrix

with the diagonal blocks M1, . . . ,Ms .
I = In = [e1 | . . . | en] denotes the n×n identity matrix,

having the coordinate vectors e1, . . . , en as the columns.
T is a Toeplitz matrix if its entries are invariant in their

shift into the diagonal direction, that is if T = [ti−j ]i,j .

Ck(w) =

0BBBBBBBBBBBBBBBBBB@

wl O
...

. . .
...

. . .
. . .

...
. . .

. . . wl

w0

...
. . .

...
. . .

...
. . .

...
O w0

1CCCCCCCCCCCCCCCCCCA
denotes the kth Cauchy convolution matrix of a polynomial
w(x) =

Pl
i=0 wix

i , that is the (k+ l+ 1)× (k+ 1) Toeplitz
matrix defined by its first row [wl | 0 | . . . | 0] and its first
column [wl | wl−1 | . . . | w0 | 0 | . . . | 0]T .

Note that C0(w) = w is a vector.
Assume a factorization

L = L1 · · ·Lm ≈ p ,
define the polynomials

Qi = L/Lj , j = 1, . . . ,m,

and the 1×m block matrix

S(Q1, . . . , Qm) = [Cn−d1(Q1) | . . . | Cn−dm(Qm)],

call it generalized Sylvester matrix and call L1,. . . ,Lm its
basic polynomials. For m = 2 we arrive at a Sylvester matrix

S(Q1, Q2) = S(L2, L1) .

We call a generalized Sylvester matrix S(Q1, . . . , Qm) and
a linear system of equations with such a coefficient matrix
regular if the m basic polynomials L1, . . . , Lm are pairwise
coprime.

Fact 2.3. A square Sylvester matrix S(L2, L1) is nonsin-
gular if and only if its basic polynomials L1 and L2 are co-
prime.

3. KIRRINNIS–NEWTON’S UPDATES
OF FACTORIZATION AND PFD

Assume a factorization

p = L1 · · ·Lm

of a polynomial p of (2.1) and sufficiently close initial ap-
proximations

l
(0)
j ≈ Lj for j = 1, . . . ,m

and recursively improve them by applying Newton’s itera-
tion. In the kth iteration loop for k = 0, 1, . . . compute at
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first the polynomial

l(k) =

mY
j=1

l
(k)
j ≈ p , (3.1)

then Newton’s corrections ∆
(k)
1 , . . ., ∆

(k)
m defined by the PFD

p− l(k)

l(k)
=

∆
(k)
1

l
(k)
1

+ · · ·+ ∆
(k)
m

l
(k)
m

, deg ∆
(k)
j < deg l

(k)
j , (3.2)

j = 1, . . . ,m , and finally the improved approximations

l
(k+1)
j = l

(k)
j + ∆

(k)
j , j = 1, . . . ,m . (3.3)

4. A PFD AND SYLVESTER
LINEAR SOLVING

Our next goal is the computation of the corrections ∆
(k)
j

of (3.2). Let us write

T = p− l(k), Lj = l
(k)
j , Vj = ∆

(k)
j , dj = deg Lj (4.1)

for j = 1, . . . ,m . Now for m pairwise prime monic poly-
nomials L1, . . . , Lm, their product L, and a polynomial T =
T (x) of a degree at most n− 1 and coprime with p, define a
unique PFD

T

L
=
V1

L1
+ · · ·+ Vm

Lm
, L = L1 · · ·Lm (4.2)

by m polynomials V1, . . . , Vm such that

deg Vj < deg Lj = dj , j = 1, . . . ,m

where

2 ≤ m ≤ d1 + . . .+ dm = n .

Multiply this PFD by L and obtain an equivalent polynomial
equation

Q1V1 + · · ·+QmVm = T (4.3)

where

Qj =
L

Lj
, Vj =

TLj

L
mod Lj , j = 1, . . . ,m . (4.4)

Alternatively the coefficient vectors of the polynomials
V1, . . . , Vm can be obtained from a linear system of equa-
tions

S(Q1, . . . , Qm)y = T . (4.5)

Here

yT = [VT
1 | . . . | VT

m] ,

Vj denote the coefficient vectors of the polynomials Vj , j =
1, . . . ,m;

S(Q1, . . . , Qm) = [Cd1−1(Q1) | . . . | Cdm−1(Qm)]

is the generalized Sylvester matrix defined by its m basic
polynomials L1, . . . , Lm , and T is the coefficient vector of a
polynomial T ; in particular

T = en = [0 | . . . | 0 | 1]T

is the nth coordinate vector of dimension n in the case where
T = 1 .

5. SOLUTION OF A SYLVESTER LINEAR
SYSTEM OF EQUATIONS VIA PFD

5.1 Extension of Gohberg–Semencul formula

Theorem 5.1. Let S(Q1, . . . , Qm) denote an n × n reg-
ular generalized Sylvester matrix. Then for any right hand
side vector T the generalized Sylvester linear system of equa-
tions (4.5) can be solved in O((n logn) logm) ops provided
its solution is known in the case where T = (0, . . . , 0, 1)T is
the coefficient vector of the constant polynomial T = 1.

Proof. The theorem follows from equations (4.4) and
Fact 2.1.

This simple theorem extends the celebrated result in Goh-
berg and Semencul (1972) from Toeplitz to generalized Syl-
vester matrices.

5.2 The case where all but one basic
polynomials have small degrees

According to the two following theorems we can solve a
regular generalized Sylvester linear system of n equations
(4.5) for any right hand side vector T by using O(n) ops
provided that equation (1.2) holds or equivalently that m =
O(1) and the factors L1, . . . , Lm−1 have degrees of O(1).

We prove the theorems constructively by describing two
supporting algorithms. The first theorem covers the simpler
but important case where m = 2.

Theorem 5.2. Suppose S = S(L2, L1) denotes the n× n
Sylvester matrix defined by two coprime polynomials L1 and
L2 such that

d1 = degL1 = O(1) and d2 = degL2 = n− d1 .

Then a Sylvester linear system Sy = T of n equations with
this matrix can be solved by using O(n) ops.

Proof. Here is our algorithm supporting the theorem.
One can immediately verify that the algorithm is correct
and uses O(n) ops (cf. Facts 2.1 and 2.2).

Algorithm 5.1. Sylvester Solving via PFD

Input: the coefficient vectors L1, L2 and T of two co-
prime polynomials, L1 and L2 and a polynomial T such that

d1 = degL1 = O(1) and degT < deg(L1L2) = d1 + d2 .

Computations. Successively compute the polynomials

1. L = L1L2 ,

2. V1 = (TL1/L) mod L1 (cf. (4.4)),

3. U = T − V1L2 and

4. V2 = U/L1 (cf. (4.3)).

Output the vector

y = [VT
1 | VT

2 ]T

satisfying

S(L2, L1)y = T .

Here Vj denote the coefficient vectors of the polynomials Vj

for j = 1, 2.

115



Theorem 5.3. Suppose S = S(Q1, . . . , Qm) is an n × n
regular generalized Sylvester matrix defined by m pairwise
coprime polynomials L1, . . . , Lm such that

Qj =
p

L j
, L =

mY
j=1

Lj , degL = n , degLj = dj (5.1)

for j = 1, . . . ,m and constants m, d1, . . . , dm−1 of O(1).
Then a generalized Sylvester linear system Sy = T of n
equations with this matrix and any vector T can be solved by
using O(n) arithmetic operations.

Proof. Here is our algorithm supporting the theorem.

Algorithm 5.2. Generalized Sylvester Solving via
PFD

Input: m polynomials Q1, . . . ,Qm defined via (4.2) and
(4.4) by m basic pairwise coprime polynomials L1, . . . , and
a polynomial T of a degree less than deg(L1 · · ·Lm) .

Computations. Successively compute the polynomials

1. g1,m = gcd(Q1, Qm) ,

2. L1 = Qm/g1,m ,

3. L = L1Q1 ,

4. Lj = L/Qj for j = 2, . . . ,m (cf. (4.4)),

5. Vj = (TLj/L) mod Lj for j = 1, . . . ,m−1 (cf. (4.4)),

6. Wm = T −Pm−1
j=1 QjVj and

7. Vm = Wm/Qm .

Output the vector y = [VT
1 | . . . | VT

m]T satisfying (4.5).

To verify correctness of steps 1 and 2 of the algorithm
observe that

Q1 = L2 · · ·Lm and Qm = L1 · · ·Lm−1 ,

so that

g1,m = L2 · · ·Lm−1 and Qm/g1,m = L1

because the polynomials L1, . . . , Lm are assumed to be pair-
wise coprime. Correctness of steps 4 and 5 follows from
equations (4.4). Correctness of step 7 follows from equation
(4.3).

The bound O(n) on the number of arithmetic operations
involved follows from Facts 2.1 and 2.2 because both m and

degQm = n− dm =

m−1X
j=1

dj

are in O(1) .

5.3 All but one basic polynomials are linear
Assume that

Lj = x− zj

are monic linear factors of p for j = 1, . . . ,m− 1. Then

Vj = T (zj)/Qj(zj) for j = 1, . . . ,m− 1

(cf. (4.4) and (2.3)), and we can simplify the above compu-
tations based on (2.3) as follows.

Algorithm 5.3. Generalized Sylvester Solving via
PFD where all but one basic polynomials are linear

Input and Output as in Algorithm 5.2 where

degQm = n−m+ 1

or equivalently

degQj = 1 for j = 1, . . . ,m− 1 .

Computations. Successively compute the following sca-
lars and polynomials,

1. Qj(zj) and T (zj) for j = 1, . . . ,m− 1 ,

2. Vj = T (zj)/Qj(zj) for j = 1, . . . ,m− 1 ,

3. Wm = T −Pm−1
j=1 VjQj and

4. Vm = Wm/Qm .

6. SOLUTION BY MATRIX METHODS
Alternatively we can solve a generalized Sylvester linear

system (4.3) by matrix methods. We will specify the simpler
cases where all but one basic polynomials are linear or m =
2.

6.1 All but one basic polynomials are linear
As in Section 5.3 assume that

Lj = x− zj

are monic linear factors of p for j = 1, . . . ,m− 1, and so

Qm =

m−1Y
j=1

(x− zj) .

Then we have

S(Q1, . . . , Qm) = [Q | Cn−m+1(Qm)]

where Cn−m+1(Qm) is the (n−m+1)st Cauchy convolution
matrix of the polynomial Qm and Q is the n×(m−1) matrix
whose jth column is the coefficient vector of the polynomial
Qj for j = 1, . . . ,m− 1.

Interchange columns of S(Q1, . . . , Qm) to obtain the ma-
trix

[Cn−m+1(Qm) | Q]

and apply either Gaussian elimination without pivoting or
block cyclic reduction algorithms (cf. Golub and Van Loan
(1996)). In both cases the computations take O(n) ops if
m = O(1); watch for numerical problems and counter them
with various heuristic tricks.

6.2 Two basic polynomials, one linear
Let us specify the above solution in the important case of

the Sylvester linear system, where

m = 2, Q1 = L2 and Q2 = L1 ;

furthermore assume that

L2 = x− z1
and the polynomials

L1 =

n−1X
i=0

lix
i
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and L2 are coprime. Then Algorithm 5.3 uses 8n − 8 ops,
whereas the Sylvester matrix

S(Q1, Q2) = S(L2, L1)

turns into a scaled shifted companion matrix0BBBBBBBB@

1 O ln−1

−z1 1 ln−2

−z1 1 ln−3

. . .
. . .

...
. . . 1 l1

−z1 l0

1CCCCCCCCA
.

In this case Gaussian elimination with no pivoting solves
the Sylvester linear system S(L2, L1)y = T for any vector
T by using 3n − 3 subtractions, 2n − 2 multiplications and
n divisions.

One can replace Gaussian elimination with the cyclic re-
duction algorithm (see Golub and Van Loan (1996), Section
4.5.4, and references therein), which supports parallel accel-
eration to logarithmic time.

The elimination stage of Gaussian elimination is numer-
ically stable where |z1| ≤ 1. For |z1| > 1 and large n
the (n − 1) × (n − 1) leading principal block of the ma-
trix S(L2, L1) is ill conditioned, but we can avoid numerical
problems by working with the reverse polynomials

prev, Trev, L2,rev = z1x− 1, L1,rev, V1,rev, V2,rev = V2 ,

defined in equation (2.2) (see Pan and Zheng (2011), Section
6 on such techniques of numeriical stabilization).

Under these reversions we can readily compute the solu-
tion by means of Gaussian elimination at the same arith-
metic cost but with numerically stable elimination stage,
and then we can output the constant V2 = V2,rev and the
polynomial V1 = (V1,rev)rev .

We can ensure diagonal dominance of the matrix S(L2, L1)
by scaling the variable x, although scaling can make the
coefficients of L2 very uneven in magnitude.

In the case where |z1| > 1 we have another simple recipe:
cyclically interchange the rows of the linear system and then
apply Gaussian elimination with no pivoting to the resulting
linear system with the matrix0BBBBBBB@

−z1 1 O l0
−z1 1 ln−1

−z1 1 ln−2

. . .
. . .

...
−z1 1 l2

1 l1

1CCCCCCCA
.

Finally we can compute the value V1 = T (z1)
L2(z1)

by using

4n− 4 ops (cf. Stage 2 of Algorithm 5.3) and then simplify
the Sylvester linear system by substituting this variable. The
substitution takes 2n − 2 ops, and the system turns into a
bidiagonal Toeplitz linear system of n − 1 equations, which
we can solve in 2n−3 ops. Overall we need 8n−9 ops. This
is slightly more than for the direct solution of the Sylvester
linear system, but numerical stability may improve.

6.3 The case of any pair of basic polynomials
Keep assuming that

m = 2, Q1 = L2 and Q2 = L1 ,

but now assume a nonlinear factor L2, that is, let

d2 = degL2 > 1 and d1 = degL1 = n− d2 < n− 1.

Then we have

S(L2, L1) = [Cd2(L1) | Cd1(L2)]

where Cd1(L2) is an n × n banded Toeplitz matrix having
bandwidth d2 + 1.

In this case the algorithm in Pan (1996a) enables us to
solve a linear system

S(L2, L1)y = T

for any right hand side vector T by using O(n log d2) ops,
that is O(n) ops in the case of a constant d2.

By scaling the variable x we can ensure sufficiently strong
domination of the leading coefficient of the polynomial L2

over the other coefficients, and then we would have strongly
diagonally dominant matrix S(L2, L1), and consequently we
would have strong numerical stability of Gaussian elimina-
tion and block cyclic reduction. If the leading coefficient of
p is dominated by the trailing one, then we can shift to the
reverse polynomial prev and use a smaller scaling factor.

6.4 The general case of variable leading coef-
ficients

In numerical factorization of a polynomial and in numeri-
cal computation of its zeros it is natural to assume nonmonic
input polynomials p and in particular to seek the factoriza-
tion

p =

nY
j=1

(ujx− vj) (6.1)

where for every j we have uj = 1 or vj = 1.
Then it is also natural to assume that the leading coef-

ficients of the approximate factors (that is basic polynomi-
als of the associated generalized Sylvester matrix) are vari-
ables, so that the factorization p ≈ L = L1 · · ·Lm defines an
(n+ 1)× (n+m) generalized Sylvester matrix and a system
of n+ 1 equations with n+m unknowns with this matrix.

To simplify our computations we wish to deal with square
generalized Sylvester matrices. So far we achieved this by
chosing leading coefficents of all polynomials L, L1, . . . , Lm

equal to one, but this is in conflict with factorization (6.1).
We can reconcile the assignment of the leading coefficients

of the polynomials L1, . . . , Lm with factorization (6.1), by
fixing these coefficients for the polynomials L2, . . . , Lm but
varying the one of the polynomials L1. This would lead us
to solving a linear system with (n+ 1)× (n+ 1) generalized
Sylvester matrix in every Newton’s step. Our previous study
is immediately extended to this case.

7. SOME INITIALIZATION POLICIES
So far we assumed that some crude or good initial approx-

imations to the factors L1, . . . , Lm have been supplied from
outside by an initialization algorithm. E.g., a root-finder can

supply approximate zeros z
(0)
j and thus supply approximate

linear factors of p equal to either

x− z(0)
j where |z(0)

j | ≤ 1

or

1− x/z(0)
j where |z(0)

j | ≥ 1 ,
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j = 1, . . . ,m. In this case our algorithms work just as root-
refiners.

We can extend the algorithms to the case where m = 2

and where we are given only a single approximate factor l
(0)
1 ,

e.g., x−z(0)
1 . Then we can compute the second approximate

factor y = l
(0)
2 as an approximate solution of the convolution

equation

l
(0)
1 y ≈ p ;

we detail this computation in the next section.

The iteration would recursively update both factors l
(k)
1 =

x−z(k)
1 of degree one and l

(k)
2 of degree n−1 for k = 0, 1, . . . .

We need to update the factor l
(k)
2 to support improvement

of the factorization l
(k)
1 l

(k)
2 ≈ p even if we are only interested

in approximating the zero z1 of p.
We have consistently observed reasonably good global con-

vergence of our algorithms in the previous sections when we
tested them under the latter initialization and updating poli-
cies and the standard heuristic choices of random initial val-
ues of approximate zeros of p near the origin, near the center
of gravity −pn−1/(npn) of the n zeros, and on a circle

{x : |x| = R} for R ≥ cmax
i>1
|pn−i/pn|

and a moderately large scalar c, say c = 10 or even c = 2.
To increase our chances for fast convergence we can choose

up to n or even more than n initial approximations. Hab-
bard, Schleicher and Sutherland (2001) proved that New-
ton’s classical iteration (1.1) is expected to converge fast to
all zeros of p provided order n logn random initial points on
a large circle have been selected.

Towards further empirical improvement, one can employ
the initial approximations on Bini’s circles in Bini (1996)
and Bini and Fiorentino (2000).

These choices naturally lead us to parallel algorithms for
the approximation of all zeros of p or of a large fraction of
them; in the latter case we can deflate the polynomial and
reapply the algorithm.

8. APPROXIMATE SOLUTION OF
THE CONVOLUTION EQUATION

The convolution equation

l
(0)
1 l

(0)
2 ≈ p

is equivalent to the linear system

Cn−d1(l
(0)
1 )l

(0)
2 ≈ p . (8.1)

Given polynomials p and l
(0)
1 we can compute an approxi-

mate factor

y(x) = l
(0)
2 (x)

as the quotient of polynomial division

p = l
(0)
1 y + r, deg r < deg l

(0)
1 . (8.2)

This computation takes 2n − 3 ops where l
(0)
1 = x − z

(0)
1

is a monic linear approximate factor of p, z
(0)
1 ≈ z1 and

p(z1) = 0; the computation is numerically stable where

|z(0)
1 | ≤ 1, but if |z(0)

1 | > 1 we just need to shift to the reverse
polynomial prev. We can strengthen numerical stability if we
can afford scaling the variable x.

At a little higher arithmetic cost we can compute the co-
efficient vector of such an approximate factor

y = l
(0)
2

as a least squares solution to the linear system

Cn−d1(l
(0)
1 )y ≈ p

under the additional constraint that the polynomial y is
monic, that is the first coordinate of the vector y equals
one; under this constraint we deduce PFD (4.2).

Remark 8.1. We can remove this constraint by allowing

to vary the leading coefficients of the factors l
(k)
2 for k =

0, 1, . . . . Then every Newton’s updating step would amount
to the solution of a Sylvester linear system of n+1 equations
with n + 1 unknowns, and the residuals T = p − l(k) would
generally have degree n (cf. Section 6.4). Our previous and
subsequent study can be immediately extended to this case.

Let us examine the least squares computation. We can
apply QR factorization based on Givens rotations or the
method of normal equations (see Golub and Van Loan (1996),
Sections 5.3.2 and 5.3.3).

The latter method requires O(nmin{d1, logn}) ops in the
case of structured linear systems (8.1) (see Corless et al.
(1995)) and allows parallel acceleration to polylogarithmic
time based on application of cyclic reduction.

The former method has stronger numerical stability; it
uses O(nd1) ops and involves computation of square roots.
One can employ the fast Givens transformations in Golub
and Van Loan (1996), Section 5.1.13 to accelerate the algo-
rithm (in particular by removing most of the computations
of square roots); this weakens numerical stability but in a
controlled way.

We can skip normalization and completely avoid comput-
ing square roots; this causes almost no penalty in the most

important case where d1 = 1, l
(0)
1 = x − z and the Cauchy

convolution matrix

Cn−1(x− z) =

0BBBBBB@

1 O
−z 1

. . .
. . .

. . . 1
O −z

1CCCCCCA
is bidiagonal. Here we write

z = z
(0)
1

to simplify the notation. Let us specify our computations

where we choose monic polynomial l
(0)
2 and eliminate its

leading coefficient from the linear system (8.1). After the
elimination, this linear system turns into the following sys-
tem of n linear equations with n− 1 unknowns,

Cn−2(x− z)̄l(0)2 = p̄ .

Here l̄
(0)
2 = l

(0)
2 − xn−1 and p̄ = p− xn−1(x− z).

We first define the scaled Givens matrices

Gj = diag(Ij , G, In−j−2) for G =

„
1 −z
z 1

«
, j = 0, . . . , n−2

and write

W =

n−2Y
j=0

Gj .
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By induction we readily verify the following facts.

Fact 8.1. The matrix product W =
Qn−2

j=0 Gj is the Toep-

litz matrix defined by its first row [1 | − z | 0 | . . . | 0] and
its first column [1 | z | z2 | . . . | zn−2]T .

Fact 8.2. The matrix product
Qn−2

j=0 GjCn−2(x−z) is the
bidiagonal upper triangular Toeplitz matrix

„
B
0T

«
=

0BBBBBBB@

y −z O
0 y −z

. . .
. . .

. . .

0 y −z
0 y

O 0

1CCCCCCCA
,

having the last row 0T , filled with zeros, and having the first
row [y,−z, 0, . . . , 0] where

y = 1 + z2 .

The matrix B is nonsingular unless z2 = −1 and is well
conditioned if

|y| = |1 + z2| ≤ |z| .
We can deflate the polynomial p if its root z satisfies z2 =
−1, so hereafter we assume that z2 6= −1 and the matrix B
is nonsingilar.

Now for a given value z, we compute the entry y = 1 + z2

and therefore the bidiagonal Toeplitz matrix B in two ops,
compute the vector bp = [In−1 | 0]W p̄

by using 4n− 4 ops, and finally compute the solution

y = l̄
(0)
2 = B−1bp

to the bidiagonal Toeplitz linear system

By = bp
by using n − 2 subtractions and either single division by y
and n− 1 multiplications or n− 1 divisions.

Overall we use 6n− 5 or 6n− 4 ops to compute the vector

y = l̄
(0)
2 , which is a least squares solution of the linear system

WCn−2(l
(0)
1 )̄l

(0)
2 = W p̄ ,

and so it defines an approximate solution to the convolution
equation

l
(0)
1 l

(0)
2 ≈ p .

The quality of the approximation can be poor only if the
matrix W is ill conditioned. In virtue of Fact 8.1 this does
not occur where |z| < 1/2, and we can ensure such a bound
on |z| by scaling the variable x.

We can assume that |z| ≤ 1 because we can shift to the
reverse polynomial prev otherwise. Then it is sufficient to
scale x by 1/4 or 0.4, say, and for a large class of inputs even
scaling by 1/2 is sufficient.

9. KIRRINNIS’ COMPUTATION OF PFDS
AND LINKS TO THE WDK ITERATION

Kirrinnis (1998) refines factorization (3.1) and PFD (3.2)
by working with polynomials and PFDs but does not use

structured matrices. Let us recall his iteration and link it to
the WDK iteration.

In its basic version (cf. Sections 3 and 4) the iteration

starts with approximate factors l
(0)
1 , . . . , l

(0)
m , initializes the

iteration cycles with setting k = 0, and successively com-
putes the quotient polynomials

q
(k)
j = l(k)/l

(k)
j , j = 1, . . . ,m , (9.1)

their reciprocals modulo l
(k)
j ,

v
(k)
j = (1/q

(k)
j ) mod l

(k)
j , j = 1, . . . ,m , (9.2)

the corrections

∆
(k)
j = (pv

(k)
j ) mod l

(k)
j , j = 1, . . . ,m , (9.3)

and the updated approximate factors

l
(k+1)
j = l

(k)
j + ∆

(k)
j , j = 1, . . . ,m ; (9.4)

then the iteration repeats the cycle for k replaced by k+1 un-

til the approximate factors l
(k)
1 , . . . , l

(k)
m are obtained within

a fixed error tolerance.

Remark 9.1. The system of equations (9.1) and (9.2) is
equivalent to the PFD

1

l(k)
=
v
(k)
1

l
(k)
1

+ · · ·+ v
(k)
m

l
(k)
m

≈ 1

p
.

Indeed multiply both sides of the PFD by l
(k)
j and then reduce

both sides modulo l
(k)
j .

One can combine equations (9.2) and (9.3) into the equations

∆
(k)
j = (p/q

(k)
j ) mod l

(k)
j , j = 1, . . . ,m ,

and so

∆
(k)
j = p(z

(k)
j )/q

(k)
i (z

(k)
j ) , j = 1, . . . ,m , (9.5)

provided l
(k)
j = x − z

(k)
j (cf. (2.3)). These are the WDK

corrections, such that

l
(k+1)
j = l

(k)
j + p(z

(k)
j )/q

(k)
j (z

(k)
j ) ,

z
(k+1)
j = z

(k)
j − p(z(k)

j )/q
(k)
j (z

(k)
j ) .

Given n initial approximations to n distinct monic linear fac-
tors of p, we arrive at the WDK iteration, which is proved
to have quadratic local convergence; empirically it has ex-
cellent global convergence. One can avoid computing the

coefficients of the polynomials q
(k)
j and compute the values

q
(k)
j (z

(k)
j ) =

Y
i 6=j

(z
(k)
j − z(k)

i )

by using 2n− 3 ops for every pair {j, k}.
Kirrinnis (1998) has not pointed out this WDK link, but

his algorithm generalizes the iteration to refining a factoriza-
tion of a polynomial p = p(x) into the product of m factors
for any integer m, 1 < m ≤ n . He extended to this case the
classical results on local quadratic convergence of Newton’s
iteration and estimated the Boolean (that is bitwise) opera-
tion complexity provided that the factors L1, . . . , Lm as well
as their initial approximations

l
(0)
1 ≈ l(0)m
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have their zero sets pairwise isolated and have all zeros lying
in the unit disc D(0, 1) = {x : |x| ≤ 1}. (We can move all
zeros of p into this disc by scaling the variable x).

Under the latter assumptions he proposes to replace ex-

pressions (9.2) for updating the polynomials v
(k)
i for i =

1, . . . ,m and k > 1 by the following expressions,

v
(k)
i = v

(k−1)
i + (2− v(k−1)

i q
(k)
i )v

(k−1)
i p mod l

(k)
i . (9.6)

This replacement is aimed at avoiding the computation of
PFDs and the modular reciprocals together with the implied
problems of numerical stability of these computations, but
we rely on equations (3.1)–(3.3) because the problems of
numerical stability are mild in our case of computing the
reciprocal modulo a polynomial of a small degree di; these
problems should disappear where di = 1 (cf. (9.5)).

Furthermore, in the case where m = 2 and d1 = O(1) we

compute the corrections ∆
(k)
1 and ∆

(k)
2 by using O(n) ops

versus order n logn ops, required for updating l
(k)
1 and l

(k)
1

based on (9.6).

10. ROOT-FINDING WITH RECURSIVE
LEAST SQUARES UPDATING

Given an initial approximate factor l
(0)
1 we can recursively

update it according to the equations

l
(k)
1 = p/l

(k)
2 mod l

(k)
1 , k = 0, 1, . . .

where for all k the second factors l
(k)
2 are updated according

to the recipes of Section 8. For

d1 = 1, l
(0)
1 = x− z(0)

1 ,

we obtain the WDK corrections

∆
(k)
1 =

p(z
(k)
1 )

l
(k)
2 (z

(k)
1 )

,

such that

l
(k+1)
1 = l

(k)
1 +

p(z
(k)
1 )

l
(k)
2 (z

(k)
1 )

.

This Laser WDK iteration is directed towards a single zero

of p, although it also produces approximate quotients l
(k)
2 ,

k = 0, 1, . . .
The resulting algorithm is reasonably effective. Compared

to the algorithm of Section 6.2, its iteration loop takes about
as many ops if we compute the second approximate factors

l
(k)
2 as the quotients of polynomial division (cf. (8.2)).

The computation of such factors l
(k)
2 as constrained least

squares solutions to the linear systems (8.1) (with subscripts
k replacing zero) takes a little more ops (that is about 10n

versus about 6n ops for updating both factors l
(k)
1 and l

(k)
2 ).

Our preliminary tests (to be continued) have showed simi-
lar convergence patterns for the three main algorithms, that
is the one of Section 6.2 and the two algorithms based on ap-

proximate factorizations p ≈ l
(k)
1 l

(k)
2 and either polynomial

division or computing constrained least squares solution of
the linear systems extending (8.1).

11. SUMMARY AND DISCUSSION
We recalled Kirrinnis’ algorithm for polynomial factoriza-

tion, linked it to the WDK iteration, and more importantly,

modified its PFD computation stage by reducing the task
to the solution of a Sylvester or generalized Sylvester linear
system of equations.

Empirically the resulting algorithms preserve strong global
convergence property of the WDK iteration, but they also
enable us to decrease its arithmetic cost to O(n) ops per
iteration loop when we narrow the task to the approximation
of a single zero of p.

Clearly one can approximate up to m roots concurrently
by using m processors.

Our auxiliary techniques for solving Sylvester and gen-
eralized Sylvester linear systems, their link to PFDs, our
extension of the Gohberg–Semencul inversion formula from
Toeplitz to generalized Sylvester matrices, numerical stabi-
lization of the solution and our modified least squares solu-
tion of the bidiagonal Toeplitz linear systems of equations
can be of independent interest.

We plan further theoretical and experimental study of all
our univariate polynomial root-finders and root-refiners, in-
cluding comparative tests of their global and local conver-
gence and of the impact of various implementation “details”
such as the recipes for shifting to the reverse polynomial prev

and scaling the variable x and for adjusting our algorithms
to the approximation of complex conjugate pairs of the zeros
of a polynomial with real zeros, as well as allowing variable
coefficients of one of the approximate factors (cf. Section
6.4).

As our more general undertaking we will explore the power
of the PAC in devising root-finders and root-refiners for uni-
variate and multivariate polynomial (and possibly nonpoly-
nomial) equations and systems of equations and will study
convergence of the resulting algorithms both theoretically
and experimentally.

In particular for which classes of equations and systems
of equations can we improve global convergence of Newton’s
iteration by immersing the original equations into a larger
system defined with more equations and variables? What
are the most effective ways for such enlargements?
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ABSTRACT
Our observations show that the sets of real (respectively
complex) roots of the derivatives of some classical families of
random polynomials admit a rich variety of patterns look-
ing like discretized curves. To bring out the shapes of the
suggested curves, we introduce an original use of fractional
derivatives. Then we present several conjectures and out-
line a strategy to explain the presented phenomena. This
strategy is based on asymptotic geometric properties of the
corresponding complex critical points sets.

Categories and Subject Descriptors
I.1.2 [Computing Methodologies]: Symbolic and Alge-
braic Manipulation—Algorithms

General Terms
Experimentation, Theory

Keywords
random polynomials; random matrices; fractional deriva-
tives; critical points; patterns; roots of real univariate poly-
nomial; stem

1. INTRODUCTION
Computer algebra systems are powerful tools for perform-

ing experiments and simulations in Mathematics. They serve
to illustrate known properties, already rigorously proved, or
conjectures; to find examples, to show that a bound is sharp,
to estimate some values or behaviors. Once in a blue moon,
experiments reveal unexpected patterns or phenomena. Af-
ter the surprise, the repetition of experiments and variations
to test robustness, comes the time to share the observations
and the quest for explanations.
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This paper relates my experiments, relying on the com-
puter algebra system Maple, on the root sets of univariate
polynomials of medium degrees, and of their iterated deriva-
tives. Generations of mathematicians studied these basic ob-
jects, so it seemed unlikely that simple graphics should un-
cover any surprising feature. The originality of the presented
approach was to choose random polynomials, compute roots
of a great number of derivatives and consider averaged ob-
jects and phenomena. I started observing the real roots and
then looked at the complex ones, as they are more amenable
to algebraic interpretations.

Random matrices are matrix-valued random variables, their
study have stimulated a great deal of interest in the last
decades, since many important properties of disordered phys-
ical systems can be represented mathematically using eigen-
vectors and eigenvalues of matrices with elements drawn
randomly from statistical distributions. Their characteris-
tic polynomials form a special class of random polynomials.
See [15], or for a first insight the Random matrix entry
in Wikipedia. Random polynomials is a classical field of
interest in Mathematics and Statistics; several families of
random polynomials have been described in great detail, see
[9]. The number and distribution of real and complex roots
of random polynomial present regular structures (see section
2 below) which are statistical consequences of the properties
of their coefficients distributions. This is also the case for
eigenvalues of random matrices, see [6].

For a fixed degree n, we consider several bases gi(x) of
polynomials of degree at most n. We form the polynomial
f :=

Pn
i=0 aigi(x), the set of coefficients ai being instances of

n+1 independent normal centered standard distributions. In
our experiments, we also consider characteristic polynomials
of matrices whose entries are independent normal centered
standard distributions.

A critical point of a polynomial f(x) is a root of its deriva-
tive f ′(x). Since random polynomials are almost surely
generic, they admit only critical points that are not also
roots of f ; in the sequel we will only be interested by these
critical points. By Rolle theorem, between two roots of f
there is at least one root of f ′ while in the complex plane,
by Gauss-Lucas theorem, the critical points of f are con-
tained in the convex hull of the roots of f . There are several
improved versions of this theorem, see the excellent book
[17] which contains many results and enlightening historical
notes.

Our general project is to concentrate on some families of
random polynomials and present new conjectures, on the set
of their critical points, suggested by experiments, observa-
tions and numerical evidence. It extends our previous works
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[12], [8], [10], [11]. Our conjectures, hopefully transformed
into theorems, could then act as an oracle and indicate the
estimated number and locations of the roots of a random
polynomial and of its derivatives. This information could
be used to derive better average complexity bounds for root
isolation algorithms.

The paper is organized as follows. In section 2, differ-
ent families of random polynomials are introduced; some of
their properties will be recalled and illustrated. Section 3
is devoted to our experiments on the sets of real roots of
these polynomials and their derivatives; we organize them
in a Variation diagram. Then we point out intriguing pat-
terns and present a conjecture to try to express formally a
part of the observed phenomena. Section 4 introduces our
definition of a polynomial bivariate factor P of the fractional
derivatives of a polynomial f , P induces a continuation be-
tween the roots sets of f and xf ′. With this tool, we define
an algebraic spline curve we call the “stem” of the poly-
nomial f ; it is of particular interest for random polynomi-
als. In addition, section 4 describes experimental results on
the stems, points out another intriguing phenomenon and
presents a conjecture which leads to analyze the influence of
the complex roots of f . Section 5 concentrates on the rel-
ative locations of the complex roots of f and f ′. For some
random polynomials, an interesting pairing is observed and
its consequences explored. Finally we conclude discussing
a tentative analysis and synthesis of our observations based
on the symmetries of the limit distribution of the complex
roots of f .

2. RANDOM POLYNOMIALS
The study of random polynomials is a classical and very

active subject in Mathematics and Statistics It is at the core
of extensive recent research and has also many applications
in Physics and Economics; two books [3] and [9] are dedi-
cated to it. Already in 1943, Mark Kac [14] gave an explicit
formula for the expectation of the number of roots of a poly-
nomial in a class that now bears his name (see below). The
subject is naturally related to the study of eigenvalues of
random matrices with its applications in Physics, see [6].

For a fixed degree n, we consider several bases gi(x) of
polynomial of degree at most n, then we form the polynomial

f :=
nX

i=0

aigi(x).

The coefficients ai being instances of n+1 independent stan-
dard normal distributions N(0, 1). We are concerned with
averaged asymptotic behaviors when n tends to infinity, but
in our experiments we chose most n between 32 and 128, so
the reader can easily repeat and test them. We also con-
sidered characteristic polynomials of matrices with various
shapes whose entries are independent standard normal dis-
tributions.

Let’s start with the following methodological point. In
statistics, averaged properties are generally observed through
a series of realizations forming a sample. However in our set-
ting, some families of large degree random polynomials, the
uniformity of a distribution of roots, a symmetry or an in-
triguing regular shape shows up in almost each experiment.
A single large object is enough to represent the features of
most objects of the whole ensemble, in other words a sig-
nificant sample contains only one element. This convenient

behavior can be related to a property of some disordered sys-
tems called “self-averaging”. However, our situation is more
complicated, since we did not fix in advance any feature of
the observed shapes; they are extracted from the pictures.

We now list some classes of random polynomials, we spec-
ify their names and the corresponding bases gi(x) (cf. the
above formula).

• Kac polynomials: the basis is gi(x) = xi.

• SO(2)-polynomials: gi(x) =
q`

n
i

´
xi.

• Weyl-polynomials: gi(x) =
q

1
i!

xi.

Then, the following less commonly studied families; in this
paper we give them the following names (NC stands for nor-
mal combination):

• NC-Bernstein : gi(x) =
`

n
i

´
(1 + x)i(1− x)n−i.

• NC-Chebyshev: the basis is made by the Chebyshev
polynomials of degree i, for i between 0 and n.

Then the characteristic polynomials of several classes of ran-
dom matrices

• matrices whose entries are instances of independent
standard normal distribution,

• symmetric matrices whose entries are instances of in-
dependent standard normal distribution,

• random unitary matrices obtained by taking the eigen-
vectors of a matrice of the previous class.

Sparse analog of these classes and other distributions of their
coefficients (or entries) are also very interesting; but the
listed classes are already rich enough to express our obser-
vations and conjectures.

Number of real roots and distribution of complex
roots, cf. [3] and [9]

• The asymptotic number of real roots of a Kac poly-
nomial is about 2

π
ln n, the distribution of the complex

roots tends to a uniform distribution on the unit circle.

• The asymptotic number of real roots of a SO(2)- poly-
nomial is about

√
n, the distribution of the complex

roots tends to a uniform distribution on the Riemann
sphere.

• The asymptotic number of real roots of a Weyl poly-
nomial is about 2

π

√
n, the distribution of the complex

roots tends to a uniform distribution on the disc cen-
tered at the origin and of radius

√
n.

• The asymptotic number of real roots of the character-
istic polynomials of a general random matrix is aboutq

2
π

√
n, the distribution of the complex roots tends

to a uniform distribution on the disc centered at the
origin and of radius

√
n. Figure 1 shows them for a

matrix of size 128.
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Figure 1: Complex eigenvalues of a random matrix

Figure 2: Complex roots of a NC Chebyshev

In Figure 1 we notice that the limit distribution is almost
uniform in angles around the origin, (rotational symmetric)
this property is completed by an axial symmetry over the
real axis due to complex conjugation. It is also true for the
three first distributions. This observation can be quanti-
fied: [18] computed for Kac polynomials the density func-
tion hn(x, y) of the number of complex roots near a complex
point x + iy, completing Kac’s computation of the density
function of the number of real roots near a real point x.

For the two other classes, NC-Bernstein and NC-Chebyshev,
the limit distribution has only a central symmetry.

• The asymptotic number of real roots of a polynomial
in NC-Bernstein is about

√
2n, [8].

• Figures 2 shows, for a NC-Chebyshev polynomial of
degree 128, the distribution of the complex roots, they
concentrate along a segment of the real axis and two
ovals around −1 and 1.

3. VARIATION DIAGRAM (VD)
We consider a polynomial f(x) with real coefficients of de-

gree n and its i-th derivative F [i] = f (i)(x) for i = 0..n− 1.
The sets of real roots of the n polynomials F [i], appears
in what, in French high schools is called “tableau de varia-
tions”. In the 19-th century, the number of sign variations
were used by Budan and by Fourier to estimate the number
of roots of f in an interval, see [17], chapter 10. In the 20-th

century, R. Thom relied on the signs of f (i) to distinguish
and label the different real roots of f , see [4].

Figure 3: VD of a Kac polynomial of degree 64

Figure 4: (Truncated) VD of a SO(2) polynomial

We chose to organize all these roots with a 2D diagram,
that we call Variation diagram (VD), the (n − i)-th row
contains the real roots of the (i)-th derivative of f :

V D := ∪i {fsolve(F [i], x)} × {n− i}
Note that the second coordinate indicates the degree of the
polynomial F [i]. As the iterated derivatives of a generic
polynomial do not have multiple roots, they change sign at
each root.

Example:

f := (x−5).(x2−x+4) ; f ′ = 3(x−1).(x−3) ; f ′′ = 6(x−2).

These polynomials have respectively 1, 2, 1 real roots:

V D = {[5, 3], [1, 2], [3, 2], [2, 1]}.
Our first experiments with Kac polynomials found that

their VD admit unexpected structured patterns. The roots
of the successive derivatives present almost dotted curves
and alignments. To our best knowledge, this phenomenon
has not been explored before.

We made more experiments with different instances of Kac
polynomials and got very similar patterns, then we repeated
the experiments with the different bases defined in the pre-
vious section. See Figures 3 to 6.

As illustrated by these pictures and many more, for the
cited families of random polynomial the observed feature
(almost alignments along lines or ovals) seems robust. In
particular following our observation we conjecture:

Conjecture 1. When n tends to infinity, for Kac, SO(2)
or Weyl random polynomials; if the the root with largest,
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Figure 5: VD of a Weyl polynomial of degree 64

Figure 6: (Truncated) VD of a CN Bernstein

resp. smallest, real part is real then the largest, resp. small-
est, real root of all (but the last) derivatives of f tend to be
almost surely aligned.

Question 1. When n tends to infinity, for Kac, SO(2)
or Weyl random polynomials; compute the probability that
the root with largest real part is real.

In order to strengthen these observations, we looked for a
method to connect the points in coherence with our visual
intuition. A natural strategy is to view the integer orders of
derivation as discretized steps; hence to look for generalized
derivatives with continuous orders.

4. FRACTIONAL DERIVATIVES
The attempt to introduce and compute with derivatives

or antiderivatives of non-integer orders goes back to the 17-
th century. In their book [16] dedicated to this subject, the
authors relate that an integral equation, the tautochrone,
was solved by Abel in 1823 using a semi derivative attached
to the integral

R x

0

√
x− tf(t)dt. In 1832 Liouville expanded

functions in series of exponentials and defined q-th deriva-
tives of such a series by operating term-by-term for q a real
number. Riemann proposed another approach via a definite
integral. The cited book provides in its introduction a nice
presentation of the historical progression of the concept from
1695 to 1975 through a hundred citations.

An important property is that two such fractional deriva-
tions commute. However for non-integer orders of derivation,
the fractional derivative at a point x of a function f does not
only depend on the graph of f very near x; fractional deriva-
tions do not commute with the translations on the variable
x. The traditional adjective “fractional“, corresponding to

the order of derivation, is misleading since it need not be
rational.

Let us emphasize that nowadays in Mathematics, frac-
tional derivatives are mostly used for the study of PDEs
in Functional analysis. They are presented via Fourier or
Laplace transforms. Fractional derivatives are seldom en-
countered in Polynomial algebra.

4.1 A new polynomial
In order to interpolate the previous dotted curves, we con-

sider a polynomial factor of the fractional derivatives of the
polynomial f . We rely on Peacock’s rule (1833) for mono-
mials:

Diffa(xn, x) :=
n!

(n− a)!
xn−a; for a > 0, n integer.

we noticed the following simple but key fact, to our better
knowledge it was not mentioned before.

Lemma 1. Let f(x) be a polynomial of degree n, then

xaΓ(−a)Diffa(f)

is a polynomial in x and a rational fraction in a with de-
nominator (n− a)(n− a− 1)...(−a).

To interpolate the non vanishing roots of the successive deriva-
tives of a polynomial f , only fractional derivatives with 0 <
a < 1 are needed. Moreover if we consider separately the
positive and the negative roots, then we can skip the factor
fractional powers of x. So we set the following definition and
notation.

Definition 1. Let f =
P

aix
i be a degree n polynomial.

We call (monic) polynomial factor of a fractional derivative

of order a of f ,the polynomial xa (n−a)!
n!

Diffa(f, x)). It is
a polynomial of total degree n in x and a, which may be
written:

Pa(f) := anxn +

n−1X
i=0

(

nY
j=i+1

1− a

j
)aix

i.

4.2 Stem

Definition 2. We call Stem of a polynomial f of degree
n, the union of the real curves formed by the roots of all the
monic polynomial factors of the derivatives f (i) of f , for i
from 0 to n − 1 and 0 ≤ a < 1. A stem is a C0 spline of
algebraic curves.

See Figures 7 to 9.
Here is a simple example to illustrate the regularity of the

join between two successive curves forming the stem of f :

f = (x− 1)(x− 3) = x2 − 4x + 3 ; f ′ = 2(x− 2).

Hence,

Pa(f) = x2 − 2x(2− a) + 3(2− a)(1− a)/2,

Pb(f
′/2) = x− 2(1− b).

This shows that when a tends to 1, and b tends to zero, there
is (only) a C0 continuity between the adjacent pieces.

In a joint work with D. Bembe [2], we consider another
curve associated to f which is regular but does not have
the same shape: the real algebraic curve in the plane (x, a)
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Figure 7: Stem of the previous SO(2) polynomial

(deg=128)

Figure 8: Stem of a NC Chebyshev of degree 64

defined by the bivariate polynomial of degree n that we de-
noted above by Pa(f). We study the relation between this
curve and the so-called virtual roots of f introduced in [13]
and [5].

4.3 From discrete to continuous
I made several experiments, and noticed that the patterns

exhibited by the stems of most of our random polynomials
presented common features:

• Long quasi lines joining the external real roots of f to
the axis (x = 0),

• Curves (of smaller size) joining the inner real roots to
the axis (x = 0),

• Closed curves, often shaped like an ear, starting and
ending at (x = 0).

• Since the coefficients of Pa(f) are random numbers, the
corresponding curves are almost surely smooth, there-
fore the ”ears“ do not touch.

• Stems of a same family of random polynomials share
more similarities.

Remark: In our pictures, the line x = 0 is a singular-
ity and an axis of almost symmetry of the patterns. This
is coherent with the considered random polynomials with
centered distribution of coefficients. Our choice of fractional
derivatives respects this symmetry.

Figure 9: Stem attached to a random matrix

Figure 10: Graphs of f , xf ′ for a Kac polynomial

4.4 Similarity of graphs
The graph of a (random) polynomial bears interesting fea-

tures. Algebraically and visually its shape is related to the
roots of f and its derivatives through extrema, inflection
points, and generalized inflections. We compared the graphs
of f and f ′ or xf ′, for our random polynomials, expecting
that randomness acts as a filter: details are blurred and sim-
ilarities are magnified.

We made several experiments with Maple for polynomials
f of medium degrees. For a Kac polynomials of degree 64,
we rescaled f , and xf ′, restricted the graphs to x ∈ [−2, 2]
and y ∈ [−1, 1]. As illustrated in Figure 10 we found that,
very often, the graph of xf ′ is similar to the graph of f but
shrunk towards the origin. This is coherent with the pattern
exhibited by the variation diagram of f . The problem is how
to quantify the observed transformation.

4.5 Rolle theorem
Generically, there are an odd number of roots of f ′ be-

tween two successive positive roots x1 and x2 of f . We aim
to analyze the pairing between the roots established by the
stem of f , the previous figures suggest that for our random
polynomials, almost surely the stem connects the root x2 of
f to one of the roots of f ′. Stems of random polynomials
may have points with horizontal tangents, but we observed
that at these points the graph is convex. In other words, we
propose this property as a conjecture.

Conjecture 2. For the chosen families of random poly-
nomials, almost surely the stem between the roots of f and
xf ′ does not connect two roots of f .

Another interesting task would be to quantify the ratio de-
fined by the consecutive roots of f and f ′. Such estimates
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Figure 11: detail of a Stem

Figure 12: a “good” homotopy between f and xf ′

were given obtained by P. Andrews [1] for hyperbolic poly-
nomials.

Figures 11 and 12 show the detail of a “good” (with re-
spect to the conjecture) example of the stem of a polynomial
of degree 6, and the corresponding deformation between the
graphs of f and xf ′, formed by the fractional derivatives. In
contrast, Figures 13 and 14 show the corresponding pictures
for an example which does not correspond to the situation
encountered with our random polynomials. More precisely,
in the “bad” example the continuation between the inner
roots of f and xf ′ does not remain on the real line but
passes through the complex plane, this is pictured by the
dotted curve. So, an explanation of the connection between
real roots of f and f ′ might be found exploring what hap-
pens in the complex plane.

5. COMPLEX CRITICAL POINTS
There is an important bibliography on the location of the

critical points of a polynomial with respect to the location
of its roots, going back to Gauss with Gauss-Lucas theorem.
Several recent works concentrate on the following conjecture
of Sendov, which has been proved for small degrees and in
several special cases. Their main tools rely either on the
implicit function theorem or on extremal polynomials, or on
refinements of Gauss-Lucas theorem. See the book [17].

Sendov Conjecture: Let f be a polynomial having all
its roots in the disk D. If z is a root of f , then the disk
z + D contains a root of f ′.

I did not found mention in these researches, developed in
analysis and approximation theory, of the case of polynomi-

Figure 13: detail of a “bad” Stem

Figure 14: a “bad” homotopy between f and xf ′

als with random coefficients.

5.1 Observations
I made experiments with the first classes (see section 2)

of random polynomials, they exhibit interesting behaviors:
- for almost each root of f smaller disks z + ǫD, with

ǫ << 1, contain a critical point; in such a way that they
describe a bijection between the roots of f and the roots of
xf ′,

- one can restrict these disks to small sectors, which indi-
cates a direction towards the real axis or towards the origin.

Figures 15 to 17 illustrate the relation between roots and
critical points for an SO(2) random polynomial of degree
32. Fractional derivatives are used to construct (as for real
roots) an homotopy between the zero sets of f and xf ′. The
color chart is: the roots of f are blue, the roots of f ′ are red
and the roots of the fractional derivatives are green. Figure
17 shows the “top” part of a complex analog of the variation
diagram, notice the regular alignments towards the origin (it
is slightly perturbed near the real axis).

5.2 Electrostatic attraction
The interpretation of the position of each critical point of f

as an equilibrium of a logarithmic potential, where the roots
of f are viewed as positively charged particles (or rods), goes
back to F. Gauss. As reported in [17], the following equality
to zero provides a quick proof of Gauss-Lucas theorem.

Denote by xj the complex roots of the polynomial f as-
sumed distinct from each other and distinct from z, another
complex number. Then by logarithmic derivation and con-
jugation we deduce:

f ′(z) = 0 ⇒
X z − xj

|z − xj |2 = 0.
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Figure 15: Roots of f and f ′

Figure 16: Pairing via fractional derivatives

Figure 17: Truncated SO(2) complex VD

Figure 18: Higher derivatives, CN Chebyshev

The vector in the complex plane
−z+xj

|z−xj |2 is viewed as a

force applied to z directed towards xj proportional to the
reciprocal of the distance. Summing these forces, the point
z (viewed as an electron) is attracted by the roots system of
f (viewed as positively charged particles). When the limit
distribution of the roots of f is uniform in angles (also called
rotational symmetric, i.e. only depends on the radius), the
resulting electrostatic force on a point z inherits a limit sym-
metry, and tends to be directed towards the origin.

Let us denote by L1 the real line joining the origin to a
root xk and by L2 the real line orthogonal to L1 through
the origin. The number and distribution of roots below and
above L1 (respectively L2) are asymptotically ”almost” bal-
anced. So, with a good probability, an equilibrium zk can
be found “near” L1 with the vector xkzk oriented towards
the origin. One can expect as well that the further xk is far
from the origin, the smaller the vector xkzk should be. This
is what we observed in our experiments as illustrated with
Figures 15 and 16.

The previous balanced count of forces is perturbed when
we approach the real axis, because there is another axial
symmetry due to complex conjugation, and a positive prob-
ability of real roots. This breaks the rotational symmetry,
consequently the resulting electrostatic force is now also di-
rected towards the real axis. The attraction toward the real
axis is magnified when we consider the set of roots of a NC
Chebyshev polynomial (see Figure 2), since it contains many
real points and at the limit when n tends to infinity “only”
a central symmetry. In this case, we observe that through
successive pairing and after a rather small number of deriva-
tions, most complex roots of f give rise to a real root of a
higher derivative of f . This process is illustrated in Figure
18 with a CN Chebyshev polynomial of degree 50, The col-
ors (red, green, black, blue, orange, brown) correspond to
the derivation orders (0,1,2,3,4,5).

Conjecture 3. For f a Kac, SO(2), Weyl random poly-
nomial, the presented continuation process realizes a bijec-
tion such that each critical point zk of f is attached to a
root xk. Moreover in the limit distribution of (xk, zk) when
n tends to infinity, almost surely the vectors xkzk point to-
wards the origin.

For the other random cases with only a limit central symme-
try, we also conjecture a pairing but the limit orientation of
the xkzk will be dependant on the point xk. Our intuition is
as follows. Consider all the roots of f except xk, the result-
ing electrostatic force will be regular in a small disc around
xk, the average of these forces in the disc is a good candidate
for the direction we want to find, then zk will be positioned
on the corresponding line to realize the equilibrium.
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6. TENTATIVE EXPLANATIONS
Let us summarize. In section 3 we described intriguing

alignments of points and dotted curves, observed on the col-
lection of all roots of a real polynomial f and its derivatives,
organized in a 2D diagram (VD).

Trying to explain the curved parts of this phenomena, we
presented in section 4 an original use of fractional deriva-
tives. It allows an interpolation of the discrete set into a 2D
curve which we called the stem. This construction gave rise
to experiments, to other intriguing observations and to two
questions: Why does the C0 interpolation look so regular ?
Is there any relation between the distribution of the com-
plex roots of f and its stem ? These question lead us to new
observations on the location of critical points of our random
polynomials and again to new questions and conjectures.

A possible direction of research to mathematically answer
some of these questions is to rely on the interpretation of a
critical point as an equilibrium position under electrostatic
forces. Indeed this viewpoint allows the use of the density
functions of complex and real roots of a random polynomial
f . Such density functions have been studied by several au-
thors for classical families of random polynomials, e.g. for
Kac polynomials we already cited [18].

As a first approach, one can consider a Mean Field ap-
proximation (where we replace the sum of the attractions of
each individual root by their limit expectation) to establish
as follows a pairing between a root of f and a root of xf ′.
One can estimate an equilibrium zk near a fixed root xk,
relying on the density functions to average the attraction
corresponding to the other roots of f . If the root xk is real,
complex conjugation obliges its image zk to be real. Notice
that the continuation curve between xk and zk, defined by
the homotopy, needs not be real, we only conjectured this
property with a good probability for some random polyno-
mials.

This process will allow for random polynomials at each
derivation step to “get down” towards the real axis and at
least for rotational symmetric limit distribution of complex
roots, towards the origin. Note that in order to prove that
the continuation defined via fractional derivatives follows the
same dynamic, we need to develop a generalized attraction
interpretation. When a pair of conjugate complex roots of a
fractional derivative reach the real axis they form a double
root: in the stem of f , this event corresponds to a summit
of an ear shaped curve.

We are still far from a rigorous presentation of our inter-
pretation and all its consequences. Improvements of Gauss-
Lucas, images of uniform distributions laws, might eventu-
ally explain the features exhibited by the variation diagrams,
but that is a long way.

As a conclusion, I experimented, introduced new tools,
presented pictures, observed phenomena. I sketched a possi-
ble strategy, which opens several problems and an exploratory
research project.
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yse et probabilité”, Nice 2010“ and of the ”Algorithmes,
Inria 2010”, “University of Pisa” seminars who invited me

to present preliminary versions of this work.

7. REFERENCES
[1] Andrews, P: Where not to find the critical points of a

polynomial -variation on a Putnam theme. Amer.
Math. Monthly, 102, pp 155-158 (1995).

[2] Bembe, D and Galligo, A: Virtual roots of real
polynomials and fractional derivatives. Issac’2011
(2011).

[3] Bharucha-Reid, A. T. and Sambandham, M.: Random
Polynomials. Academic Press, N.Y. (1986).

[4] Bochnack, J. and Coste, M. and Roy, M-F.: Real
Algebraic Geometry. Springer (1998).

[5] Coste, M and Lajous, T and Lombardi, H and Roy,
M-F : Generalized Budan-Fourier theorem and virtual
roots. Journal of Complexity, 21, 478-486 (2005).

[6] Diaconis, P: Patterns in eigenvalues: the 70th Josiah
Willard Gibbs lecture. Bull. Amer. Math. Soc. 40,
155-178. (2003)

[7] Edelman, A and Kostlan,E: How many zeros of a
random polynomial are real? Bulletin AMS, 32(1):137,
(1995).

[8] Emiris, I and Galligo, A and Tsigaridas, E: Random
polynomials and expected complexity of bissection
methods for real solving. Proceedings of the
ISSAC’2010 conference, pp 235-242, ACM NY, (2010).

[9] Farahmand, K: Topics in random polynomials. Pitman
research notes in mathematics series 393, Addison
Wesley, (1998).

[10] Galligo, A and Miclo, L: On the cut-off phenomenon
for the transitivity of subgroups. Submitted for
publication (2009).

[11] Galligo, A and Poteaux, A: Computing Monodromy
via Continuation methods on Random Reimann
Surfaces. Theoretical Computer Science, to be
published in (2011).

[12] Galligo, A and vanHoeij, M: Approximate bivariate
factorization, a geometric viewpoint. In Proceedings of
the 2007 SNC conference, pp 1-10, ACM NY, (2007).

[13] Gonzales-Vega, L and Lombardi, H and Mahé, L :
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ABSTRACT
We investigate our early termination criterion for sparse pol-
ynomial interpolation when substantial noise is present in
the values of the polynomial. Our criterion in the exact case
uses Monte Carlo randomization which introduces a second
source of error. We harness the Gohberg-Semencul formula
for the inverse of a Hankel matrix to compute estimates for
the structured condition numbers of all arising Hankel ma-
trices in quadratic arithmetic time overall, and explain how
false ill-conditionedness can arise from our randomizations.
Finally, we demonstrate by experiments that our condition
number estimates lead to a viable termination criterion for
polynomials with about 20 non-zero terms and of degree
about 100, even in the presence of noise of relative mag-
nitude 10−5.

Categories and Subject Descriptors
F.2.1 [Numerical Algorithms and Problems]: Compu-
tations on matrices, Computations on polynomials; G.1.1
[Interpolation]; I.1.2 [Algorithms]: Algebraic algorithms,
Analysis of algorithms
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1. INTRODUCTION
The fast solution of Toeplitz- and Hankel-like linear sys-

tems is based on the classical 1947 Levinson-Durbin prob-
lem of computing linear generators of the sequence of en-
tries. When with exact arithmetic on the entries a singular
leading principal submatrix is encountered, look-ahead can
be performed: this is the genesis of the 1968 Berlekamp/
Massey algorithm. In the numeric setting, the notion of
ill-conditionedness substitutes for exact singularity, and the
algorithms need to estimate the condition numbers of the
arising submatrices. By a result of Siegfried Rump [22], the
structured condition number of an n×n Toeplitz/Hankel ma-
trix H is equal to its unstructured condition number κ2(H):
we have a Hankel perturbation matrix ∆H with spectral
(matrix-2) norm ‖∆H‖2 = 1/‖H−1‖2 = ‖H‖2/κ2(H) such
that H + ∆H is singular [22, Theorem 12.1]. Thus Trench’s
[23] (exact) inverse algorithm can produce upper and lower
bounds for those distances from the Frobenius (Euclidean-
vector-2) norm estimates for 1/

√
n ‖H−1‖F ≤ ‖H−1‖2 ≤

‖H−1‖F . The look-ahead algorithms, such as the Berle-
kamp/Massey solver, however, need such estimates for all

k × k leading principal submatrices H [k] for k = 1, 2, . . . of
an unbounded Hankel matrix. Here we show how the 1972
Gohberg-Semencul “off-diagonal” (JL)U-representations [17,

7] can give estimates for all κ2(H
[k]) in quadratic arithmetic

overall time. Although our estimates are quite accurate (see
Figures 1 and 2), the computation of the actual condition
numbers of all leading principal submatrices in quadratic
arithmetic time remains an intriguing open problem. We
note that fraction-free implementations [2, 21] of the Berle-
kamp/Massey algorithms and inverse generators only pro-
duce values of polynomials in the entries, and our numeric
Schwartz/Zippel lemma [20, Lemma 3.1] is applicable. In
Section 3 we will discuss the numeric sensitivity of the ex-
pected values in that Lemma.

Our investigations are motivated by numeric sparse pol-
ynomial interpolation algorithms [11, 12, 20, 13]. In the
Ben-Or/Tiwari version of this algorithm, one first computes
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for a sparse polynomial f(x) ∈ C[x] the linear generator for
hl = f(ωl+1) for l = 0, 1, 2, . . . In some exact as well as
numeric algorithms, ω is selected as a random p-th root of
unity. Then by the theory of early termination of that al-
gorithm [18], the first t× t leading principle submatrix H [t]

in the (infinite) Hankel matrix H with entries in row i and
column j, (H)i,j = hi+j−2 where k = 1, 2, . . . , t,

H [k] =

266666666664

h0 h1 h2 h3 . . . hk−1

h1 h2 h3 h4 . .
.

hk

h2 h3 h4 h5 . .
.

hk+1

h3 h4 h5 h6 . .
. ...

... . .
.

. .
.

. .
.

. .
.

hk−1 hk hk+1 . . . h2k−2

377777777775
(1)

that is singular has with high probability dimension t = the
number of non-zero terms in f . For technical reasons in proof
of the probabilistic analysis, we must skip over the value
f(ω0) = f(1). Hence, by the previously described algorithm

for lower and upper bounds of the condition numbers ofH [k],
we can determine the number of terms t.

The Berlekamp/Massey algorithm solves the problem of
computing Padé forms along a diagonal of the Padé table.
Cabay and Meleshko gave an algorithm to bound from above
the condition numbers of all the principal submatrices of
the associated Hankel system in the well-conditioned case
[8], which has been further refined and extended, for exam-
ple, see [1, 6]. Here we focus less on stably computing the
Gohberg-Semencul updates (see those cited papers—we re-
quire no look-ahead), but on fast and accurate lower and
upper bounds of the condition numbers, which constitute
the early termination criterion. We add that our approach
here, namely testing submatrices for ill-conditionedness, is
problematic for the approximate GCD problem (cf. [5, 4]):
we know now that Rump’s property is false for Sylvester
matrices: the unstructured condition number of a Sylvester
matrix can be large while the structured condition number
is small (see [19, Example 4.2]).

We approach the problem of incrementally estimating Han-
kel submatrices through a numerical interpretation of the
Berlekamp/Massey algorithm [21] that combines with an ap-
plication of the numerical Schwartz/Zippel lemma [20]. We
report some experimental results of our implementation in
Section 4. For a 20 term polynomial of degree 100 the algo-
rithm correctly computes t = 20 in quadratic time (given the
polynomial evaluations hl) (see Table 1). There are several
issues to scrutinize. First, we only have bounds on the con-
dition numbers and must verify that our estimates are suf-
ficiently accurate. One would expect since for hl = f(ωl+1)

the Hankel matrix H [k] in (1) has additional structure that
the upper bound estimates for the Rump condition numbers
are good indicators of numeric non-singularity. Second, early
termination is achieved by randomization, whose probabilis-
tic analysis, namely the separation of the decision quantities,
i.e., determinants or condition numbers, from very small val-
ues (in terms of absolute values), applies to exact computa-
tion. We can relate the numeric sensitivity of those decision
quantities via a factorization of H [t] to clustering of term
values on the unite circle, which is partially overcome by
evaluation at several random ω simultaneously.

Throughout the paper, we will use the boldfaced letters x
and y to denote the vectors [x1, . . . , xn]T , [y1, . . . , yn]T , re-

spectively; H [k] denotes the k × k leading principle subma-
trix; κ(H) = ‖H‖ · ‖H−1‖ denotes the unstructured condi-
tion number of H .

2. CONDITION NUMBER ESTIMATE
Suppose a n×n Hankel matrix H is strongly regular, i.e.,

all the leading principle submatrices of H are nonsingular.
Following an efficient algorithm for solving Hankel systems
[14], we present a recursive method to estimate the condi-
tion numbers of all leading principal Hankel submatrices in
quadratic time.

For simplicity, in this section we only consider the condi-
tion number of the Hankel matrix with respect to 1 norm,
i.e., κ1(H) = ‖H‖1 · ‖H−1‖1, since all other operator norms
can be bounded by the corresponding 1 norm.

In order to estimate the condition numbers of all lead-
ing principal submatrices, we need to estimate the norms
of all leading principal submatrices as well as their inverses.
Since a Hankel matrix H has recursive structure, the norm
of H [i+1] can be obtained in O(i) flops if the norm of H [i] is
given, which implies that computing the norms of all leading
principal submatrices can be done in O(n2) flops. There-
fore, our task is to demonstrate how to estimate the norm of
(H [i+1])−1 in linear time if one has the estimate of the norm

of (H [i])−1.
As restated in Theorem 1, the Gohberg-Semencul formula

for inverting a Hankel matrix plays an important role in our
method. Note that for a given Hankel matrix H , J H is a
Toeplitz matrix, where J is an anti-diagonal matrix with 1
as its nonzero entries.

Theorem 1 Given a Hankel matrix H, suppose x and y are
the solution vectors of the systems of the equations Hx = e1,
Hy = en, where e1 = [1, 0, 0, . . . , 0]T and en = [0, . . . , 0, 1]T .
Then if xn 6= 0 the inverse H−1 satisfies the identity

H−1 =

1

xn

26664
x1 x2 · xn−1 xn

x2 x3 · xn 0
· · · · ·

xn−1 xn · 0 0
xn 0 · 0 0

37775
| {z }

JL1

26664
y1 y2 · yn−1 yn

0 y1 · yn−2 yn−1

· · · · ·
0 0 · y1 y2
0 0 · 0 y1

37775
| {z }

R1

− 1

xn

26664
y2 y3 · yn 0
y3 y4 · 0 0
· · · · ·
yn 0 · 0 0
0 0 · 0 0

37775
| {z }

JL2

26664
0 x1 · xn−2 xn−1

0 0 · xn−3 xn−2

· · · · ·
0 0 · 0 x1

0 0 · 0 0

37775
| {z }

R2

(2)

The inversion formula of a Hankel matrix leads to a poly-
nomial form, whose coefficients involve vectors x and y.

Theorem 2 Under the assumptions of Theorem 1, suppose
H−1 = [γ1, γ2, . . . , γn], where γk denotes the k-th column of
H−1. Then we have

γk = [vn−1,vn−2, . . . ,v0]
T ,

where vi denotes the coefficient of the polynomial (1/xn) ·
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(φ · gk − uk · v) with respect to Zi, where

φ =
nX

i=1

xiZ
n−i, gk =

kX
i=1

yiZ
k−i,

v =

nX
i=2

yiZ
n−i, u1 = 0, uk =

k−1X
i=1

xiZ
k−i, k = 2, . . . , n.

Proof. Considering the polynomial product φ · gk, we
obtain the coefficient subvector

µ = [ψn−1, ψn−2, . . . , ψ0]
T ,

where ψj is the coefficient of φ · gk with respect to Zj . Ex-
panding φ · gk, we get

ψj =

 Pj
i=0 xn−iyk+i−j , if 0 ≤ j ≤ k,Pk−1
i=0 xn+i−jyk−i, if k < j < n.

Observing the formula of H−1 in Theorem 1, We find that
the coefficient subvector

µ = JL1.[yk, yk−1, . . . , 0, 0]
T , (3)

where [yk, yk−1, . . . , 0, 0] is the k-th column of R1. Since
u1 = 0, it is obvious that the coefficient vector of u1 · v is a
zero vector. Considering the polynomial product uk · v, 2 ≤
k ≤ n, we obtain the coefficient subvector

ν = [χn−1, χn−2, . . . , χ0]
T ,

where χj is the coefficient of uk · v with respect to Zj . Ex-
panding uk · v, we get

χj =

8<:
0 if j = 0Pj

i=0 yn−ixk−j+i, if j ≤ k − 1,Pk−1
i=1 yn+1−jxk−i, if k ≤ j < n.

The coefficient subvector

ν = JL2.[xk−1, xk−2, . . . , 0, 0]
T , (4)

where [xk−1, xk−2, . . . , 0, 0]
T is the k-th column of R2. Ac-

cording to (3) and (4), it can be verified that the column γk

is able to be represented by the coefficients of (1/xn) · (φ ·
gk − uk · v).

Corollary 1 Given a nonsingular Hankel matrix H, sup-
pose x and y are the solutions of the equations of Hx = e1
and Hy = en, then

‖x‖1 ≤ ‖H−1‖1 ≤ 2‖x‖1 · ‖y‖1
|xn| . (5)

Proof. Since xn = y1, (5) can be concluded from Theo-
rem 2.

Given a strongly regular matrix H , we discuss how to use
the bound in (5) to estimate ‖(H [i])−1‖1 for all the lead-
ing principal submatrices in quadratic time. A linear time
recursive algorithm is presented in [14] to obtain the solu-

tion vector of H [i+1]xi+1 = ei+1 from the solution vector
of H [i]yi = ei, where H [i] and H [i+1] are the i × i and
(i + 1) × (i + 1) leading principal submatrices of H respec-

tively, and ei = [0, . . . , 0, 1]T , ei+1 =
ˆ
0, ei

˜T
. Moreover,

according to the Lemma in [14], for an i × i strongly reg-
ular Hankel matrix H , the solution x of the linear system
Hx = e1 can be obtained in O(i) flops if one has the solu-
tion Hy = ei. In other words, for a given strongly regular

k × k Hankel matrix H , all of the solution vectors x and y
of H [i]x = e1, H

[i]y = ei, i = 1, 2, . . . , k can be obtained in
O(k2) flops. Hence the recursive algorithm presented in [14]

is applicable to obtain the bounds (5) of all ‖(H [i])−1‖1 in
quadratic time.

Theorem 3 Under the same assumptions as above, given a
strongly regular n× n Hankel matrix H, we have

‖x[i]‖1‖H [i]‖1 ≤ κ1(H
[i]) ≤ 2‖x[i]‖1‖y[i]‖1

|x[i]
i |

‖H [i]‖1, (6)

where x[i] and y[i] are the solution vectors of H [i]x[i] =

e1 and H [i]y[i] = ei, and x
[i]
i denotes the last element of

x[i]. Furthermore, computing the lower bounds and the up-
per bounds (6) of all κ1(H

[i]), 1 ≤ i ≤ n, can be achieved in
O(n2) arithmetic operations.

Proof. We conclude (6) from Corollary 1. As discussed,

‖H [i]‖1 and the bounds of ‖(H [i])−1‖1 can be obtained in
quadratic time, which means that the computation of the
condition number bounds (6) is O(n2).

3. EARLY TERMINATION IN NUMERICAL
SPARSE INTERPOLATION

We apply our method to the problem of early termination
in numerical sparse polynomial interpolation. Consider a
black box univariate polynomial f ∈ C[x] represented as

f(x) =

tX
j=1

cjx
dj , 0 6= cj ∈ C (7)

and dj ∈ Z≥0, d1 < d2 < · · · < dt.
Suppose the evaluations of f(x) contain added noise. Let δ

be a degree upper bound of f , which means, δ ≥ deg(f) = dt.
Our aim is to determine the number of terms t in the target
polynomial f .

In exact arithmetic, the early termination strategy [18]
can determine the number of terms with high probability.
Choose a random element ω from a sufficiently large finite
set and evaluate f(x) at the powers of ω

h0 = f(ω), h1 = f(ω2), h2 = f(ω3), . . . .

Consider a (δ + 1) × (δ + 1) Hankel matrix H = (H)i,j =
hi+j−2 as in (1). The early termination algorithm makes,

with high probability, all principal minors H [j] non-singular
for 1 ≤ j ≤ t [18]. Moreover, H [j] must be singular for
all t < j ≤ δ. Hence the number of terms t is detected as
follows: for j = 1, 2, . . ., the first time H [j] becomes singular
is when j = t+ 1.

In the numerical setting, such a singular matrix is often ex-
tremely ill-conditioned. So we need to measure the singular-
ity for a given numerical Hankel matrix. In [22], it is proved
that for a Hankel matrix the structured condition number
with respect to the spectral norm is equivalent to the regular
condition number. In other words, for a given Hankel matrix
H [j], the distance measured by spectral norm to the near-
est singular Hankel matrix is equivalent to 1/‖(H [j])−1‖2.
In the following we investigate how to estimate the spectral
norm of the inverse of a Hankel matrix.
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Theorem 4 Using the same quantities as above, we have

‖x‖1√
n

≤ ‖H−1‖2 ≤ 2‖x‖1 · ‖y‖1
|xn| . (8)

Proof. Given a n × n arbitrary matrix A, we have the
following bound of ‖A‖2 [16]

max{‖A‖1, ‖A‖∞}√
n

≤ ‖A‖2 ≤
p
‖A‖1‖A‖∞.

According to Corollary 1 and ‖H−1‖∞ = ‖H−1‖1, it can be
verified that ‖H−1‖2 satisfies (8).

We following the bound of ‖H−1‖2 in (8) and present a
recursive algorithm to detect the sparsity of the interpolating
polynomial. Suppose we are given an approximate black box
polynomial of f represented as (7), its degree bound δ and a
chosen tolerance τ , our aim is to recover the number of terms
t. We proceed our recursive algorithm as the following. First
choose a random root of unity ω with a prime order p ≥ δ
and obtain the approximate evaluations

hℓ ≈ f(ωℓ+1), ℓ = 0, 1, 2, . . . .

Then we compute iteratively for k = 1, 2, . . . and H [k] =
[hi+j−2] the vectors x[k] and y[k] as stated in [14], where x[k]

and y[k] are the solutions of H [k]x[k] = e1 and H [k]y[k] = ek.
We break out of the loop until

|x[k]
k |

2‖x[k]‖1 · ‖y[k]‖1 ≤ τ,

which means that for all j = 1, 2, . . . , k − 1 the distance be-
tween H [j] and the nearest singular Hankel matrix is greater
than the given tolerance τ . This is because

1

‖(H [k])−1‖2 ≥ |x[k]
k |

2‖x[k]‖1 · ‖y[k]‖1 > τ.

At this stage, we claim that H [k−1] is strongly regular and
obtain t = k − 1 as the number of the terms in f .

In sparse polynomial interpolation, the associated Hankel
matrix H [t] has additional structure that allows a factoriza-
tion

H [j] =

26664
h0 h1 . . . hj−1

h1 h2 . . . hj

...
...

. . .
...

hj−1 hj . . . h2j−2

37775

=

266664
1 1 . . . 1

b1 b2 . . . bt
...

...
. . .

...

bj−1
1 bj−1

2 . . . bj−1
t

377775
| {z }

V [j]

266664
c1b1 0 . . . 0

0 c2b2
. . .

...
...

. . .
. . . 0

0 . . . 0 ctbt

377775
| {z }

D

×

26664
1 b1 . . . bj−1

1

1 b2 . . . bj−1
2

...
...

. . .
...

1 bt . . . bj−1
t

37775
| {z }

(V [j])T

, (9)

in which bk = ωdk for 1 ≤ k ≤ t.

When j = t, the condition of the associated Hankel system
is linked to the embedded Vandermonde system [11, 12]

‖(V [t])−1‖2 ·max
j

1

|cj | ≥ ‖(H [t])−1‖ ≥ ‖(V [t])−1‖2P
1≤j≤t |cj |

(10)

(see Proposition 4.1 in [12].)
Since all bj are on the unit circle, according to [9] the

inverse of the Vandermonde matrix ‖V −1‖ can be bounded
by

‖(V [t])−1‖ ≤ max
1≤j≤t

tY
j=1,j 6=k

1 + |bj |
|bj − bk|

= max
1≤j≤t

2t−1Q
j 6=k |bj − bk| . (11)

As for the lower bound, ‖(V [t])−1‖∞ = 1 achieves the opti-
mal condition if bj are evenly distributed on the unit circle
(see Example 6.4 in [10].)

In [11, 12], the sparsity t is given as input. So the random-
ization is used to improve the condition of the overall sparse
interpolation problem, where the recovery of both the non-
zero terms and the corresponding coefficients depend on the
condition of the embedded Vandermonde system. While [11,
12] further exploit a generalized eigenvalue reformulation [15]
in sparse interpolation, interestingly the condition of the as-
sociated generalized eigenvalue problem is still dependent
on the condition of the embedded Vandermonde system [12,
Theorem 4.2] (see [3] for further analysis and discussion.)

Now our purpose now to detect the number of terms. In
other words, we intend to use the estimated conditions to
determine the number of terms t. (After t is determined,
for polynomial interpolation one still needs to recover the t
exponents d1, . . . dt and the associated coefficients c1, . . . , ct
in f .)

Recall that in exact arithmetic, H [j] is singular for j > t.
In a numerical setting, such H [j] is expected to be extremely
ill-conditioned. If H [t] is relatively well-conditioned, then
one can expect a surge in the condition number for H [t+1].
We apply the randomization idea in [11, 12] to obtain the

heuristic of achieving relatively well-conditioned H [t] with
high probability.

Following (11), the distribution of b1, . . . , bt on the unit
circle affects the upper bound on the condition of the Van-
dermonde system V [t]. Let bj = e2πidj/p, bk = e2πidk/p for
a prime p ≥ δ. Both bj and bk are on the unit circle. Let
∆jk = |dj − dk| ≥ 1, the distance between bj and bk is

|bj − bk| =
q

(1− cos(2π∆jk/p))2 + sin2(2π∆jk/p)

=
p

2− 2 cos(2π∆jk/p).

For a fixed t, an upper bound of ‖(V [t])−1‖2 is determined
by

min
1≤j≤t

Y
j 6=k

„
2− 2 cos

„
2π∆jk

p

««
, (12)

in which p is a chosen prime order for the primitive roots of
unity.

According to (12), the corresponding Hankel systemH [t] =

V [t]D(V [t])T can be better conditioned if

1. p is smaller; and/or
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2. the most (or all) of ∆jk do not belong to smaller values.

In order to achieve a better condition, choosing a larger p
would require larger ∆jk and may require a higher precision.
Thus we prefer a smaller p. Moreover, in general a smaller p
does not affect too much on the overall random distribution
of bj on the unit circle (see Example 3 in Section 4.)

Remark: In the exact case, it may still happen that H [j]

is singular for j ≤ t, which corresponds to an ill-conditioned
H [j] for j ≤ t in a finite precision environment. Therefore
we perform our algorithm ζ times in the numerical setting.
Given ζ ∈ Z>0, we choose different random roots of unity
ω1, ω2, . . . , ωζ . For each j we perform our algorithm on f(ωk

j )
for k = 1, 2, . . . and obtain the number of terms as tj . At
the end, we determine t = max{t1, t2, . . . , tζ} as the number
of the terms of f .

4. EXPERIMENTS
Our numerical early termination is tested for determining

the number of the terms. We set Digits := 15 in Maple 13.
Our test polynomials are constructed with random integer
coefficients in the range between −10 and 10, and with a
random degree and random terms in the given ranges.

For each given noise range, we test 50 random black box
polynomials and report the times of failing to correctly esti-
mate the number of the terms. In Table 1, Deg. Range and
TermRange record the range of the degree and the number
of the term in the polynomials; Random Noise records range
of random noise added to the evaluations of the black box
polynomial; Fail reports the times of failing to estimate the
correct number of the terms in the target polynomials.

Ex. Random Noise Term Range Deg. Range Fail

1 10−6 ∼ 10−5 10 ∼ 15 100 ∼ 150 3

2 10−7 ∼ 10−6 15 ∼ 20 100 ∼ 150 1

3 10−8 ∼ 10−7 20 ∼ 25 100 ∼ 150 1

4 10−9 ∼ 10−8 20 ∼ 25 100 ∼ 150 1

Table 1: Numerical early termination: number of
failures out of 50 random polynomials.

Example 1 Given a polynomial f with deg(f) = 100 and
the number of term 20, denoted by T (f) = 20. Its coeffi-
cients are randomly generated as integers between −10 and
10. We construct the black box that evaluates f with added
random noises in the range 10−9 ∼ 10−8. From such black
box evaluations, we generated 1000 random Hankel matrices
and compare the condition number κ1(H) = ‖H‖1 · ‖H−1‖1
with their corresponding lower bounds κlow(H) and the up-
per bound κup(H), shown in (6).

Let ωj = exp(2sjπi /pj) ∈ C be random roots of unity,
where i =

√−1, pj prime numbers in the range 100 ≤ pj ≤
1000, and sj random integers with 1 ≤ sj < pj . We compute
the evaluations of the black box for different root of unity
ωj , and construct the associated Hankel matrix H [j]. Since
T (f) = 20, we do 41 evaluations for each j to construct the

Hankel matrix with Dim(H [j]) = 21:

hj,l ≈ f(ωl
j) ∈ C, l = 1, 2, 3, . . . , 41.

We useH
[k]
j to denote the k×k leading principle submatrix

of Hj and let

rlow =
‖H‖1 · ‖H−1‖1

κlow(H)
, rup =

κup(H)

‖H‖1 · ‖H−1‖1 .

For j = 1, 2, . . . , 1000, we obtain the ratios rlow and rup

for all k × k leading principle submatrices H
[k]
j , where k =

1, 2, . . . , 20. Therefore, rlow and rup are used to measure
whether the lower and upper bounds are close to the actual
condition number. We use the histogram to measure the
ratios rlow and rup. For instance, in Figure 1 (a) and (b)
show the distribution of the ratios rlow and rup for all 5 ×
5 leading principle submatrices H

[5]
j , j = 1, 2, . . . , 1000. In

Figure 2, (a) and (b) show the distribution of the ratios rlow
and rup of all 20×20 leading principle submatrices H

[20]
j , j =

1, 2, . . . , 1000.

Example 2 We performed m = 100 random n × n Hankel
matrices for n = 4, 8, . . . , 1024 whose entries are randomly
chosen and follow uniformly probabilistic distribution over
{c | −1 ≤ c ≤ 1}. Table 2 displays the average value of
rlow and rup. Here n is the dimension of random Hankel

matrices; rlow and rup are the average ratios of ‖H‖1·‖H−1‖1
κlow(H)

and
κup(H)

‖H‖1·‖H−1‖1 ; κ1 = ‖H‖1 · ‖H−1‖1 is the average value

of the actual condition number obtained for Digits := 15
in Maple 13. From the columns of rlow and rup, we observe
that the upper bound of the condition number depends on
the dimension of the Hankel matrices. But the lower bound
of the condition number does not seem to be affected much
by the increasing of the dimension.

Ex. n rlow rup κ1(H)
1 4 3.1431 17.402 523.10
2 8 4.7675 14.023 69.965
3 16 6.4865 30.349 136.59
4 32 11.154 106.35 734.55
5 64 15.691 107.19 1996.1
6 128 24.120 220.42 13218
7 256 34.496 549.59 16932
8 512 49.425 1516.1 16783
9 1024 71.394 1385.0 111375

Table 2: Algorithm performance on condition num-
ber estimate

Finally, following the discussion on (10), (11), (12) in Sec-

tion 3, we investigate the role of p in the conditioning of H [t].

Example 3 For each try, we choose m = 10 random poly-
nomials with 50 ≤ deg(f) ≤ 100. The coefficients are ran-
domly generated as integers between −5 and 5. The num-
ber of the terms of f is t, shown in the 3-th column of Ta-
ble 3. In Table 1, Term Range records the range of random
noise added to the evaluations of the black box polynomial;
κ1(H1

[t]) and κ1(H2
[t]) denote the respective condition num-

bers of the t × t Hankel matrices H1
[t] and H2

[t]. The ma-
trices H1

[t] and H2
[t] are constructed by the approximate

evaluations of the root of unity with orders corresponding to
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(a) Distribution rlow =
‖H‖1 · ‖H−1‖1

κlow(H)
(b) Distribution rup =

κup(H)

‖H‖1 · ‖H−1‖1

Figure 1: Distribution of the leading principle matrix H [5]

(a) Distribution rlow =
‖H‖1 · ‖H−1‖1

κlow(H)
(b) Distribution rup =

κup(H)

‖H‖1 · ‖H−1‖1

Figure 2: Distribution of the leading principle matrix H [20]

the randomly chosen prime numbers p1 and p2, where p1 is
between 100 and 1000 and p2 between 105 and 107.

Table 3 agrees with our discussion at the end of Section 3.
When the number of terms t is fixed, the various scales of p1

and p2 do not seem to greatly affect the distribution of terms
on the unit circle. But a larger p2 may demand a higher
precision hence cause additional computation problems.

5. CONCLUSION
By example of a randomized sparse interpolation algo-

rithm, we have investigated a central question in algorithms
with floating point arithmetic and imprecise date posed in
[20]: how does one analyze the probability of success, in our

case the correct determination of the discrete polynomial
sparsity? Bad random choices may result in ill-conditioned
intermediate structured matrices at the wrong place. Even
if one can detect such ill-conditionedness, as we have via the
Gohberg-Semencul formula, the distribution of such occur-
rences must be controlled. We do so by running multiple
random execution paths next to one another, which success-
fully can weed out bad random choices, as we have observed
experimentally. The mathematical justification requires an
understanding of condition numbers of random Fourier ma-
trices, which we have presented, and of additional instabili-
ties that are caused by substantial noise in the data, which
we have demonstrated, at least by experiment, to be con-
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Ex. Random Noise t κ1(H1
[t]) κ1(H2

[t])

1 10−6 ∼ 10−5 5 1.16× 105 1.61 × 105

2 10−6 ∼ 10−5 8 9.54× 105 2.91 × 106

3 10−8 ∼ 10−7 10 4.14× 107 1.02 × 108

4 10−6 ∼ 10−5 12 1.51× 106 2.04 × 106

5 10−6 ∼ 10−5 15 1.13× 108 3.53 × 108

6 10−7 ∼ 10−6 12 5.24× 107 3.92 × 107

Table 3: Condition numbers for H [t] constructed
with roots of unity of different size prime orders p1

and p2.

trollable by our algorithms.
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W. Küchlin, editor, Proc. 1997 Internat. Symp.
Symbolic Algebraic Comput. (ISSAC’97), pages
125–132, 1997.

[3] B. Beckermann, G. H. Golub, and G. Labahn. On the
numerical condition of a generalized Hankel eigenvalue
problem. Numerische Mathematik, 106(1):41–68, 2007.

[4] B. Beckermann and G. Labahn. A fast and numerically
stable euclidean-like algorithm for detecting relatively
prime numerical polynomials. Journal of Symbolic
Computation, 26(6):691–714, 1998.

[5] B. Beckermann and G. Labahn. When are two
numerical polynomials relatively prime? Journal of
Symbolic Computation, 26(6):677–689, 1998.

[6] B. Beckermann and G. Labahn. Effective computation
of rational approximants and interpolants. Reliable
Computing, 6(4):365–390, 2000.

[7] R. P. Brent, F. G. Gustavson, and D. Y. Y. Yun. Fast
solution of Toeplitz systems of equations and
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ABSTRACT
We reduce implicitization of rational parametric curves and
(hyper)surfaces to linear algebra, by interpolating the coef-
ficients of the implicit equation. For this, we may use any
method for predicting the implicit support. We focus on
methods that exploit input structure in the sense of sparse
(or toric) elimination theory, namely by computing the New-
ton polytope of the implicit polynomial. We offer a public-
domain implementation of our methods, and study their nu-
merical stability and efficiency on several classes of plane
curves and surfaces, and discuss how it can be used for ap-
proximate implicitization in the setting of sparse elimina-
tion.

Categories and Subject Descriptors
G.1 [Mathematics of Computing]: Numerical Analysis;
I.1 [Computing Methodologies]: Symbolic and Algebraic
Manipulation; I.3.5 [Computing Methodologies]: Com-
puter Graphics—Computational Geometry and Object Mod-
eling

General Terms
Algorithms, Experimentation

Keywords
Implicitization, Sparse elimination, Newton polytope, Nu-
merical linear algebra

1. INTRODUCTION
Implicitization is the problem of changing the represen-

tation of parametric objects to implicit (or Cartesian) form.
This problem lies at the heart of several questions in compu-
ter-aided geometric design (CAGD) and geometric modeling,
including intersection problems and membership queries. In
several situations, it is important to have both representa-
tions available. Implicit representations encompass a larger
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Copyright 2011 ACM 978-1-4503-0515-0 ...$10.00.

class of shapes than parametric ones. Moreover, the class
of implicit curves and surfaces is closed under certain op-
erations such as offsetting, while its parametric counterpart
is not. Implicitization is also of independent interest, since
certain questions in areas as diverse as robotics or statistics,
e.g. [4], reduce to deriving the implicit form.

Here we follow a classical symbolic-numeric method, which
reduces implicitization to interpolating the coefficients of the
defining equation. We implement interpolation by (numeric)
linear algebra operations, following a symbolic phase of im-
plicit support prediction, i.e. computing a (super)set of the
monomials appearing in the implicit equation. Standard
methods to interpolate the unknown coefficients by linear al-
gebra, are divided in two main categories, dense and sparse
methods. The former require a bound on the total degree
of the target polynomial, whereas the latter require only
a bound on the number of its terms, thus exploiting any
sparseness of the target polynomial. Moreover, its perfor-
mance depends on the actual number of non-zero terms in
this polynomial. In fact, a priori knowledge of the support
essentially answers the first task of such a method. For more
information see [25].

Our first contribution is to exploit sparse (or toric) vari-
able elimination theory to predict the implicit Newton poly-
tope, i.e. the convex hull of the implicit support.

Definition 1. Given a polynomial
P
j cijt

aij , its support

is the set Ai = {aij ∈ Nn : cij 6= 0}; its Newton polytope is
the convex hull of the support.

(2,3)

(1,0)

(0,2)

N(f0)

f0 = x2y3 + 3x− 5y2 f1 = x3 − x2 + y2x− 3y

(1,2)

(3,0)(2,0)

(0,1)

N(f1)

Figure 1: Example of Newton polygons

One reason for revisiting interpolation is the current in-
crease of activity around various approaches capable of pre-
dicting the implicit support, e.g. [5, 6, 21, 22]. Although our
team has been focussing on sparse elimination [9, 11, 12],
the present work can use the implicit support predicted by
any method.
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In fact, [22, sec.4] states that “Knowing the Newton poly-
topes reduces computing the [implicit] equation to numerical
linear algebra. The numerical mathematics of this problem
is interesting and challenging [...] ” We expect that our soft-
ware will interface implicit support predictors, such as those
developed in [5, 9, 11, 22], with linear algebra. We juxtapose
the use of exact and numerical linear algebra, which even-
tually can rely on state-of-the-art libraries, such as Eigen or
LAPACK, respectively.

We discuss approximate implicitization, which is of high
practical importance in CAGD [8, 19], in the setting of sparse
elimination. In our view, approximate implicitization is one
of the main motivations for reducing implicitization to in-
terpolation.

Our second contribution is to offer a public-domain Maple
implementation. We study the numerical stability and ef-
ficiency of our algorithms on several classes of 2- and 3-d
examples. The Maple code has been published on our Wiki
webpage that contains support prediction and implicitiza-
tion related experiments:

http://ergawiki.di.uoa.gr/index.php/Implicitization

One central question is how to evaluate the computed mono-
mials to obtain a suitable matrix, when performing exact or
numerical matrix operations. We compare results obtained
by using random integers, random complex unitary numbers
and complex roots of unity.

A parametrization of a geometric object of co-dimension
one, in a space of dimension n+ 1, can be described by a set
of parametric functions:

x0 = f0(t1, . . . , tn), . . . , xn = fn(t1, . . . , tn),

where t := (t1, t2, . . . , tn) is the vector of parameters and
f := (f0, . . . , fn) is a vector of continuous functions, includ-
ing polynomial, rational, and trigonometric functions, also
called coordinate functions. These are defined on some prod-
uct of intervals Ω := Ω1 × · · · × Ωn, Ωi ⊆ Rn, of values of
t1, . . . , tn. Implicitization of planar curves and surfaces in
3-dimensional space corresponds to n = 1 and n = 2 respec-
tively.

The implicitization problem asks for the smallest algebraic
variety containing the closure of the image of the parametric
map f : Rn → Rn+1 : t 7→ f(t). This image is contained
in the variety defined by the ideal of all polynomials p s.t.
p(f0(t), . . . , fn(t)) = 0, for all t in Ω. We restrict ourselves
to the case when this is a principal ideal, and we wish to
compute its defining polynomial

p(x0, . . . , xn) = 0, (1)

given its Newton polytope or a polytope that contains it.
We can regard the variety in question as the projection of
the graph of map f to the last n + 1 coordinates. If f is
polynomial, implicitization is reduced to eliminating t from
the polynomial system

Fi := xi − fi(t) ∈ (R[xi])[t], i = 0, . . . , n,

seen as polynomials in t with coefficients which are functions
of the xi. This is also the case for rational parameterizations

xi =
fi(t)

gi(t)
, i = 0, . . . , n, (2)

which can be represented as polynomials

Fi := xigi(t)− fi(t) ∈ (R[xi])[t], i = 0, . . . , n, (3)

where we have to take into account that the gi(t) cannot
vanish.

Several algorithms exist for this problem, including meth-
ods based on resultants, Gröbner bases, moving surfaces,
and residues. Our approach relies on any support prediction
method, see sect. 3. We focus on sparse (or toric) elimina-
tion: In the case of curves, the implicit support is directly
determined for generic parametric expressions with the same
supports. In the case of (hyper)surfaces, the implicit support
is provided by that of a sparse resultant.

The rest of the paper is structured as follows. Previous
work is discussed in the next two sections. Sect. 2 discusses
existing methods for interpolating the implicit polynomial by
linear algebra. Sect. 3 discusses implicit support prediction
and sparse elimination. Our algorithm is detailed in sect. 4,
and its use in experiments is analyzed in sect. 5. We con-
clude with open questions in sect. 6, whereas the Appendix
contains further experimental results.

2. EXISTING INTERPOLATION METHODS
This section examines how implicitization had been re-

duced to a linear algebra question. Let S be (a superset
of) the support of the implicit polynomial p(x0, . . . , xn) = 0
with unknown coefficients P , |P | = |S|. We sometimes refer
to S as implicit support, with the understanding that, later,
interpolation may set some of the corresponding coefficients
to zero.

2.1 Exact implicitization
The most direct method to reduce implicitization to linear

algebra is to construct a |S| × |S| matrix M , indexed by S
(columns) and |S| different values (rows) at which all mono-
mials get evaluated. Then, P is in the kernel of M . This
idea was used in [12, 17, 22].

In [21], they propose evaluation at unitary τ ∈ (C∗)n, i.e.,
of modulus 1. This is one of the evaluation strategies exam-
ined below. Another approach was described in [2], based
on integration of matrix M = SST , over each parameter
t1, . . . , tn. Then, P is in the kernel of M . In fact, the authors
propose to consider successively larger supports in order to
capture sparseness. This method covers a wide class of pa-
rameterizations, including polynomial, rational, and trigono-
metric representations. The resulting matrix has Henkel-
like structure [16]. When it is computed over floating-point
numbers, the resulting implicit polynomial does not neces-
sarily have integer coefficients. This is the situation we face
when using numerical methods, such as SVD, see subsec. 4.2.
In [2], they discuss some extra processing to yield the inte-
ger relations among the coefficients; we also use a similar
method.

2.2 Approximate implicitization
In practical applications of CAGD, precise implicitization

often can be impossible or very expensive to obtain. Approx-
imate implicitization over floating-point numbers appears to
be an effective solution. There are direct [8, 24] and iterative
techniques [1].

We describe the basic direct method [8]. Given a para-
metric (spline) curve or surface x(t), t ∈ Ω ⊂ Rn, the goal
of [8] is to find polynomial q(x) such that

q(x(t) + η(t)g(t)) = 0,

where g(t) is a continuous direction function with Euclidean
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norm ‖g(t)‖ = 1 and η(t) a continuous error function with
|η(t)| ≤ ε. Now,

q(x(t)) = (Mp)Tα(t),

where matrix M is built from monomials in x. It may be
constructed as in our case, or it may contain a subset of the
monomials comprising the exact implicit support. Here, p is
the vector of implicit coefficients, hence Mp = 0 returns the
exact solution. Otherwise, α(t) is the basis of the space of
polynomials that describes q(x(t)), and is assumed to form
a partition of unity:

P
αi = 1, and to be nonnegative over

Ω:

αi ≥ 0, ∀i,∀t ∈ Ω.

One may use the Bernstein-Bézier basis with respect to the
interval Ω, in the case of curves, or a triangle which contains
Ω, in the case of surfaces.

In [8, p.176] the authors propose to translate to the origin
and scale the parametric object, so as to lie in [−1, 1]n, in
order to improve the numerical stability of the linear algebra
operations. In our experiments, we found out that using
unitary numbers leads to better numerical stability. Since
both our and their methods rely on SVD, our experiments
confirm their idea.

The idea of the above methods is to interpolate the co-
efficients using successively larger supports, starting with a
quite small support and extending it so as to reach the ex-
act one. Existing approaches have used upper bounds on the
total implicit degree, thus ignoring any sparseness structure.

In the context of sparse elimination, the Newton polytope
captures the notion of degree. Given an implicit polytope
we can naturally define candidates of smaller support, the
equivalent of lower degree in classical elimination, by an in-
ner integral offset of the implicit polytope:

Offset can be repeated, thus producing a list of implicit
supports yielding implicit equations whose approximation
error should be proportional to the number of peeling steps.
Clearly, the computed implicit equation is of lower degree
than the actual one. It is an open question to bound the
difference of the corresponding zero sets.

3. SUPPORT PREDICTION
Most existing approaches employ total degree bounds on

the implicit polynomial to compute a superset of the implicit
support, e.g. [2]. This fails to take advantage of the sparse-
ness of the input in order to accelerate computation, and
to exploit sparseness in the implicit polynomial in the sense
of Prop. 2. For this, computing the Newton polytope of a
rational hypersurface was posed in [23] for generic Laurent
polynomial parameterizations, in the framework of sparse
elimination theory.

Algorithms based on tropical geometry have been offered
in [7, 21, 22]. This method computes the abstract tropical
variety of a hypersurface parameterized by generic Laurent
polynomials in any number of variables, thus yielding its
implicit support; it is implemented in TrIm. For non-generic
parameterizations of rational curves, the implicit polygon is
predicted. In higher dimensions, the following holds:

Proposition 1. [21, prop.5.3] Let f0, . . . , fn ∈ C[t±1
1 ,

. . . , t±1
n ] be any Laurent polynomials whose ideal of algebraic

relations is principal, say I = 〈g〉, and Pi ⊂ Rn the New-
ton polytope of fi. Then, the polytope which is constructed

combinatorially from P0, . . . , Pn as in [21, sec.5.1] contains
a translate of the Newton polytope of g.

The tropical approach was improved in [5, sec.5.4] to yield
the precise implicit polytope in R3 for non-generic parame-
terizations of surfaces in 3-space.

In [6], they determine the Newton polygon of a curve pa-
rameterized by rational functions, without any genericity as-
sumption. In a similar direction, an important connection
with combinatorics was described in [13], as they showed
that the Newton polytope of the projection of a generic com-
plete intersection is isomorphic to the mixed fiber polytope
of the Newton polytopes associated to the input data.

In [12] a method relying on sparse elimination for com-
puting a superset of the generic support from the resultant
polytope is discussed, itself obtained as a (non orthogonal)
projection of the secondary polytope. The latter was com-
puted by calling Topcom [18]. This approach was quite ex-
pensive and, hence, applicable only to small examples; it is
refined and improved in this paper.

In [11], sparse elimination is applied to determine the ver-
tex representation of the implicit Newton polygon of planar
curves. The method uses mixed subdivisions of the input
Newton polygons and regular triangulations of pointsets de-
fined by the Cayley trick. It can be applied to polynomial
and rational parameterizations, where the latter may have
the same or different denominators. The method offers a set
of rules that, applied to the supports of sufficiently generic
rational parametric curves, specify the 4, 5, or 6 vertices
of the implicit polygon. In case of non-generic inputs, this
polygon is guaranteed to contain the Newton polygon of the
implicit equation. The method can be seen as a special case
of the following general approach based on sparse elimina-
tion.

3.1 Sparse elimination
Sparse elimination subsumes classical (or dense) elimina-

tion in the sense that, when Newton polytopes equal the
corresponding simplices, the former bounds become those of
the classical theory.

Proposition 2. [12, sec.3] Consider polynomial system
F0, . . . , Fn ∈ K[t] as in (3), defining a hypersurface, and let
Ai be the support of Fi. Then, the total degree of the implicit
polynomial is bounded by n! times the volume of the convex
hull of A0 ∪ · · · ∪ An. The degree of the implicit polynomial
in some xj , j ∈ {0, . . . , n} is bounded by the mixed volume of
the Fi, i 6= j, seen as polynomials in t; cf also [23, thm.2(2)].

The classical results for the dense case follow as corollaries.
Take a surface parameterized by polynomials of degree d,
then the implicit polynomial is of degree d2. For tensor
parameterizations of bi-degree (d1, d2), the implicit degree
is 2d1d2.

Let {F0, F1, . . . , Fn} be a polynomial system where Fi ∈
K[t1, . . . , tn], with symbolic coefficients cij . Its resultant R
is a polynomial in Z[cij ], vanishing iff F0 = F1 = · · · =
Fn = 0 has a common root in a specific variety. This is the
projective variety over the algebraic closure K of K, in the
case of projective resultants, or the toric variety X defined
by the supports of the Fi’s in the case of sparse (or toric)
resultants, s.t. it contains the topological torus as a dense
subset: (K

∗
)n ⊂ X. The Newton polytope N(R) of the

resultant polynomial is the resultant polytope. We call any
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monomial which corresponds to a vertex of N(R) an extreme
term of R.

The Minkowski sum A+B of convex polytopes A,B ⊂ Rn
is the set A+B = {a+ b | a ∈ A, b ∈ B} ⊂ Rn. Given n+ 1
convex polytopes Pi of dimension n, a fine or tight mixed
subdivision of P =

Pn
i=0 Pi, is a collection of n-dimensional

convex polytopes σ, called (Minkowski) cells, s.t.: (1) They
form a polyhedral complex that partitions P , and (2) Every
cell σ is a Minkowski sum of subsets σi ⊂ Pi: σ = σ0 + · · ·+
σn, where dim(σ) = dim(σ0) + · · ·+ dim(σn) = n.

A cell σ is called i-mixed, or vi-mixed, if it is the Minkowski
sum of n 1-dimensional segments Ej ⊂ Pj and one vertex
vi ∈ Pi : σ = E0 + · · ·+ vi + · · ·+ En. A mixed subdivision
is called regular if it is obtained as the projection of the
lower hull of the Minkowski sum of lifted polytopes P̂i :=
{(pi, ω(pi)) | pi ∈ Pi}. If the lifting function ω is sufficiently
generic, then the induced mixed subdivision is tight. We
recall a surjection from the regular fine mixed subdivisions
to the vertices of the resultant polytope:

Theorem 3. [20] Given a polynomial system and a regu-
lar fine mixed subdivision of the Minkowski sum of the New-
ton polytopes of the supports of the polynomials in the sys-
tem, an extreme term of the resultant R equals

c ·
nY
i=0

Y
σ

c
vol(σ)
iσi

where σ = σ0 + σ1 + · · ·+ σn ranges over all σi-mixed cells,
and c ∈ {−1,+1}.

Computing all regular fine mixed subdivisions reduces,
due to the so-called Cayley trick, to computing all regular
triangulations of a point set of cardinality |A0|+ · · ·+ |An| in
dimension 2n. This is the Cayley embedding of the Ai’s. The
set of all regular triangulations corresponds to the vertices
of the secondary polytope. We enumerate all regular trian-
gulations of the Cayley embedding: it is equivalent to enu-
merating all regular fine mixed subdivisions of A0 + · · ·+An.
Each such subdivision yields a vertex of N(R).

We use sparse elimination to implicitize (hyper)surfaces,
based on the implementation of [9]. This is an ongoing
project that aims at optimizing the computation of N(R)
without enumerating all mixed subdivisions. Still, we sketch
the theoretical procedure.

Let Ai ⊂ Zn, i = 0, . . . , n, be the supports of the poly-
nomials in (3), of cardinality mi, and Pi, i = 0, . . . , n the
corresponding Newton polytopes. For each Ai, we intro-
duce symbolic coefficients cij , j = 1, . . . ,mi, and define the
polynomial Fi in the cij ’s with the same support. Each
cij corresponds to a (possibly constant) linear polynomial
in xi, with coefficients from fi. The sparse resultant R =
RA0,...,An(F0, . . . , Fn) of the Fi’s with respect to t is well-
defined, and is an irreducible integer polynomial in the cij ’s.
Consider an epimorphism of rings

φ : K → C[xi] : cij 7→ linear polynomial in xi, (4)

yielding a specialization of the coefficients cij to the actual
coefficients of (2). The specialized sparse resultant R′ :=
φ(R) is a polynomial in xi, which coincides with the im-
plicit equation, provided that R′ does not vanish, a certain
genericity condition is satisfied, and the parametrization is
generically 1-1 [23, thm.2]. The following diagram illustrates
these concepts:

{xi = gi(t)
hi(t)
} {xihi(t)− gi(t)} {Fi} RA0,...,An(F0, . . . , Fn)

p(x0, . . . , xn)

φ−1

φ

If the latter condition fails, then R′ is a power of the
implicit equation [3], [23, thm.3]. When the genericity con-
dition fails for a specialization of the cij ’s, the support of
the specialized resultant is a superset of the support of ac-
tual implicit polynomial modulo a translation, provided the
sparse resultant does not vanish. This follows from the fact
that the method computes the same implicit polytope as
the tropical approach, whereas the latter is characterized in
prop. 1. In particular, the resultant polytope is a Minkowski
summand of the fiber polytope Σπ(∆, P ), where polytope ∆
is a product of simplices, each corresponding to a support Ai,
P =

Pn
i=0 Pi, and π is a projection from ∆ onto P . Then,

Σ(∆, P ), is strongly isomorphic to the secondary polytope
of the point set obtained by the Cayley embedding of the
Ai’s, [20, sec.5].

4. IMPLICITIZATION ALGORITHM
The steps of our implicitization algorithm are given below,

and apply to any support prediction method.
Input: Polynomial or rational parametrization xi = fi(t1, . . . , tn).
Output: Implicit polynomial p(xi) in the monomial basis in
Nn+1.
1. Support prediction determines (a superset of) the implicit
polytope vertices.
2. Compute all lattice points S ⊆ Nn+1 in the polytope.
3. Repeat |S| times: Select value τ for t, evaluate xi(t), i =
0, . . . , n, thus evaluating each monomial in S.
4. Given |S| × |S| matrix M , solve M~p = 0 for p; return the
primitive part of polynomial ~p>S.

Implicit equation

Implicit equation support

Compute extremal terms of the
Resultant Polytope

Find coefficients by solving linear system

Compute inner points of the
Resultant Polytope

Support

Coefficients
(w.r.t. t)

Parametric polynomial expressions

xi − fi(t) ∈ K(t), i ∈ [0, n]

Figure 3: Implicitization with support prediction

4.1 Building the matrix
We focus on two support prediction methods. The first

applies only to curves and is described in [sect. 3], [11]. The
second is general and computes the support of the resultant
of system (3).

In the case of parametric curves, given the predicted poly-
gon, we compute the m lattice points ai that it contains.
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Secondary
polytope
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polytope

Input
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Cayley
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Enumerate
all regular

triangulations

Theorem
on extreme

terms

Figure 2: Computing the resultant polytope of 3 Newton polygons.

Each ai = (ai0, ai1) is an exponent of a (potential) mono-
mial of the implicit polynomial. In order to obtain the coeffi-
cients we evaluate xi(t), i = 0, 1, at some τk, k = 1, . . . ,m,
and construct an m × m matrix M with rows indexed by
τ1, . . . , τm and columns by a1, . . . , am. Let x(τk)ai denote
the evaluated ith monomial x0(τk)ai0x1(τk)ai1 at τk. Then

M =

2664
x(τ1)a1 · · · x(τ1)am

... · · ·
...

x(τm)a1 · · · x(τm)am

3775
τ1

...

τm

(5)

To apply the general support prediction [9], consider the
polynomials Fi, i = 0, . . . , n in Equation (3), with symbolic
coefficients cij :

Fi =

diX
j=1

cijt
aij ,

where di is the number of monomials in t with non-zero
coefficient, i.e. the cardinality of support Ai. Given sup-
ports Ai, the output is the set V of vertices of the Newton
polytope of the resultant of the Fi’s. Each resultant ver-
tex ai = (ai1, . . . , aid) ∈ V is a d-dimensional vector, where
d =

Pn
i=0 di, and corresponds to an extreme resultant mono-

mial cai , where c is the d-dimensional vector of the symbolic
coefficients of all Fi’s:

c :=(c1, . . . , cd) =

(c01, . . . , c0d0 ,| {z }
from F0

c11, . . . , cid1 ,| {z }
from F1

. . . . . . , cn1, . . . , cndn)| {z }
from Fn

.

Given the resultant polytope vertices, we compute the set
S of all m lattice points in the resultant polytope. We apply
specialization φ to the set of monomials in cij ’s with expo-
nents in S to obtain a set of polynomials (products of linear
polynomials) in xi’s. We abuse notation and denote this set
also by φ(S), i.e. we identify each φ(c)ak with its exponent
ak.

When we substitute the symbolic coefficients cij by the
actual univariate polynomials in xi, some of the vertices
of the implicit polytope may map to identical expressions:
∃ak 6= al ∈ V s.t. φ(c)ak = φ(c)al . By examination of the
φ(c)ak , we remove duplicates. In the following we assume
that φ(S) has no multiple entries.

Matrix M is constructed similarly as before. Let φ(S) =
{a1, . . . , am} ⊂ Nd be the lattice points, which form a su-
perset of the resultant support. Each column contains a
product φ(c)ak = φ(c

ak1
1 · · · cakd

d ) evaluated at various τk,
for k = 1, . . . ,m. Thus, we define the following m×m ma-

trix, with columns indexed by the ak’s:

(a11, . . . , a1d) . . . (am1, . . . , amd)

M =

264 φ(ca111 · · · ca1d
d )(τ1) · · · φ(cam1

1 · · · camd
d )(τ1)

... · · ·
...

φ(ca111 · · · ca1d
d )(τm) · · · φ(cam1

1 · · · camd
d )(τm)

375 τ1...
τm

(6)

Each φ(c)ak ∈ φ(S) is a product of linear polynomials in
xi.

It appears to be usual case, that some φ(c)ak project into
same polynomials in xi’s. This allows us to noticeably de-
crease size of the matrix M by removing the duplicates and
using only φ(c)ak that have unique representations in xi. Af-
ter expanding and simplifying φ(c)ak , we get a set of mono-
mials in xi’s. Let m′ be the number of integer points in
the convex hull they define, thus yielding a superset of the
implicit support. We form an m′ × m′ matrix M ′, whose
kernel yields the implicit coefficients. The columns of M ′

are indexed by monomials in the xi’s, hence in Zn, and the
matrix entries are evaluated monomials in the xi’s, while the
entries of matrix M are evaluated polynomials in the xi’s.

Often, matrix M ′ is of larger size than matrix M , see
tables 3, 5. This is not a paradox, since φ is not an orthog-
onal projection of the cij ’s to a space of lower dimension.
Applying φ to a monomial in the cij ’s of total degree δ re-
sults to a product of linear polynomials in the xi’s, which
are developed to yield all monomials of total degree < δ.
For example, consider the monomial c301c

4
12 and the map-

ping c01 7→ x + 1, c12 7→ y. Then, we obtain the monomials
x3y4, x2y4, xy4, y4. If cancellations do not occur among the
new monomials, the resulting matrix is larger.

Moreover, this new support may not be the set of ver-
tices of a convex polytope, hence we must perform a convex
hull computation and then compute the set of integer points
it contains. However, both computations take place in a
space of low dimension (n � d), while computing the inte-
ger points inside the polytope in Rd defined by the set of
monomials in the cij ’s can be a hard task.

4.2 Maple Implementation
Assume that matrixM has corank 1, i.e. rank(M) = m−1.

Solving the linear system

M~p = ~0, (7)

yields the implicit coefficient pi for each φ(c)ak . The kernel
is one-dimensional, hence some entry pi is set to 1. We form
the inner product of the vector of the monomials indexing
the columns of M with ~p, and then take the primitive part
of the resulting polynomial to define the implicit equation.

When M is evaluated at random integer values or uni-
tary complex numbers, we tried Maple function Linear-
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Solve, from package LinearAlgebra, and Linear from pack-
age SolveTools. Equivalently, we can compute the null-
space null(M) of M using the command NullSpace() of the
LinearAlgebra package. All of these functions return the
same output in roughly the same runtime with command
LinearSolve being slightly faster in larger examples. Ex-
act Maple methods can treat indefinites usually encountered
in parametric expressions (a, b, c in tables 2,4). For larger
examples, we trade exactness for speed and apply Singular
Value Decomposition (SVD) with command SingularVal-

ues(), thus computing

M~p> = (UΣV >)~p> = ~0> ⇔ Σ~v> = ~0>, V ~v> = ~p>. (8)

A basis of null(M) consists of the last columns of V cor-
responding to the zero singular values of M , because V is
orthogonal. When corank(M) = 1, the last row of V > corre-
sponds to ~p. The same derivation holds if M is rectangular,
say µ ×m,µ ≥ m. Then Σ is of the same dimensions, U is
µ× µ, and V is m×m, where its last column is the sought
vector.

A central part in our linear system construction is held by
the evaluation of matrix M at convenient τ . Implementing
our methods in Maple, we have tried integer and complex
values. In the former case, we used random and mutually
prime integers to achieve exactness. The chosen value is
discarded if it makes some denominator vanish among the
parametric expressions. We also tried complex values for τ :
Given an m×m matrix, we used 2m-th roots of unity, and
random unitary complexes, i.e. with modulus equal to 1.

Table 1 shows representative timings about these options
that we examined. In particular, SVD is about 10 times
faster than exact linear algebra on significant inputs, as ex-
pected; see the last two columns of the table. We plan to use
LinBox or Eigen as a faster alternative for our exact algo-
rithm. In what concerns the various evaluation points, our
experiments show that runtimes do not vary significantly in
small examples but in larger ones the random integers and
roots of unity evaluated as floats seem to give faster timings.

However, unitary complexes seem to offer the most sta-
ble results, from the numerical viewpoint. Random integers
give matrices which are closer to having numerical corank 1,
although this property is not reproducible in every experi-
ment. The numerical stability of the result is measured by
comparing ratios of singular values of matrix M ; we employ
the condition number κ(M) = σ1/σm, and σ1/σm−1, where
σ1 is the maximum singular value. By comparing these two
numbers, we decide whether the matrix is of (numerical)
corank 1, otherwise we repeat the computation. Another
approach is to consider the row of V > corresponding to the
singular value σi of M that satisfies σ1/σi � σ1/σi−1, but
experiments indicate that this does not improve neither the
numerical stability or the correctness of the result. We plan
to use LAPACK for further examination of numerical stabil-
ity, while employing larger examples.

When using numerical methods the computed implicit equa-
tion is not a polynomial with integer coefficients. In [2],
some post processing is done to discover the integer relations
among the coefficients. Then, the polynomial is multiplied
by an appropriate number to recover the implicit polynomial
with integer coefficients. We utilize a similar method by con-
verting the computed kernel-vector in real or complex space
to a rational vector. In practice this is done by assigning
a small value to the Digits environment variable of Maple,

Table 1: Runtimes on Maple (seconds)
SVD NullSpace

curve root of 1 unitary C rand.Z rand.Z
Cardioid 0.356 0.289 0.076 0.132
Conchoid 0.12 0.092 0.048 0.084
Nephroid 0.012 1.15 0.012 2.3
Talbot’s 0.132 0.084 0.108 1.562
Ranunculoid 83.749 - 121.084 8809.43

then setting all coefficients smaller than a certain threshold,
defined by the problem’s condition number, equal to zero.
The result is not always correct, so its validity is checked
by plugging in the implicit equation the parametric expres-
sions and testing if the result is identically zero. The overall
process is computationally hard and it can be avoided when-
ever an implicit equation with floating point coefficients is
sufficient for a specific problem.

5. EXPERIMENTS
First, we describe some of the examples in details. Instead

of x0, x1, x2 we use x, y, z. In several cases, when the input
is a parametric family we denote by a, b, c ∈ R∗ the nonzero
parameter. These are set equal to some nonzero constant
when using numerical methods. For trigonometric parame-
terizations, we use the standard conversion to an algebraic
form by

sin θ =
2 tan θ/2

1 + tan2 θ/2
, cos θ =

1− tan2 θ/2

1 + tan2 θ/2
.

5.1 Curves
Witch of Agnesi. x = at, y = a/(1 + t2).

y

x

The curve support prediction provides 3 implicit polygon’s
vertices: (0, 0), (2, 1), (0, 1). Their convex hull contains one
lattice point. We construct a 4 × 4 matrix and by solving
the corresponding system we find 3 nonzero coefficients; the
implicit polynomial is −a3 + x2y + a2y.

General support prediction method: The polynomials are:
c00 + c01t = 0, c10 + c11t

2 = 0, with coefficients c00 =
−x, c01 = a, c10 = a−y, c11 = −y, and supports {0, 1}, {0, 2}.
The resultant polytope is the segment [(0, 2, 1, 0)(2, 0, 0, 1)]
which contains no internal points. These two vectors index
the columns of M and correspond to the monomials {c201c10,
c200c11}, which are specialized to {a2(a − y), (−x)2(−y)},
that index the 2 × 2 matrix M . We solve M~p = 0 to find
~p = [p0, p1], yielding the implicit polynomial

p0(a3 − a2y) + p1(−x2y),

hence a2y + x2y − a3.
Alternatively, we can use the set {a2(a− y), (−x)2(−y)}

to obtain the implicit support in x, y: {(0, 0), (0, 1), (2, 1)}.
Its convex hull contains no internal points, hence M ′ is 3×3.

Folium of Descartes.

x =
3at

1 + t3
, y =

3at2

1 + t3
.
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The curve support prediction yields polygon vertices (0, 0),
(0, 3), (1, 1), (3, 0), thus 10 lattice points totally. Solving
the 10×10 matrix yields 3 nonzero coefficients, and implicit
polynomial x3 + y3 − 3axy.

General support prediction: The parametrization is rep-
resented by the polynomials 3at− x− xt3, −yt3 − y + 3at2

with supports {0, 1, 3}, {0, 2, 3}. Then, φ is defined as: c00 =
−x, c01 = 3a, c02 = −x, c10 = −y, c11 = 3a, c12 = −y.

The method computes 6 vertices of the (symbolic) resul-
tant polytope: (0, 0, 3, 3, 0, 0), (0, 2, 1, 1, 2, 0), (0, 3, 0, 1, 0, 2),
(2, 0, 1, 0, 3, 0), (2, 1, 0, 0, 1, 2), (3, 0, 0, 0, 0, 3), which contains
4 inside points.

The straightforward approach would be to form a 10× 10
matrix M . In this case, ~p = [1, p1, p1,−1 − p3 − p5, −p2 −
p4, p1, p2, p3, p4, p5], where pi ∈ N∗. We can safely reduce
matrix size by keeping only the distinct monomials in x, y,
namely a4x1y1, x1

3a3, a3y1
3, x1

2a2y1
2, x1

3y1
3.

When substituting cij by the corresponding univariate
polynomials we get 5 distinct monomials in x, y: x3y3, x2y2,
xy, y3, x3. The convex hull of the supports of these mono-
mials is defined by the vertices: (3, 0), (0, 3), (1, 1), (3, 3).
We find 11 lattice points and build 11 × 11 matrix. Solv-
ing linear system gives us 3 nonzero coefficients, and we get
implicit equation: x3 + y3 − 3axy = 0.

Nephroid. Rational representation:

x =
6(1− t2)(1 + t2)2 − 4(1− t2)3

(1 + t2)3
, y =

32t3

(1 + t2)3

The curve support prediction method returns vertices (0, 0),
(6, 0), (0, 6). Their convex hull contains 28 lattice points.
Solving the linear system we find implicit polynomial 48x2−
12y4− 64− 24x2y2 + y6− 12x4 + 3x2y4 +x6− 60y2 + 3x4y2.

Conhoid. Rational representation:

x = a+
1− t2
1 + t2

, y =
2at

1− t2 +
2t

1 + t2
.

The curve support prediction has to be applied with care,
because of the special structure of the supports: one has
to use the more robust statement of [10]. For the general
support prediction, we have: x − a − 1 + xt2 + at2 − t2 =
0, y − 2at − 2t − 2at3 + 2t3 − yt4 = 0, with coefficients
c00 = x − a − 1, c01 = x − a + 1, c10 = y, c11 = −2a − 2,
c12 = −2a + 2, c13 = −y, and supports: {0, 2}, {0, 1, 3, 4}.
The predicted support has 6 lattice points: (0, 4, 2, 0, 0, 0),
(1, 3, 0, 2, 0, 0), (2, 2, 0, 1, 1, 0), (2, 2, 1, 0, 0, 1), (3, 1, 0, 0, 2, 0),
(4, 0, 0, 0, 0, 2), yielding the monomials c01

4c10
2, c00c01

3c11
2,

c00
2c01

2c11c12, c00
2c01

2c10c13, c00
3c01c12

2, c00
4c13

2. Solving
M~p = 0 gives ~p = [1, 1,−2, 2, 1, 1], and implicit polynomial
16x2a2 − 16x2 − 32x3a− 32y2xa+ 16y2x2 + 16y2a2 + 16x4.

5.2 Surfaces
Infinite cylinder. The rational parameterization yields

the following polynomial system: 1−xt2−x−t2, −y−yt2+2t,
−z+ s, with supports {(0, 0), (2, 0); (0, 0), (1, 0), (2, 0); (0, 0),
(0, 1)}. The support prediction gives 4 vertices of the resul-
tant polytope: (0, 2, 2, 0, 0, 0, 0), (1, 1, 0, 2, 0, 0, 0),
(1, 1, 1, 0, 1, 0, 0), (2, 0, 0, 0, 2, 0, 0).

Specialization φ maps the coefficients to polynomials in
x, y, z: φ(c0j) = {1 − x,−1 − x}, φ(c1j) = {−y, 2,−y},
φ(c2j) = {−z, 1}. Substituting cij in the predicted monomi-
als by the corresponding univariate polynomials we obtain
9 lattice points: (0, 0, 0), (0, 2, 0), (2, 2, 0), (2, 0, 0), (0, 1, 0),
(1, 0, 0), (1, 1, 0), (1, 2, 0), (2, 1, 0). We get the canonical form

of the implicit polynomial: x2 + y2 = a2.
Infinite cone. In some cases of rational parametrizations

our method results in a multiple of the actual implicit equa-
tion. For example, the infinite cone is a quadratic surface

with canonical equation z2 = x2+y2

a2
, but our result has de-

gree 4 (see Table 5). This is due to the fact that we do not
compute the minimal variety when there are base points.

Sine surface. Rational representation:

x =
2t

1 + t2
, y =

2s

1 + s2
, z =

2s+ 2t− 2st2 − 2ts2

1 + s2 + t2 + s2t2
.

Applying support prediction we obtain 1027 lattice points
in the resultant polytope. Removing duplicates leaves 87 dis-
tinct matrix entries. Solving the linear system, we obtain a
kernel vector with 66 nonzero entries. Meanwhile, substitut-
ing cij by the corresponding univariate polynomials leads to
a polytope with 125 lattice points; solving the linear system
yields 7 nonzero kernel-vector entries. The implicit polyno-
mial is −2y2z2 + 4x2y2z2 − 2x2y2 − 2x2z2 + z4 + y4 + x4.

5.3 Results
See the tables in the Appendix for all results concentrated.

All experiments where performed on a Celeron 1.60GHz,
1Gb memory, linux machine.

In particular, tables 2,3 contain information on our ex-
periments for curves, including runtimes (given in sec.) on
Maple v. 11. In table 3 columns are labeled as: degrees
of parametric and implicit equations, number of monomi-
als in the parametric equations, number of lattice points
in the resultant polytope when applying the general sup-
port prediction method (“Lat.pts.”), size of the matrix con-
structed when applying the curve support prediction [11]
(field “Cur.matr.”), time in seconds for the prediction rou-
tine and linear solving (“Cur.time”), matrix size for using
the general support prediction (“Gen.matr.”), runtime for
the removal of duplicates and linear solving (“Gen.time”),
and number of nonzero kernel-vector entries for the matrix
based on the cij ’s (“Gen.nonzero”), matrix size for the case
when, after using general support prediction, we map the cij
to univariate polynomials (“Map.matr.”), runtime for map-
ping and linear solving (“Map.time”), number of monomials
of the implicit curve (“Map.nonzero”).

Table 4, 5 contain the information on our experiments
for surfaces. In table 5 columns are labeled as: paramet-
ric and implicit degree, number of monomials in the para-
metric equations, number of lattice points in the resultant
polytope (“Lat.pts.”), matrix size with duplicates removed
(“Gen.matr.”), runtime for duplicate removal and solving
(“Gen.time”), number of nonzero entries of the kernel vector
(“Gen.nonzero”), matrix size for mapping cij to univariate
polynomials (“Map.matr.”), runtime for mapping and solv-
ing (“Map.time”), and number of monomials of the implicit
surface (“Map.nonzero”)

The tables contain blank entries (-) when the linear system
appeared too large to try solving.

As expected (see table 3), the curve support prediction
method shows far better results than the general support
prediction method applied to curves. Comparing the two
matrix constructions, based on the general support predic-
tion, we conclude that, while in some cases mapping gives
us a smaller matrix (e.g. Cardioid, Nephroid), in most cases
duplicate removal proves to be more effective (e.g. Folium
of Descartes, Sine surface). Another observation is that,
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right now, a significant fraction of the complexity is due to
the general support prediction method, which can readily
be improved by current work in our team or by using other
prediction methods such as tropical geometry.

6. CURRENT WORK
To improve numerical stability, we may use more eval-

uation points than monomials, thus forming a rectangular
matrix to which we apply SVD, as explained following equa-
tion (8). Our current work examines whether some matrix
structure can be revealed while exploiting the freedom in
choosing appropriate τ values to evaluate the monomials.
Our team strives to improve the support calculating algo-
rithm [9] for arbitrary-dimensional hypersurfaces.

We consider specific challenges, such as the bicubic sur-
face [14], of implicit degree 18, containing 1330 terms: the
approach of [12] could not handle it because it generates
737129 regular triangulations (by TOPCOM) in a file of
383MB. Also, there is a surface challenge suggested by [15]
and meant for a practical problem, with parametrization ex-
pressions of total degrees 9,9,6, respectively.

Our approach represents an implicit (hyper)surface by a
kernel vector. It is challenging to devise suitable CAGD
algorithms that exploit this representation, e.g. for surface-
surface intersection, as in [8]. Another practical problem is
to implicitize curve or surface splines defined by k segments
or patches, respectively. Assuming the k parametric repre-
sentations yield polynomials with (roughly) the same New-
ton polytopes, one could use the implicit polytope defined
by any of these systems. Then, we can form a single ma-
trix M and evaluate it over points spanning all k segments
or patches, thus expecting a single (approximate) implicit
polynomial.

It is possible to approximate k (pieces of) manifolds with a
single implicit equation, by applying SVD on [M1 · · ·Mk]>.
We could also extend our approach to interpolating the im-
plicit polynomial in other bases, such as Bernstein or La-
grange, by predicting the resultant support in these bases.
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Table 2: Curves
Curve Parametric form Implicit polynomial

Cardioid a(2 cos(t)− cos(2t)); a(2 sin(t)− sin(2t)) −3a4 − 6a2y2 + y4 + 8a3x− 6a2x2 + 2x2y2 + x4

Conchoid a+ cos(t); a tan(t) + sin(t) a2y2 − 2axy2 + a2x2 − x2 + x2y2 − 2ax3 + x4

Folium of Descartes
3at

1 + t3
;

3at2

1 + t3
y3 − 3xy + x3

Nephroid a(3 cos(t)− cos(3t)); a(3 sin(t)− sin(3t)) −64− 60y2 − 12y4 + y6 + 48x2−
24x2y2 + 3x2y4 − 12x4 + 3x4y2 + x6

Ranunculoid 6 cos(t)− cos(6t); 6 sin(t)− sin(6t) −52521875− 1286250x2 − 1286250y2−
−32025(x2 + y2)2 + 93312x5 − 933120x3y2 + 466560xy4−
−812(x2 + y2)3 − 21(x2 + y2)4 − 42(x2 + y2)5 + (x2 + y2)6

Talbot’s curve
(a2 + c2 sin2(t)) cos(t)

a
; −16a4c8 + 32a6c6 − 16a8c4 − 8a6b2c2y2+

(a2 − 2c2 + c2 sin2(t)) sin(t)

b
+32a4b2c4y2 − 8a2b2c6y2 − a4b4y4 + 10a2b4c2y4−
−b4y4c4 + b6y6 + 8a8c2x2 + 8a6c4x2 − 32a4c6x2+
+16a2c8x2 − 2a6b2x2y2 + 2a4b2c2x2y2−
−20a2b2c4x2y2 + +3a2b4x2y4 − a8x4−
−8a6c2x4 + 8a4c4x4 + 3a4b2x4y2 + a6x6

Tricuspoid a(2 cos(t) + cos(2t)); a(2 sin(t)− sin(2t)) −27a4 + 18a2y2 + y4 + 24axy2+
+18a2x2 + 2x2y2 − 8 ∗ ax3 + x4

Witch of Agnesi at;
a

1 + t2
−a3 + a2y + x2y

Table 3: Curves - results
Curve Param. Impl. Param. Lat. Cur. Cur. Gen. Gen. Gen. Map. Map. Map.

degree degree m.nr. pts. matr. time matr. time nonzero matr. time nonzero

Cardioid 4,4 4 3,4 33 15 0.128 33 0.248 33 25 0.656 7
Conchoid 2,3 4 2,4 6 15 0.094 6 0.096 6 15 0.308 6
Folium of Descartes 3,3 3 3,3 10 10 0.092 5 0.032 3 11 0.144 3
Nephroid 4,4 6 4,5 454 28 0.256 426 - - 49 5.452 10
Ranunculoid 12,12 12 7,12 - 91 8809.43 - - - - - -
Talbot’s curve 6,6 6 4,7 1600 28 109.342 421 - - - - 23
Tricuspoid 4,4 4 3,4 33 15 0.216 33 0.236 33 25 0.540 8
Witch of Agnesi 1,2 3 2,2 2 4 0.016 2 0.044 2 4 0.048 3
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Table 4: Surfaces
Surface Parametric form Implicit polynomial

Infinite cylinder a cos(t); a cos(t); s −a2 + y2 + x2

Hyperbolic paraboloid ts; t;
s2

b2
− t2

a2
−x2b2 + y2a2 − za2b2

Infinite cone at cos(s); at sin(s); t x2z2 + y2z2 − a2z4

Whitney umbrella ats; at; as2 y2z − ax2

Monkey saddle at; as; a(t3 − 3ts2) −3xy2 − a2z + x3

Handkerchief surface at; as; a(
t3

3
+ 2(t2 − s2) + ts2) −3a2z + 3xy2 + x3 + 6x2a− 6ay2

Crossed surface at; as; at2s2 −a3z + x2y2

Quartoid t; s; − (t2 + s2)2

a3
za3 + x4 + 2x2y2 + y4

Peano surface t; s; (2t2 − as)(as− t2) z + 2x4 − 3x2ya+ y2a2

Bohemian dome cos(t); sin(t) + cos(s); sin(s) 2x2y2 − 2x2z2 − 4y2 + x4 + z4 + 2y2z2 + y4

Swallowtail surface a(ts2 + 3s4); a(−2ts− 3s3); at −15axy2z + 3ay4 + y2z3 − 4xz4 + 12ax2z2 − 9a2x3

Sine surface sin(t); sin(s); sin(t+ s) −2y2z2 + 4x2y2z2 − 2x2y2 − 2x2z2 + z4 + y4 + x4

Enneper’s surface t− t3

3
+ ts2; 352836− 78732x2y2z + 749412z2 + 101088z3x2y − 303264x2yz2−

2− s3

3
+ t2s; −25272x2y2z3 − 62127z5 + 75816x2y2z2 + 314928x2yz−

t2 − s2 −4860x4z3 − 2916x6 + 69984x2y3 + 23328y4z2 − 26244y4z+
+72576yz5 + 997272yz − 669222y2z − 18144y2z5 + 209952y3z−
−186624y3z2 + 2592x2z5 − 106920x2z3 + 34992x4 + 5832x4z2+
+8748x4y2 − 34992x4y − 183708x2y2 − 268272z4y − 1122660z2y+
+602640z3y + 67068z4y2 − 6912z6y + 653913z2y2 + 1728z6y2−
−228420z3y2 + 38880z3y3 − 4860z3y4 − 2304z8 − 536544y3+
+183708y4 − 34992y5 + 2916y6 − 577368z − 5616z6 − 8748x2y4−
−34992x2 + 2916x2z4 + 305451x2z2 + 7776z7 − 314928x2z + 256z9−
−524151z3 + 916353y2 + 263898z4 + 174960x2y − 866052y − 1728x2z6

Table 5: Surfaces - results
Surface Param. Impl. Param. Lat. Gen. Gen. Gen. Map. Map. Map.

degree degree m.nr. pts. matr. time nonzero matr time nonzero

Infinite cylinder 2,2,1 2 2,3,2 4 4 0.036 4 9 0.072 3
Hyperbolic paraboloid 1,1,2 2 2,2,3 3 3 0.028 3 7 0.064 3
Infinite cone 3,2,1 4 4,3,2 14 8 0.040 6 19 0.224 3
Whitney umbrella 2,1,2 3 2,2,2 2 2 0.024 2 4 0.056 2
Monkey saddle 1,1,3 3 2,2,3 3 3 0.028 3 8 0.064 3
Handkerchief surface 1,1,3 3 2,2,5 2 2 0.020 2 4 0.036 5
Crossed surface 1,1,4 4 2,2,2 5 5 0.032 5 10 0.072 2
Quartoid 1,1,4 4 2,2,4 4 4 0.012 4 16 0.140 4
Peano surface 1,1,4 4 2,2,4 4 4 0.020 4 10 0.080 4
Bohemian dome 2,4,2 4 2,6,3 142 58 2.764 - 125 83.362 7
Swallowtail surface 4,3,1 5 3,3,2 12 12 0.052 12 25 0.432 6
Sine surface 2,2,4 6 3,3,8 1027 87 9.244 66 125 107.102 7
Enneper’s surface 3,3,2 9 4,3,3 439 258 74.304 258 106 33.562 57
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1. INTRODUCTION
Computing the roots of a polynomial expressed in the La-

grange basis or a Hermite interpolational basis can be re-
duced to computing the eigenvalues of the corresponding
companion matrix [2]. The result we present here is that
roots of a polynomial computed via this method are exactly
the roots of a polynomial with slightly perturbed coefficients.

2. COMPANION MATRIX PENCIL (A0,B0)

We consider here polynomials expressed in a Hermite in-
terpolational basis. We suppose we are given distinct nodes
τi ∈ C, 1 ≤ i ≤ n, with positive integer confluencies si ≥ 1
and local Taylor coefficients 1

j!
f (j)(τi) = ρij . We define

the generalised barycentric weights γij for 1 ≤ i ≤ n and
0 ≤ j ≤ si− 1 computed from the partial fraction decompo-
sition of

1

w(z)
=

1Qn
i=1(z − τi)si

=

nX
i=1

si−1X
j=0

γij

(z − τi)j+1
. (1)

The Hermite interpolant of degree d = −1 +

nX
i=1

si is given

by

p(z) = w(z)

nX
i=1

si−1X
j=0

jX
k=0

γij

(z − τi)j+1−k
. (2)
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A companion matrix pencil (A0,B0) is0BBBB@
266664

JT
s1(τ1) Π1

. . .
...

JT
sn

(τn) Πn

ΓT
1 · · · ΓT

n 0

377775 ,
»

I
0

–1CCCCA (3)

where

Γi = [γi0, · · · , γi,si−1]T , Πi = [ρi0, · · · , ρi,si−1]T (4)

and JT
si

(τi) are transposed Jordan blocks of the form

JT
si

(τi) =

26664
τi

1 τi

. . .
. . .

1 τi

37775 . (5)

3. NUMERICAL STABILITY OF (A0,B0)

In [3, 4, 5] we find significant discussion of the backward
error of companion matrix pencils and other linearizations.
Those works consider only the monomial basis, and it turns
out to be worthwhile to recapitulate their work for the La-
grange and Hermite bases.

The deepest part of their works is an explanation of why
generic matrix perturbations of A0 (and B0) are equivalent
(to first order) to a much more restricted perturbation to the
n (+1) values of the polynomial coefficients. The reason as
deduced by Arnol’d [1] and refined by others, is that pertur-
bations tangent to the orbit TCT−1 do not matter, to first
order, and the other (normal) direction can be accounted for
by small changes in the polynomial coefficients.

The same is true in this case (as we would expect: it is
just a different basis) but the computations are remarkably
simpler.

We first observe that the “coefficients” of our polynomial
are in fact the“values”of f(z) and certain of its derivatives at
distinct nodes. Thus a good backward stability result would
be something like “The computed eigenvalues zi, 1 ≤ i ≤ d,
are the exact roots of f̃(z), which satisfies

f̃(τi) = ρi0 + κiε+O(ε2) (6)

where κi is a moderate constant, and the perturbations ∆A
and ∆B in {zi} = {z| det ((B + ∆B)z − (A + ∆A)) = 0}
satisfy ‖∆A‖, ‖∆B‖ ≤ ε”.

One complication is that deg f̃(z) = d + 2; however the

two highest degree terms
ˆ
zd+1

˜
f̃ and

ˆ
zd+2

˜
f̃ are O(ε) so

we regard this as satisfactory.

147



We may say quite a bit about κi: it is proportional to

max
j,k
|ρjk|, to max

j,k

|γjk|
|γi,si−1| , and inversely proportional to

min
j 6=i
|τi − τj |sj , as shown below.

Lemma 1. If zi are the exact generalized eigenvalues of

A0 + ∆A, B0 + ∆B (7)

where (A0,B0) is as in (3) and ∆B = εE, ∆A = εF where
‖E‖, ‖F‖ ≤ 1, then

f̃(τi) = det (τi(B0 + ∆B)− (A0 + ∆A)) (8)

= det (τiB0 −A0 + ε(τiE− F)) (9)

= ρi0 + tr(ρi0(τiB0 −A0)−1(τiE− F))ε+O(ε2)
(10)

Proof. A direct consequence of the derivative formula.

The structure of (τiB0 −A0)−1 is surprisingly simple:266666666664

J−T
s1 (τi − τ1) v1

. . . v2

v3 −Isi−1

h1 h2 σ h3 h4 −γ−1
i,s1−1

v4

. . .

v5 J−T
sn

(τi − τn)
ρ−1

i0 0

377777777775
(11)

where

σ =
1

ρi0γi,si−1

0BB@ nX
j=1
j 6=i

sj−1X
k=0

kX
`=0

γjkρj,k

(τi − τj)k+1−`
−

si−2X
k=0

γikρi,k+1

1CCA ,

(12)
v1,v2,v4,v5 all contain expressions linear in

ρjk

ρi0(τi − τj)k+1−`
0 ≤ ` ≤ k ≤ sj − 1 (13)

and v3 contains the ratios
ρij

ρi0
for 1 ≤ j ≤ si − 1. Similarly

h1,h2,h4 contain expressions linear in

γjk

(τi − τj)k+1−`
0 ≤ ` ≤ k ≤ si − 1 (14)

and h3 contains the ratios
γij

γi,si−1
for 1 ≤ j ≤ si − 1.

Remark 1. A bound on κi is given by

|κi| ≤ |ρi0|(d+ 2)(|τi|+ 1)‖(τiB0 −A0)−1‖∞ (15)

Remark 2. This analysis confirms our experience, and
our expectation that near-confluency (small τi−τj) will cause
problems, and that widely-varying γij such as occur with
equally-spaced nodes will also cause problems.

One must also consider derivatives, for example

f̃ ′(τi) = det (τi(B0 + ∆B)− (A0 + ∆A))×
tr
`
(τ(B0 + ∆B)− (A0 + ∆A))−1 (B0 + ∆B)

´
=ρi1 + εtr[ρi1(τiB0 −A0)−1(τiE− F)

+ ρi0(τiB0 −A0)−1 `E− (τiE− F)(τiB0 −A0)−1´]
+O(ε2)

and of higher order.
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Figure 1: Roots of the Mandelbrot polynomial p8(z)

4. EXAMPLE
The Mandelbrot polynomial pk(z) of degree 2k − 1 is de-

fined through the recurrence relation:

p0(z) = 1, pk+1(z) = zpk(z)2 + 1

The roots of this family of polynomials can be investigated
by constructing the companion matrix pencil (3) for some
particularly nice choices of interpolation nodes. At the roots
ξ(k) of pk(z), the polynomial pk+1(z) takes on the value 1
and derivative 0, using these 2k+1−2 points and the points at
z = 0 (as pk(0) = p′k(0) = 1∀k), we construct the companion
matrix pencil (A0,B0) for the interpolant and locate the

eigenvalues, giving the roots ξ(k+1) of pk+1(z).
The maximum backward error for the 255 roots of p8(z) is

2.4214×10−13 and 6.8781×10−9 for the derivative. Compar-
ing this to our upper bounds of 1.7621×10−10 and 5.3936×
10−7 we see satisfactory agreement.
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ABSTRACT
We present a new method to construct a B-spline param-
eterization of a domain defined by its boundary curves or
surfaces. The method is based on solving Laplace equations
on the physical domain. The equations are then pulled back
to the parameter domain to deduce an elliptic system of Par-
tial Differential Equations with boundary conditions. This
system, solved by relaxation techniques, yields the required
parameterization.

Categories and Subject Descriptors
I.3.5 [Computational Geometry and Object Model-
ing]: Curve, surface, solid, and object representations, Splines

General Terms
Algorithms

Keywords
Isogeometric analysis, Surface parameterization, elliptic PDE

1. INTRODUCTION
The problem of parameterizing a domain defined by its

boundary curves (or surfaces) has long been discussed in
computer graphics and geometric modeling due to its im-
portant role in many applications. The well-known Gordons-
Coons method, which is represented in almost all standard
literature, see [3], is a simple but suitable to solve this prob-
lem for many cases. Later, Farin and Hansford [2] proposed
discrete Coons patches which minimizes a surface energy to
produce good shape Coons patches. With the recent de-
velopment of isogeometric analysis (IGA for short) (see [4]),
solving this problem once again is a big challenge to produce
prerequisite geometry for IGA. In IGA, the computational
domains are solid objects which are represented by tensor
product B-splines or NURBS and the discretization space is
spanned by B-splines or NURBS basis. However, in practice,
the NURBS representations of solid objects are not always
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available since CAD systems usually only provide param-
eterization of the boundary, i.e. mappings from the para-
metric domains to the boundary of the physical domain, as
described in [1].

Motivated by IGA, Xu et al. [8] have used the discrete
Coons method as the initial solution for the iterative method
minimizing a functional arising from shape optimization to
obtain a better parameterization of a planar shape. Basi-
cally, Xu et al.’s method consists of finding a mapping from
the parametric domain (usually the unit square) to the phys-
ical domain which is initially injective via suited inequalities
on the coordinates of inner control points and then of mini-
mizing some quality functionals. There the important point
is to achieve injectivity in the initialization and keep it dur-
ing the optimization process.

On the other way around, especially for volume parame-
terization, there are several methods for finding a mapping
from the physical domain to the parametric domain by solv-
ing Laplace equations or minimizing some energy function-
als. Then the physical domain is reconstructed by the ap-
proximation of the inverse mapping.

In [6], a parameterization method for a generalized cylinder-
type volume defined by a tetrahedral mesh is proposed based
on the investigation of discrete volumetric harmonic func-
tions. In another paper [5], the authors also solve Laplace
equations on the physical domain by the fundamental solu-
tion method to find the mapping between solid objects given
that the surface mapping is available to be the boundary
conditions for the PDEs.

In the previous works, Laplace equations are solved with
respect to the coordinate functions separately. A different
approach is given in [7]: the first coordinate function is found
by minimizing a Dirichlet energy, then the second coordi-
nate function is found by minimizing its harmonic energy on
the level sets of previously found coordinate function. The
important point is that this method naturally guarantees
the injectivity of the mapping from the physical domain to
the parameter domain. Once this mapping is obtained, the
spline approximation for the inverse of the mapping is found
by the least squares fitting method.

Inspired by these works, we propose a new iterative algo-
rithm to obtain an injective parameterization of the physical
domain from the initial parameterization by solving Laplace
equations on the physical domain, via splines defined on the
parameter domain.

2. PARAMETERIZATION CONSTRUCTION
We describe this method for a planar simply connected
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domain bounded by B-spline curves, but it can be extended
straighforwardly to volumes bounded by B-spline surfaces.
Our objective is to construct a parametrisation σ from a
square domain S = [0, 1] × [0, 1] into the domain Ω which
boundary is formed by the curves Γ1, . . . ,Γ4. We search a
map σ in the B-spline basis associated to the parametric
domain S of the form:

σ(ξ, η) = (x(ξ, η), y(ξ, η)) =

d1X
i=0

d2X
j=0

Nd1
i (ξ)Nd2

j (η)pij , (1)

where (Nd1
i (ξ))i=0,...,d1 , (N

d2
j (η))j=0,...,d2 , are the bases of

our spline spaces in ξ and η. In order to construct an injec-
tive map from S to Ω, we solve Laplace equations

∆ξ(x, y) = 0,∆η(x, y) = 0, (2)

with boundary conditions; namely

• ξ(x, y) = 0 on Γ1, ξ(x, y) = 1 on Γ3 (Dirichlet) and
∇ξ(x, y) · t∂Ω(x, y) = 0 on Γ2, Γ4 (Neumann),

• η(x, y) = 0 on Γ2, η(x, y) = 1 on Γ4 and (Dirichlet)
and ∇η(x, y) · t∂Ω(x, y) = 0 on Γ1, Γ3 (Neumann),

where t∂Ω(x, y) is tangent to the boundary ∂Ω at the point
(x, y) ∈ ∂Ω. The equations (2) are pulled back in the para-
metric domain and give

(x2
η+y2

η)
∂2U

∂ξ2
−2(xξxη+yξyη)

∂2U

∂ξ∂η
+(x2

ξ+y2
ξ)
∂2U

∂η2
= 0 (3)

for U = x(ξ, η) and U = y(ξ, η).
Then the equation (3) is solved by a relaxation technique,

which consists at step k to use the computed functions xk(ξ, η),
yk(ξ, η) instead of x(ξ, η) and y(ξ, η) in the equation (3), in
order to compute the solutions xk+1(ξ, η), yk+1(ξ, η) at step
k+1. If U is expressed in the B-spline basis associated to the
parametric domain S, each iteration requires the solution of
a linear system in the coefficients c and the evaluation of
the functions xξ, xη, yξ, yη at some well-chosen interpolation
points in S. The initial parametrisation (x0(ξ, η), y0(ξ, η))
is constructed using Coons patches [2].

3. EXPERIMENTATION
We demonstrate our method by two examples in 2D. The

implementation is conducted in the Axel1 platform. In the
first example, we start with a shape defined by 4 B-spline
curves. Then we construct the Coons surface showed in the
left picture. We solve the PDE system and check if the re-
sulting surface is injective or not by the method in [8]. If
not, we do knot insertion and consider the resulting surface
as the initial solution in this next step. The right picture
is the resulting after 4 steps of knot insertion. The param-
eterization has 82 × 82 control points and is injective. The
zoom-in picture (a) is the result for 3 steps and it is still not
injective. We get the better result in (b) after 4 steps.

1http://axel.inria.fr

The second example is a shape with very narrow segments.
The left picture shows very tangled initial Coons surface. Af-
ter 4 steps of knot insertion, we get the non-self-overlapping
shape in the right.

In the comparison with the method described in [7], the
advantages of our method are that the boundary curves are
kept exactly as the original ones and the PDEs are solved in
the parameter domain instead of the physical domain. Both
methods seem to have difficulties with the high curvature
regions where the iso-curves are nearly parallel.

The method is extendible to 3D by solving a PDE system
of three variables. In the full paper, we will report on prac-
tical experimentation of this approach in 3D. We will test
different boundary conditions and homotopy techniques to
map one solution for a simple domain into a solution for a
domain with a more complex boundary.
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Let K be a field of characteristic zero, x – an indepen-
dent variable, E – shift operator with respect to x, i.e.
Ef(x) = f(x + 1) for an arbitrary expression f(x). The
problem of indefinite summation in general is: given a closed
form expression F (x) to find a closed form expression G(x),
which satisfies the first order linear difference equation

(E − 1)G(x) = F (x). (1)

If found, write G(x) =
P
x F (x). Otherwise one can try

to solve the additive decomposition problem: construct two
closed form expressions R(x) and H(x), such that

F (x) = (E − 1)R(x) +H(x), (2)

where H(x) is simpler than F (x) is some sense (or as vari-
ation, as simple as possible). If closed form G(x) satisfying
(1) exists one takes R(x) = G(x) and H(x) = 0 as answer
to additive decomposition problem. The measure of sim-
plicity can be different for different classes of functions. For
example if F (x) is a rational function over K one requires
both R(x) and H(x) to be rational with H(x) having the
denominator of the lowest possible degree.

Let F = f/g ∈ K(x), with f, g ∈ K[x] \ {0} coprime.
Using division with remainder to split off the polynomial
part, which can be summed using, e.g., conversion to the
falling factorial basis, we may assume that deg f < deg g, so
that F is proper. Let ρ be the dispersion of F , the maximal
integer distance between roots of the denominator g. If ρ = 0
then we take R = 0 and H = F in (2), see [1, 3]. In fact, the
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condition that the denominator of H has minimal degree is
equivalent to the dispersion of H being zero. Now, let ρ > 0.

It is very well known that, for the indefinite rational sum-
mation problem, the bit size of the dense representation of
the output G(x) in 1 can be exponentially large in the bit
size of the dense representation of the input F (x). For in-
stance, if F (x) = 1

x2+ρx
, (with ρ natural number) then the

solution (up to an additive constant) of the rational summa-
tion problem (1) is

G(x) = −1

ρ

„
1

x
+

1

x+ 1
+ · · ·+ 1

x+ ρ− 1

«
,

whose numerator and denominator have degrees linear in ρ,
and coefficients of bit-size linear in ρ.

We will consider two kinds of dependency of the running
time of a summation algorithm on dispersion ρ in cases when
ρ is exponentially large in the input size:

• essential (non-removable) dependency, when an algo-
rithm is at least linear in ρε for some positive ε ≤ 1
and the expanded output has size also linear in ρε;

• non-essential (potentially removable) dependency, when
an algorithm is at least linear in ρε, but the expanded
output has size polynomial in the input size.

The essential dependency is a feature of the summation prob-
lem (output happens to be exponentially large in the input
size) and non-essential dependency is a feature of some par-
ticular algorithm (output is small but the algorithm exhibits
exponentially large intermediate expressions).

Although the history of algorithmic treatment of the ratio-
nal summation is relatively long (starting with the classical
works of S.Abramov [1, 2]), many of existing algorithms still
exhibit non-essential dependency of the running time on ρ
which makes them unnecessary slow for the cases of large ρ
and small output size.

Consider two popular problems associated with the indef-
inite rational summation (as in [6]):
P1: For a given proper rational function F (x) find a pair of
rational functions R(x) and H(x), satisfying (2) with H(x)
having denominator of minimal possible degree.
P2: For a given nonsummable proper rational function F (x)
find a solution of problem P1 with minimal possible degree
of the denominator of the summable part R(x).

In formulation P1 the problem of rational summation was
considered in series of works (see for example [1, 2, 3, 4]).
The classical algorithms for indefinite rational summation
([1, 3]) compute the dense representation of the output, and
involve a number of polynomial computations in K[x] that
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is linear in the dispersion ρ of the input. Their bit (and
arithmetic) complexity is potentially exponential in the bit
size of F (x), even for the mere decision problem. A recent
algorithm [4] computes a “compact representation” of the
output in polynomial complexity in the bit size of F (x); it
thus provides a polynomial complexity decision procedure
for rational summability. The algorithm from [4] is an ex-
ample of an algorithm that has only essential dependency
of running time on the dispersion ρ of the input in the case
when the input is rational summable. For example,X

x

−2x+ 999

(x+ 1) (x− 999)x (x− 1000)
=

1

x (x− 1000)
. (3)

Here dispersion of the input ρ = 1000, but running time
of the algorithm from [4] will depend polynomially on the
degree of the input denominator. A variant of this algorithm
converts the compact representation of the output into the
dense one, and it is output sensitive (while it inherently has
exponential complexity in the worst case - for instance, when
the output G(x) has the size exponential in the input size.)

However, when the input is not summable this algorithm
can still exhibit non-essential dependency of the running
time on ρ. The reason is, in this case the problem of ad-
ditive decomposition has infinitely many solutions with dif-
ferent summable and nonsummable parts. Consider simple
example from [6] (Example 1). The following additive de-
composition is a solution to particular problem P1

X
x

x2 − 100

x (x + 1) (x + 100)
=

2

x
+

1

x + 1
+

1

x + 2
+· · ·+ 1

x + 99
+

X
x

1

x
.

(4)

with the denominator of nonsummable part of smallest de-
gree. This is the form of the output that is returned by the
algorithm from [4]. However, the same summation problem
has another additive decompositionX

x

x2 − 100

x (x+ 1) (x+ 100)
=

1

x
+
X
x

1

x+ 100
(5)

with the denominator of nonsummable part of the smallest
degree. The difference of these decompositions is that the
degree of the denominator of the summable part in (5) is
minimal. Thus (5) is also a solution to problem P2 in this
case.

In formulation P2 the problem was partially solved in [5],
and [6] gives complete solution. However it suffers from two
major drawbacks:
- as a preliminary step it uses classical algorithm from [3],
which exhibits non-essential dependency of the running time
on the dispersion of the input (probably author was unaware
of [4]);
- the output of this preliminary step is“massaged”and trans-
formed into the minimal form, however the size of the input
of this step can already be exponential in the size of F (x)
even when the resulting minimal form is small.
This means that both steps of the algorithm from [6] exhibit
non-essential dependency of the running time on the disper-
sion of the input: in order to produce the minimal possible
output (as in the right-hand side of (5)) the algorithm first
builds the right-hand side of (4), and then postprocesses it.

Our goal is to remove all cases of non-essential dependen-
cies of the running time of indefinite rational summation
algorithm on dispersion ρ of the input. We developed sim-
ple modification of the algorithm from [4] that exhibits only
essential dependency even in cases when the input is not

rational summable. It is based on shiftless factorization of
polynomials and direct divisibility test. When the rational
function is not summable our algorithm provides solution
to the rational decomposition problem with minimal degree
of the denominator of the rational part. The algorithm uses
elementary properties of the left quotient of the simplest syn-
thetic division in the noncommutative ring K[x,E]. Namely,
given linear difference operators L1, L2, . . . , Lk from K[x,E]
such that not all of them are left divisible by E − 1 our
algorithm combines succinct representation of the divisors
with the careful simultaneous choice of the reminder terms
of the same form ciE

l, i = 1, . . . , k. These remainder terms
form nonsummbale part of the output and guarantee that
the summable part has the denominator of smallest degree.
We also show that our approach based on divisibility test
provides clear and elementary explanation of the structure
of solution of P2.

Prototype implementation of our algorithm in Maple out-
performs implementations described in [4] and [6] especially
in cases when dispersion ρ is large, input is nonsummable
and minimal possible output is small.

As in [4] all but the very last step of our algorithm have
polynomial in the input size running time. It can exhibit
essential dependency of the running time on large dispersion
only at the very last step - conversion of the compact rep-
resentation of the output into the expanded form. In this
case the running time will be proportional to the size of the
output, as in the following example.X

x

2x3 + 300x2 + 10099x+ 4950

x (x+ 100) (x+ 99) (x+ 1)
=

=
3

2x
+

1

x+ 1
+ · · ·+ 1

x+ 98
+

1

2(x+ 99)
+
X
x

2

x

The results are also extended to the case of quasi-rational
indefinite summation with additional distinguishing prop-
erty. Namely, if the quasi-rational function is summable,
then the running time of the proposed algorithm is always
polynomial in the input size.
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Vyčisl. Mat. i Mat. Fiz., 11:1071–1075, 1971.

[2] S. A. Abramov. The rational component of the solution of
a first order linear recurrence relation with rational right
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1. OVERVIEW
The GCD problem for approximate polynomials, by which

we mean polynomials expressed in some fixed basis but hav-
ing approximately-known coefficients, has been well-studied
at least since the paper of [6]. Important papers include
those listed in [4, 2.12.3], and more recently includes [5], [8]
and [9]. What is new about the present paper is that we
hope to take advantage of some new technology, in order
to improve our understanding of the GCD problem and not
necessarily to try to improve on existing algorithms.

The paper [3] describes an AddThenBeautify function that,
given two expressions and a requested number of significant
digits, can justifiably artificially underflow some or all of the
terms in the sum of the two expressions. The goals of that
article included how to present approximate answers in an
economical and comprehensible way. One of the techniques
presented in that paper might also be useful in preventing
‘roundoff-induced expression swell’, in which a term that is
supposed to be multiplied by a zero coefficient is mistakenly
retained, with all the concomitant extra work that such a
mistake entails. It is this goal that we pursue here.

This article shows how approximate polynomial gcd cal-
culations can give more useful results by using this function
together with a subtractive Euclidean gcd algorithm that
chooses between annihilating the lead term or the 0-degree
term based on minimizing rounding errors. This work is
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similar in some sense to that of [7] but relies on a separate
theoretical development and implementation.

2. BEAUTIFICATION
The main goal of [3] was to develop a justifiable, scale-

invariant, deterministic way to artificially underflow terms
to 0, based only on a relative tolerance such as significant-
Digits. Another goal was a justifiable way to round to fewer
digits coefficients in terms that always have correspondingly
smaller magnitude than some other term.

Given a generalized multivariate polynomial1 P (z) with n
complex variables z1, z2, . . . , zn, and a tolerance ε, typically
expressed as

ε =
1

2
· 10−significantDigits , (1)

the BeautyClinic package finds a ‘more beautiful’ expression
PB(z) such that

|P (z)− PB(z)| ≤ ε‖P (z)‖ (2)

for all z ∈ Cn except possibly in the neighborhood of isolated
singular points, and where ‖P‖ is a norm related to the
coefficients of P .

The definition of ‘beauty’ used ensured that 0 was the
most beautiful object. This had the desired effect of remov-
ing unwanted terms. It is this feature of the BeautyClinic
approach that we use in this attack on the GCD problem.

3. SUBTRACTIVE IS ATTRACTIVE
One of the ugly facts about approximate GCD compu-

tation, which motivated in part the great stream of work
since [6], is that an approximate GCD is not preserved by
the Euclidean (division) algorithm. Given the definition of
approximate GCD used in, say, [2], it is not true that the
approximate GCD of p and q is the same as the approximate
GCD of q and q rem p. In particular, Schönhage’s original
example shows that one can have 1 = gcd(p, q) for any rea-
sonable definition of approximate GCD but that a degree
one approximate GCD occurs for q and q rem p.

The remainder sequence for the Schönhage example is,
with the Euclidean division algorithm,

z4 + z + 1, z3 − η z, η z2 + z + 1,
`
1− η − η3´ z + 1, (3)

1A generalized univariate polynomial in z is 0, or else a term
of the form bzβ with complex b 6= 0 and complex indetermi-
nate z and real β, or else a sum of two or more such non-zero
terms.
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followed by a constant. For any value of η with |η| < 0.4,
the original two polynomials have only the trivial GCD, and
no approximate GCD unless the tolerance is O(1). However,
for small η, the third and fourth elements of the sequence
have an approximate GCD near z+1+η+O(η2), where any
tolerance of O(η2) will do. This fact is fatal for the Euclidean
algorithm. Also, since the result is exact, in formal power
series, no possible numerical stabilization can be achieved.

It is a surprise that the subtractive algorithm appears to
behave differently. To be concrete, the sequence produced
by using the subtractive algorithm to cancel leading terms
gives the sequence

z4 + z + 1, z3 − η z, η z2 + z + 1,−z2 +
`−η2 − 1

´
z,`−η3 − η + 1

´
z + 1, η

`
η4 + 2 η2 − η + 1

´
z, (4)

followed by a constant, where now no two successive elements
have roots that differ by less than O(η).

We investigate the behavior of this algorithm with beau-
tification, and present evidence that this approach produces
a more robust result.

4. MULTIVARIATE GCD AND THE OVER-
ALL APPROACH

We here describe an implementation of this algorithm, ex-
tended to the multivariate case. In this implementation, we
combine many ideas described previously, some ideas that
seem to be novel, and the use of the beautifying algorithms
described above and in [3].

The leading idea in the implementation is to factor the
polynomials into a part primitive with respect to its most
main remaining variable, and the corresponding content.
This factorization is determined by recursively computing
the GCD of the coefficients. The content can then be fac-
tored similarly with respect to the next variable. In partic-
ular, if polynomials p1, . . . , pn in variables z1, . . . , zm (in de-
creasing order) are given, we factor each pi as pi,1pi,2 · · · pi,m,
with each pi,j a primitive polynomial in zj , . . . , zm. We can
now compute the GCDs of p1,j , . . . , pn,j for j = 1, . . . ,m,
knowing that the result will be primitive in each case, and
multiply these GCDs to obtain the GCD of p1, . . . , pn.

The knowledge that the intermediate results will be prim-
itive often enables shortcuts. For example, if the sets of vari-
ables Vp and Vq occurring in primitive polynomials p and q
are different, then their GCD can be obtained as the GCD
of the polynomials in Vp ∩ Vq, occurring as coefficients of
the variables in Vp \ Vq in p, and as coefficients of the vari-
ables in Vq \ Vp in q. The number of polynomials may now
have grown, but their size is smaller. This is typically an
advantage, in particular if one of the new polynomials is a
constant.

There are several notions of primitivity that play a part
in the implementation and the supporting lemmas. The
strongest notion used, and the one that makes the above
statements work, defines a primitive polynomial to be one
where:

• there is a nonzero constant term,

• the (polynomial) coefficients in the recursive represen-
tation of the powers of the main variable are coprime,

• all numeric coefficients in the fully expanded represen-
tation are coprime (for a notion of GCD that is well-
defined).

At a lower level, one step of the subtractive algorithm
consists of taking an original pair of polynomials p, q and
constructing r = ap + bq from it. We can choose a and b
using one of three strategies:

• so that the leading coefficients cancel, and retain the
primitive part of r and the smallest of p and q; e.g.
take a = lcoeff(q) and b = −lcoeff(p)zd where d is the
difference in degrees between p and q.

• so that the trailing coefficients cancel, and retain the
primitive part of r modulo a power of the main vari-
able, and the smallest of p and q;

• compute both versions of the primitive part of r and
retain them instead of p and q.

This last double step option stems from Chrystal [1]. The
decision is similar to pivoting decisions in Gaussian elimina-
tion, and requires the same sort of considerations.
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ABSTRACT
We provide an empirical study of subdivision algorithms for
isolating the simple roots of a polynomial in any desired
box region B0 of the complex plane. One such class of al-
gorithms is based on Newton-like interval methods (Moore,
Krawczyk, Hansen-Sengupta). Another class of subdivision
algorithms is based on function evaluation. Here, Yakoub-
sohn discussed a method that is purely based on an exclusion
predicate. Recently, Sagraloff and Yap introduced another
algorithm of this type, called Ceval. We describe the first
implementation of Ceval in Core Library. We compare its
performance to the above mentioned algorithms, and also to
the well-known MPSolve software from Bini and Florentino.
Our results suggest that certified evaluation-based methods
such as Ceval are encouraging and deserve further explo-
ration.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complex-
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rical Problems and Computations ; I.1.2 [Symbolic and
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1. INTRODUCTION
Isolating roots of univariate polynomials is a highly clas-

sical subject in the mathematical and computational fields.
From a complexity viewpoint, the problem of isolating all
complex zeros of an integer polynomial (we call this the
“benchmark problem”) has been intensely studied [30, 31,
25]. The basic conclusion from Schönhage’s classic paper

[30] says the benchmark problem has bit-complexity eO(n3L)
where n is the degree and L a bound on the bit sizes of

each coefficient ( eO means we ignore logarithmic terms in n
and L). However, practitioners tend to favor other meth-
ods that do not match this asymptotic complexity. Among
the many current implementations, we have the highly re-
garded MPSolve from Bini and Florentino [2], and an op-
timized Descartes method from Rouillier and Zimmermann
[28], albeit for real roots. For instance, Maple’s default algo-
rithm for finding real roots is based on the latter implemen-
tation [28].

Complex roots of univariate polynomials can be viewed as
a special case of solving bivariate real systems. The latter
has been the focus of several recent papers [1, 11, 8, 7]. Our
work can also be regarded as a special case of the general
problem of determining the topology of a collection of planar
curves.

This paper is an empirical study of several complex root
isolation methods based on domain subdivision. The ba-
sic paradigm is repeated subdivision of an initial box B0 ⊆
R2, analogous to binary search. In Figure 1(a,b,c,d), we
provide a visualization of the subdivision boxes produced
by four of the algorithms to be discussed. The polynomial
whose roots were isolated here is x(9x9 + 7x8 + 8x7 + 8x6 +
6x4 + 5x3 + 2x2 + 1) = 0.

Many algorithms in this area can be viewed as having 2 or
3 phases, beginning with a subdivision phase. See [16] for a
description of this framework. Such algorithms go back to an
algorithm of Mitchell [17] for finding real roots of univariate
polynomials to higher dimensional analogues for computing
isotopic curves and surface approximations [26, 32].

This phase is controlled by an associated predicate C(B)
where B ⊆ B0 is any axes-parallel box. Starting with B0,
we keep subdividing a box B ⊆ B0 into two or four subboxes
until every box B satisfies C(B).

The complexity of this subdivision phase often determines
the asymptotic complexity of the algorithm. Subdivision al-
gorithms are popular with implementers because of merits
such as ease of implementation, local complexity, and adap-
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(a) Ceval (b) Newton

(c) Krawczyk (d) Hansen-Sengupta

Figure 1: Roots of x(9x9 +7x8 +8x7 +8x6 +6x4 +5x3 +
2x2 + 1) = 0

tive complexity. By “local complexity”, we mean that the
computational effort can be localized to a region-of-interest
like B0; in contrast, the benchmark problem has global com-
plexity. We remark that the predicate C(B) can be algebraic
or geometric ones (cf. [16]) but we are most interested in nu-
meric ones.

The subdivision predicate C(B) is typically a disjunction
of an exclusion Cout(B), and an inclusion Cin(B), pred-
icate. If a box is excluded, i.e., satisfies Cout(B), it may
be discarded, unless we wish to hold it for visualization
purposes. Ultimately, we need a confirmation predicate
which determines that box B has a unique root. We remark
that Cin(B) is a necessary but not sufficient condition for
confirmation (this is dealt with in subsequent phases). Con-
ceptually, the set of boxes form a subdivision tree T , and
the the goal of subdivision is to ensure that every leaf of
T is either excluded or included. The effectiveness of a
predicate C(B) is measured by the overall complexity of the
subdivision process. Effectiveness of numerical predicates is
seen to depend on two factors: (predicate) efficiency and
efficacy. Efficiency measures the computational effort to
evaluate each predicate. Efficacy measures the size of the
subdivision tree T . The effectiveness of a predicate can be
measured (lower bounded) by the product of the size of T
and worst case cost to evaluate any predicate in T . How-
ever, it is shown in [29] that such a product bound may be a
factor of n larger than the true overall complexity of subdi-
vision. In general, effectiveness involves a tradeoff between
efficacy and (predicate) efficiency. Such a efficiency-efficacy
tradeoff for real root isolation is discussed in [29] (in the
context of comparing predicates based on Sturm, Descartes
and Bolzano principles). Numerical predicates are typically
constructed from interval functions, and so predicate effi-
cacy depends on the range of interval functions; Stahl [33]

contains a comprehensive study of range functions from this
efficacy-complexity viewpoint, and also its application to the
solution of systems of nonlinear equations. This paper is a
contribution along similar lines, except that we deal with
the specific case of a bivariate system from the real and
imaginary curves u(x, y), v(x, y) of a complex polynomial
p(x + iy) = u(x, y) + iv(x, y) (i =

√−1).
We first look at a class of predicates from the certified

computation literature [19, 23]. For any real function f :
Rn → Rm, we postulate a corresponding interval function
f : Rn → Rm where R is the set of closed real intervals.

Typically, m = 1 or m = n. We call f a box function for f
if it satisfies two properties: for all n-boxes B,Bi ∈ Rn, (a)
[Inclusion Property] f(B) ⊆ f(B) and, (b) [Convergence
Property] for any point p ∈ Rn, we have f(Bi) → f(p) as
Bi → p (i → ∞). Although Newton’s method is tradition-
ally used for root refinement, Nickel [24], Moore [20], and
Hansen [13] have shown that the interval forms can serve
as confirmation predicate for roots. Such predicates form
the basis for root isolation algorithms [18, 33]. We focus on
three forms of Newton-type predicates: an interval Newton
predicate due to Moore [19], Krawczyk’s predicate [20, 15],
and Hansen and Sengupta’s predicate [12]. These Newton
operators have the form f : Rn → Rn and their inclusion/ex-
clusion predicates have the form

(inclusion) f(B) ⊆ B
(exclusion) f(B) ∩ B = ∅

ff
(1)

where B is a box and f is a box function for f . Thus, the
efficacy of these predicates may be reduced to the following
order relation � on their underlying operators: we write
“ f � g” if f(B) ⊆ g(B) for all boxes B. Thus, f � g
implies that, for predicates of the form (1), the predicates
defined by f will succeed whenever the predicates defined
by g succeed. I.e., f is at least as efficacious as g. From
Neumaier [23], we have:

Interval Newton � Hansen-Sengupta � Krawczyk.

The corresponding Krawczyk predicate is therefore the least
efficacious among the three. However, these operators do
not have equal computational costs: the interval Newton
operator involves the inversion of an interval matrix, while
the other two operators do not. Our aim is to implement all
three predicates on a common platform, and compare their
overall performance in isolating the roots of a wide variety
of polynomials.

Another source of predicates comes from function evalua-
tion [10, 36, 34, 6, 5]. Yakoubsohn and Dedieu [10] studied
an exclusion predicate Cout(B) that is basically an interval
form of Taylor expansion. Their inclusion predicate Cin(B)
amounts to the ε-cutoff predicate (i.e., B is included if its
diameter is < ε). Since ε is arbitrary, some adaptivity is lost
and the algorithm only produces a collection of candidate
boxes, which may contain no roots or multiple roots. Re-
cently, Sagraloff and Yap [29] introduced another evaluation-
based algorithm Ceval, but with inclusion and confirma-
tion predicates. We provide the first implementation of Ce-
val, and compare these evaluation-based algorithms to each
other, and to the interval Newton-type predicates above. We
note that for the benchmark problem, the paper [29] proved

that Ceval has bit complexity of eO(n4L2), thus matching the
best bit complexity for Descartes method or Sturm methods.
However, the Ceval complexity is a stronger result, since
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Descartes and Sturm methods only isolate real roots.
The last algorithm in our comparative study is MPSolve, a

complex root algorithm from Bini and Florentino [2, 4]. This
is a highly regarded implementation based on the Aberth-
Erlich method, not subdivision. As such it is a global method
(it must approximate all roots simultaneously). But no con-
vergence proof is known for this method.

Our implementation is released as part of the free and open
source Core Library [38, 9]. We exploit the unique ability
of Core Library to compile a program in different levels of
numerical accuracy. The work reported here is based on the
first author’s Masters Thesis [14].

Postscript. A “simplified” version of Ceval was proposed
in the latest version of the paper [29]. The experiments
reported here are based on the original version of Ceval.
In the full version of this paper, we plan to report on the
relative performance of these two versions.

2. CONTRIBUTIONS
The contributions of this paper are:

• An implementation of three interval Newton-type root
isolation algorithms for bivariate systems on a common
platform. We report on their relative performance for
complex root isolation.

• The first implementation of the Ceval algorithm.

• Comparison of evaluation-based subdivision methods
(Yakoubson, Ceval) with Newton-type methods and
with a state-of-art root solver, MPSolve. We discuss
algorithm engineering issues arising in these implemen-
tations.

• Our empirical evidence suggests that evaluation-based
methods for complex roots are vastly superior to the
(more general) Newton-type methods, and has com-
petitive advantages compared with current state-of-art
methods such as MPSolve.

• Our present work is a contribution to the general area
of designing new exact and certified algorithms for ap-
proximation of zero sets using evaluation-based meth-
ods.

• Distribution of our code with the free open-source
Core Library, allowing further experimentation.

3. EXPERIMENTAL SETUP
The implementation platform is a MacBook Pro with an

Intel Core 2 Duo processor, clocked at 2.53 GHz with 4 GB
of RAM. The operating system is Mac OS X (10.5.8). Our
compiler is gcc-4.2, and our code is compiled using its most
aggressive optimization flag -O3.

Our algorithms are implemented as C++ programs using
the Core Library version 2.0. Recall that the
Core Library [38] is a collection of C++ classes to support ex-
act geometric computation (EGC) [37] with algebraic num-
bers. It is built over the multiprecision libraries of gmp and
mpfr. A unique aspect of Core Library is its numerical
accuracy API, which comes in four levels. Level 1 repre-
sents machine accuracy (IEEE 754 Standard). Level 2 rep-
resents arbitrary precision number types such as BigInt and
BigFloat. Level 3 represents the “EGC Level” and the main

number type here is called Expr (Expression). Exact com-
parison of an Expr is achieved as long as Expr is algebraic.
Level 4 allows a mix of number types from all 3 previous
levels. These four levels are integrated in the sense that
any program that includes Core Library is able to compile
its numbers to any these four levels. For instance, a num-
ber declared as “double” represents the standard machine
double-precision number at Level 1, but it is promoted to
a BigFloat in Level 2, and promoted to an Expr in Level
3. This exploits the operator overloading feature of the C++

language. We mainly use Levels 1 and 2. Level 1 is fast,
but it limits the size of the polynomials that can be treated.
All our experiments are assumed to run at Level 1 unless
otherwise indicated.

For this work, two new number types IntervalT (inter-
vals) and ComplexT (complex numbers) are essential.
Core Library’s polynomial classes are generic (i.e., tem-
plated) and this allows us to evaluate a polynomial p(x) at
interval valued x or complex number x, independent of the
number type of p’s coefficients:

template <typename T> class Polynomial {
// Note that T and NT must be
// either interoperable
// or implicitly convertible .
template <typename NT >

NT eval (const NT &x);
};

The compiler can instantiate for NT=IntervalT,
NT=ComplexT or NT=BigFloat. Typically, we have T=BigInt

or T=int.
Our algorithms are exact because all predicates can be

implemented exactly using BigFloats, assuming the input
numbers are dyadic (i.e., numbers of the form m2n where
m,n ∈ Z). Level 1 accuracy is sufficient for exact com-
putation provided no overflow or underflow occurs. In the
implementation of Ceval, the 8-point test requires rational
numbers, but this will be separately treated below. Speed
without correctness is not worth much. So we validate the
output of our algorithms in two ways: we compare our com-
puted values to a reliable software such as MPSolve, and we
compare Level 1 outputs to the outputs from the same algo-
rithm at Level 2.

The main sources for our test polynomials are the FRISCO

suite [35], and randomly generated polynomials. Our pro-
grams accepts both the FRISCO file format for polynomi-
als as well as a very flexible string based format such as
“3x4y5 − (x2 + 1)(y3 − 1)” or “3x4y5 = (x2 + 1)(y3 − 1)”,
which is useful for command line execution. For each run of
our algorithm, we collect the following statistics:

• Running Time in microseconds, using C’s gettimeof-

day API. This method is sufficiently reliable for our
purposes because our programs are CPU intensive and
do not perform any disk or network I/O.

• Number of Boxes Processed. In tables, this number is
called “Iters” (as it is the number of iterations of the
subdivision loop). Recall that each box is ultimately
included, excluded, or subdivided.

• Number of Excluded (resp., Included) Boxes.

• Number of Unresolved Boxes. In principle, our algo-
rithm will eventually terminate if there are no mul-
tiple roots in the region of interest. But to prevent
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(a) All roots (b) Zoomed in view.

Figure 2: Subdivision tree of Ceval for degree 25
polynomial

underflow (level 1), or to keep the running time rea-
sonable, or to avoid nontermination in case the region-
of-interest contains multiple roots, we can specify a
minimum box size or maximum tree depth; this may
result in unresolved boxes on termination.

In our statistical tables, we will underline the entry that is
the best among the several methods being compared. Also,
the names of the polynomials (for instance, chebyshev20)
have an integer suffix indicating its degree.

4. VISUALIZATION
Visualization is an important aspect of our software, for

debugging and for gaining insight into the behavior of al-
gorithms. Here we extend the previous visualization for
curves analysis from [16], which is based on the OpenGL

library. Typically we wish to visualize a subdivision tree
(Figure 2(a)) and to zoom and pan into details of interest
(Figure 2(b)). To do this we need to retain boxes that have
been excluded in subdivision; command line flags control the
handling of these extra information. The color code shows
red for excluded boxes, green for confirmed boxes, blue for
unresolved boxes.

Although the termination of the Ceval algorithm depends
on the assumption that the input polynomial is square-free,
the algorithm is still useful for arbitrary polynomials. Sup-
pose we run Ceval on the polynomial p(z) = (z6 +64)2(z6−
729). This is a non-squarefree polynomial with 6 multiple
roots on the circle (centered at the origin) of radius 2, and
6 simple roots on a concentric circle of radius 3. It is now
essential to specify a minimum box size (or maximum sub-
division depth) for termination. Choosing a minimum box
size of 0.0001, and B0 = [−4, 4]× [−4, 4], Ceval produces the
visualization seen in Figure 3. It processed a total of 8645
boxes, confirming 6 green boxes and leaving unresolved 256
blue boxes. The simple roots were all isolated as shown in
this output:

m= [1.498046875 + (-2.599609375)i], r= .01171875
m= [-1.501953125 + (-2.599609375)i], r= .01171875
m= [2.998046875 + (.001953125)i], r= .01171875
m= [1.498046875 + (2.599609375)i], r= .01171875
m= [-3.001953125 + (.001953125)i], r= .01171875
m= [-1.501953125 + (2.599609375)i], r= .01171875

Further details about our implementation may be found in
the thesis [14] and in the Core Library distribution (under
progs/mesh).

Figure 3: Subdivision tree for p(z) = (z6 + 64)2(z6 −
729). Blue boxes are unresolved ones around double
roots, and green boxes isolates the simple roots.

5. INTERVAL NEWTON-TYPE METHODS
First, we consider three closely related pairs of predicates

based on Interval Newton methods. They work by finding
the solutions of the bivariate system u(x, y) = v(x, y) = 0
where f(x + iy) = u(x, y) + iv(x, y). But these methods
work more generally for any zero-dimensional system of n
polynomials in n variables, so we describe them in these
general terms. We view an n-tuple B of vectors as an n-
dimensional box (or n-box), B ⊆ Rn.

The Interval Newton operator N : Rn → R for a
function f : Rn → R is given by

N(B) = Nf (B) := m(B)− ( J(B))−1 · f(m(B)) (2)

where ( J(B))−1 denotes the inverse of the interval Jacobian
of f , and m(B) denotes the midpoint of box B. For bivariate
systems, computing the inverse is not really an issue, but we
must address the situation where J(B) contains 0.

The Krawczyk operator is defined by

K(B) = Kf (B) := y−Y ·f(y)+{I−Y · J(B)}·(B−y) (3)

where y ∈ B, Y is any nonsingular real matrix, and I the
identity matrix. Typically, we have y ≃ m(B) and Y ≃
J(y)−1, viewed as a preconditioner.

The Hansen-Sengupta approach is a Gauss-Seidel iteration
to solve for x in the equation

J(B)(x− y) + f(y) = 0. (4)

Multiplying by some preconditioning matrix Y as before, the
equation becomes A(x− y) = −Y f(y) where A := Y · J(B)
(cf. (3)). We can write A as A = U +D +L (disjoint sum of
a strict upper triangular U , a diagonal D, and a strict lower
triangular L matrix).

The Gauss-Seidel iteration for solving Ax = b is given by

x(k+1) = D−1(b− Lx(k+1) − Ux(k))
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where x(k) is the kth approximation, yielding the Hansen-
Sengupta operator

H(B) = Hf (B) := y−D−1{Y ·f(y)+L(B′−y)+U(B−y)}
(5)

where y, Y are as before and B′ = B ∩H(B). Note that the
use of LB′ in (5) is not recursive, but iterative because L
is lower-triangular: we replace each component of box B by
corresponding entries of B∩H(B) as they become available.

Let G be any of the three operators from (2,3,5) above. It
can be shown [19, 24, 20, 21] that

(i) G(B) ⊆ B implies B has a unique root

(ii) G(B) ∩B contains all the roots in B

As a consequence of (ii), if G(B)∩B = ∅ then B has no roots.
This provides an exclusion predicate Cout for subdivision.

Clearly (i) provides a confirmation predicate, and hence
an inclusion predicate Cin. Since this inclusion predicate is
also a confirmation, the interval Newton-type algorithms do
not need additional phases beyond the subdivision phase.

Another consequence of (ii) is that, in case the inclu-
sion or exclusion predicates fail on B, we can replace B by
B′ := B ∩ G(B) and then subdivide B′. Although this re-
sults in smaller boxes, there is an associated cost because
the bitsize (of the coordinates) of B′ may increase consid-
erable. If we simply subdivide B, the bitsize increases by a
small constant number (depending on how you count bitsize
of B). The effect of using B′ instead of B implies that the
shapes of boxes are rather arbitrary. This results in irreg-
ular children boxes as seen in Figure 1(b,c) but especially
Figure 1(d) because of extended interval arithmetic.

§1. The Exclusion Predicate C0(B).

Instead of the exclusion predicate G(B)∩B = ∅ above, we
can use predicate C0(B), defined as 0 /∈ u(B) or 0 /∈ v(B).
(cf. [16]). Preliminary experiments show that C0(B) is more
efficient, and all our Newton-type algorithms use this predi-
cate. The interval u(B) can be computed easily using the
Horner scheme. But our tests show that using centered form
[27] of u(B) yields remarkable improvement in efficacy over
Horner. This becomes more apparent with increasing degree
of the polynomial u. This gain in efficacy must be balanced
against the cost of computing centered forms, which amounts
to computing the bivariate Taylor coefficients of our polyno-
mials when expanded at the midpoints of a box B. We
achieve a balance by using a simple scheme: recompute the
coefficients after a fixed number T (threshold) of predicate
failures.

It is worth pointing out that this strategy is sensitive to
the order in which we process boxes, a “depth first” type
processing will yield better results than a“breadth first”type
processing. Table 1 shows the influence of T on timing and
subdivision for the Chebyshev polynomial of degree 20. For
this particular example, T = 16 gives the best overall time
(indicated by the underlined entry). As a general default,
we have empirically set T = 4 in all our experiments.

§2. Comparing the Inclusion Predicates.

We now return to the inclusion predicate G(B) ⊆ B where
G(B) is one of the operators N(B), K(B) or H(B). These
operators admit several variants in their implementation.

T Iterations Ambiguous C0 Excludes Time
boxes as % of total (secs)

0 15429 176 11396(73.8) 18.554
2 19845 504 13877(71.2) 3.410
4 23585 744 15218(64.5) 2.190
8 31229 1332 16936(54.2) 1.834
16 40585 2396 17201(42.3) 1.720
32 56945 5908 17700(31.0) 1.951
64 77949 9164 17772(22.7) 2.445

Table 1: Effect of Threshold T on Chebyshev Poly-
nomial of degree 20

For the interval Newton operator (2), when J(B) contains
a singular matrix, we have a choice to use extended interval
arithmetic (to support division by intervals containing zero)
or we could choose to subdivide B. The latter turns out to
be a consistently better choice.

For the Krawczyk operator (3), we could choose the non-
singular matrix Y to be one of the following: J(m(B))−1,
m( J(B)−1), or identity I . The first choice turns out to be
best.

For the Hansen-Sengupta operator we choose to use ex-
tended interval arithmetic in its implementation. See [14]
for more detail. In any case, we choose the best variant
for each inclusion predicate and then compare them against
each other. This final comparison is shown in Table 2.

The three operators are not very different from each other.
It is somewhat surprising that Hansen-Sengupta did not per-
form better, but this may be because our special problem of
complex roots does not allow the Hansen-Sengupta method
to shine. Another issue is that these methods do not con-
verge in case of roots on the boundary of a subdivision box;
this is treated by Stahl [33] and also in Kamath’s thesis [14].

6. CEVAL & YAKOUBSOHN’S ROOT ISO-
LATION ALGORITHM

For any function f : C → C, and constant K > 0, Sagraloff
and Yap [29] introduced the function tf

K : C × R≥0 → R
defined as follows:

tf
K(m, r) = K

X
k≥1

˛̨̨̨
f (k)(m)

f(m)k!

˛̨̨̨
rk. (6)

The function M(z, t) introduced by [36, 10] corresponds to

the case K = 1. The predicate T f
K(m, r) is then defined

as “tf
K(m,r) < 1”. We are also interested in the predicate

T f ′
K (m, r) where f ′ is the derivative of f . If f is understood,

we write TK(m,r) and T ′
K(m, r) instead of T f

K(m, r) and

T f ′
K (m, r).
For the T -predicates, circular geometry is more natural

than box geometry. Let D(m, r) denote the disk centered
at m with radius r. It is clear that T1(m, r) is an exclu-
sion predicate for the disc D(m, r); it is also shown that if
T ′√

2
(m,r) holds then B has at most one root; therefore we

use this as an inclusion predicate.
In order to have a confirmation predicate, we need to en-

sure that there is at least one root in B. For this purpose,
the following 8-point test was developed by Sagraloff-Yap:
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Polynomial Hansen-Sengupta Newton Krawczyk

# iter Secs. # iter Secs. # iter Secs.
cheby20 18837 24.448 15445 19.731 15429 20.064
chrma22 7621 10.986 6557 9.380 6637 9.578
chrmc23 11229 19.637 9893 16.191 9845 15.328
hermite20 2805 3.453 2645 3.278 2645 3.344
kam3-1 2005 0.439 2005 0.438 2005 0.435
kam3-2 2005 0.444 2005 0.432 2005 0.446
laguerre20 1205 1.491 1037 1.294 1021 1.272
laguerre4 205 0.011 229 0.013 213 0.012
laguerre5 197 0.016 197 0.021 197 0.017
laguerre6 245 0.030 245 0.149 245 0.036
x10 − 1 3253 1.100 2645 0.796 2629 0.809
x20 − 1 12693 15.729 10053 12.373 10053 12.267
wilk20 1133 1.433 869 1.110 861 1.096

Table 2: Comparison of Hansen-Sengupta, Newton, and Krawczyk

consider 8 compass points m + 4reijπ/4 for j = 0, . . . , 7 on
the boundary of D(m, 4r) (not D(m, r)). We give them the
conventional names N, S, E, W, NE, NW, SE, SW, as shown
in Figure 4.

E

S

N

SE

NE

W

SW

NW

D4r(m)

Dr(m)

v(x, y) = 0

u(x, y) = 0

m

Figure 4: 8 compass points on D4r.

They define 8 arcs A0, . . . , A7 where Aj = {u(m+4reiθ) :
jπ/4 ≤ θ < (j + 1)π/4}. We say there is an (arcwise)
u-crossing of Ai if the value of u at the endpoints of Ai

changes sign. For instance, the endpoints of A1 is N and
NE, and there is a u-crossing at A1 if u(N)u(NE) < 0. If
there are exactly two u-crossings at Aj and Ak, there are
exactly two v-crossings at Aj′ and Ak′ , and these crossing
interleave (i.e., either j < j′ < k < k′ or j′ < j < k′ < k),
then we say the 8-point test passes for D(m, 4r); otherwise
the test fails. The key result is this:

Theorem 1 (Sagraloff-Yap). Suppose that the pred-
icate T ′

6(m, 4r) holds, and the 8-point test is applied to the
disc D(m, 4r).

(i) If the test fails, then D(m, r) is not isolating.

(ii) If the test passes, the D(m, 4r) is isolating.

By choosing m = m(B) and r to be the radius of box B,
this test allows us to reject B (if the test fails) or to accept
a larger disk D(m, 4r). There is an issue of exactness of
this test: although the four cardinal points (N, S, E, W) are
dyadic, the other four ordinal points (NE, NW, SE, SW) are

irrational. It is shown [29] that the 8-point test remains valid
when we approximate the ordinal points by other points on
the boundary of D(m, 4r), provided their angular deviation
from the perfect positions is less than 2.5◦. In particular,
we can use Pythagorean triples to provide rational approx-
imations for NE, NW, SE, SW. Such approximate points
lie exactly on the boundary of D(m, 4r) and can be chosen
arbitrarily close to NE, NW, SE, SW.

The simplest Pythagorean triple that is sufficiently close
is (20, 21, 29), with arcsin(20/29) ≈ 43.60◦. A more accurate
triple is (119, 120, 169) with arcsin(119/169) = 44.76◦. Us-
ing such triples, the 8-point test can be implemented without
error using rational arithmetic (not BigFloats).

There are several ways to implement Ceval: let m, r de-
note the midpoint and radius of B. The exclusion predi-
cate is given by Cout(B) ≡ T1(m,r). The inclusion predi-
cate Cin(B) can be defined be the conjunction of T ′

6(m, 4r),
T ′√

2
(m, 8r), and the passing of the 8-point test on D(m, 4r).

By contrast, Yakoubsohn’s algorithm is much simpler: it
has the same exclusion predicate, but the inclusion predicate
is that r < ε (for some ε > 0). The requirement T ′√

2
(m, 8r)

ensures that if two confirmed discs intersect, we can discard
any one of them. Thus we output exactly one isolating disk
per root.

Let us first look at the raw performance of Ceval in Ta-
ble 3. For each test polynomial, we have two experiments:
first to isolate all the roots in the box [−2, 2]× [−2, 2] ⊆ C,
and next to isolate all complex roots. In the latter case, we
use the usual Cauchy bound (basically maximum modulus of
all the coefficients) to determine a box containing all roots.
As expected, the latter takes more iterations and more time.
We do not need a head-to-head comparison between Ceval

with the Newton-type algorithms because Ceval is 3 orders
of magnitude faster.

We now turn our attention to the comparison of Ceval

with Yakoubsohn’s method. We need to choose a fixed ε: one
natural choice is to use the standard root separation bound
estimate. But this choice would really slow down Yakoub-
sohn’s algorithm. For our timings, we therefore choose a
fixed value of ε depending on the Core Level. At Level 1, we
choose ε = 0.0001.

A performance comparison between these two approaches
can be found in Table 4. As expected, Yakoubsohn’s method
is faster since it does not bear the burden of confirming roots.
However, in our tests the Ceval algorithm always operates
on fewer boxes because we can stop subdivision once a box
satisfies our inclusion predicate.
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Polynomial [−2, 2]× [−2, 2] All Roots
Iters Time(ms) Iters Time(ms)

random10 1909 1.741 2615 2.342
nroots10 2037 1.838 2037 1.816
chebyshev20 12805 26.262 18533 39.821
nroots20 7989 16.593 7989 16.444
laguerre20 805 1.747 38253 79.055
hermite20 1685 3.680 17093 35.618
wilk20 581 1.371 40589 97.393
chrma22 4949 10.978 36749 80.626
chrmc23 7101 16.840 43389 107.063
random30 16013 62.602 27413 110.893
random40 27419 178.732 45722 315.381
random50 43160 427.576 71905 743.922
random60 60757 843.580 107746 1495.772
random70 80215 1481.286 108310 2104.210
random80 111795 2685.381 121129 2946.031
random90 139605 4211.166 221837 6789.341

Table 3: Ceval algorithm on B0 = [−2, 2]× [−2, 2]. Runtimes are in milli seconds.

Boxes Iters Time(ms)
(Yako.) Ceval Yako. Ceval Yako.

random10 76 2615 3105 2.721 2.282
nroots10 96 2037 2581 1.773 1.802
chebysh20 176 18533 19509 38.462 35.544
nroots20 192 7989 8885 16.481 14.526
laguerr20 192 38253 39845 77.991 65.489
hermite20 160 17093 18309 35.690 29.955
wilk20 128 40589 41909 84.321 69.130
random20 147 8201 8985 19.750 14.805
chrma22 168 36749 37661 83.140 67.142
chrmc23 200 43389 43813 101.816 83.464
random30 228 27413 28441 123.294 89.068
random40 296 45722 46957 337.769 245.090
random50 361 71905 73347 783.600 578.127
random60 426 107746 109317 1646.602 1191.557
random70 511 108310 110064 2213.269 1623.679
random80 581 121129 122990 3021.738 2347.435
random90 665 221837 223842 6839.414 5385.514

Table 4: Comparison of Ceval and Yakoubsohn’s method with ε = 0.0001. Observe that Yakoubsohn’s method
is always faster, yet Ceval is comparable because it always operates on a fewer number of boxes.

Column 2 in Table 4 shows the number of output boxes
from Yakoubsohn’s algorithm for each test polynomial. For
instance, the first entry is a random polynomial of degree 10,
but 76 boxes are output. We expect that at least 66 of these
boxes are spurious (assuming no roots lie on the boundary
of a box). In our tests, his algorithm tend to produce an
average of 8 output boxes around each root. This may be
seen in Table 4 by dividing the number of output boxes by
the degree of the polynomial.

Finally, we compare Ceval with the MPSolve package. The
latter is based on the Aberth-Erlich simultaneous iteration.
The timings for MPSolve were generated using the UNIX
time command and are not as accurate as the timings gen-
erated from our code and are provided as a rough indicator
of performance. The list of timings can be found in Table 5.
Ceval performs about the same as MPSolve for polyno-

mials with degree n < 30. For higher degree polynomials,
their performance starts to diverge with MPSolve being con-

Time(ms)
Ceval MPSolve

chebyshev20 39.821 27
laguerre20 79.055 87
hermite20 35.618 81
wilk20 97.393 49
chrma22 80.626 47
chrmc23 107.063 61
hermite40 525.80 88
wilk40 1142.82 153

Table 5: Comparison of Ceval and MPSolve.
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sistently faster. At n = 40 we see that Ceval is generally
up to five or eight times slower. One of the factors that
works against Ceval is the estimate of B0 from the Cauchy
bound. For instance, the Wilkinson’s degree 40 polynomial
has an estimated B0 = [−2048, 2048]× [−2048, 2048], which
is much larger than the minimal bound of 40. The number of
iterations of the Aberth-Erlich iteration that are required to
converge to a root is not directly related to the root bounds,
or to the distribution of roots. The behavior of this itera-
tion (and the reason for its seemingly wonderful convergence
properties) is not well understood; a discussion can be found
in [2].

We must keep in mind that the Aberth-Erlich (or in-
deed the Weierstrass-Durand-Kerner) iteration does not out-
put a list of isolating boxes, rather just approximations of
roots. We have no guarantee that the iteration will converge
to “reasonable” approximations. Additionally, the strength
of subdivision based methods is that they can operate on
tight areas of interest while the simultaneous iteration based
methods necessarily have to approximate all roots. Conse-
quently, we cannot provide a comparison of the two methods
operating on such a preselected area because the MPSolve

software [3] does not support such an option.

7. EXPERIMENTS AT LEVEL 2
We now provide a comparison of running times of our al-

gorithms at Core Level 2. Basically, machine double are now
replaced by BigFloat numbers In terms of implementation,
this comes almost for free because of Core Library’s ability
to reuse the same program, just at the cost of re-compilation.

The performance of the three Newton-type operators is
presented in Table 6.

Deg Iters Time(ms)

HS N K HS N K
4 325 333 357 0.320 0.334 0.463
6 877 805 829 2.285 1.769 2.164
8 1557 1317 1349 6.972 5.633 6.559

10 2461 2093 2069 19.066 15.730 17.410
12 3445 2965 2965 41.488 35.037 39.390
14 4677 3997 4021 87.262 71.523 77.699

Table 6: Comparison of Newton type operators at
Level 2 on [−2, 2]× [−2, 2]

As in the case of Level 1, there is no significant differ-
ence between the three operators. At Level 2, however,
the interval Newton operator appears to be faster than the
Krawczyk operator by a small but consistent margin. Given
that arithmetic operations are more expensive at this Level,
the method that processes the fewest boxes is bound to be
faster. Also, note that the Hansen-Sengupta operator lags
further behind the other two as a result of its expensive ex-
tended interval arithmetic computations.

These tests are carried out on randomly generated poly-
nomials of the degrees shown. These have been constructed
densely, with each coefficient being separately generated.

As in the case of Level 1, Ceval continues to be three
orders of magnitude faster than the Newton type operators.
The results make up Table 7.

The results of this section show that the performance of
our algorithms at Level 2 is between 20 and 50 times slower

Deg Output Iters Time(ms)
(Yako.) Ceval Yako. Ceval Yako.

10 72 1965 2381 0.801 0.876
20 128 7909 8565 12.587 12.257
30 224 16413 17381 65.162 53.582
40 248 29293 30405 203.899 163.549

Table 7: Comparison Ceval with Yakoubsohn’s pure
exclusion approach over [−2, 2]× [−2, 2]

than at Level 1. This is an expected consequence of using
extended precision types. To improve performance, it might
be advantageous to carry out as many operations as possible
at machine precision, and to control precision growth in areas
that require it.

At the moment, the Ceval implementation is incapable of
switching Core levels at run time for portions of the working
set; it must run entirely at Level 1 or Level 2, a decision made
at compile time. This is one aspect of our implementation
that we plan to improve.

8. CONCLUSION AND FUTURE WORK
Our experimental results show that the interval arithmetic

based approaches suffer from a serious degradation in per-
formance as the degree n of the polynomial increases. Some
of this degradation in performance can be attributed to the
overestimation of function range by interval extensions, but
methods to compensate for it tend to be computationally
expensive. Further, these operators suffer from issues due
to roots that lie on box boundaries. Overall, this approach
appears to suffer from various practical and performance is-
sues, and its use cannot be recommended.

Our experimental results for the Ceval algorithm appear
quite encouraging. It is efficient and robust, and works well
on a large range of polynomials, of various degrees and with
densely generated random coefficients. It provides stronger
guarantees than Yakoubsohn’s exclusion based approach at
a comparable speed. Further, both of these approaches per-
form three orders of magnitude faster than the interval arith-
metic based approaches. However, the performance of the
predicate TK breaks down due to the growth of n! for poly-
nomials of degree n > 90. We plan to extend the range of the
achievable degrees in Level 1 (see below). But even without
these extensions, we believe that the algorithm is an efficient
and viable choice for isolating roots of complex polynomials
of degree n < 90. The following plans for future work are
related to the development of Ceval-like algorithms.

• We noted that the latest version of the Ceval paper
(to appear in ISSAC 2011) provided a simplified alter-
native to the 8-point test. Recall that the success of
the predicate T1(m, r) implies that there is no roots in
the disk D(m, r) (see Section 6). The simplification is
based on the observation that the failure of T1(m,r)
could serve as an inclusion predicate, albeit for a much
larger disk: D(m, 2nr). Both versions have the same

asymptotic bound of eO(n4L2) bit complexity for the
benchmark problem. Since their relative performance
in practice is unclear, the full version of this paper will
compare these two versions.

• As shown above, just switching from Level 1 to Level
2 causes our algorithms to slow down by a factor of up
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to 20 to 50. We would like to explore a fixed precision
BigFloat that behaves closer to a machine type, but
with larger number of bits of precision.

• The 8-point-test evaluates the input polynomial at or-
dinal compass points using the BigRat type. Since
the BigRat type is represented by a pair of BigInt in-
stances (a, b) for a

b
, the exponentiation of these values

to a high power will be slow and the representation will
be expensive in terms of memory usage as well. Also,
since the BigRat representation must always contain
no common factors, many expensive GCD operations
are required as well. One possible change in this area
is to use rounded interval arithmetic to estimate the
range of f over the interval lower and upper bound of
the approximate value of the ordinal points. Clearly, if
the interval is either entirely negative or positive, then
so is the sign of f at the exact ordinal point.

• We need to explore approaches that allow TK to re-
main performant for higher degree polynomials as well.
Some of the directions we can look in include the trun-
cated evaluation of the Taylor series and controlled
precision growth (with correct rounding) of our cal-
culations.

• Note that our implementation runs either entirely at
Level 1 or entirely at Level 2. It would be desirable
to implement a wrapper over a machine precision type
that can detect underflows and overflows, and switch
calculation over to Level 2. We are currently working
on the outline of such a type, but a lot of work remains
to be done to test it and integrate it with our Ceval

implementation.

• Recall that Sturm and Descartes’ methods [22, 29] are
subdivision methods for real roots. It is possible to
generalize both to real solutions of bivariate systems.
Their performance against evaluation methods should
be of interest.
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F. Rouillier, and E. Tsigaridas. On the topology of
planar algebraic curves. In Proc. 25th Symp. on
Comp. Geom. (SoCG’09), pages 361–370, 2009.

[8] J.-S. Cheng, X.-S. Gao, and J. Li. Root isolation for
bivariate polynomial systems with local generic
position method. Mm research preprints, KLMM,
Chinese Academy of Sciences, 2008.

[9] Core Library homepage, since 1999. Software
download, source, documentation and links:
http://cs.nyu.edu/exact/core/.

[10] J.-P. Dedieu and J.-C. Yakoubsohn. Localization of an
algebraic hypersurface by the exclusion algorithm.
Applicable Algebra in Engineering, Communication
and Computing, 2:239–256, 1992.

[11] D. Diochnos, I. Emiris, and E. Tsigaridas. On the
complexity of real solving bivariate systems. J.

Symbolic Computation, 44:818âĂŞ835, 2009.
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ABSTRACT
The problem considered here is to refine an approximate,
numerical, solution of a linear system and simultaneously
give an enclosure of the error between this approximate so-
lution and the exact one: this is the verification step. De-
sirable properties for an algorithm solving this problem are
accuracy of the results, complexity and performance of the
actual implementation. A new algorithm is given, which has
been designed with these desirable properties in mind. It is
based on iterative refinement for accuracy, with well-chosen
computing precisions, and uses interval arithmetic for veri-
fication.

Categories and Subject Descriptors
G.1.3 [Numerical Linear Algebra]: Error analysis - Lin-
ear systems (direct and iterative methods); G.4 [Mathematical
Software]: Verification

General Terms
Reliability, verification.

Keywords
Scientific computing, numerical linear algebra, verified com-
putations, symbolic-numeric, interval arithmetic, floating-
point arithmetic, precision, accuracy.

1. INTRODUCTION
The solution of a linear system using floating-point arith-

metic entails roundoff errors. One approach to get exactly
the solution consists in representing the coefficients as ratio-
nal numbers and in solving the linear system exactly. An-
other approach, developed here, consists in mixing iterative
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refinement – for a better accuracy – and interval arithmetic
– for guarantee – to get a tight enclosure of the exact solu-
tion. This latter approach can extend to linear systems with
interval coefficients of small width.

The algorithm proposed here evolved from an initial ver-
sion detailed in Section 2, which is very similar to the best
available implementation, namely the verifylss routine of
IntLab [9]. However, this initial version had 3 flaws: failure
when the matrix of the system is too ill-conditioned, loss
of accuracy and increase of the execution time when it is
ill-conditioned. Working on two of these three weak points
led us to the algorithm given in Section 3. Further remarks
open the way to a better understanding of the respective
strengths and weaknesses of exact computations and inter-
val computations, in Section 4.

2. PROBLEM AND INITIAL ALGORITHM
We consider numerical computations, in other words floa-

ting-point arithmetic. Let A be an n × n matrix and b an
n-dimensional vector, both with floating-point coefficients:
A ∈ Fn×n and b ∈ Fn. Let us denote by x∗ the exact solu-
tion of the linear system Ax = b, and let x̃ be an approximate
solution, computed with a so-called numerical routine (LU
with partial pivoting in our experiments, such as the dgetrf

routine of LAPACK). The vector x̃ has floating-point coef-
ficients.

Let us denote by e = x∗ − x̃ the error between the exact
and the approximate solutions. We look for an enclosure
of e, that is, a vector with interval coefficients e such that
e ∈ e. Let us note here that intervals are denoted with
boldface characters. More precisely, the goal is to develop
an algorithm which increases the accuracy of x̃ and computes
e. We would like this algorithm to satisfy the following four
criteria and we will explain our contribution in this direction:

• e contains the error e = x∗ − x̃;

• the accuracy of the result should be close to the best
accuracy offered by the floating-point arithmetic, i.e.
the relative error should be close to 2−53 in IEEE-754
double precision floating-point arithmetic;

• the complexity of the algorithm should be comparable
to the complexity of the numerical algorithm, which is
2
3
n3: the algorithm must exhibit a complexity O(n3)

and the constant hidden in the O must be moderate;
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• the actual performance of the implementation should
be close to the performance of the numerical routine.

The starting point is to use iterative refinement, and to re-
place floating-point operations by interval operations when
it is appropriate to do so. Indeed, iterative refinement is a
method that starts from an approximate solution and ”con-
tracts” the error, and contractant iterations are methods of
choice in interval arithmetic. An algorithm which uses this
idea to refine the solution and enclose the error is the veri-

fylss function of IntLab [9], a MatLab toolbox that offers in-
terval arithmetic. Our initial algorithm, called certifylss,
differs from verifylss in the computation of e, the enclosure
of the error: verifylss employs Krawczyk iteration [4] and
the Hansen-Bliek-Rohn-Ning-Kearfott formula [5] whereas
certifylss uses Gauss-Seidel or Jacobi [4, pp. 131 ff.]. (Let
us mention here that computing exactly the solution of this
interval linear system is not considered: it is known to be
NP-hard [8]). The approximate solution x̃ is then corrected
and the correction term is the center of e, the enclosure of
the error.

A main difference with numerical iterative refinement is
that the algorithm premultiplies, using interval arithmetic,
the matrix A of the linear system by an approximate, nu-
merical, inverse R: the resulting system has a matrix which
should be close to the identity matrix, or rather which should
be an H-matrix (see [4, p. 111] for the definition) and thus
which behaves well when it comes to solve a linear system.

Algorithm certifylss % in MatLab-like syntax
Input: A ∈ Fn×n, b ∈ Fn

x̃ = A \ b, R = inv(A), K = [RA]
while(not converged)

r = [Rb−K x̃] % RA(x∗ − x̃) ∈ r
e = K \ r % x∗ − x̃ ∈ e
x̃ = x̃+ mid(e), e = e−mid(e)

end
Output: x = x̃+ e

Actually, the iteration needs an initial enclosure e0 of the
error, which is then refined at each step. Determining e0 is
based on a heuristic, that relies on K being an H-matrix,
and that can fail. Experiments indicate that failure occurs
when A is ill-conditioned: our guess is that R then is a poor
approximate of A−1 and that K is not an H-matrix.

The stopping criterion is reached either when the iteration
stagnates (no change for e) or when the approximate solution
x̃ is approximate to the last bit, in other words when the
width of x corresponds to a relative error of 2−52 on x̃, in
IEEE-754 double precision.

As already mentioned, three flaws have been identified:
loss of accuracy and large execution time for ill-conditioned
matrices, failure of the algorithm for extremely ill-conditioned
matrices. A new algorithm has been developed to obviate
the first two flaws.

3. NEW ALGORITHM TO IMPROVE AND
VERIFY THE SOLUTION

3.1 Reducing execution time: relaxation tech-
nique

The major contribution to execution time is the operation

e = K \ r. This is performed iteratively, using Gauss-Seidel
method which is intrinsically sequential. Furthermore, in-
terval Gauss-Seidel iterations cannot be expressed using LA-
PACK (floating-point and thus fast) routines. However, they
boil down to a floating-point matrix-vector product when
Jacobi iterations are used and when the matrix K is cen-
tered around a diagonal matrix. Thus, to reduce execution

time, the matrix K is inflated into a matrix bK that con-
tains K (otherwise it would no more be guaranteed that
e ∈ e) and that is centered around a diagonal. This is justi-
fied by the fact that K is expected to be close to the iden-
tity matrix. Moreover, Jacobi iterations are used instead
of Gauss-Seidel ones. The corresponding algorithm is called
certifylss_relaxed.

3.2 Increasing the accuracy of the result: well-
chosen computing precisions

It is well-known [3, ch. 12] (and already done in certi-

fylss) that computing the residual r is subject to cancella-
tion and must be performed using twice the working preci-
sion, for accuracy purpose. Following an idea given in [1], we
also compute the current approximate solution x̃ using twice
the working precision, and we prove in [6] that this yields a
fully accurate result, that is, an error of relative width to
1 ulp. Carefully chosen formulas for the computation of e
yield this accuracy without implying extra, useless computa-
tions: terms corresponding to 3 times the working precision
are not explicitly computed. Details are given in [6] and are
not developed below.

3.3 New algorithm: certifylssx

Algorithm certifylssx

Input: A ∈ Fn×n, b ∈ Fn

x̃ = A \ b, R = inv(A), K = [RA]bK = inflated(K) % bK is centered on a diagonal matrix
while(not converged)

r = [b−A x̃] % r in twice the working precision
r = Rr]

e = bK \ r
x̃ = x̃+ mid(e) % x̃ in twice the working precision
e = e−mid(e)

end
Output: x = x̃+ e

The performance of this new algorithm, in terms of accu-
racy (maximal componentwise relative width of the final e)
and execution time, is shown on Figure 1, each dot being the
average on 10 matrices of dimensions 1000× 1000 generated
using the gallery (randsvd, ...) command of MatLab.
These curves illustrate that we succeeded in obviating the
two target problems: we obtained a solution accurate to the
last bit, and we verified this accuracy, for the whole range
of validity of our algorithm. We succeeded in doing so with
acceptable execution time: the theoretical overhead factor is
6 and the practical factor is 15. Finally, let us also note that
when the algorithm fails, it does so quickly, without wasting
computational time.

4. CONCLUSION, FUTURE WORK, COM-
PLEXITY COMPARISONS
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Figure 1: Performances of the certifylssx algorithm.

The algorithms presented in Sections 2 and 3 succeeded in
providing an accurate solution x̃ of a linear system, with a
guarantee on this accuracy being given by an enclosure e of
the error. However, these algorithms fail when the condition
number of the matrix becomes too large. This is due to
the fact that the approximate inverse R of A becomes poor,
and thus the interval matrix K becomes wide. A solution
would thus be to compute a more accurate R, using extended
precision, as proposed in [10, 7]. Preliminary experiments
tend to show that the increase in execution time is drastic.
To keep it reasonable, again a solution seems to trade off
execution time against accuracy in well-chosen parts of the
code.

Desirable properties for such an algorithm were mentioned
in Section 1: accuracy, complexity, execution time. Accu-
racy and execution time have been shown on figures and
results are thoroughly proven in [6]. Let us mention the
complexity of algorithms for solving linear systems:

• the numerical, non-verified algorithm (based on LU
factorization with partial pivoting) has a complexity
of 4

3
n3 + O(n2) flops (flops stands for floating-point

operations per second);

• the numerical, verified algorithm of Section 3 has a
complexity of 8n3 +2n2 log2(p/(p− log2 κ(A)))+8n2 +
O(n) flops, where p is the precision (53 for the IEEE-
754 double precision) and κ(A) is the condition num-
ber of A. For the algorithm to terminate, one needs
log2 κ(A) < p, in our experiments we need log2 κ(A) <
45. Because the refinement iterations converge quadrat-
ically, as well as the iterations of e (Krawczyk itera-
tions are known to converge quadratically and Gauss-
Seidel iterations are even faster [4]), one can show
that the complexity of the iterative refinement part is
2n2 log2(p/(p − log2 κ(A))). These complexity results
are new.

• the complexity of solving exactly the linear system [2],
where the coefficients of A and b are considered as ra-
tional numbers, is O˜(pn3) where again p is the preci-
sion, and O˜ means that (poly-)logarithmic terms are
not explicited.

In other words, this means that exact methods seem supe-
rior to get exact (and thus verified) results. However, only

methods based on interval arithmetic can extend to data
given with uncertainties, i.e. with coefficients which are
(tight) intervals. Indeed, the algorithms given here apply,
as long as K remains an H-matrix.
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ABSTRACT
With many applications in engineering and in scientific fields,
quantifier elimination (QE) has been attracting more atten-
tion these days. Cylindrical algebraic decomposition (CAD)
is used as a basis for a general QE algorithm. We propose
an effective symbolic-numeric cylindrical algebraic decom-
position (SNCAD) algorithm for solving polynomial opti-
mization problems. The main ideas are a bounded CAD
construction approach and utilization of sign information.
The bounded CAD constructs CAD only in restricted ad-
missible regions to remove redundant projection factors and
avoid lifting cells where truth values are constant over the
region. By utilization of sign information we can avoid sym-
bolic computation in the lifting phase. Techniques for imple-
mentation are also presented. These techniques help reduce
the computing time. We have examined our implementa-
tion by solving many example problems. Experimental re-
sults show that our implementation significantly improves
efficiency compared to our previous work.

Categories and Subject Descriptors
G.4 [Mathematics of computing]: Mathematical Soft-
ware; I.1 [Symbolic and Algebraic Manipulation]: Al-
gorithms

General Terms
Algorithm, Experimentation

Keywords
cylindrical algebraic decomposition, quantifier elimination,
symbolic-numeric computation, global optimization, certi-
fied numerical computation
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1. INTRODUCTION
Cylindrical algebraic decomposition (CAD) is a general-

purpose symbolic method aiming for quantifier elimination,
which is an effective tool for solving real algebraic constraints
(in particular parametric and non-convex case) arising in
many engineering and industrial problems. However, QE
based on CAD is not considered to be practical on com-
puters, since CAD usually consists of many purely symbolic
computations and has a bad computational complexity.

To circumvent the inherent computational complexity of
a QE algorithm based on CAD, several researchers have fo-
cused on QE algorithms specialized to particular types of in-
put formulas; see [44, 22, 29, 45, 19]. This direction is quite
promising in practice since a number of important problems
in engineering have been successfully reduced to such par-
ticular input formulas and resolved by using the specialized
QE algorithms. See concrete successful applications in [46,
43, 13, 18, 1, 3].

However, there still remain many significant problems in
engineering that cannot be recast as such particular formu-
las. Therefore, it is strongly desired to develop an efficient al-
gorithm for CAD. A CAD algorithm consists of three phases;
the projection phase, the base phase, and the lifting phase.
The main improvement of CAD has been focused on improv-
ing the projection operator in the projection phase, e.g., [8,
21, 31], because it is the most effective way to reduce the
computational time. Computational difficulties in the lifting
phase stem from symbolic computation over towers of alge-
braic extensions and combinatorial explosion in CAD con-
struction. An effective way for efficient CAD construction is
to utilize numerical computation, instead of symbolic treat-
ment, with derived numerical information on algebraic num-
bers as far as possible without violating correctness of the
results. So far there have been some attempts to introduce
numerical computation into CAD construction, for example
[23, 39, 10, 36, 4, 41, 25]. Additionally many improvements
of a CAD algorithm tailored for QE problems have been pro-
posed. Partial CAD [9] avoid lifting cells by evaluation of
truth values and utilization of quantifier information of in-
put formulas. It significantly reduces the computing time in
the lifting phase. Also, many approaches for special types of
input formulas have been proposed, for example [30, 32, 33,
40, 5].

Meanwhile, several attempts to develop symbolic-numeric
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algorithms for solving polynomial optimization problems (POPs)
have been done. In [2] an efficient algorithm based on CAD
to solve semidefinite programming exactly is studied.

Another promising direction is to use generalized critical
values for global optimization, which originates with [38] in
the scheme of sum of squares. Then within the framework
of the critical point method, generalized critical values are
first used in [16].

As for sums of squares approach, we note that it provides
algebraic certificates to compute lower bounds on global infi-
mum (see [35]). In [26] computation of “symbolic” algebraic
certificates (instead of “numerical” ones) is proposed. More-
over, the problem of obtaining theorems on the existence of
algebraic certificates based on sums of squares is due to [20].

In this paper, we introduce an efficient approach for solv-
ing POPs by using SNCAD. Our approach is based on the
SNCAD scheme, which employs validated numeric using in-
terval arithmetic, proposed in [25] and we further exploit the
following structures of POPs:

1. Variables sometimes have interval constraints.

2. To solve a POP by a QE algorithm the associated QE
problem has equational constraints.

We solved optimization problems derived from manufactur-
ing design by using QE. In this case the property 1 is often
held, because each decision variable means a length or a
position. By using the property 1 we can avoid the CAD
construction over outside of the admissible regions of the
variables. The property 2 enables us to skip lifting proce-
dures by utilizing sign information.

The rest of this paper is organized as follows. The scheme
for a standard CAD algorithm and QE based on CAD are
reviewed in Section 2. The explanation of POPs and our
symbolic approach to POPs are shown in Section 3. We
describe our algorithm in Section 4 and Section 5. Experi-
mental results are given in Section 6. Discussion and some
concluding remarks are made in Section 7.

2. STANDARD CAD ALGORITHMS
We briefly sketch the basic ideas of cylindrical algebraic

decomposition (CAD); see [8] for details. Here we denote
the rational number field and the real number field by Q
and R, respectively. Assume that we are given a prenex for-
mula ϕ with q free variables x1, . . . , xq and (r−q) quantified
variables xq+1, . . . , xr:

ϕ(x1, . . . , xq) ≡ Qq+1xq+1 . . .Qrxr ψ(x1, . . . , xr),

where Qj ∈ {∃,∀} and ψ is a quantifier-free formula. We
can assume, by transposing terms if necessary, each atomic
formula in ψ is represented in the form f ρ 0, where f is
a polynomial with rational coefficients on x1, . . . , xr and
ρ ∈ {≤, <,=, 6=}. Let F ⊆ Q[x1, . . . , xr] be the set of poly-
nomials appearing in ψ as the left hand sides of atomic for-
mulas. A subset C ⊆ Rr is said to be sign-invariant for F
if every polynomial in F has a constant sign on all points in
C. Then ψ(S) is either “true” or “false” for all S ∈ C.

Suppose we have a finite sequence D1, . . . ,Dr for F which
has the following properties:

1. Each Di is a partition of Ri into finitely many con-
nected semi-algebraic sets called cells.

2. Di−1, 1 < i ≤ r, consists exactly of the projections of
all cells in Di along the coordinate of the i-th variable
in (x1, . . . , xr). For each cell C ∈ Di−1 we can deter-
mine its preimage P (C) ⊆ Di under the projection.

3. Each cell C ∈ Dr is sign-invariant for F . Moreover for
each cell C ∈ Dr we are given a sample point S ∈ C
in such a form that we can determine the sign of f(S)
for each f ∈ F and thus evaluate ϕ(S).

Then the partition Dr of Rr for F is called an F -invariant
cylindrical algebraic decomposition of Rr. A CAD algorithm
computes such a sequence D1, . . . ,Dr and it consists of three
phases; the projection phase, the base phase, and the lifting
phase.

Projection phase: We first construct from F ⊆ Q[x1,. . .,
xr] a new finite set F ′ ⊆ Q[x1, . . .,xr−1] that satisfies a spe-
cial condition called “delineability”, where the order of the
real roots of all polynomials in F as univariate polynomials
in xr does not change above each connected cell in Dr−1.

The step constructing F ′ from F is called a projection
and denoted by F ′ := Proj(F, xr). We call polynomials in
F ′ projection polynomials and their irreducible factors pro-
jection factors. Iterative application of the Proj operator
leads to a finite sequence

Fr, . . . , F1, where Fr := F, Fi := Proj(Fi+1, xi+1)

for 1 ≤ i < r. The Proj operator, in general, computes cer-
tain coefficients, discriminants, and resultants derived from
polynomials in Fi+1 and their higher derivatives by regard-
ing those as univariate polynomials in xi+1. The final set F1

consists of univariate polynomials in x1.
Base phase: Then we construct a partition D1 of the real

line R1 into finitely many intervals that are sign-invariant for
F1. This step is called the base phase, achieved by isolating
the real zeros of the univariate polynomials in F1.

Lifting phase: The partitions Di of Ri for 2 ≤ i ≤ r are
computed recursively: The roots of all polynomials in Fi as
univariate polynomials in xi are delineated above each con-
nected cell C ∈ Di−1. Thus we can cut the cylinder above
C into finitely many connected semi-algebraic sets (cells).
This is done by real root isolation of the univariate polyno-
mials derived through specializing the polynomials in Fi by
a sample point of C. Then Di is a collection of all such cells
obtained from all cylinders above the cells of Di−1.

A finite sequence D1, . . . ,Dr for F has a tree structure:
The first level of nodes under the root of the tree corresponds
to the cells in D1. The second level of nodes stands for the
cells in D2, i.e., the cylinders over the cells of R1. The leaves
represent the cells of Dr, i.e., a CAD of Rr. A sample point of
each cell is stored in its corresponding node or leaf. At each
level of the tree there are a number of projection polynomials
Fi whose signs define a cell when evaluated over a sample
point.

3. OPTIMIZATION PROBLEMS
An optimization problem is the problem of finding the

minimum value or maximum value of a function under some
constraints. Since the maximum value of a function is equiv-
alent to the minimum value of the negative of the func-
tion, we can focus on minimization without loss of gener-
ality. Let x = (x1, x2, . . . , xn) ∈ Rn be a vector of variables,
f (x) = (f1(x), . . . , fm(x)) a vector of R-valued functions,
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and gj(x) a R-valued function for j = 1, . . . , k. An opti-
mization problem is formulated as follows:

Minimize f (x)
subject to g1(x) ≤ 0, . . . , gk(x) ≤ 0.

This is called a multi-objective optimization problem when it
has multiple objective functions. The variables xi are called
decision variables, and the functions fi are called objective
functions. The following set is called a feasible region:

ψc(x) = {x ∈ Rn | gi(x) ≤ 0 for i = 1, . . . , k}.
The image of the feasible region is called a feasible objective
region.

Next we define an order in the objective space to state
what minimize means in the problem above.

Let a = (a1, . . . , am) and b = (b1, . . . , bm) be points in
Rm. We denote a � b to represent ai ≤ bi for i = 1, . . . ,m.
Since Rm is a partially ordered set with respect to �. In
general there does not exist an optimal solution in a multi-
objective optimization problem, because there is a trade-off
between objective functions.

In a multi-objective optimization problem, we need to con-
sider a solution as a set instead of a single point.

Definition 1. Let f (x) = (f1(x), f2(x), . . . , fm(x)) be a
vector of objective functions, ψc ⊆ Rn a semialgebraic set,
and consider the optimization problem above. x0 ∈ ψc is
called a Pareto optimal solution if there does not exists x ∈
ψc such that f (x) 6= f (x0) and f (x) � f (x0). Such points
form a set, called a Pareto optimal set. And the image of the
Pareto optimal set is called the Pareto optimal front, which
is a subset of the feasible objective region.

In this paper we consider special optimization problems
whose objective functions and constraints are all described
by multivariate polynomials. We call such a problem a poly-
nomial optimization problem (POP).

3.1 Symbolic Approach to POP
Here we give our symbolic approach to a polynomial op-

timization problem. We can construct a first-order formula
with free variables y = (y1, . . . , ym) that is true at y = y0 if
and only if y0 is in the feasible objective region:

∃x (y ≡ f (x) ∧ ψc(x)), (1)

where we denote (y1 = f1(x) ∧ · · · ∧ ym = fm(x)) by y ≡
f (x). By eliminating x from (1) we obtain a quantifier-free
formula ψF O with respect to y.

Next we can express the Pareto optimal front by the fol-
lowing first-order formula with free variables yp ∈ Rm:

ψF O(yp) ∧ ¬∃y (ψF O(y) ∧ y 6= yp ∧ y � yp). (2)

Performing QE on (2), we obtain an equivalent quantifier-
free formula ψP with respect to yp.

Finally we consider the following first-order formula:

∃y (y ≡ f (x) ∧ ψc(x) ∧ ψp(y)). (3)

Performing QE on (3), we obtain an equivalent quantifier-
free formula that is true at x = xopt if and only if xopt in
the Pareto optimal set.

The feasible objective region ψF O includes the information
on the Pareto optimal front and is easier to compute than
ψP . By using the symbolic approach, we obtain an exact

solution of a POP even if it is non-convex. But from the
computational point of view QE is indeed very hard. Then
we propose an effective approach of a CAD algorithm for
POPs.

4. BOUNDED CAD
In this section we show an effective approach for CAD con-

structed in a given restricted region. We will call it bounded
CAD construction. The bounded CAD construction uses a
smaller set of projection factors and skips lifting more cells.
It significantly reduces the computing time.

We are going to demonstrate by means of a small example
how we find unnecessary projection factors for bounded CAD
construction. We consider the following QE problem:

ϕ = ∃y (x2 + y2 < 1 ∧ x ≥ 0),

where x is bounded. We obtain the following projection
factors by a conventional projection operator:

F1 = {x+ 1, x, x− 1}.
Since the formula ϕ is obviously false in x < 0, we do not
need to construct CAD in x < 0. Thus, the projection factor
x+ 1 is unnecessary to solve the QE problem ϕ.

Here we propose an effective approach for a CAD algo-
rithm which constructs CAD only in the regions where truth
values of an input QE formula are not trivial.

4.1 A New Projection for Bounded CAD
Since a projection operator that produces small sets makes

CAD computation efficient, there have been proposed many
projection operators, e.g., [8, 21, 31]. In addition some spe-
cial projection operators which depend on input formulas
have been proposed, for example the restricted equational
projection operator [32]. In this subsection we propose an
effective projection operator for bounded CAD construction.

The output of a CAD algorithm is a partition of a variable
space, where all input polynomials are sign-invariant within
each cell. Therefore the following lemma holds.

Lemma 1. Let F ⊆ Q[x1, . . . , xr] be a finite set of polyno-
mials, g(x1, . . . , xr) a polynomial which does not vanish for
all (x1, . . . , xr) ∈ Rr, Dr an output of a CAD algorithm for
F . Then each cell C ∈ Dr is sign-invariant in F ∪ g.
Lemma 1 states that a sign-definite polynomial is not needed
for CAD construction. The following lemma shows that we
might reduce projection factors for bounded CAD construc-
tion.

Lemma 2. Let F ⊆ Q[x1, . . . , xr] be a finite set of poly-
nomials, Ur ⊆ Rr a region, g(x1, . . . , xr) a polynomial which
does not vanish for all (x1, . . . , xr) ∈ Ur, Dr an output of a
CAD algorithm for F .

If C ∈ Dr is a subset of Ur, then C is sign-invariant in
F ∪ g.
By using lemma 2, we propose a new projection operator
that refines any other projection operator Proj by remov-
ing unnecessary projection factors in a restricted area before
applying Proj.

BCADProjection(Fk, Uk, xk)

Input: polynomials Fk ⊆ Q[x1, . . . , xk] (k > 1),
region for bounded CAD construction Uk ⊆ Rk,
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main variable xk

Output: projection factors Fk−1 ⊆ Q[x1, . . . , xk−1]

G← {}
for f(x1, . . . , xk) ∈ Fk do

(*) if ∃x1 · · · ∃xk((x1, . . . , xk) ∈ Uk ∧ f(x1, . . . , xk) = 0)
G← G ∪ f(x1, . . . , xk)

return Proj(G, xk)

In this projection operator we have to solve a lot of sub-QE
problems (*). However, if we can solve them efficiently, it
might drastically decrease the computational time of CAD
construction since we can utilize a smaller set of projection
factors.

Remark 1. Since the input formula of a QE problem might
have redundant conditions, we check whether input polyno-
mials of BCADProjection are sign-definite in Ur. Unnec-
essary projection factors of F1 are naturally removed in the
base phase.

Incidentally, the output of most of projection operators
contains coefficients of input polynomials to hold degree-
invariant, e.g., [31]. Thus, we might reduce the number of
projection factors for bounded CAD by the following algo-
rithm.

CoefPartOfProjection(f , Uk−1, xk)

Input: polynomial f ∈ Q[x1, . . . , xk] (k > 1),
region Uk−1 ⊆ Rk−1,
main variable xk

Output: part of projection factor Fk−1 ⊆ Q[x1, . . . , xk−1]

G← {}
for i from degree of f in xk to 1 by -1 do

c← coefficient of xi
k in f

if ∃x1 · · · ∃xk−1((x1, . . . , xk−1) ∈ Uk−1 ∧
c(x1, . . . , xk−1) = 0)

G← G ∪ c
else break

return G

4.2 Truth Value Evaluation
Partial CAD, presented by G. E. Collins and H. Hong [9],

is an efficient approach for the lifting phase. Trial evaluation
is one of the ways of avoiding lifting cells in partial CAD
construction.

The following simple example illustrates the trial evalua-
tion. Let ϕ(x1, x2) = ∃x2(ψ1(x1) ∧ ψ2(x1, x2)) be a formula
where ψ1 and ψ2 are quantifier-free. Now, we consider to lift
a cell C1 ∈ D1. We know the signs of the projection factors
F1, because C1 is sign-invariant for F1. Therefore we can
evaluate the formula ψ1. If ψ1 is false in the cell C1, then
the formula ϕ is false for all x2. Thus we do not need to lift
C1.

Here we explain a trial evaluation for bounded CAD con-
struction. Let ϕ(x1, . . . , xr) be an input formula of a QE
problem, and Di a partition of Ri for i = 1, . . . , r.

The trial evaluation in the partial CAD utilizes the fol-
lowing lemma from [9].

Lemma 3. Let Ck be a cell in Dk of Rk, 1 ≤ k < r, and
let S = (s1, . . . , sk) be a sample point for Ck. If ϕ(s1, . . . , sk,
xk+1, . . ., xr) has a constant truth value then we do not need
to lift Ck.

Let f(x1, . . . , xr) ∈ Q[x1, . . . , xr] be a non-constant r-variable
polynomial. We define n(f) as the largest integer k, such
that degk(f) > 0, where degk(f) is the degree of f with
respect to xk. The trial evaluation deals with only the poly-
nomial f such that n(f) ≤ k. Since we construct CAD only
in Dr, the following lemma is immediate.

Lemma 4. Let Ck be a cell in Dk, 1 ≤ k < r, Ur a re-
gion, and let S = (s1, . . . , sk) be a sample point for Ck. If
ϕ(s1, . . . , sk, xk+1, . . . , xr) has a constant truth value in Ur,
then we do not need to lift Ck for bounded CAD construction
in Ur.

In our approach, we try to evaluate all the polynomials oc-
curring in input formulas. Hence we can avoid lifting more
cells, and the computation time might decrease.

4.3 Procedures
In this subsection we explain three procedures for bounded

CAD construction.
(A) Region Ur: As a preprocessing of bounded CAD, we
have to compute a region Ur where truth value of an input
formula ϕ is not trivial. We denote a quantifier-free part of
ϕ by ψ. We will call a region where truth value of a formula
is true and false a true region and a false region, respectively.

In general computing a true region and false region exactly
is difficult, but it is often the case that the truth value of
a certain subset is easily decided from an atomic formula
or two appearing in ϕ. We refer to such points that are
directly detected true as a white region. Similarly we use
the term a black region for a ‘trivially’ false subset. Note
that detecting white/black regions are important because we
possibly remove some of projection factors and avoid lifting
cells in those regions, which reduces total computing time.

First we compute a white region and a black region by
CompTF(ψ ∧ (0 = 0), (−∞,∞), ∅). Its outputs are Tr

and Fr expressed by Cartesian products of unions of open
intervals.

CompTF(ψ, IT , IF )

Input: quantifier-free formula ψ(x1, . . . , xr),
regions IT , IF ⊆ R

Output: white region and black region

if ψ is atomic formula then
return CompAtom(ψ, IT , IF )

ψ ← equivalent conjunction & disjunction formula to ψ
r ← false
if ψ is conjunction then

T0 ← (−∞,+∞)
F0 ← ∅
for p in element of conjunction do

T , F ← CompTF(p, (−∞,∞), ∅)
if error then continue
T0 ← T0 ∩ T
F0 ← F0 ∪ F
r ← true

else
T0 ← ∅
F0 ← (−∞,+∞)
for p in element of disjunction do

T , F ← CompTF(p, ∅, (−∞,∞))
if error then continue
T0 ← T0 ∪ T
F0 ← F0 ∩ F
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r ← true
if r = false then

return error
return T0, F0

The sub-procedure CompAtom outputs a white region and
a black region of a given atomic formula.

CompAtom(ψ, IT , IF )

Input: atomic formula ψ = f(x1, . . . , xr)ρ 0,
where ρ ∈ {<,≤,=, 6=},

regions IT , IF ⊆ R
Output: white region and black region

Tj ← IT for j = 1, . . . , r
Fj ← IF for j = 1, . . . , r
if f is univariate polynomial in xi then

Li ← a union of isolating intervals of f
Ji ← R \ Li (union of open intervals)
Ti ← {si ∈ Ji | f(si) ρ 0}
Fi ← {si ∈ Ji | si 6∈ Ti}

else
for i from 1 to r do

if all coefficients of xi are rational number
except constant term then

F ← substitute (−∞,∞) for xj (j 6= i)

transpose F ρ 0 to g(xi) ρ [I(l), I(u)]

update Ti, Fi from g(xi) ρ [I(l), I(u)]
by same manner as univariate polynomial

if Ti, Fi do not update then
return error

return T1 × · · · × Tr, F1 × · · · × Fr

Let Tr,Fr ⊆ Rr be a white region and a black region of an
input formula ϕ. By using Tr and Fr, we can easily obtain
Ur = Rr \ (Tr ∪ Fr).

In our implementation Ur is expressed by a Cartesian

product of closed intervals, that is Ur = [I
(l)
1 , I

(u)
1 ] × · · · ×

[I
(l)
r , I

(u)
r ]. It is the reason why it makes easy to achieve

evaluations in the following procedures (B) and (C).
(B) Evaluation of sub-QE problem: Since we express
Ur by a Cartesian product of intervals as (A), it is easy to
evaluate the sub-QE problem (*) in the algorithm BCAD-
Projection by using numerical computation. We just sub-

stitute each interval [I
(l)
i , I

(u)
i ] for xi, and compute a range

of values by using interval arithmetic. If the range contains
zero, we deal with the QE problem (*) as true.

For necessary projection factor this approach returns al-
ways true. Therefore we do not lose the correctness as a
projection operator.
(C) Evaluation of truth value in a region Ur: Here
we use the same notation as lemma 4. In a similar way
as (B), to evaluate the formula ϕ we substitute isolating

intervals of si for xi (i = 1, . . . , k) and intervals [I
(l)
j , I

(u)
j ]

for xj (j = k + 1, . . . , r) in each polynomial appearing in ϕ,
and compute a range of values by using interval arithmetic
without losing correctness. If ϕ has a constant truth value
in Ck over Ur, then we avoid lifting Ck.

Note that we already obtain the sign information of the
polynomial f such that n(f) ≤ k, and if sk is not contained

the interval [I
(l)
k , I

(u)
k ] then a sample point S belongs to Tk

or Fk.

5. UTILIZATION OF COMPUTATIONAL RE-
SULTS

In this section we show how to utilize computational re-
sults in the lifting phase. Using those information enables us
to avoid symbolic computation. The approaches appearing
in this section except Section 5.3.1 are a general approach
for symbolic-numeric CAD (SNCAD).

The approaches depend on a projection operator. Here
we explain our approach by using McCallum’s projection
operator ProjMC from [31].

ProjMC(Fk+1, xk+1)

Input: polynomials Fk+1 ⊆ Q[x1, . . . , xk+1] (k ≥ 1),
main variable xk+1

Output: projection factors Fk ⊆ Q[x1, . . . , xk]

G← {}
for f ∈ Fk+1 do

G← G ∪Coeffs(f, xk+1)
G← G ∪Discriminant(f, xk+1)

for f, g ∈ Fk+1 do (f 6= g)
G← G ∪Resultant(f, g, xk+1)

return irreducible factors of G

The sub-procedures Coeffs(f, x), Discriminant(f, x), and
Resultant(f, g, x) return the set of all the coefficients of f
w.r.t. x, the discriminant of f w.r.t. x, and the resultant of
f and g w.r.t. x, respectively.

Let fk+1(x1, . . . , xk, xk+1) ∈ Fk+1 be a projection factor.

We think of fk+1 =
Pd

i=0 ci(x1, . . . , xk)xi
k+1 as an element

of Q(x1, . . . , xk)[xk+1]. A sample point S = (s1, . . . , sk) in
a cell Ck ⊆ Rk is a k-tuple of algebraic numbers. Each
component of S is inductively defined as follows: When k =
1, s1 ∈ R is expressed by a univariate polynomial f1 ∈ Q[x1]
and an isolating interval I1, where s1 is a unique real root
of f1 in I1. Then, for k ≥ 2, sk is also expressed by a pair
of a polynomial fk ∈ Q[x1, . . . , xk] and an isolating interval
Ik, where sk is a unique real root of fk(s1, . . . , sk−1, x) in
Ik. From now on we identify si ∈ R with a pair (fi, Ii) and
write si for (fi, Ii) simply.

Since Ck is sign-invariant for Fk, we obtain the sign in-
formation of Fk at S. Now Fk is a set of projection factors
derived from Fk+1 by ProjMC. Hence we know the signs of
the coefficients of f , the discriminant of f , and the resultant
of f and g at S, for all f, g ∈ Fk+1. By using sign infor-
mation of projection factors we can avoid a lot of symbolic
computation in the lifting phase.

Remark 2. When we use ProjMC as a projection opera-
tor of BCADProjection, the sign of a removed projection
factor is defined as its sign over a region Uk.

5.1 Sign Information of Coefficients
In our implementation of SNCAD, presented in [25], to

find the real roots in f(x1, . . . , xk, xk+1) at S = (s1, . . . , sk),
instead of substituting (symbolically) algebraic number si

for xi, i = 1, . . . , k, we substitute Ii, the isolating interval
of si, for xi in f . Since extension of intervals is generally-
restrained, each coefficient I = [I(l), I(u)] of an input interval
polynomial is sign-definite (i.e., I(l)·I(u) > 0 or I(l) = I(u) =
0).

SubstSamplePointCoef(c, S)

Input: polynomial c ∈ Q[x1, . . . , xk],
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sample point S = (s1, . . . , sk) ∈ Rk

Output: interval I which substitute sj for xj in c

where I(l) · I(u) > 0 or I(u) = I(l) = 0

I ← substitute each isolating interval of sj for xj in c
(I ← c(S))

if I(l) ≤ 0 and I(u) ≥ 0 then
if SymbolicZeroChk(c, S) then

return [0,0]

while I(l) ≤ 0 and I(u) ≥ 0
S ← IncreasePrecision(S)
I ← c(S)

return I

In this algorithm we need to switch to the symbolic computa-
tion SymbolicZeroChk(c,S) to check whether c is exactly
zero at S, when the interval I contains zero. If c is not equal
to zero at S, we improve the precision of S while I contains
zero.

Now the coefficients c of f are projection factors, we can
avoid the symbolic computation by using sign information.

We note that some of the projection operators (e.g., [32,
6]) produce not all the coefficients of input polynomials.

5.2 Sign Information of Discriminant
By using sign information of discriminants we can skip the

unnecessary symbolic square-free computation. Moreover,
we can avoid more symbolic computation for the polynomials
of degree two.

Since we use dynamic evaluation [14, 15] for represent-
ing algebraic extensions in our scheme, we can avoid heavy
computation of algebraic factorization of defining polynomi-
als and we only need square-free computation of defining
polynomials.

The following algorithm presented in [25] isolates real roots
of a polynomial at a sample point.

IntvRealRootIsol(f , S)

Input : polynomial f ∈ Q[x1, . . . , xk, xk+1],
sample point S = (s1, . . . , sk) ∈ Rk

Output: isolating intervals for f(s1, . . . , sk, xk+1),
square-free part of f

r, f ← IntvRealRootIsolSqfr(f, S)
if error then

f ← SymbolicSqfr(f)
while

r, f ← IntvRealRootIsolSqfr(f, S)
if not error then

break
S ← IncreasePrecision(S)

return r, f

The function IntvRealRootIsolSqfr based on Krawczyk’s
method [27] isolates real roots for a univariate polynomial
f(s1, . . . , sk, xk+1). The Krawczyk method fails in isolating
real roots for non-squarefree polynomials. From this prop-
erty we call symbolic square-free SymbolicSqfr only when
IntvRealRootIsolSqfr fails for non-squarefree case.

Still, we might execute the unnecessary square-free com-
putation, if the precision of the isolating intervals of the
sample point is not sufficient. However, we can avoid the
symbolic square-free computation by using the sign of the

discriminant of f at S. Thus when the discriminant of f
is not equal to zero at S, we do not need to call symbolic
square-free computation.

Now we know that the signs of the coefficients and the
discriminant of f ∈ Q[x1, . . . , xk, xk+1] at S = (s1, . . . , sk) ∈
Rk. When the leading coefficient of f(s1, . . . , sk, xk+1) of
degree two does not vanish and its discriminant is equal to
zero, the following formula must hold:

c2x
2
k+1 + c1xk+1 + c0 = w(2c2xk+1 + c1)

2, (4)

where w is a constant value such that c2 · w > 0. Since we
are interested only in the sign of f in a CAD computation,
we replace the symbolic square-free computation with (4)
where |w| = 1. We can obtain the sign of c2 from the sign
information of projection factors. Hence we can avoid the
heavy symbolic computation in an algebraic extension field.
This method has effect in the CAD computation, when there
exist many projection factors of degree two.

From another point of view, when its degree is two and
its discriminant is negative at S, f(s1, . . . , sk, xk+1) is sign
definite. We can apply this fact in the truth value evaluation.

5.3 Sign Information of Resultant
Let f, g ∈ Fk+1 be projection factors, Ck ∈ Dk a cell, and

S = (s1, . . . , sk) ∈ Rk a sample point for Ck. We denote the
real root isolating intervals of f and g at S by Lf and Lg ,
respectively. In our SNCAD, if If ∈ Lf intersects Ig ∈ Lg

then we check whether two isolating intervals stand for the
same algebraic number in a symbolic sense by using their
defining polynomials. Here we can use the sign information
of their resultant to avoid the symbolic computation.

If the resultant of f and g w.r.t. xk+1 is not equal to zero
at S, they have no common root. Thus in this case we can
isolate the intervals by improving the precision of isolating
intervals of S.

In the case that the resultant of f and g is equal to zero
when the following three conditions hold, If and Ig are ex-
press the same algebraic number:

1. The leading coefficients of f and g in xk+1 are not equal
to zero at S.

2. Either f or g has only real roots at S.

3. The number of overlapping isolating intervals is exactly
one.

Remark 3. By computing all the complex roots of projec-
tion factors, we might avoid more symbolic computations.

5.3.1 Multiple Equational Constraints
If an atomic formula is an equation it is called an equa-

tional constraint, and the polynomial in the equation is called
an equational constraint polynomial. QE problems some-
times have equational constraints. In fact in our symbolic
approach to POPs, the associated QE problems always have
equational constraints for handling objective functions. Some
projection operators have been proposed for equational con-
straints, e.g., [32]. Here we consider QE problems with mul-
tiple equational constraints. In other words we consider that
QE problems become true only when multiple polynomial is
zero simultaneously.

The following lemma is obvious:
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Lemma 5. Let f1, f2 ∈ Fk+1 be equational constraint poly-
nomials, Ck ∈ Dk a cell, S ∈ Rk a sample point for Ck. If
the resultant of f1 and f2 is different from zero at S then
truth value of Ck is false.

Since we already obtain the sign information of their resul-
tant, we can avoid lifting the cells by this condition without
heavy symbolic computation.

6. COMPUTATIONAL RESULTS
In this section we show our experimental results on several

benchmark problems including some optimization problems
to demonstrate the effectiveness and efficiency of our ap-
proach.

The problems we deal with here are shown in the sequel.
Four example problems in the first block of the tables are
taken from [41] concerning with stability study and control
design. The second block consists of typical control design
problems which are very obstinate for semi-definite program-
ming [34]. Two well-known examples from QE-related pa-
pers are in the third block. The examples except of the last
block are shown in [25]. The last block except Table 3 adds
QE problems for optimization problems. Here we consid-
ered QE problems which express feasible objective regions,
i.e., solving (1).

portfolio [37]:

Minimize 45x2
3 − 30x2x3 + 10x1x3 + 3x2

2 − 40x1x2 + 8x2
1

subject to x1 + x2 + x3 ≤ 10000,
5x1 − 4x2 + 15x3 ≥ 100000,
x1 ≥ 0, x2 ≥ 0, x3 ≥ 0.

The associated QE problem is given as:

∃x1∃x2∃x3 (x1 ≥ 0 ∧ x2 ≥ 0 ∧ x3 ≥ 0 ∧
x1 + x2 + x3 ≤ 10000 ∧ 5x1 − 4x2 + 15x3 ≥ 100000 ∧
y = 45x2

3 − 30x2x3 + 10x1x3 + 3x2
2 − 40x1x2 + 8x2

1).

port-nox3: portfolio problem removed redundant constraint
[37]:

Minimize 45x2
3 − 30x2x3 + 10x1x3 + 3x2

2 − 40x1x2 + 8x2
1

subject to x1 + x2 + x3 ≤ 10000,
5x1 − 4x2 + 15x3 ≥ 100000,
x1 ≥ 0, x2 ≥ 0.

The associated QE problem is given as:

∃x1∃x2∃x3 (x1 ≥ 0 ∧ x2 ≥ 0 ∧
x1 + x2 + x3 ≤ 10000 ∧ 5x1 − 4x2 + 15x3 ≥ 100000 ∧
y = 45x2

3 − 30x2x3 + 10x1x3 + 3x2
2 − 40x1x2 + 8x2

1).

port-para: parametric optimization problem of [37]:

Minimize 45x2
3 − 30x2x3 + 10x1x3 + 3x2

2 − 40x1x2 + 8x2
1

subject to x1 + x2 + x3 = t,
5x1 − 4x2 + 15x3 ≥ 100000,
x1 ≥ 0, x2 ≥ 0, x3 ≥ 0.

The associated QE problem is given as:

∃x1∃x2∃x3 (x1 ≥ 0 ∧ x2 ≥ 0 ∧ x3 ≥ 0 ∧
x1 + x2 + x3 = t ∧ 5x1 − 4x2 + 15x3 ≥ 100000 ∧
y = 45x2

3 − 30x2x3 + 10x1x3 + 3x2
2 − 40x1x2 + 8x2

1).

By eliminating x3 using virtual substitution [29] we obtain

the following QE problem:

∃x1∃x2 (x1 ≥ 0 ∧ x2 ≥ 0 ∧
t ≥ x1 + x2 ∧ 15t− 10x1 − 19x2 ≥ 100000 ∧
y = 45t2 + 80tx1 + 120tx2 − 43x2

1 − 70x1x2 − 78x2
2).

mooea: extended problem of example 1 in [12, p. 11]:

Minimize x2
1 + x2

2 + x3 and
minimize (x1 − 1)2 + x2

2 + x3

subject to −2 ≤ x1 ≤ 2,−2 ≤ x2 ≤ 2,−1 ≤ 10x3 ≤ 1.

The associated QE problem is given as:

∃x1∃x2∃x3 (y1 = x2
1 + x2

2 + x3 ∧
y2 = (x1 − 1)2 + x2

2 + x3 ∧
−2 ≤ x1 ≤ 2 ∧ −2 ≤ x2 ≤ 2 ∧ −1 ≤ 10x3 ≤ 1).

wilson [47]:

Minimize (x1 − 2)2 + (x2 − 1)2 and
minimize x2

1 + (x2 − 6)2

subject to 2/5 ≤ x1 ≤ 8/5, 2 ≤ x2 ≤ 5.

The associated QE problem is given as:

∃x1∃x2∃x3 (
y1 = (x1 − 2)2 + (x2 − 1)2 ∧ y2 = x2

1 + (x2 − 6)2 ∧
2/5 ≤ x1 ≤ 8/5 ∧ 2 ≤ x2 ≤ 5).

lampinen [28, p. 6]:

Minimize x2
1 + x2 and

minimize x1 + x2
2

subject to −10 ≤ x1 ≤ 10,−10 ≤ x2 ≤ 10.

The associated QE problem is given as:

∃x1∃x2∃x3 (
y1 = x2

1 + x2 ∧ y2 = x1 + x2
2 ∧

−10 ≤ x1 ≤ 10 ∧ −10 ≤ x2 ≤ 10).

We have implemented all the algorithms presented in the
previous Sections 4 and 5 in the C language with a Maple
library as a part of SyNRAC [24]. We use the Maple library
as a symbolic solver over the rational number field.

Comparisons of computing time with some QE implemen-
tations based on CAD are shown in Table 1. Symbols SyN2011,
QEP, and MATH stand for SyNRAC, QEPCAD B 1.58 [7],
and Mathematica 8.0, respectively and SyN2009 means SyN-
RAC implementation presented in SNC 2009 [25] which is
implemented in the Maple user language and does not ap-
ply the approaches in Sections 4 and 5. All the computation
was executed on a PC with Intel(R) Core(TM) i3 CPU U330
1.20 GHz and 2.92 GByte memory. All timing data are given
in second (CPU-time). QEPCAD B was executed with op-
tions “+N40000000 +L100000.” In the column of QEP, “-”
implies that the program terminated with an error.

Table 2 shows the number of cells produced in CAD for
each problem. In the first four examples the numbers of
cells produced by Mathematica were taken from [41]. The
other data for Mathematica were not obtained (marked “*”).
In the column of SyN2009 and QEP, “-” implies that the
program terminated with an error or did not terminate in
an hour.

Tables 3 and 4 tell us the numbers of occurrences of impor-
tant events in our algorithms SyN2009 and SyN2011, respec-
tively. The first column “prec” shows “the number of times
raising the precision.”The second one“zero check”represents
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problem SyN2011 SyN2009 QEP MATH

adam1 0.20 0.01 0.95 0.88
adam2-1 2.64 13.09 326 2.75
adam2-2 4.77 63.82 806 4.15
adam3 5.99 58.63 >3600 2.31

pl01 0.45 0.51 0.08 0.19
lass 0.36 2.49 0.10 0.43

candj 0.43 1.91 0.11 0.32
xaxis 0.58 8.75 0.18 0.29

portfolio 1.33 >3600 524 272
port-nox3 5.97 >3600 9.62 52.55
port-para 10.92 >3600 128 103
mooea 32.31 >3600 - 9.74
wilson 19.63 >3600 - 28.92
lampinen 11.18 >3600 198 13.94

Table 1: Computing time (sec)

problem SyN2011 SyN2009 QEP MATH

adam1 21 13 58 81
adam2-1 2922 3027 6835 4853
adam2-2 9677 9799 11653 5053
adam3 10588 7661 - 32606

pl01 133 123 225 *
lass 332 899 1328 *

candj 613 567 685 *
xaxis 2855 2791 3029 *

portfolio 5413 - 763190 *
port-nox3 20069 - 76470 *
port-para 46848 - 520953 *
mooea 496277 - - *
wilson 211612 - - *
lampinen 73289 - 396818 *

Table 2: Number of cells

“true cases / the number of zero checks executed.” The last
column “sqrfree” shows “the number of square-free compu-
tations by (4) / the number of worked square-free compu-
tations / the number of executed square-free computations
/ the number of lifting cells.” In Table 3 there is not the
number of square-free computations by (4).

Table 5 shows the number of projection factors. We could
not know at all the numbers of projection factors produced
by Mathematica, omitted in the table.

Effect of our projection operator: Table 5 shows that
our projection operator produces a smaller set of projection
factors than the other implementations. We focus only opti-
mization problems, but we can see that our approach works
for some of other QE problems.

The problem portfolio has a redundant constraint x3 ≥ 0.
Interestingly our projection operator in the problem port-
folio produces a smaller set than in the problem port-nox3
which is removed the redundant constraint from portfolio,
and computation time is shorter. The other implementa-
tions have the opposite result.

Effect of utilization of sign information: The signif-
icant effect of utilization of sign information can be seen by

problem prec zero check sqrfree

adam1 0 1/1 0/0/7
adam2-1 7 155/155 68/70/1640
adam2-2 1696 756/902 346/355/8340
adam3 49 1040/1054 160/170/5678

pl01 0 10/10 0/0/92
lass 0 50/50 2/4/678

candj 0 48/48 0/1/398
xaxis 1 358/359 15/15/1723

Table 3: Numbers of occurrences (SyNRAC 2009)

problem prec zero check sqrfree

adam1 0 0/0 0/0/0/0
adam2-1 0 0/0 2/5/5/171
adam2-2 0 25/27 34/167/167/911
adam3 3 448/480 21/99/99/782

pl01 0 0/0 0/3/3/12
lass 0 6/6 0/2/2/25

candj 0 6/6 0/1/1/66
xaxis 0 32/32 14/14/14/302

portfolio 0 11/11 27/27/27/623
port-nox3 0 128/128 580/595/595/7354
port-para 0 27/27 491/662/662/8458
mooea 0 47/47 584/596/596/70655
wilson 0 0/0 297/297/297/35266
lampinen 0 522/522 72/179/179/21253

Table 4: Numbers of occurrences (SyNRAC 2011)

problem SyN2011 SyN2009 QEP

adam1 8 8 8
adam2-1 68 75 75
adam2-2 83 93 83
adam3 43 43 43

pl01 10 12 12
lass 21 21 21

candj 17 19 19
xaxis 30 30 30

portfolio 68 183 183
port-nox3 76 76 76
port-para 124 124 124
mooea 255 255 255
wilson 310 310 310
lampinen 73 73 73

Table 5: Numbers of projection factors

comparing Tables 3 and 4. The second and third columns
in Tables 3 and 4 show that SyN2011 avoids a lot of sym-
bolic computation of zero check and square-free. Moreover,
the third column in Table 4 shows that unnecessary square-
free computation does not execute and most of square-free
computation is applied for polynomials of degree two.

Number of cells: Table 2 shows that SyN2011 produces
a smaller number of cells than the others by virtue of the
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techniques presented in Sections 4 and 5.3.1. Avoiding many
computation reduces the number of times raising the preci-
sion of numeric computation.

7. CONCLUSION
In this paper we have proposed the effective approach

for bounded CAD construction and utilization of sign infor-
mation. The bounded CAD construction approach makes
smaller sets of projection factors and avoids lifting the more
cells. The utilization of sign information avoid a lot of
symbolic zero check and square-free computation. Our ap-
proaches originally aim at speeding up of solving polynomial
optimization problems. However, it seems that the proper-
ties we exploit in this paper are actually common in our
benchmark problems. Thus we can expect our approaches
might be effective for relatively wide range of problems.

Furthermore, we think that our idea of bounded CAD con-
struction is applicable to the virtual substitution algorithm
[29] as positive QE approach [42].
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ABSTRACT
Given polynomials with floating-point number coefficients,
one can now compute the approximate GCD stably, except
in ill-conditioned cases where the GCD has small or large
leading coefficient/constant term. The cost is O(m2), where
m is the maximum of degrees of given polynomials. On the
other hand, for polynomial with integer coefficients, one can
compute the polynomial GCD faster by using the half-GCD
method with the cost less than O(m2). In this paper, we
challenge to compute the approximate GCD faster, with the
cost less than O(m2). Our idea is to use the displacement
technique and the half-GCD method.

Categories and Subject Descriptors
I.1.2 [Computing Methodologies]: Symbolic and Alge-
braic Manipulation—Algorithms; G.1.2 [Mathematics of
Computing]: Numerical Analysis—Approximation

General Terms
Algorithms, Experimentation

Keywords
approximate GCD, displacement technique, half-GCD method,
symbolic-numeric computation

1. INTRODUCTION
Let F[x] be the ring of polynomials over F, the set of

floating-point numbers with the machine epsilon εM, in main
variable x. Let the given polynomial f(x) ∈ F[x] be ex-
pressed as f(x) = fmx

m + · · · + f0, fm 6= 0. By deg(f),
lc(f) and rest(f), we denote the degree, the leading coef-
ficient and the rest terms of f w.r.t. the main variable x,
respectively; rest(f) = f − lc(f)xdeg(f). By ||f ||, we de-
note the norm of f ; we use the infinity norm in this pa-
per, ||f || = max{|fm|, . . . , |f0|}. For two polynomials f(x)
and g(x) with m = deg(f), n = deg(n), by quo(f, g) and

Permission to make digital or hard copies of all or part of this work for
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not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
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Copyright 2011 ACM 978-1-4503-0515-0 ...$10.00.

rem(f, g), we denote the quotient, the remainder, respec-
tively, of f by g. By gcd(f, g) and appgcd(f, g; ε), we denote
the greatest common divisor (GCD) and the approximate
GCD (appGCD) of tolerance ε, of f and g, respectively. The
appGCD is not unique, but depends on the tolerance.

Computing the appGCD has been studied by many au-
thors, and many methods were proposed so far: methods
for univariate polynomials are quasi-GCD method [25], PRS
(polynomial remainder sequence) [28] and stabilized PRS
methods [32], SVD (singular-value decomposition) methods
[6, 36, 17], ε-GCD method [9], QRGCD method [18, 38,
7], Padé-GCD method [19], methods based on structured-
matrix [37, 3, 14], STLN (structured total least norm) meth-
ods [13, 34], method using Barnett’s theorem [8], subspace
method [21], ERES (Extended-Row-Equivalence and Shift-
ing operations) method [15], and so on [2]. The PRS method
is unstable when the leading coefficient is small, however,
the stabilized PRS method is able to compute the appGCD
stably even if the leading coefficient is small, and it is effi-
cient; the cost is O(m2) usually. The QRGCD method com-
putes the appGCD stably and directly by using the QR-
decomposition of the Sylvester matrix of given polynomials.
This method is similar to the stabilized PRS method, the
difference is how thoroughly the pivoting is made, and the
cost is O(m3). Zhi [37] and Bini-Boito [3] improved the cost
from O((m+n)3) to O(5(m+n)2) and O(2m2), respectively.
Bini-Boito’s method is based on the GKO (Gohberg-Kailath-
Olshevsky) method, which performs LU-decomposition of
the Cauchy-like matrix with partial pivoting [10], and it
computes appGCD stably and efficiently in most cases [27,
26]. On the other hand, Zhi’s method is based on the fast
QR-decomposition without pivoting. Although both meth-
ods utilize the displacement technique, Zhi’s method often
becomes unstable, because it does not make pivoting.

The half-GCD method with integer coefficients is known
as a fast method for computing exact GCD and its cofactors
[16]. However, since this method is based on the Euclidean
elimination, the computation of appGCD becomes unstable.
Therefore, it is impossible to apply the half-GCD method to
our case without any improvement.

The main purpose of this paper is to compute the appGCD
of univariate polynomials stably and faster than other meth-
ods. In 2, we explain the stabilized PRS method [32] and im-
prove the method to stabilize further. In 3, we explain Zhi’s
method briefly and investigate the relationship between the
method and the improved PRS method. In 4, we propose
a modified half-GCD method for polynomials with floating-
point number coefficients, so as to compute the appGCD
stably and efficiently. In 5, we survey the GKO method and
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explain that our new technique cannot be incorporated with
the GKO method. In 6, we show some results of experiments.
In 7, we give conclusion and remarks.

1.1 Estimating cancellation errors
In order to estimate cancellation errors, we unitize effec-

tive floating-point number, or efloat number, in short. This
number was proposed by Kako-Sasaki [12], and it allows us
to estimate the cancellation error neglecting the rounding
error. The efloat number is expressed as #E[f, e]; f is called
the value-part and it is the same as conventional floating-
point number, e is called error-part, showing the cancellation
error. In our computational environment, we set e = |f | · εM

initially. Arithmetics of efloat numbers is as follows.

#E[f1, e2] + #E[f2, e2] = #E[f1 + f2,max{e1, e2}],
#E[f1, e2]−#E[f2, e2] = #E[f1 − f2,max{e1, e2}],
#E[f1, e2]×#E[f2, e2] = #E[f1 × f2,max{e1|f2|, e2|f1|}],
#E[f1, e2]÷#E[f2, e2] = #E[f1 ÷ f2,max{e1

˛̨̨
f2

f1
2

˛̨̨
,
e2

|f1| }].

If |f | < e then we regard #E[f, e] as 0. The complex number
g = a+ b̂ı, where a, b ∈ R and ı̂ is the imaginary unit, is con-
verted to #E[a, ea] + #E[b, eb] ı̂; this conversion is different
from the original one in [12].

2. IMPROVING PRS METHODS

2.1 Stabilized PRS method
We first explain the stabilized method. Let P1(x) and

P2(x) be polynomials in F[x], expressed as follows (fm 6=
0, gn 6= 0 and m ≥ n).

P1(x) = f(x) = fmx
m + · · ·+ f0, (2.1)

P2(x) = g(x) = gnx
n + · · ·+ g0. (2.2)

Below, every given polynomial f is normalized as ||f || = 1.
The PRS method is the oldest method for computing poly-

nomial GCD. However, it is unstable when the leading coeffi-
cient of Pi is small, where Pi is an element of PRS (P1, P2, . . . ,
Pi = rem(Pi−2, Pi−1), . . . ). The instability is caused by the
term cancellation. The cancellation mechanism in the PRS
method with floating-point number coefficients may be ex-
plained as follows [32, 30].

If δ = |gn|/|fm| � 1 then the remainder h = rem(f, g) is
nearly a multiple of rest(g) (in [32], h is called a dummy
of g and denoted by dummy(g)). Hence, cancellations of
O(1/δd+1) occur in the computation of rem(g, h), where
d = m−n ≥ 0. We call the reduction of g by h self-reduction.
In other words, the self-reduction is the reduction of g by
dummy(g). In order to compute the appGCD stably using
the PRS, we have to avoid the self-reduction. Then, we are
led to the stabilized PRS method [32]. In this method, we
perform the reduction of Pi−1 and Pi (deg(Pi−1) < deg(Pi))
for i ≥ 2, as follows.

• If |lc(Pi)|/|lc(Pi−1)| < η ≤ 1, we compute Pi+1 as

Pi+1 = (xdi − a)Pi − lc(Pi)

lc(Pi−1)
Pi−1, (2.3)

where di = deg(Pi−1)− deg(Pi) and a is a polynomial
such that deg(a) < di and ||a|| ≈ 1. Then, we reduce
Pi−1 by Pi+1.

• Otherwise, we compute Pi+1 = rem(Pi−1, Pi) = Pi−1−
quo(Pi−1, Pi)Pi.

The stabilized PRS method generates cofactor sequence
((A1, B1), (A2, B2), . . . , (Ak, Bk)), satisfying

AiP1 +BiP2 = Pi (i = 1, 2, . . .). (2.4)

It should be noted that in the stabilized PRS method, the
conventional degree conditions deg(Ai) < deg(P2)−deg(Pi)
and deg(Bi) < deg(P1)− deg(Pi) are not satisfied [32].

Remark 1 ([32, 22]). We had set η = 0.2 in [32] and
η = 1.0 in [22]. If we use the stabilized PRS method with
small η, the computation sometimes becomes unstable for
polynomials of large degrees. The stabilized PRS method
with η = 1 is close to the QRGCD method. When we use
the stabilized PRS method to polynomials of large degree,
we are necessary to set the precision higher.

2.2 Double-side reduction
In Zhi’s method, not only the leading coefficient but also

the constant term are eliminated. This leads us to introduce
the following reduction, which we call double-side reduction.

Definition 1 (Double-side reduction). Let f and g be
polynomials with fm · gn 6= 0 and f0 · g0 6= 0. A double-side
reduction of f and g is defined as 

f ′

g′

!
:= d-red

 
f

g

!
=

„
1 −γxd

−ω/x 1/x

« 
f

g

!
, (2.5)

where

γ = fm/gn, ω = g0/f0 (2.6)

and d = m − n ≥ 0. By this operation, we can reduce the
leading coefficient of f and the constant term of g simulta-
neously. When f0 ·g0 = 0, we first transform (f, g) to (f ′, g′)
as  

f ′

g′

!
=

„
1 a
±a 1

« 
f

g

!
, (2.7)

where a is a number such that |a| ≈ 1, then we apply double-
side reduction to f ′ and g′. Then, we have

deg(f ′),deg(g′) < max{deg(f),deg(g)}.
We note that the double-side reduction does not assure

gcd(f, g) = gcd(f ′, g′). For example, we perform the double-
side reduction of f1 = x5 + 1 and g1 = x3 + 1. Then,„
f ′1
g′1

«
=

„
1 −x2

−1/x 1/x

«„
f1

g1

«
=

„
x2 − 1

−x2(x2 − 1)

«
.

Thus, x + 1 = gcd(f1, g1) 6= gcd(f ′1, g
′
1) = x2 − 1. Another

example is f2 = x5 + 1 and g2 = x3 − 1:„
f ′2
g′2

«
=

„
1 −x2

−1/x 1/x

«„
f2

g2

«
=

„
x2 + 1

−x2(x2 + 1)

«
.

We see gcd(f ′2, g
′
2) = x2 + 1 6= gcd(f2, g2) = 1.

Every element Pi(x) in the dual-PRS is represented as

Pi =
Ai
xαi

f +
Bi
xαi

g ∈ F[x].

Hence gcd(f, g) divides xαiPi for all i. If gcd(f, Pi) = 1 or
gcd(g, Pi) = 1 then gcd(f, g) = 1. On the other hand, since

gcd(f ′, g′) = gcd(gcd(rest(f)− γxdrest(g)),−wf̃ + g̃),
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gcd(f ′, g′) may be divided by gcd(GCDfg,GCDf̃ g̃), where

f̃ = (f−f0)/x, g̃ = (g−g0)/x,GCDfg = gcd(rest(f), rest(g))

and GCDf̃ g̃ = gcd(f̃ , g̃). Note that f̃ and g̃ are polynomi-

als, and that rest(f), rest(g), f̃ and g̃ are not elements of the
dual-PRS. Actually, f and g are expressed by cofactors as

f1 = (x− 1)(x4 + x3 + x2 + x+ 1)

= (x− 1)× ((x+ 1)(x3 + x) + 1)

= (x− 1)× (x4 + (x+ 1)(x2 + 1)),

g1 = (x− 1)× ((x+ 1)x+ 1)

= (x− 1)× (x2 + (x+ 1)),

so gcd(f ′1, g
′
1) = (x − 1) × (x + 1). On other other hand, f

and g are split into two parts, as follows.

f = f (1) + ef (2) = ef (3)x+ f (4),

g = g(1) + eg(2) = eg(3)x+ g(4).

Thus, f ′ = g(1)f − f (1)g = e(g(1)f (2) − f (1)g(2)) and g′ =

(g(4)f − f (4)g)/x = e(g(4)f (3) − f (4)g(3)), hence we have
gcd(f ′, g′) = e. Similarly, f2 and g2 are expressed as

f2 = (x− 1)((x2 + 1)(x2 + x) + 1)

= (x− 1)(x4 + (x2 + 1)(x+ 1)),

g2 = (x+ 1)(x2 − x+1).

We see rest(x2−x+1) 6= x2 +1, gcd(f ′1, g
′
2) = x2 +1. There-

fore, we must check whether or not polynomial obtained is
the GCD.

Remark 2 (occurence of self-reduction).
The case gcd(f, g) 6= gcd(f ′, g′) is also caused by large errors
due to the self-reduction. We consider the following three
cases.

1. Case 1: |γ| ≈ |ω|.
If |γ| ≈ |ω| ≈ 1 then no self-reduction occurs and
we can perform the reduction of f and g stably. Fur-
thermore, if |γ| ≈ |ω| � 1, since f ′ = f − γxdg =
dummy(f) and g′ = (−ωf+g)/x = dummy(g), no can-
cellation error occurs in the succeeding reduction of f ′

and g′. Similarly, if |γ| ≈ |ω| � 1, no cancellation error
occurs in the succeeding reduction of f ′ = dummy(f)
and g′ = dummy(g).

2. Case 2: |γ| � 1� |ω|.
In this case, f ′ and g′ are nearly multiples of f . Then,
self-reductions of O(|ω/γ|) occur in the succeeding
double-side reduction of f ′ and g′.

3. Case 3: |γ| � 1� |ω|.
In this case, f ′ and g′ are nearly a multiples of g.
Then, self-reductions of O(|γ/ω|) occur in the succeed-
ing double-side reduction of f ′ and g′.

The reason why we introduced the double-side reduction
in that we can perform pivoting in the reduction. Pivoting
is performed in Cases 2 and 3: we transform (f, g) to (f̂ , ĝ),
as follows. 
f̂

ĝ

!
=

„
1 a
b 1

« 
f

g

!
, a, b ∈ F such that |a|, |b| ≈ 1.

Then, (f̂ , ĝ) satisfies |lc(f̂)|/|lc(ĝ)| ≈ 1 and |ĝ0|/|f̂0| ≈ 1,
hance this operation is pivoting. In particular, if we set

b = −a and b = a then the above transformed matrix be-
comes the Givens rotation matrix and the hyperbolic rota-
tion matrix, respectively.

We call PRS method using double-side reduction with piv-
oting dual-PRS method, which is described in the following
algorithm. The cost of dual-PRS method is O(m2). Below,
pd-red denote the double-side reduction with pivoting.

Algorithm 1 (Dual-PRS method).
Input: f = P1(x), g = P2(x) and tolerance ε.

Output: gcd(f, g)
i := 2;
(P3 := f, P4 := g)

LP: if deg(P2i−1) = 0 or deg(P2i) = 0
then P2i−1, P2i are candidates of appGCD.

else if ||P2i+1|| < O(ε) or ||P2i+2|| < O(ε)
then P2i−1, P2i are candidates of appGCD.
(if f, g ∈ {P2i−1, P2i}, then GCD)

otherwise (P2i+1, P2i+2) = pd-red(P2i−1, P2i).
i := i+ 1;
goto LP;

Proposition 1. The dual-PRS method terminates and out-
puts the GCD.

Proof. Assuming that Pk is a candidate of gcd(f, g),
we compute gcd(f, Pk) or gcd(g, Pk) by applying the dual-
PRS method. When gcd(f, Pk) = 1 or gcd(g, Pk) = 1, f

and g are relatively prime, and when gcd(f, Pi) = P̃k′ with

deg(P̃k′) < deg(Pk), we compute gcd(f, P̃k′) or gcd(f, P̃k′).
Since deg(Pk) < max{deg(f), deg(g)}, algorithm terminates
and the appGCD is obtained

The dual-PRS method cannot generate polynomial cofac-
tors Ai and Bi, which satisfy (2.4). Usually, Ai and Bi are
in F[x, x−1].

Remark 3 (reduction and transformation).
We can carry out double-side reduction and transformation
with pivoting simultaneously, as follows (case of d = 0).„

1 γ̂
ŵ/x 1/x

«„
1 a
b 1

«

=

0B@ 1 + γ̂b a+ γ̂

(ŵ + b)

x

(ŵa+ 1)

x

1CA

=

0BBB@
t(b)lc(f) + t(ab)lc(g)

b · lc(f) + lc(g)

t(ab)lc(f) + t(a)lc(g)

b · lc(f) + lc(g)“ t(b)f0 + t(ab)g0

f0 + a · g0

”.
x
“ (t(ab)f0 + t(a)g0

f0 + a · g0

”.
x

1CCCA ,

(2.8)

where the function t(r) adds 1 to r, i.e., t(r) = r + 1 and

γ̂ =
lc(f) + a · lc(g)

b · lc(f) + lc(g)
, ŵ =

b · f0 + g0

f0 + a · g0
.

Here, we choose numbers a, b ∈ F as follows.

• If |γ| � |w| then t(b) 6= 0 and t(ab) 6= 0.

• If |γ| � |w| then t(a) 6= 0 and t(ab) 6= 0.
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Then, the norm of each coefficient in (2.8) is about 1. There-
fore, self-reduction does not occur in the reduction of f and
g. In this paper, we choose numbers a, b to satisfy 0.9 ≤
|a|, |b| ≤ 1.1 randomly.

2.3 Ill-conditioned polynomials and conversion
to well-conditioned ones

Although operation pd-red allows us to avoid the self-
reduction, there are ill-conditioned polynomials for which
the dual-PRS method (and most other methods, too) fails
to compute appGCD.

Example 1. (well-conditioned case)

f(x) = (x2 + 1)(x3 + 2x2 − 1),

g(x) = (x2 + 1)(0.001x3 + x2 + 1).

Applying the dual-PRS method with pivoting, we obtain the
following two polynomials as candidates of appGCD (we set
at εM = 10−15 initially in this example).

−#E[0.528 · · · , 1.0 e−15]x2 −#E[0.528 · · · , 1.0 e−15],

−#E[0.386 · · · , 1.0 e−15]x2 −#E[0.386 · · · , 1.0 e−15].

In fact, each polynomial is an appGCD of f and g with
tolerance O(10−15+1) = O(10−14).

Example 2. (ill-conditioned case)

f(x) = (0.001x2 + x+ 0.01)(x3 + 3x2 − 1),

g(x) = (0.001x2 + x+ 0.01)(x3 + 2x2 − x+ 1).

The common factor 0.001x2 + x + 0.01 has small leading-
coefficient and small constant term. Applying the dual-PRS
method with pivoting, we obtain the following two appGCDs.

#E[0.297 · · · e−8, 1.0 e−15]x2

+#E[0.297 · · · e−5, 0.3 e−14]x

+#E[0.297 · · · e−7, 0.2 e−16]

and

#E[0.314 · · · e−6, 0.3 e−15]x2

+#E[0.314 · · · e−3, 0.7 e−15]x

+#E[0.314 · · · e−5, 1.0 e−15].

We see big cancellation errors of O(109) and O(1012) oc-
curred in the above appGCDs, respectively. In this example,
we were able to compute appGCD with the sacrifice of big
cancellation errors. In the ill-conditioned case, big cancella-
tion occurs each time the leading term is eliminated. Hence,
for polynomials of high degrees, dual-PRS method fails to
give any significant result.

Fortunately, we can convert ill-conditioned polynomials to
well-conditioned ones, as follows.

We assume that every root of f(x) = 0 is bigger than 1
(if f does not satisfy this condition, we apply Greaffe root-
squaring technique [7]). Then, we have |fm| ≤ |fm−1| ≤
· · · ≤ |f0|. Put σf = maxi{(m− i)|fi|/|fm|}, then we have

|lc(f(σfx))|, |f0| ≈ ||f(σfx)||.
For given polynomials f and g, put σ = max{σf , σg}, and we

convert f and g into f̂ and ĝ as f̂ = f(σx) and ĝ = g(σx),
respectively. Then, the resulting polynomials are required
ones.

3. RELATIONSHIP BETWEEN DUAL-PRS
METHOD AND ZHI’S METHOD

In this section, we consider the relationship between the
dual-PRS method and Zhi’s method [37]. Zhi’s method is
based on a fast QR-decomposition of structured matrix and
the generalized Schur decomposition [11, 5] ofM5 in F2N×2N ,
where N = m+ n, the sum of degrees of given polynomials
[11]; for M5, see 3.1. The cost of Zhi’s method is O(5N2).
In 3.1, we explain a fast QR-decomposition of the Sylvester
matrix briefly, that is used in Zhi’s method. In 3.2, we show
the relationship between two methods.

3.1 Fast QR-decomposition
of the Sylvester matrix

Let M5 be a symmetric Toeplitz matrix, expressed as

M5 =

„
STS ST

S O

«
∈ F2N×2N .

Here, S = S(f, g) is the Sylvester matrix of f(x) and g(x),
expressed as

S(f, g) =

0BBBB@
fm gn
fm−1 fm gn−1 gn

... fm−1

. . .
... gn−1

. . .
...

. . .
...

. . .

1CCCCA ∈ FN×N .

Let F be the following lower shift square matrix:

F =

0BBB@
0
1 0

. . .
. . .

1 0

1CCCA .

The displacement of M5 w.r.t. F is denoted by ∇F (M5), and
defined to be ∇F (M5) = M5 − FM5F

T = GJGT , where G
is a 2N × 5 matrix and J is a signature matrix of the form

G =

„
f g f̃ g̃ 0
e1 en+1 en+1 0 e1

«
, J =

„
I2
−I3

«
.

Here,

f = (fm, · · · , f0, 0, · · · , 0)T , f̃ = (0, · · · , 0, fm, · · · , f1)T ,

g = (gn, · · · , g0, 0, · · · , 0)T , g̃ = (0, · · · , 0, gn, · · · , g1)T ,

and each ei = (0, . . . ,
i

1, 0, . . .) is the standard basis in FN .
Let S = QR be the QR-decomposition of S. A fast QR-
decomposition of S is done as follows, where Θi below is a
Givens matrix.

Algorithm 2 (Zhi’s method [37]).
Input: f and g

Output: Matrix LN =
`
RT

Q

´ ∈ F2N×N and appgcd(f, g).

Step 0: Put i := 1 and G1 := G.
Step 1: Convert Gi to proper form w.r.t. the first column,

and put Ḡi = GiΘi [5].
Step 2: Put ¯̀

i = Ḡi
`

1
0

´ ∈ F2N−i+1.
Then, the i-th column of matrix LN , denoted by
`i, is `i =

` 0
¯`i

´ ∈ F2N .

Step 3: Let i := i+ 1.
If i < N then perform the conversion„

0
Gi

«
:=

„
F`i−1 Ḡi−1

„
0

I

««
,

using Givens and hyperbolic rotations, and House-
holder transformation,
goto Step 1.
If i = N , we have the appGCD of f(x) and g(x).
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3.2 Rewriting Zhi’s method
using double-side reductions

We note that the above vectors f and g in FN corre-
spond to polynomials xn−1f and xm−1g in F[x], respectively.
Put p1 = xn−1f and p2 = xm−1g, then p1, p2 ∈ F[x] and
deg(p1) = deg(p2) = m+ n− 1.

For i = 1, . . . , n− 1 in Algorithm 2
Steps 1, 2, and 3 as a whole perform the transformation
from (p2i−1, p2i) to (p2i+1, p2i+2) satisfying deg(p2i−j) <
deg(p2(i+1)−j) for j = 1, 2.

Let Θ
(0)
i (x) ∈ F[x, x−1]2×2 be a matrix, obtained by ap-

plying the Givens rotation Θ
(0)
i ∈ F2×2 in Algorithm 2. By

this operation, p2i+1 and p2i+2 are obtained by eliminating
the leading coefficient of p2i−1 and the constant term of p2i,
simultaneously, as follows.„
p2i+1

p2i+2

«
=

1

x
Θ

(0)
i (x)

„
p2i−1

p2i

«
=

1q
1 + |γ(0)

i |2

 
1 −γ(0)

i

γ
(0)
i /x 1/x

!„
p2i−1

p2i

«
,

where γ
(0)
i = lc(p2i)/lc(p2i−1) ∈ F. This operation is the

same as the double-side reduction. After i rotations by

Θ
(0)
1 (x), . . . ,Θ

(0)
i (x), we obtain (p2i+1, p2i+2) expressed as

follows.„
p2i+1

p2i+2

«
=

1

xi
Θ

(0)
i (x) · · ·Θ(0)

1 (x)

„
p1

p2

«
=

1

xi

„
a2i+1 b2i+1

a2i+2 b2i+2

«„
p1

p2

«
,

where a2i+1, a2i+2 and b2i+1, b2i+2 are polynomials satisfying
deg(a2i+j),deg(b2i+j) ≤ i (j = 1, 2). Note that

a2i+2(x) = −xdeg(b2i+1+1)b2i+1(1/x),

b2i+2(x) = xdeg(a2i+1+1)a2i+1(1/x).

Here, pi/x is a polynomial in F[x] for 1 ≤ i ≤ n, however,
pi/x is not a polynomial for i > n.

For i > n in Algorithm 2
Put P1 = p2n−1 and P2 = p2n, then we have deg(P2i−1) =
deg(P2i) and gcd(P2i−1, P2i) = gcd(f, g). Suppose that we
computed (P2i−1, P2i) by Algorithm 2, then we generate
(P2i+1, P2i+2) satisfying deg(P2i+1) = deg(P2i+2) < deg(P2i)
and gcd(P2i+1, P2i+2) = gcd(f, g), as follows. First we com-

pute (P̆2i+1, P̆2i+2)T = Θ
(1)
i (P2i−1, P2i)

T . We set P2i+2 =

P̆2i+2, then gcd(f, g) divides P̆2i+2. However, deg(P2i+2) <

deg(P̆2i+1).

Polynomials f̃ = (f−f0)/x and g̃ = (g−g0)/x correspond

to vectors f̃ = Fnf and g̃ = Fmg, respectively. Let ψ :
F[x]→ F[x] be a shift mapping such that

P̆ (x) 7→ P̆ (x)− P̆ (0)

x
.

Then gcd(f, g) does not divide ψ(P̆2i+1). So, we transform

ψ(P̆2i+1) to P2i+1 satisfying gcd(f, g)|P2i+1 as follows; note

that f̃1 = f̃ and g̃1 = g̃.

1. Reduce f̃i by g̃i using the Givens rotation matrix Θ
(2)
i ∈

F2×2.

Θ
(2)
i

„
f̃i
g̃i

«
=

1q
1 + |γ(2)

i |

 
−γ(2)

i 1

1 γ
(2)
i

!„
f̃i
g̃i

«

=

„
f̆i+1

ği+1

«
=

„
f̃i+1

ği+1

«
,

where γ
(2)
1 = lc(g̃i)/lc(f̃i).

2. Reduce ği+1 by ψ(P̆2i+1) using the hyperbolic rotation
matrix Φi ∈ F2×2.

Φi

„
ψ(P̆2i+1)
ği+1

«
=

1p
1− |ρi|2

„
1 −ρi
−ρi 1

«„
ψ(P̆2i+1)
ği+1

«
=

„
P2i+1

g̃i+1

«
,

where ρi = lc(ği+1)/lc(ψ(P̆2i+1)). By [37] or [11, 5], we
set that P2i+1 satisfies either gcd(f, g)|P2i+1 or P2i+1 =
0.

Thus, we obtain (P2i+1, P2i+2) with deg(P2i+1) < deg(P2i−1)
and deg(P2i+2) < deg(P2i). The operations mentioned above
can be expressed as0BBB@

P2i+1

P2i+2

f̃i+1

g̃i+1

1

1CCCA = Q
(i)
Zhi ·

0BBB@
P2i−1

P2i

f̃i
g̃i
1

1CCCA .

Here, a matrix Q
(i)
Zhi, in F[x, x−1]5×5, is represented as

ci+1,i

0BBBBBBBBBBBB@

1

x

γ
(1)
i

x
ρi ρiγ

(2)
i − p̆2i+1,0

x

−γ(1)
i 1

−γ(2)
i 1

−ρi
x

−ρiγ
(1)
i

x
1 γ

(2)
i

p̆2i+1,0 ρi
x
1

1CCCCCCCCCCCCA
(3.1)

where ci+1,i ∈ F\{0}. Therefore, formulating Zhi’s method
as above, it becomes similar to the dual-PRS method. How-
ever, it is hard to treat the above matrix since the size is
large and every element is in F[x−1].

4. HALF-GCD METHOD
WITH DOUBLE-SIDE REDUCTION

The half-GCD method is a fast method using the Eu-
clidean elimination, the cost is O(log2(m) · m) [16]. How-
ever, the Euclidean elimination with floating-point numbers
is unstable [32]. In order to stabilize the half-GCD method
with floating-point numbers we employ the double-side re-
duction. In the Euclidean method, the remainder sequence
is computed to obtain GCD. On the other hand, in the half-
GCD method, GCD is computed by Schönhage’s 2× 2 quo-
tient matrix [16]. For polynomials with integer coefficients,
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the quotient matrix Qint is defined to satisfy„
g
r

«
= Qint

„
f
g

«
=

„
0 1
1 −q(x)

«„
f
g

«
, (4.1)

where q(x) = quo(f, g) is a polynomial. To incorporate the
half-GCD method for polynomials with floating-point num-
ber coefficients, we construct the quotient matrix as follows.

Qfp =
1

x

„
x −γ xd+1

−ω 1

«
∈ F[x, x−1]2×2. (4.2)

That is, we compute the quotient matrix by the double-side
reduction, so as to stabilize the GCD computation. This is
our key idea.

4.1 Divide-and-conquer technique
We can split polynomial f as follows.

f = f (1)xk1 + f (0), k1 = ddeg(f)/2e
= (f (11)xk2 + f (10))xk1 + (f (01)xk

′
2 + f (00))

= [(f (111)xk3 + f (110))xk2 + f (10)]xk1

+ [f (01)xk
′
2 + (f (001)xk

′
3 + f (000))]

= . . . .

In computing the quotient matrix Qfp, we compute num-

bers γ and w in (4.2) first by f (11), g(11), f (00) and g(00),

then by f (111), g(111), f (000) and g(000), and so on. Thus, we
perform the half-GCD method with floating-point number
coefficients as follows. Below, we assume that f and g are
split as f = fhx

k1 + f` and g = ghx
k1 + g`, respectively.

Algorithm 3 (Half-GCD method; HGCD).
Input: fh, f`, gh, g`

with deg(fh) = deg(gh) ≤ deg(f`) = deg(g`).
Steps: if deg(fh) = 0 then return a matrix in (4.2)

else
split fh and f` as
fh = fh,1x

k + fh,0, f` = f`,1x
k + f`,0,

and split gh and g` as
gh = gh,1x

k + gh,0, g` = g`,1x
k + g`,0,

where k = ddeg(fh)/2e.
R1 = HGCD(fh,1, gh,1, f`,0, g`,0);
(q1, q2)T = R1(fh, gh) and (r1, r2)T =
R1(f`,0, g`,0)
R2 = HGCD(q1, q2, r1, r2);
return R2 ·R1;

end;;

Example 3. (Computing a half-GCD)

f(x) = (x2 + 1)(x5 + 2x3 − 1)

= x7 + #E[3.0, 3.0 e−15]x5 + #E[2.0, 2.0 e−15]x3

− x2 − 1,

g(x) = (x2 + 1)(0.001x5 + x2 + 1)

= #E[0.001, 1.0 e−18]x7 + #E[0.001, 1.0 e−18]x5

+ x4 + #E[2.0, 2.0 e−15]x2 + 1.

Applying the half-GCD method, we obtained a matrix

(mi,j)/x
3, 1 ≤ i, j ≤ 2, where

m11 = x4 −#E[1.99 · · · , 2.99 e−15]x2

+ #E[999. · · · , 9.99 e−13]x,

m12 = #E[1000.0, 1.0 e−12]x4

− #E[1.99 · · · , 2.99 e−15]x2

+ #E[999. · · · , 9.99 e−13]x,

m21 = x3 −#E[1.99 · · · , 2.99 e−15]x,

m22 = #E[1000.0, 1.0 e−12]x3

− #E[1.99 · · · , 2.99 e−15]x.

Remark 4 (Applicability of half-GCD mehotd).
The computation of quotient matrix Qfp cannot be done
efficiently for the stabilized PRS method [32], its improved
version [22] and Zhi’s method [37]. The reason is as follows.

• Original stabilized PRS method
Suppose we have computed P3 according to formula
(2.3). After this, in order to avoid the self-reduction,
we check the smallness of |lc(P3)/lc(P1)| again.

If |lc(P3)/lc(P1)| is small, we compute P4 from P1 and
P3 as in 2.1. Therefore, we cannot determine the quo-
tient q(x) for rem(P2, P3) because we do not compute
the remainder. That is, we cannot apply half-GCD
technique to stabilized PRS method directly.

• Its improved version
This method is close to the QRGCD method but it is
still close to the stabilized PRS method. Hence, half-
GCD technique is not directly applicable to the im-
proved version.

• Zhi’s method
Since the size of quotient matrix is 5× 5, as expressed
in (3.1), half-GCD technique is not directly applicable
to Zhi’s method.

4.2 Complexity
The complexity of half-GCD method for polynomials in

F[x] is estimated as follows.

Lemma 1 (Complexity of half-GCD mehtod).
The cost T (m) of half-GCD satisfies the inequality

T (m) ≤ 2 · T (
m

2
) + cM(m). (4.3)

Here, m = max{deg(f), deg(g)}, M(n) is the cost of multi-
plication of polynomials with degree m, and c is a constant.

Proof. In our method, we carry out two recursive calls
of HGCD for polynomials of degree m/2 and several multi-
plication of 2× 2 matrices whose entries are polynomials of
degree m. Hence, the lemma holds.

From lemma 1, we obtain the cost of HGCD as follows.

Theorem 2 (Complexity).
The cost T (m) is bounded as follows.

T (m) ≤ cM(m) log(m). (4.4)
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5. FAST LU-DECOMPOSITION
USING GKO METHOD

The GKO (Gohberg-Kailath-Olshevsky) method is a fast
LU-decomposition of the Cauchy-like matrix, and the cost
is O(n2) for the n × n matrix. In this section, we explain
the LU-decomposition of the Cauchy-like matrix and of the
Toeplitz-like matrix [3], respectively. Bini-Boito proposed to
compute the appGCD by utilizing the GKO method [3]. We
explain the GKO method first.

Let C1 be the Cauchy-like matrix of order n, expressed as

C1 = (c
(1)
i,j )i,j =

“g
(1)
i · b(1)

j

fi − aj
”
i,j
.

Here, g
(1)
i = (g

(1)
i,1 , g

(1)
i,2 ) ∈ F1×2 and b

(0)
j = (b

(1)
1,j , b

(1)
2,j)

T ∈
F2×1 for 1 ≤ i, j ≤ n. Put ∇F1,A1(C1) = F1C1 − CA1,
where F1 = diag(f1, . . . , fn), and A1 = diag(a1, . . . , an),
∇F1,A1(C1) can be decomposed as ∇F1,A1(C1) = G1B1,
where G1 = (g1, . . . , gn)T ∈ Fn×2 and B1 = (b1, . . . , bn) ∈
F2×n. Applying the GKO method, the LU-decomposition of
C1, i.e., C1 = L1U1, is done as follows.

1. Construct G2 = (g
(2)
1

T
, . . . , g

(2)
n−1

T
)T ∈ F(n−1)×2 and

B2 = (b
(2)
1

T
, . . . , b

(2)
n−1

T
) ∈ F2×(n−1) as

 
0

G2

!
= G1 − 1

c
(1)
1,1

0BB@
c
(1)
1,1

...

c
(1)
n,1

1CCA g
(1)
1 , (5.1)

`
0 B2

´
= B1 − 1

c
(1)
1,1

b
(1)
1

`
c
(1)
1,1, · · · , c(1)

1,n

´
. (5.2)

Then, the 1st row of L1 is 1/c
(1)
1,1(c

(1)
1,1, . . . , c

(1)
n,1)T and

the 1st column of U1 is
`
c
(1)
1,1, · · · , c(1)

1,n

´
. The (G2, B2)

is a generator-pair of the Schur complement C2 of C1;
∇F2,A2(C2) = F2C2 − C2A2 = G2B2, where F2 =
diag(a2, . . . , an) and A2 = diag(a2, . . . , an).

2. Continue the computation of generator-pair (Gi, Bi)
recursively, until L and U are constructed.

Note that the pivoting does not destroy the structure of
the Cauchy-like matrix. Therefore, using the GKO method,
we can perform the LU-decomposition with partial pivoting,
and the cost is O(n2).

Next, we explain Bini-Boito’s method. The Sylvester ma-
trix S(f, g) is not the Cauchy-like matrix but the Toeplitz-
like matrix [3]. We can transform the Toeplitz-like matrix to

the Cauchy-like matrix, as follows. We set matrices G̃1 and
B̃1 as follows.

G̃1 =

0@ 0Tm−1 0Tm+n−1

1
0n 1

1A ,

B̃1 =

„ −fm−1, . . ., −f1,−f0 + gn, gn−1, . . ., g1, g0 + fm
−gn−1, . . ., −g1,−g0 +fm, fm−1, . . ., f1, f0 + gn

«
.

Put F =
1√
n

“
e2π̂ı/2×(i−1)(j−1)

”
i,j

and

D0 = diag(1, e
2π̂ı
n , · · · , e 2(n−1)π̂ı

n ),

D1 = diag(e
π̂ı
n , e

3π̂ı
n , · · · , e (2n−1)π̂ı

2n ),

D−1 = diag(1, e
π̂ı
n , · · · , e (2n−1)π̂ı

2n ).

We transform G̃1 and B̃1 to G1 = FG̃1 and BH1 = FD0B̃
H
1 ,

then the product G1B1 is the displacement of the Cauchy-
like matrix. The cost of transformation is O(n2). Therefore,
we can employ the GKO method to compute the appGCD.
The cost is O(m2).

Algorithm 4 (Bini-Boito’s method [3]).

1. Determine the degree, let is be k, of the approximate
GCD; k can be determined by the rank of the Sylvester
matrix of given polynomials f and g.

2. Compute the GCD and the cofactors f/c and g/c of f
and g. Actually, they are computed as follows.

• Method 1: use the Sylvester matrix.
Compute the null-space of subresultant matrix;
cofactor corresponds to the null-space of subre-
sultant matrix.

• Method 2: use the Bezout matrix.
the GCD is computed by utilizing Barnett’s the-
orem. See [3] in details.

3. Refinement (optional) [36, 3]

Unfortunately, we cannot incorporate the half-GCD method
with the GKO method. The reason is so follows. In the GKO
method, pivoting iscrutically important and the pivoting is
made by scannnig the whole matrix.

6. EXPERIMENTS
We have implemented the dual-PRS method and half-

GCD method for floating-point number coefficients in Maple.
The following timing data (in milli-seconds) were obtained
on Core2Duo running at 2.4GHz under WindowsXp.
Core2Duo is a dual-core CPU of Pentium, but actually we
tested on single-core CPU only, which is equivalent to Pen-
tium running at 2.4GHz.

We have tested appgcd(fi, gi), where fi and gi (i = 1, . . . , 6)
are polynomials with coefficients of fixed-precisions floating-
point numbers of εM = 10−10 and 10−32, respectively. The
computation with floating-point numbers depends on which
kind of floating-point numbers are used. So, we have car-
ried out the computation by both the hardware arithmetics
when εM = 10−10 (default precision in Maple) and the soft-
ware arithmetics. We generated polynomials fi, gi by Maple
as follows.

> d[1] := 10; d[2] := 20; d[3] := 50;

d[4] := 100; d[5] := 200; d[6] :=1000;

> c:=x^2 + x + 1: # fix the GCD

> for i from 1 to 6 do

for j from 1 to 10 do

ff[i,j]:=randpoly(x,dense,degree=d[i]-2):

gg[i,j]:=randpoly(x,dense,degree=d[i]-2):
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f[i,j]:=expand(c*ff[i]): # given poly. f

g[i,j]:=expand(c*gg[i]): # given poly. g

end do:

end do:

• i = 1: deg(f) = deg(g) = 10

• i = 2: deg(f) = deg(g) = 20

• i = 3: deg(f) = deg(g) = 50

• i = 4: deg(f) = deg(g) = 100

• i = 5: deg(f) = deg(g) = 200

• i = 6: deg(f) = deg(g) = 1000

Tables below show the average times and the accuracies
for each method; the accuracy is estimated by using efloat
numbers.

6.1 Comparison of
dual-PRS with QRGCD methods

We first show test of dual-PRS method by computing it
with QRGCD method.

Table 1 shows the result of experiment on hardware arith-
metics with Digits=10 (εM = 10−10).

Dual-PRS QRGCD
i Ave.CPU Error Ave.CPU Error
1 0.125 e-10 0.036 e-10
2 0.191 e-10 0.040 e-10
3 0.434 e-9 0.106 e-10
4 1.022 e-8 0.347 e-7
5 3.548 e-7 1.266 e-6

Table 1: hardware arithmetics: Digits=10

Although, the timing data on the dual-PRS method show
O(m2) behavior, those on the QRGCD method do not show
O(m3) behavior but show O(m2) behavior; the QRGCD
method is abnormally fast at this precision [32].

Table 2 shows the result of experiment on software arith-
metics with Digits=32.

Dual-PRS QRGCD
i Ave.CPU Error Ave.CPU Error
1 0.105 e-31 0.100 e-31
2 0.237 e-31 0.443 e-31
3 0.451 e-30 6.006 e-30
4 1.234 e-29 about 80 sec. e-26
5 3.734 e-28 over 600 sec. —
6 103.365 e-20 — —

Table 2: software arithmetics: Digits=32

We see that the dual-PRS method is much faster than the
QRGCD method. Furthermore, it is stabler than the QRGCD
method. If we use 32-digits precision, the dual-PRS method
can compute appGCD pretty safely for polynomials of de-
grees . 200 ∼ 1000, so long as we use higher precision. On
the other hand, applying the stabilized PRS method, we can-
not compute the appGCD for polynomials of degrees & 50
[32].

6.2 Comparison of dual-PRS method
with half-GCD method

Next, we show a test of half-GCD method. In the half-
GCD method with floating-point numbers, we use the FFT-
based multiplication; in order to attain higher efficiency in
the divide-and-conquer methods, fast multiplication is nec-
essary.

The result is shown in Table 3, where the fast multipli-
cation was used only for [i = 6] case, i.e., for polynomials
of degree 1000. For other cases, old-fashioned multiplication
seems to be not bad.

Dual-PRS HGCD
i Ave.CPU Error Ave.CPU Error
1 0.105 e-31 0.195 e-31
2 0.237 e-31 0.403 e-31
3 0.451 e-30 1.417 e-30
4 1.234 e-29 3.091 e-29
5 3.734 e-28 7.961 e-28
6 103.365 e-20 87.423 e-22

Table 3: software arithmetics: Digits=32

Table 3 shows that the dual-PRS method is faster than
the half-GCD method, except for degree 1000.

7. CONCLUSION
In this paper, we proposed two methods.
One method is the dual-PRS method, devised by consid-

ering Zhi’s method. In [32, 18], authors pointed out that
there is a relationship between the PRS method and the
QR-decomposition of Sylvester matrix, i.e., the QRGCD
method. This means that the PRS method can be rewritten
by QRGCD method. In this paper, we showed a relationship
between the dual-PRS method and a fast QR-decomposition
of the Sylvester matrix, i.e., Zhi’s method. For univariate
polynomials, the dual-PRS method works efficiently and sta-
bly for polynomials of degree . 200 ∼ 1000 so long as we
employ higher precisions.

Another method is the half-GCD method. In order to sta-
bilize the divide-and-conquer computation, we utilize the
dual-PRS technique in this method, too.

Both methods are fast and stable, because the reduction
and the pivoting are carried out simultaneously. However,
our current versions are very crude, and substantial improve-
ment are required.
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