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Classical polylogarithms are holomorphic functions defined on the unit disk |z| < 1
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for every integer s > 0. We retrieve the Riemann function as ((s) := Lis(1). Also,

we obtain classical polylogarithms as iterated integrals of the two differential forms
wo=dz/zetw =dz/(1—2):

Lig(z) = /0 wi twy for z € C—{0,1} and s > 1. (1)
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Therefore, classical polylogarithms are encoded by binary words of the form w = xjx;.

For instance,

Generalized polylogarithms Li,(z) are encoded by arbitrary words w € X* over
the alphabet X = {xg,2z1}. We will show how word combinatorics enables the com-
putation of the asymptotic development and monodromy of these functions together
with the relations between the multiple zeta values (MZV) obtained after defining

C(w) := Li,(1).

The link with differential geometry passes through the differential equation satisfied

by the generating power series of the polylogarithms L(z Z Li,(2z) w. This

weX*
equation

dL(2) = (wo ® 2o + w1 ® 21)L(2)

shows that dL(z) - L7!(z) = wy ® 2o + w; @ 71 is a Maurer-Cartan form with values in
the free Lie algebra generated by x( et xy.



