Differential geometry, words combinatorics and polylogarithms

Michel Petitot (Université de Lille 1)

September 28, 2003

Classical polylogarithms are holomorphic functions defined on the unit disk |z| < 1

$$\operatorname{Li}_{s}(z) = \sum_{n=1}^{\infty} \frac{z^{n}}{n^{s}}$$

for every integer s > 0. We retrieve the Riemann function as $\zeta(s) := \text{Li}_s(1)$. Also, we obtain classical polylogarithms as iterated integrals of the two differential forms $\omega_0 = dz/z$ et $\omega_1 = dz/(1-z)$:

$$\text{Li}_{s}(z) = \int_{0}^{z} \omega_{0}^{s-1} \omega_{1} \text{ for } z \in \mathbb{C} - \{0, 1\} \text{ and } s \ge 1.$$
(1)

For instance,

$$\text{Li}_{2}(z) = \int_{0}^{z} \frac{dz_{1}}{z_{1}} \int_{0}^{z_{1}} \frac{dz_{2}}{1-z_{2}} = \int_{0}^{z} \omega_{0} \omega_{1}$$

$$\text{Li}_{3}(z) = \int_{0}^{z} \frac{dz_{1}}{z_{1}} \int_{0}^{z_{1}} \frac{dz_{2}}{z_{2}} \int_{0}^{z_{2}} \frac{dz_{3}}{1-z_{3}} = \int_{0}^{z} \omega_{0} \omega_{0} \omega_{1}$$

Therefore, classical polylogarithms are encoded by binary words of the form $w = x_0^* x_1$.

Generalized polylogarithms $\operatorname{Li}_w(z)$ are encoded by arbitrary words $w \in X^*$ over the alphabet $X = \{x_0, x_1\}$. We will show how word combinatorics enables the computation of the asymptotic development and monodromy of these functions together with the relations between the *multiple zeta values* (MZV) obtained after defining $\zeta(w) := \operatorname{Li}_w(1)$.

The link with differential geometry passes through the differential equation satisfied by the generating power series of the polylogarithms $L(z) := \sum_{w \in X^*} Li_w(z) w$. This

equation

$$d\mathbf{L}(z) = (\omega_0 \otimes x_0 + \omega_1 \otimes x_1)\mathbf{L}(z)$$

shows that $dL(z) \cdot L^{-1}(z) = \omega_0 \otimes x_0 + \omega_1 \otimes x_1$ is a Maurer-Cartan form with values in the free Lie algebra generated by x_0 et x_1 .