
Optimizing Algorithms and Code for
Data Locality and Parallelism

Marc Moreno Maza

University of Western Ontario, Canada

Chengdu HPC Summer School
July 20-24, 2015

Canada in 4 pictures

High-performance computing and symbolic computation

Research themes

Symbolic computation: computing exact solutions of algebraic
problems on computers with applications to mathematical sciences
and engineering.

High-performance computing: making best use of modern computer
architectures, in particular hardware accelerators (multi-core
processors, graphics processing units).

Research projects

The RegularChains library: solving systems of algebraic equations and
integrated into the computer algebra system Maple.

The Basic Polynomial Algebra Subroutimes (BPAS) and CUDA
Modular Polynomial (CUMODP) libraries: hardware accelerator
support for symbolic computation.

The Meta Fork compilation framework: a programming environment
for hardware accelerators, supported by IBM Toronto Labs..

Current students and alumni

Current students

Parisa Alvandi, Ning Xie, Xiaohui Chen, Li Zhang, Haowei Chen, Yiming
Guan, Davood Mohajerani, Steven Thornton and Robert Moir.

Alumni

Moshin Ali (ANU, Australia) Jinlong Cai (Microsoft), Changbo Chen
(CIGIT), Sardar Anisula Haque (CiTi) Zunaid Haque (IBM) François
Lemaire (U. Lille 1, France) Xin Li (U. Carlos III, Spain) Wei Pan (Intel)
Paul Vrbik (U. Newcastle, Australia) Yuzhen Xie (COT) . . .

Solving polynomial systems symbolically

Figure: The RegularChains solver designed in our UWO lab can compute the real
solutions of any polynomial system exactly.

Our polynomial system solver is at the core of Maple

Figure: Maplesoft, the company developing Maple, demonstrates the
RegularChains solver designed in our UWO lab, in order to advertise Maple.

High-performance computing: models of computation

Let K be the maximum number of thread
blocks along an anti-chain of the
thread-block DAG representing the program
P. Then the running time TP of the
program P satisfies:

TP ≤ (N(P)/K + L(P))C(P),

where C(P) is the maximum running time of

local operations by a thread among all the

thread-blocks, N(P) is the number of

thread-blocks and L(P) is the span of P.

Our UWO lab develops mathematical models to make efficient use of
hardware acceleration technology, such as GPUs and multi-core processors.

High-performance computing: parallel program translation

int main(){

int sum_a=0, sum_b=0;

int a[5] = {0,1,2,3,4};

int b[5] = {0,1,2,3,4};

#pragma omp parallel
{

#pragma omp sections
{

#pragma omp section
{

for(int i=0; i<5; i++)

sum_a += a[i];

}

#pragma omp section
{

for(int i=0; i<5; i++)

sum_b += b[i];

} } }

}

int main()

{

int sum_a=0, sum_b=0;

int a[5] = {0,1,2,3,4};

int b[5] = {0,1,2,3,4};

meta_fork shared(sum_a){
for(int i=0; i<5; i++)

sum_a += a[i];

}

meta_fork shared(sum_b){
for(int i=0; i<5; i++)

sum_b += b[i];

}

meta_join;
}

void fork_func0(int* sum_a,int* a)

{

for(int i=0; i<5; i++)

(*sum_a) += a[i];

}

void fork_func1(int* sum_b,int* b)

{

for(int i=0; i<5; i++)

(*sum_b) += b[i];

}

int main()

{

int sum_a=0, sum_b=0;

int a[5] = {0,1,2,3,4};

int b[5] = {0,1,2,3,4};

cilk_spawn fork_func0(&sum_a,a);

cilk_spawn fork_func1(&sum_b,b);

cilk_sync;
}

Our lab develops a compilation platform for translating parallel
programs from one language to another; above we translate from
OpenMP to CilkPlus through MetaFork.

High-performance computing: automatic parallelization

Serial dense univariate polynomial multiplication

for(i=0; i<=n; i++){

for(j=0; j<=n; j++)

c[i+j] += a[i] * b[j];

}

Dependence analysis suggests to set t(i, j) = n− j and p(i, j) = i + j. Then, the work is
decomposed into blocks having good data locality.

GPU-like multi-threaded dense univariate polynomial multiplication

meta_for (b=0; b<= 2 n / B; b++) {

for (u=0; u<=min(B-1, 2*n - B * b); u++) {

p = b * B + u;

for (t=max(0,n-p); t<=min(n,2*n-p) ;t++)

c[p] = c[p] + a[t+p-n] * b[n-t];

}

}

We use symbolic computation to automatically translate serial programs to GPU-like programs.

Research projects with publicly available software

www.bpaslib.org
www.metafork.org

www.cumodp.org www.regularchains.org

www.bpaslib.org
www.metafork.org
www.cumodp.org
www.regularchains.org

Application to mathematical sciences and engineering

Figure: Toyota engineers use our software to design control systems

What is this mini-course about?

Optimizing algorithms and code

Improving code performance is hard and complex.

Requires a good understanding of the underlying algorithm and
implementation environment (hardware, OS, compiler, etc.).

Optimizing for data locality

Computer cache memories have led to introduce a new complexity
measure for algorithms and new performance counters for code.

Optimizing for data locality brings large speedup factors.

Optimizing for parallelism

All recent home and office desktops/laptops are parallel machines;
moreover “GPU cards bring supercomputing to the masses.”

Optimizing for parallelism improves the use of computing resources.

And optimizing for data locality is often a first step!

What is this mini-course about?

Optimizing algorithms and code

Improving code performance is hard and complex.

Requires a good understanding of the underlying algorithm and
implementation environment (hardware, OS, compiler, etc.).

Optimizing for data locality

Computer cache memories have led to introduce a new complexity
measure for algorithms and new performance counters for code.

Optimizing for data locality brings large speedup factors.

Optimizing for parallelism

All recent home and office desktops/laptops are parallel machines;
moreover “GPU cards bring supercomputing to the masses.”

Optimizing for parallelism improves the use of computing resources.

And optimizing for data locality is often a first step!

What is this mini-course about?

Optimizing algorithms and code

Improving code performance is hard and complex.

Requires a good understanding of the underlying algorithm and
implementation environment (hardware, OS, compiler, etc.).

Optimizing for data locality

Computer cache memories have led to introduce a new complexity
measure for algorithms and new performance counters for code.

Optimizing for data locality brings large speedup factors.

Optimizing for parallelism

All recent home and office desktops/laptops are parallel machines;
moreover “GPU cards bring supercomputing to the masses.”

Optimizing for parallelism improves the use of computing resources.

And optimizing for data locality is often a first step!

Once upon a time, everything was slow in a computer.

The second space race . . .

What are the prerequisites?

Some familiarity with algorithms and their analysis.

Elementary linear algebra (matrix multiplication).

Ideas about multithreaded programming.

Some ideas about multi-core processors and GPUs.

What are the objectives of this mini-course?

1 Understand why data locality can have a huge impact on code
performances.

2 Acquire some ideas on how data locality can be analyzed and
improved.

3 Understand the concepts of work, span, parallelism, burdened
parallelism in multithreaded programming.

4 Acquire some ideas on how parallelism can be analyzed and improved
in multithreaded programming.

5 Understand issues related to parallelism overheads in GPU
programming

6 Acquire some ideas on how to reduce parallelism overheads of a GPU
kernel.

Acknowledgments and references

Acknowledgments.

Charles E. Leiserson (MIT), Matteo Frigo (Axis Semiconductor) Saman P.
Amarasinghe (MIT) and Cyril Zeller (NVIDIA) for sharing with me the sources of
their course notes and other documents.
My past and current graduate students, in particular: Yuzhen Xie (Critical
Outcome Technologies Inc.) Changbo Chen (Chinese Academy of Science) Xiaohui
Chen (UWO), Svyatoslav Covanov (UWO & École Polytechnique) Anisul Sardar
Haque (Mississauga), Xin Li (U. Carlos III), Farnam Mansouri (Microsoft), Wei
Pan (Intel Corp.) and Ning Xie (UWO) for their contribution to the materials
presented in this mini-coourse.

References.

The Implementation of the Cilk-5 Multithreaded Language by Matteo Frigo Charles
E. Leiserson Keith H. Randall.
Cache-Oblivious Algorithms by Matteo Frigo, Charles E. Leiserson, Harald Prokop
and Sridhar Ramachandran.
The Cache Complexity of Multithreaded Cache Oblivious Algorithms by Matteo
Frigo and Volker Strumpen.
How To Write Fast Numerical Code: A Small Introduction by Srinivas Chellappa,
Franz Franchetti, and Markus Pueschel.
Models of Computation: Exploring the Power of Computing by John E. Savage.
http://developer.nvidia.com/category/zone/cuda-zone

http://www.csd.uwo.ca/∼moreno/HPC-Resources.html

Plan

1 Data locality and cache misses
Hierarchical memories and their impact on our programs
Cache complexity and cache-oblivious algorithms put into practice
A detailed case study: counting sort

2 Multicore programming
Multicore architectures
Cilk / Cilk++ / Cilk Plus
The fork-join multithreaded programming model
Anticipating parallelization overheads
Practical issues and optimization tricks

3 GPU programming
The CUDA programming and memory models

4 CUDA Programming: more details and examples
5 CUDA Programming: more details and examples

Tiled matrix multiplication in CUDA
Optimizing Matrix Transpose with CUDA
CUDA programming practices

Data locality and cache misses
Hierarchical memories and their impact on our

programs

Plan

1 Data locality and cache misses
Hierarchical memories and their impact on our programs
Cache complexity and cache-oblivious algorithms put into practice
A detailed case study: counting sort

2 Multicore programming
Multicore architectures
Cilk / Cilk++ / Cilk Plus
The fork-join multithreaded programming model
Anticipating parallelization overheads
Practical issues and optimization tricks

3 GPU programming
The CUDA programming and memory models

4 CUDA Programming: more details and examples
5 CUDA Programming: more details and examples

Tiled matrix multiplication in CUDA
Optimizing Matrix Transpose with CUDA
CUDA programming practices

Data locality and cache misses
Hierarchical memories and their impact on our

programs

Capacity
Access Time
Cost

Staging
Xfer Unit

CPU Registers
100s Bytes
300 – 500 ps (0.3-0.5 ns)

L1 d L2 C h

Registers

L1 Cache
Instr. Operands prog./compiler

1-8 bytes

Upper Level

faster

L1 and L2 Cache
10s-100s K Bytes
~1 ns - ~10 ns
$1000s/ GByte

L1 Cache
Blocks

cache cntl
32-64 bytes

L2 Cache
h tl

Main Memory
G Bytes
80ns- 200ns
~ $100/ GByte

Memory
OS

cache cntl
64-128 bytesBlocks

Disk
10s T Bytes, 10 ms
(10,000,000 ns)
~ $1 / GByte

Disk

Pages OS
4K-8K bytes

user/operator $1 / GByte

Tape
infinite
sec-min

Tape

Files user/operator
Mbytes

Lower Level
Larger

sec min
~$1 / GByte

Data locality and cache misses
Hierarchical memories and their impact on our

programs

CPU Cache (1/6)

A CPU cache is an auxiliary memory which is smaller, faster memory
than the main memory and which stores copies of the main memory
locations that are expectedly frequently used.

Most modern desktop and server CPUs have at least three
independent caches: the data cache, the instruction cache and the
translation look-aside buffer.

Data locality and cache misses
Hierarchical memories and their impact on our

programs

CPU Cache (2/6)

Each location in each memory (main or cache) has
• a datum (cache line) which ranges between 8 and 512 bytes in size,

while a datum requested by a CPU instruction ranges between 1 and
16.

• a unique index (called address in the case of the main memory)

In the cache, each location has also a tag (storing the address of the
corresponding cached datum).

Data locality and cache misses
Hierarchical memories and their impact on our

programs

CPU Cache (3/6)

When the CPU needs to read or write a location, it checks the cache:
• if it finds it there, we have a cache hit
• if not, we have a cache miss and (in most cases) the processor needs to

create a new entry in the cache.

Making room for a new entry requires a replacement policy: the Least
Recently Used (LRU) discards the least recently used items first; this
requires to use age bits.

Data locality and cache misses
Hierarchical memories and their impact on our

programs

CPU Cache (4/7)

Read latency (time to read a datum from the main memory) requires to
keep the CPU busy with something else:

- out-of-order execution: attempt to execute independent instructions
arising after the instruction that is waiting due to the cache
miss

- hyper-threading (HT): allows an alternate thread to use the CPU

Data locality and cache misses
Hierarchical memories and their impact on our

programs

CPU Cache (5/6)

Modifying data in the cache requires a write policy for updating the
main memory

- write-through cache: writes are immediately mirrored to main
memory

- write-back cache: the main memory is mirrored when that data is
evicted from the cache

The cache copy may become out-of-date or stale, if other processors
modify the original entry in the main memory.

Data locality and cache misses
Hierarchical memories and their impact on our

programs

CPU Cache (6/6)

The replacement policy decides where in the cache a copy of a
particular entry of main memory will go:

- fully associative: any entry in the cache can hold it
- direct mapped: only one possible entry in the cache can hold it
- N -way set associative: N possible entries can hold it

Data locality and cache misses
Hierarchical memories and their impact on our

programs

Cache Performance for SPEC CPU2000 by J.F. Cantin and M.D. Hill.

The SPEC CPU2000 suite is a collection of 26 compute-intensive, non-trivial
programs used to evaluate the performance of a computer’s CPU, memory
system, and compilers (http://www.spec.org/osg/cpu2000).

Data locality and cache misses
Hierarchical memories and their impact on our

programs

Cache issues

Cold miss: The first time the data is available. Cure: Prefetching
may be able to reduce this type of cost.

Capacity miss: The previous access has been evicted because too
much data touched in between, since the working data set is too
large. Cure: Reorganize the data access such that reuse occurs before
eviction.

Conflict miss: Multiple data items mapped to the same location with
eviction before cache is full. Cure: Rearrange data and/or pad arrays.

True sharing miss: Occurs when a thread in another processor wants
the same data. Cure: Minimize sharing.

False sharing miss: Occurs when another processor uses different
data in the same cache line. Cure: Pad data.

Data locality and cache misses
Hierarchical memories and their impact on our

programs

A typical matrix multiplication C code

#define IND(A, x, y, d) A[(x)*(d)+(y)]

uint64_t testMM(const int x, const int y, const int z)

{

double *A; *B; *C;

long started, ended;

float timeTaken;

int i, j, k;

srand(getSeed());

A = (double *)malloc(sizeof(double)*x*y);

B = (double *)malloc(sizeof(double)*x*z);

C = (double *)malloc(sizeof(double)*y*z);

for (i = 0; i < x*z; i++) B[i] = (double) rand() ;

for (i = 0; i < y*z; i++) C[i] = (double) rand() ;

for (i = 0; i < x*y; i++) A[i] = 0 ;

started = example_get_time();

for (i = 0; i < x; i++)

for (j = 0; j < y; j++)

for (k = 0; k < z; k++)

// A[i][j] += B[i][k] + C[k][j];

IND(A,i,j,y) += IND(B,i,k,z) * IND(C,k,j,y);

ended = example_get_time();

timeTaken = (ended - started)/1.f;

return timeTaken;

}

Data locality and cache misses
Hierarchical memories and their impact on our

programs

Issues with matrix representation

A

=

B

C
x

Contiguous accesses are better:
• Data fetch as cache line (Core 2 Duo 64 byte per cache line)
• With contiguous data, a single cache fetch supports 8 reads of doubles.
• Transposing the matrix C should reduce L1 cache misses!

Data locality and cache misses
Hierarchical memories and their impact on our

programs

Transposing for optimizing spatial locality

float testMM(const int x, const int y, const int z)

{

double *A; double *B; double *C; double *Cx;

long started, ended; float timeTaken; int i, j, k;

A = (double *)malloc(sizeof(double)*x*y);

B = (double *)malloc(sizeof(double)*x*z);

C = (double *)malloc(sizeof(double)*y*z);

Cx = (double *)malloc(sizeof(double)*y*z);

srand(getSeed());

for (i = 0; i < x*z; i++) B[i] = (double) rand() ;

for (i = 0; i < y*z; i++) C[i] = (double) rand() ;

for (i = 0; i < x*y; i++) A[i] = 0 ;

started = example_get_time();

for(j =0; j < y; j++)

for(k=0; k < z; k++)

IND(Cx,j,k,z) = IND(C,k,j,y);

for (i = 0; i < x; i++)

for (j = 0; j < y; j++)

for (k = 0; k < z; k++)

IND(A, i, j, y) += IND(B, i, k, z)*IND(Cx, j, k, z);

ended = example_get_time();

timeTaken = (ended - started)/1.f;

return timeTaken;

}

Data locality and cache misses
Hierarchical memories and their impact on our

programs

Issues with data reuse

C

1024 1024384

4

A B

C= x

10
24

10
24

38
4

Naive calculation of a row of A, so computing 1024 coefficients: 1024
accesses in A, 384 in B and 1024× 384 = 393, 216 in C. Total
= 394, 524.

Computing a 32× 32-block of A, so computing again 1024
coefficients: 1024 accesses in A, 384× 32 in B and 32× 384 in C.
Total = 25, 600.

The iteration space is traversed so as to reduce memory accesses.

Data locality and cache misses
Hierarchical memories and their impact on our

programs

Blocking for optimizing temporal locality

float testMM(const int x, const int y, const int z)

{

double *A; double *B; double *C;

long started, ended; float timeTaken; int i, j, k, i0, j0, k0;

A = (double *)malloc(sizeof(double)*x*y);

B = (double *)malloc(sizeof(double)*x*z);

C = (double *)malloc(sizeof(double)*y*z);

srand(getSeed());

for (i = 0; i < x*z; i++) B[i] = (double) rand() ;

for (i = 0; i < y*z; i++) C[i] = (double) rand() ;

for (i = 0; i < x*y; i++) A[i] = 0 ;

started = example_get_time();

for (i = 0; i < x; i += BLOCK_X)

for (j = 0; j < y; j += BLOCK_Y)

for (k = 0; k < z; k += BLOCK_Z)

for (i0 = i; i0 < min(i + BLOCK_X, x); i0++)

for (j0 = j; j0 < min(j + BLOCK_Y, y); j0++)

for (k0 = k; k0 < min(k + BLOCK_Z, z); k0++)

IND(A,i0,j0,y) += IND(B,i0,k0,z) * IND(C,k0,j0,y);

ended = example_get_time();

timeTaken = (ended - started)/1.f;

return timeTaken;

}

Data locality and cache misses
Hierarchical memories and their impact on our

programs

Transposing and blocking for optimizing data locality

float testMM(const int x, const int y, const int z)

{

double *A; double *B; double *C, double *Cx;

long started, ended; float timeTaken; int i, j, k, i0, j0, k0;

A = (double *)malloc(sizeof(double)*x*y);

B = (double *)malloc(sizeof(double)*x*z);

C = (double *)malloc(sizeof(double)*y*z);

srand(getSeed());

for (i = 0; i < x*z; i++) B[i] = (double) rand() ;

for (i = 0; i < y*z; i++) C[i] = (double) rand() ;

for (i = 0; i < x*y; i++) A[i] = 0 ;

started = example_get_time();

for(j =0; j < y; j++)

for(k=0; k < z; k++)

IND(Cx,j,k,z) = IND(C,k,j,y);

for (i = 0; i < x; i += BLOCK_X)

for (j = 0; j < y; j += BLOCK_Y)

for (k = 0; k < z; k += BLOCK_Z)

for (i0 = i; i0 < min(i + BLOCK_X, x); i0++)

for (j0 = j; j0 < min(j + BLOCK_Y, y); j0++)

for (k0 = k; k0 < min(k + BLOCK_Z, z); k0++)

IND(A,i0,j0,y) += IND(B,i0,k0,z) * IND(Cx,j0,k0,z);

ended = example_get_time();

timeTaken = (ended - started)/1.f;

return timeTaken;

}

Data locality and cache misses
Hierarchical memories and their impact on our

programs

Experimental results

Computing the product of two n× n matrices on my laptop (Quad-core
Intel i7-3630QM CPU @ 2.40GHz L2 cache 6144 KB, 8 GBytes of RAM)

n naive transposed 8× 8-tiled t. & t.
1024 7854 1086 1105 999
2048 8335 8646 10166 7990
4096 747100 69149 100538 69745
8192 6914349 546585 823525 562433

Timings are in milliseconds.

The cache-oblivious multiplication (more on this later) and the titled
multiplication have simiilar performance.

Data locality and cache misses
Hierarchical memories and their impact on our

programs

Other performance counters

Hardware count events

CPI Clock cycles Per Instruction: the number of clock cycles that
happen when an instruction is being executed. With pipelining we can
improve the CPI by exploiting instruction level parallelism

L1 and L2 Cache Miss Rate.

Instructions Retired: In the event of a misprediction, instructions that
were scheduled to execute along the mispredicted path must be
canceled.

Data locality and cache misses
Hierarchical memories and their impact on our

programs

Analyzing cache misses in the naive and transposed multiplication

A

=

B

C
x

Let A, B and C have format (m,n), (m, p) and (p, n) respectively.
A is scanned once, so mn/L cache misses if L is the number of
coefficients per cache line.
B is scanned n times, so mnp/L cache misses if the cache cannot
hold a row.
C is accessed “nearly randomly” (for m large enough) leading to mnp
cache misses.
Since 2mnp arithmetic operations are performed, this means roughly
one cache miss per flop!
If C is transposed, then the ratio improves to 1 for L.

Data locality and cache misses
Hierarchical memories and their impact on our

programs

Analyzing cache misses in the tiled multiplication

C

1024 1024384

4

A B

C= x

10
24

10
24

38
4

Let A, B and C have format (m,n), (m, p) and (p, n) respectively.

Assume all tiles are square of order b and three fit in cache.

If C is transposed, then loading three blocks in cache cost 3b2/L.

This process happens n3/b3 times, leading to 3n3/(bL) cache misses.

Three blocks fit in cache for 3b2 < Z, if Z is the cache size.

So O(n3/(
√
ZL)) cache misses, if b is well chosen, which is optimal.

Data locality and cache misses
Cache complexity and cache-oblivious algorithms put

into practice

Plan

1 Data locality and cache misses
Hierarchical memories and their impact on our programs
Cache complexity and cache-oblivious algorithms put into practice
A detailed case study: counting sort

2 Multicore programming
Multicore architectures
Cilk / Cilk++ / Cilk Plus
The fork-join multithreaded programming model
Anticipating parallelization overheads
Practical issues and optimization tricks

3 GPU programming
The CUDA programming and memory models

4 CUDA Programming: more details and examples
5 CUDA Programming: more details and examples

Tiled matrix multiplication in CUDA
Optimizing Matrix Transpose with CUDA
CUDA programming practices

Data locality and cache misses
Cache complexity and cache-oblivious algorithms put

into practice

The (Z,L) ideal cache model (1/4)

Data locality and cache misses
Cache complexity and cache-oblivious algorithms put

into practice

The (Z,L) ideal cache model (2/4)

Computer with a two-level memory hierarchy:
• an ideal (data) cache of Z words partitioned into Z/L cache lines,

where L is the number of words per cache line.
• an arbitrarily large main memory.

Data moved between cache and main memory are always cache lines.

The cache is tall, that is, Z is much larger than L, say Z ∈ Ω(L2).

Data locality and cache misses
Cache complexity and cache-oblivious algorithms put

into practice

The (Z,L) ideal cache model (3/4)

The processor can only reference words that reside in the cache.

If the referenced word belongs to a line already in cache, a cache hit
occurs, and the word is delivered to the processor.

Otherwise, a cache miss occurs, and the line is fetched into the
cache.

Data locality and cache misses
Cache complexity and cache-oblivious algorithms put

into practice

The (Z,L) ideal cache model (4/4)

The ideal cache is fully associative: cache lines can be stored
anywhere in the cache.

The ideal cache uses the optimal off-line strategy of replacing the
cache line whose next access is furthest in the future, and thus it
exploits temporal locality perfectly.

Data locality and cache misses
Cache complexity and cache-oblivious algorithms put

into practice

Cache complexity

For an algorithm with an input of size n, he ideal-cache model uses
two complexity measures:

• the work complexity W (n), which is its conventional running time in
a RAM model.

• the cache complexity Q(n;Z,L), the number of cache misses it
incurs (as a function of the size Z and line length L of the ideal cache).

• When Z and L are clear from context, we simply write Q(n) instead of
Q(n;Z,L).

An algorithm is said to be cache aware if its behavior (and thus
performances) can be tuned (and thus depend on) on the particular
cache size and line length of the targeted machine.

Otherwise the algorithm is cache oblivious.

Data locality and cache misses
Cache complexity and cache-oblivious algorithms put

into practice

Cache complexity of an array scanning

B and N on the picture are our L and n.

Consider an array of n words in main memory.

Loading its elements by scanning incurs dn/Le+ 1 cache misses.

That becomes n/L if n divides L and the array is aligned, that is,
starts and ends with a cache line.

We will often use this remark and, for simplicity, we will often replace
dn/Le+ 1 by n/L, but not always.

Data locality and cache misses
Cache complexity and cache-oblivious algorithms put

into practice

Cache complexity of the naive and tiled matrix multiplications

Consider square matrices of order n and an (Z,L)-ideal cache.

The naive multiplication (as specified before)

for(i =0; i < n; i++)

for(j =0; j < n; j++)

for(k=0; k < n; k++)

C[i][j] += A[i][k] * B[k][j];

incurs O(n3) cache misses, for n large enough (n2 > Z).

The tiled multiplication (as specified before)

for(i =0; i < n/s; i++)

for(j =0; j < n/s; j++)

for(k=0; k < n/s; k++)

blockMult(A,B,C,i,j,k,s);

incurs Θ(n3/(L
√
Z)) cache misses, for n large enough (n >

√
Z)

which can be proved to be optimal, though cache-aware.

Data locality and cache misses
Cache complexity and cache-oblivious algorithms put

into practice

A matrix transposition cache-oblivious and cache-optimal algorithm

Given an m× n matrix A stored in a row-major layout, compute and
store AT into an n×m matrix B also stored in a row-major layout.

A naive approach would incur O(mn) cache misses, for n,m large
enough.
The algorithm Rec-Transpose below incurs Θ(1 + mn/L) cache
misses, which is optimal.

1 If n ≥ m, the Rec-Transpose algorithm partitions

A = (A1 A2) , B =

(
B1

B2

)
and recursively executes Rec-Transpose(A1, B1) and
Rec-Transpose(A2, B2).

2 If m > n, the Rec-Transpose algorithm partitions

A =

(
A1

A2

)
, B = (B1 B2)

and recursively executes Rec-Transpose(A1, B1) and
Rec-Transpose(A2, B2).

Data locality and cache misses
Cache complexity and cache-oblivious algorithms put

into practice

Cache-oblivious matrix transposition into practice

void DC_matrix_transpose(int *A, int lda, int i0, int i1,

int j0, int dj0, int j1 /*, int dj1 = 0 */){

const int THRESHOLD = 16; // tuned for the target machine

tail:

int di = i1 - i0, dj = j1 - j0;

if (dj >= 2 * di && dj > THRESHOLD) {

int dj2 = dj / 2;

cilk_spawn DC_matrix_transpose(A, lda, i0, i1, j0, dj0, j0 + dj2);

j0 += dj2; dj0 = 0; goto tail;

} else if (di > THRESHOLD) {

int di2 = di / 2;

cilk_spawn DC_matrix_transpose(A, lda, i0, i0 + di2, j0, dj0, j1);

i0 += di2; j0 += dj0 * di2; goto tail;

} else {

for (int i = i0; i < i1; ++i) {

for (int j = j0; j < j1; ++j) {

int x = A[j * lda + i];

A[j * lda + i] = A[i * lda + j];

A[i * lda + j] = x;

}

j0 += dj0;

}

}

}

Data locality and cache misses
Cache complexity and cache-oblivious algorithms put

into practice

Cache-oblivious matrix transposition works in practice!

size Naive Cache-oblivious ratio

5000x5000 126 79 1.59
10000x10000 627 311 2.02
20000x20000 4373 1244 3.52
30000x30000 23603 2734 8.63
40000x40000 62432 4963 12.58

Intel(R) Xeon(R) CPU E7340 @ 2.40GHz

L1 data 32 KB, L2 4096 KB, cache line size 64bytes

Both codes run on 1 core on a node with 128GB.

The ration comes simply from an optimal memory access pattern.

Data locality and cache misses
Cache complexity and cache-oblivious algorithms put

into practice

A cache-oblivious matrix multiplication algorithm

To multiply an m× n matrix A and an n× p matrix B, the Rec-Mult
algorithm halves the largest of the three dimensions and recurs according to
one of the following three cases:(

A1

A2

)
B =

(
A1B
A2B

)
, (1)

(
A1 A2

)(B1

B2

)
= A1B1 + A2B2 , (2)

A
(
B1 B2

)
=

(
AB1 AB2

)
. (3)

In case (1), we have m ≥ max {n, p}. Matrix A is split horizontally, and both
halves are multiplied by matrix B.
In case (2), we have n ≥ max {m, p}. Both matrices are split, and the two
halves are multiplied.
In case (3), we have p ≥ max {m,n}. Matrix B is split vertically, and each
half is multiplied by A.
The base case occurs when m = n = p = 1.
The algorithm Rec-Mult above incurs
Θ(m + n + p + (mn + np + mp)/L + mnp/(L

√
Z)) cache misses, which is

optimal.

Data locality and cache misses A detailed case study: counting sort

Plan

1 Data locality and cache misses
Hierarchical memories and their impact on our programs
Cache complexity and cache-oblivious algorithms put into practice
A detailed case study: counting sort

2 Multicore programming
Multicore architectures
Cilk / Cilk++ / Cilk Plus
The fork-join multithreaded programming model
Anticipating parallelization overheads
Practical issues and optimization tricks

3 GPU programming
The CUDA programming and memory models

4 CUDA Programming: more details and examples
5 CUDA Programming: more details and examples

Tiled matrix multiplication in CUDA
Optimizing Matrix Transpose with CUDA
CUDA programming practices

Data locality and cache misses A detailed case study: counting sort

Counting sort: the algorithm

Counting sort takes as input a collection of n items, each of which
known by a key in the range 0 · · · k.

The algorithm computes a histogram of the number of times each key
occurs.

Then performs a prefix sum to compute positions in the output.

allocate an array Count[0..k]; initialize each array cell to zero

for each input item x:

Count[key(x)] = Count[key(x)] + 1

total = 0

for i = 0, 1, ... k:

c = Count[i]

Count[i] = total

total = total + c

allocate an output array Output[0..n-1]

for each input item x:

store x in Output[Count[key(x)]]

Count[key(x)] = Count[key(x)] + 1

return Output

Data locality and cache misses A detailed case study: counting sort

Counting sort: the algorithm illustarted (1/2)

Here n = k = 64. Suppose Z = 24 and L = 2. Then nearly each access to
Count and Output is a cache miss.

Data locality and cache misses A detailed case study: counting sort

Counting sort: the algorithm illustarted (2/2)

Here n = k = 64. Suppose Z = 24 and L = 2. Then nearly each access to
Count and Output is a cache miss.

Data locality and cache misses A detailed case study: counting sort

Counting sort: cache complexity analysis (1/11)

allocate an array Count[0..k]; initialize each array cell to zero

for each input item x:

Count[key(x)] = Count[key(x)] + 1

total = 0

for i = 0, 1, ... k:

c = Count[i]

Count[i] = total

total = total + c

allocate an output array Output[0..n-1]

for each input item x:

store x in Output[Count[key(x)]]

Count[key(x)] = Count[key(x)] + 1

return Output

1 . . . to compute k.

Data locality and cache misses A detailed case study: counting sort

Counting sort: cache complexity analysis (2/11)

allocate an array Count[0..k]; initialize each array cell to zero

for each input item x:

Count[key(x)] = Count[key(x)] + 1

total = 0

for i = 0, 1, ... k:

c = Count[i]

Count[i] = total

total = total + c

allocate an output array Output[0..n-1]

for each input item x:

store x in Output[Count[key(x)]]

Count[key(x)] = Count[key(x)] + 1

return Output

1 n/L to compute k.

Data locality and cache misses A detailed case study: counting sort

Counting sort: cache complexity analysis (3/11)

allocate an array Count[0..k]; initialize each array cell to zero

for each input item x:

Count[key(x)] = Count[key(x)] + 1

total = 0

for i = 0, 1, ... k:

c = Count[i]

Count[i] = total

total = total + c

allocate an output array Output[0..n-1]

for each input item x:

store x in Output[Count[key(x)]]

Count[key(x)] = Count[key(x)] + 1

return Output

1 n/L to compute k.

2 . . . cache misses to initialize Count.

Data locality and cache misses A detailed case study: counting sort

Counting sort: cache complexity analysis (4/11)

allocate an array Count[0..k]; initialize each array cell to zero

for each input item x:

Count[key(x)] = Count[key(x)] + 1

total = 0

for i = 0, 1, ... k:

c = Count[i]

Count[i] = total

total = total + c

allocate an output array Output[0..n-1]

for each input item x:

store x in Output[Count[key(x)]]

Count[key(x)] = Count[key(x)] + 1

return Output

1 n/L to compute k.

2 k/L cache misses to initialize Count.

Data locality and cache misses A detailed case study: counting sort

Counting sort: cache complexity analysis (5/11)

allocate an array Count[0..k]; initialize each array cell to zero

for each input item x:

Count[key(x)] = Count[key(x)] + 1

total = 0

for i = 0, 1, ... k:

c = Count[i]

Count[i] = total

total = total + c

allocate an output array Output[0..n-1]

for each input item x:

store x in Output[Count[key(x)]]

Count[key(x)] = Count[key(x)] + 1

return Output

1 n/L to compute k.

2 k/L cache misses to initialize Count.

3 . . . cache misses for the histogram (worst case).

Data locality and cache misses A detailed case study: counting sort

Counting sort: cache complexity analysis (6/11)

allocate an array Count[0..k]; initialize each array cell to zero

for each input item x:

Count[key(x)] = Count[key(x)] + 1

total = 0

for i = 0, 1, ... k:

c = Count[i]

Count[i] = total

total = total + c

allocate an output array Output[0..n-1]

for each input item x:

store x in Output[Count[key(x)]]

Count[key(x)] = Count[key(x)] + 1

return Output

1 n/L to compute k.

2 k/L cache misses to initialize Count.

3 n/L + n cache misses for the histogram (worst case).

Data locality and cache misses A detailed case study: counting sort

Counting sort: cache complexity analysis (7/11)

allocate an array Count[0..k]; initialize each array cell to zero

for each input item x:

Count[key(x)] = Count[key(x)] + 1

total = 0

for i = 0, 1, ... k:

c = Count[i]

Count[i] = total

total = total + c

allocate an output array Output[0..n-1]

for each input item x:

store x in Output[Count[key(x)]]

Count[key(x)] = Count[key(x)] + 1

return Output

1 n/L to compute k.

2 k/L cache misses to initialize Count.

3 n/L + n cache misses for the histogram (worst case).

4 . . . cache misses for the prefix sum.

Data locality and cache misses A detailed case study: counting sort

Counting sort: cache complexity analysis (8/11)

allocate an array Count[0..k]; initialize each array cell to zero

for each input item x:

Count[key(x)] = Count[key(x)] + 1

total = 0

for i = 0, 1, ... k:

c = Count[i]

Count[i] = total

total = total + c

allocate an output array Output[0..n-1]

for each input item x:

store x in Output[Count[key(x)]]

Count[key(x)] = Count[key(x)] + 1

return Output

1 n/L to compute k.

2 k/L cache misses to initialize Count.

3 n/L + n cache misses for the histogram (worst case).

4 k/L cache misses for the prefix sum.

Data locality and cache misses A detailed case study: counting sort

Counting sort: cache complexity analysis (9/11)

allocate an array Count[0..k]; initialize each array cell to zero

for each input item x:

Count[key(x)] = Count[key(x)] + 1

total = 0

for i = 0, 1, ... k:

c = Count[i]

Count[i] = total

total = total + c

allocate an output array Output[0..n-1]

for each input item x:

store x in Output[Count[key(x)]]

Count[key(x)] = Count[key(x)] + 1

return Output

1 n/L to compute k.

2 k/L cache misses to initialize Count.

3 n/L + n cache misses for the histogram (worst case).

4 k/L cache misses for the prefix sum.

5 . . . cache misses for building Output (worst case).

Data locality and cache misses A detailed case study: counting sort

Counting sort: cache complexity analysis (10/11)

allocate an array Count[0..k]; initialize each array cell to zero

for each input item x:

Count[key(x)] = Count[key(x)] + 1

total = 0

for i = 0, 1, ... k:

c = Count[i]

Count[i] = total

total = total + c

allocate an output array Output[0..n-1]

for each input item x:

store x in Output[Count[key(x)]]

Count[key(x)] = Count[key(x)] + 1

return Output

1 n/L to compute k.

2 k/L cache misses to initialize Count.

3 n/L + n cache misses for the histogram (worst case).

4 k/L cache misses for the prefix sum.

5 n/L + n + n cache misses for building Output (worst case).

Data locality and cache misses A detailed case study: counting sort

Counting sort: cache complexity analysis (11/11)

allocate an array Count[0..k]; initialize each array cell to zero

for each input item x:

Count[key(x)] = Count[key(x)] + 1

total = 0

for i = 0, 1, ... k:

c = Count[i]

Count[i] = total

total = total + c

allocate an output array Output[0..n-1]

for each input item x:

store x in Output[Count[key(x)]]

Count[key(x)] = Count[key(x)] + 1

return Output

1 n/L to compute k.
2 k/L cache misses to initialize Count.
3 n/L + n cache misses for the histogram (worst case).
4 k/L cache misses for the prefix sum.
5 n/L + n + n cache misses for building Output (worst case).

Total: 3n+3n/L + 2k/L cache misses (worst case).

Data locality and cache misses A detailed case study: counting sort

Counting sort: cache complexity analysis: explanations

1 n/L to compute k: this can be done by traversing the items linearly.

2 k/L cache misses to initialize Count: this can be done by traversing
the Count linearly.

3 n/L + n cache misses for the histogram (worst case): items accesses
are linear but Count accesses are potentially random.

4 k/L cache misses for the prefix sum: Count accesses are linear.

5 n/L + n + n cache misses for building Output (worst case): items

accesses are linear but Output and Count accesses are potentially
random.

Total: 3n+3n/L + 2k/L cache misses (worst case).

Data locality and cache misses A detailed case study: counting sort

How to fix the poor data locality of counting sort?

allocate an array Count[0..k]; initialize each array cell to zero

for each input item x:

Count[key(x)] = Count[key(x)] + 1

total = 0

for i = 0, 1, ... k:

c = Count[i]

Count[i] = total

total = total + c

allocate an output array Output[0..n-1]

for each input item x:

store x in Output[Count[key(x)]]

Count[key(x)] = Count[key(x)] + 1

return Output

Recall that our worst case is 3n+3n/L + 2k/L cache misses.
The troubles come from the irregular memory accesses which
experience capacity misses and conflict misses.
Workaround: we preprocess the input so that counting sort is applied
in succession to several smaller input sets with smaller value ranges.
To put it simply, so that k and n are small enough for Output and
Count to incur cold misses only.

Data locality and cache misses A detailed case study: counting sort

Counting sort: bucketing the input

alloacate an array bucketsize[0..m-1]; initialize each array cell to zero

for each input item x:

bucketsize[floor(key(x) m/(k+1))] := bucketsize[floor(key(x) m/(k+1))] + 1

total = 0

for i = 0, 1, ... m-1:

c = bucketsize[i]

bucketsize[i] = total

total = total + c

alloacate an array bucketedinput[0..n-1];

for each input item x:

q := floor(key(x) m/(k+1))

bucketedinput[bucketsize[q]] := key(x)

bucketsize[q] := bucketsize[q] + 1

return bucketedinput

Goal: after preprocessing, Count and Output incur cold misses only.
To this end we choose a parameter m (more on this later) such that

1 a key in the range [ih, (i + 1)h− 1] is always before a key in the range
[(i + 1)h, (i + 2)h− 1], for i = 0 · · ·m− 2, with h = k/m,

2 bucketsize and m cache-lines from bucketedinput all fit in cache.
That is, counting cache-lines, m/L + m ≤ Z/L, that is, m + mL ≤ Z.

Data locality and cache misses A detailed case study: counting sort

Counting sort: bucketing illustarted (1/2)

Here n = k = 64. Suppose Z = 24 and L = 2. Then nearly each access to
Count and Output is a cache miss.

Data locality and cache misses A detailed case study: counting sort

Counting sort: bucketing illustarted (2/2)

Here n = k = 64. Suppose Z = 24 and L = 2. Then nearly each access to
Count and Output is a cache miss.

Data locality and cache misses A detailed case study: counting sort

Counting sort: cache complexity with bucketing

alloacate an array bucketsize[0..m-1]; initialize each array cell to zero

for each input item x:

bucketsize[floor(key(x) m/(k+1))] := bucketsize[floor(key(x) m/(k+1))] + 1

total = 0

for i = 0, 1, ... m-1:

c = bucketsize[i]

bucketsize[i] = total

total = total + c

alloacate an array bucketedinput[0..n-1];

for each input item x:

q := floor(key(x) m/(k+1))

bucketedinput[bucketsize[q]] := key(x)

bucketsize[q] := bucketsize[q] + 1

return bucketedinput

1 3m/L + n/L caches misses to compute bucketsize

2 Key observation: bucketedinput is traversed regularly by segment.

3 Hence, 2n/L + m + m/L caches misses to compute bucketedinput

Preprocessing: 3n/L + 4m/L + m cache misses.

Data locality and cache misses A detailed case study: counting sort

Counting sort: cache complexity with bucketing: explanations

1 3m/L + n/L caches misses to compute bucketsize:
• m/L to set each cell of bucketsize to zero,
• m/L + n/L for the first for loop,
• m/L for the second for loop.

2 Key observation: bucketedinput is traversed regularly by segment:

• So writing bucketedinput means writing (in a linear traversal) m
consecutive arrays, of possibly different sizes, but with total size n.

• Thus, because of possible misalignments between those arrays and
their cache-lines, this writing procedure can yield n/L + m cache
misses (and not just n/L).

3 Hence, 2n/L+m+m/L caches misses to compute bucketedinput:
• n/L to read the items,
• n/L + m to write bucketedinput,
• m/L to load bucketsize.

Data locality and cache misses A detailed case study: counting sort

Cache friendly counting sort: complete cache complexity analysis

Assumption: the preprocessing creates buckets of average size n/m.

After preprocessing, counting sort is applied to each bucket whose
values are in a range [ih, (i + 1)h− 1], for i = 0 · · ·m− 1, with
h = k/m.

To be cache-friendly, this requires, for i = 0 · · ·m− 1,
h + |{key ∈ [ih, (i + 1)h− 1]}| < Z and m < Z/(1 + L). These two
are very realistic assumption considering today’s cache size.

And the total complexity becomes;

Qtotal = Qpreprocessing + Qsorting

= Qpreprocessing + mQsortingofonebucket

= Qpreprocessing + m (3 n
mL + 3 n

m + 2 k
mL)

= Qpreprocessing + 6n/L + 2k/L
= 3n/L + 4m/L + m + 6n/L + 2k/L
= 9n/L + 4m/L + m + 2k/L

Instead of 3n+3n/L + 2k/L for the naive counting sort.

Data locality and cache misses A detailed case study: counting sort

Cache friendly counting sort: experimental results

Experimentation on an Intel(R) Core(TM) i7 CPU @ 2.93GHz. It has
L2 cache of 8MB.

CPU times in seconds for both classical and cache-friendly counting
sort algorithm.

The keys are random machine integers in the range [0, n].

n classical cache-oblivious
counting counting sort

sort (preprocessing + sorting)

100000000 13.74 4.66 (3.04 + 1.62)

200000000 30.20 9.93 (6.16 + 3.77)

300000000 50.19 16.02 (9.32 + 6.70)

400000000 71.55 22.13 (12.50 +9.63)

500000000 94.32 28.37 (15.71 + 12.66)

600000000 116.74 34.61 (18.95 + 15.66)

Data locality and cache misses A detailed case study: counting sort

Summary and notes

Multicore programming Multicore architectures

Plan

1 Data locality and cache misses
Hierarchical memories and their impact on our programs
Cache complexity and cache-oblivious algorithms put into practice
A detailed case study: counting sort

2 Multicore programming
Multicore architectures
Cilk / Cilk++ / Cilk Plus
The fork-join multithreaded programming model
Anticipating parallelization overheads
Practical issues and optimization tricks

3 GPU programming
The CUDA programming and memory models

4 CUDA Programming: more details and examples
5 CUDA Programming: more details and examples

Tiled matrix multiplication in CUDA
Optimizing Matrix Transpose with CUDA
CUDA programming practices

Multicore programming Multicore architectures

A multi-core processor is an integrated circuit to which two or more
individual processors (called cores in this sense) have been attached.

Multicore programming Multicore architectures

Memory I/O

Network

…$ $ $
PPP

Chip Multiprocessor (CMP)

Cores on a multi-core device can be coupled tightly or loosely:
• may share or may not share a cache,
• implement inter-core communications methods or message passing.

Cores on a multi-core implement the same architecture features as
single-core systems such as instruction pipeline parallelism (ILP),
vector-processing, hyper-threading, etc.

Multicore programming Multicore architectures

Cache Coherence (1/6)

x=3

…Load x x=3

P P P

Figure: Processor P1 reads x=3 first from the backing store (higher-level memory)

Multicore programming Multicore architectures

Cache Coherence (2/6)

x=3

…Load x x=3 x=3

P P P

Figure: Next, Processor P2 loads x=3 from the same memory

Multicore programming Multicore architectures

Cache Coherence (3/6)

x=3

…Load x x=3 x=3 x=3

P P P

Figure: Processor P4 loads x=3 from the same memory

Multicore programming Multicore architectures

Cache Coherence (4/6)

x=3

Store …Store
x=5 x=3 x=3 x=3

P P P

Figure: Processor P2 issues a write x=5

Multicore programming Multicore architectures

Cache Coherence (5/6)

x=3

Store …Store
x=5 x=3 x=5 x=3

P P P

Figure: Processor P2 writes x=5 in his local cache

Multicore programming Multicore architectures

Cache Coherence (6/6)

x=3

…Load x x=3 x=5 x=3

P P P

Figure: Processor P1 issues a read x, which is now invalid in its cache

Multicore programming Multicore architectures

MSI Protocol

In this cache coherence protocol each block contained inside a cache
can have one of three possible states:

- M: the cache line has been modified and the corresponding data is
inconsistent with the backing store; the cache has the responsibility to
write the block to the backing store when it is evicted.

- S: this block is unmodified and is shared, that is, exists in at least one
cache. The cache can evict the data without writing it to the backing
store.

- I: this block is invalid, and must be fetched from memory or another
cache if the block is to be stored in this cache.

These coherency states are maintained through communication
between the caches and the backing store.

The caches have different responsibilities when blocks are read or
written, or when they learn of other caches issuing reads or writes for
a block.

Multicore programming Multicore architectures

True Sharing and False Sharing

True sharing:
• True sharing cache misses occur whenever two processors access the

same data word
• True sharing requires the processors involved to explicitly synchronize

with each other to ensure program correctness.
• A computation is said to have temporal locality if it re-uses much of

the data it has been accessing.
• Programs with high temporal locality tend to have less true sharing.

False sharing:
• False sharing results when different processors use different data that

happen to be co-located on the same cache line
• A computation is said to have spatial locality if it uses multiple words

in a cache line before the line is displaced from the cache
• Enhancing spatial locality often minimizes false sharing

See Data and Computation Transformations for Multiprocessors by
J.M. Anderson, S.P. Amarasinghe and M.S. Lam
http://suif.stanford.edu/papers/anderson95/paper.html

Multicore programming Multicore architectures

Multi-core processor (cntd)

Advantages:
• Cache coherency circuitry operate at higher rate than off-chip.
• Reduced power consumption for a dual core vs two coupled single-core

processors (better quality communication signals, cache can be shared)

Challenges:
• Adjustments to existing software (including OS) are required to

maximize performance
• Production yields down (an Intel quad-core is in fact a double

dual-core)
• Two processing cores sharing the same bus and memory bandwidth

may limit performances
• High levels of false or true sharing and synchronization can easily

overwhelm the advantage of parallelism

Multicore programming Cilk / Cilk++ / Cilk Plus

Plan

1 Data locality and cache misses
Hierarchical memories and their impact on our programs
Cache complexity and cache-oblivious algorithms put into practice
A detailed case study: counting sort

2 Multicore programming
Multicore architectures
Cilk / Cilk++ / Cilk Plus
The fork-join multithreaded programming model
Anticipating parallelization overheads
Practical issues and optimization tricks

3 GPU programming
The CUDA programming and memory models

4 CUDA Programming: more details and examples
5 CUDA Programming: more details and examples

Tiled matrix multiplication in CUDA
Optimizing Matrix Transpose with CUDA
CUDA programming practices

Multicore programming Cilk / Cilk++ / Cilk Plus

From Cilk to Cilk++ and Cilk Plus

Cilk has been developed since 1994 at the MIT Laboratory for
Computer Science by Prof. Charles E. Leiserson and his group, in
particular by Matteo Frigo.

Besides being used for research and teaching, Cilk was the system
used to code the three world-class chess programs: Tech, Socrates,
and Cilkchess.

Over the years, the implementations of Cilk have run on computers
ranging from networks of Linux laptops to an 1824-nodes Intel
Paragon.

From 2007 to 2009 Cilk has lead to Cilk++, developed by Cilk Arts,
an MIT spin-off, which was acquired by Intel in July 2009 and
became CilkPlus, see http://www.cilk.com/

CilkPlus can be freely downloaded for Linux as a branch of the gcc

compiler collection.

Cilk is still developed at MIT
http://supertech.csail.mit.edu/cilk/

Multicore programming Cilk / Cilk++ / Cilk Plus

Cilk++ (and Cilk Plus)

CilkPlus (resp. Cilk) is a small set of linguistic extensions to C++

(resp. C) supporting fork-join parallelism

Both Cilk and CilkPlus feature a provably efficient work-stealing
scheduler.

CilkPlus provides a hyperobject library for parallelizing code with
global variables and performing reduction for data aggregation.

CilkPlus includes the Cilkscreen race detector and the Cilkview

performance analyzer.

Multicore programming Cilk / Cilk++ / Cilk Plus

Nested Parallelism in CilkPlus

int fib(int n)

{

if (n < 2) return n;

int x, y;

x = cilk_spawn fib(n-1);

y = fib(n-2);

cilk_sync;

return x+y;

}

The named child function cilk spawn fib(n-1) may execute in
parallel with its parent

CilkPlus keywords cilk spawn and cilk sync grant permissions
for parallel execution. They do not command parallel execution.

Multicore programming Cilk / Cilk++ / Cilk Plus

Loop Parallelism in CilkPlus

a11 a12 ⋯ a1n
a21 a22 ⋯ a2n

a11 a21 ⋯ an1
a12 a22 ⋯ an221 22 2n

⋮ ⋮ ⋱ ⋮
an1 an2 ⋯ ann

12 22 n2

⋮ ⋮ ⋱ ⋮
a1n a2n ⋯ annn1 n2 nn 1n 2n nn

A AT

// indices run from 0, not 1
cilk_for (int i=1; i<n; ++i) {

for (int j=0; j<i; ++j) {
d bl [i][j]double temp = A[i][j];
A[i][j] = A[j][i];
A[j][i] = temp;

}}
}

The iterations of a cilk for loop may execute in parallel.

Multicore programming Cilk / Cilk++ / Cilk Plus

Serial Semantics (1/2)

Cilk (resp. CilkPlus) is a multithreaded language for parallel
programming that generalizes the semantics of C (resp. C++) by
introducing linguistic constructs for parallel control.

Cilk (resp. CilkPlus) is a faithful extension of C (resp. C++):

• The C (resp. C++) elision of a Cilk (resp. CilkPlus) is a correct
implementation of the semantics of the program.

• Moreover, on one processor, a parallel Cilk (resp. CilkPlus) program
scales down to run nearly as fast as its C (resp. C++) elision.

To obtain the serialization of a CilkPlus program

#define cilk_for for

#define cilk_spawn

#define cilk_sync

Multicore programming Cilk / Cilk++ / Cilk Plus

Serial Semantics (2/2)

int fib (int n) {
if (n<2) return (n);
else {

int x,y;
x = cilk spawn fib(n-1);

Cilk++ source

x cilk_spawn fib(n 1);
y = fib(n-2);
cilk_sync;
return (x+y);

}
}

int fib (int n) {
if (n<2) return (n);

else {
int x,y;
x fib(n 1);x = fib(n-1);
y = fib(n-2);
return (x+y);

}
} Serialization

Multicore programming Cilk / Cilk++ / Cilk Plus

Scheduling

Memory I/O

Network

P$ $ $…P
P P P
$ $ $

A scheduler’s job is to map a computation to particular processors. Such
a mapping is called a schedule.

If decisions are made at runtime, the scheduler is online, otherwise, it
is offline

CilkPlus’s scheduler maps strands onto processors dynamically at
runtime.

Multicore programming Cilk / Cilk++ / Cilk Plus

The CilkPlus Platform

Cilk++
Compiler

Conventional

Hyperobject
Library1

2 3int fib (int n) {
if (n<2) return (n);
else {

int x,y;
x = cilk_spawn fib(n-1);
y = fib(n-2);

Cilk++source

Conventional
Compiler

y b();
cilk_sync;
return (x+y);

}
}

Cilkview
S l bilit A l

6

BinaryBinary Cilkscreen

Linker

5

int fib (int n) {
if (n<2) return (n);

else {
int x,y;
x = fib(n-1);
y = fib(n 2);

int fib (int n) {
if (n<2) return (n);

else {
int x,y;
x = fib(n-1);
y = fib(n 2);

Scalability Analyzer

BinaryBinary Cilkscreen
Race Detector

y = fib(n-2);
return (x+y);

}
}

y = fib(n-2);
return (x+y);

}
} Serialization

Runtime4Conventional
Regression Tests

Parallel
Regression Tests

Runtime
System

4

Reliable Single-
Threaded Code

Exceptional
Performance

Reliable Multi-
Threaded Code

Multicore programming Cilk / Cilk++ / Cilk Plus

Benchmarks for the parallel version of the cache-oblivious mm

Multiplying a 4000x8000 matrix by a 8000x4000 matrix

on 32 cores = 8 sockets x 4 cores (Quad Core AMD Opteron 8354)
per socket.

The 32 cores share a L3 32-way set-associative cache of 2 Mbytes.

#core Elision (s) Parallel (s) speedup

8 420.906 51.365 8.19
16 432.419 25.845 16.73
24 413.681 17.361 23.83
32 389.300 13.051 29.83

Multicore programming Cilk / Cilk++ / Cilk Plus

So does the (tuned) cache-oblivious matrix multiplication

Multicore programming The fork-join multithreaded programming model

Plan

1 Data locality and cache misses
Hierarchical memories and their impact on our programs
Cache complexity and cache-oblivious algorithms put into practice
A detailed case study: counting sort

2 Multicore programming
Multicore architectures
Cilk / Cilk++ / Cilk Plus
The fork-join multithreaded programming model
Anticipating parallelization overheads
Practical issues and optimization tricks

3 GPU programming
The CUDA programming and memory models

4 CUDA Programming: more details and examples
5 CUDA Programming: more details and examples

Tiled matrix multiplication in CUDA
Optimizing Matrix Transpose with CUDA
CUDA programming practices

Multicore programming The fork-join multithreaded programming model

The fork-join parallelism model

int fib (int n) {
if (n<2) return (n);

int fib (int n) {
if (n<2) return (n);

Example:
fib(4)() ();

else {
int x,y;
x = cilk_spawn fib(n-1);
y fib(n 2);

() ();
else {

int x,y;
x = cilk_spawn fib(n-1);
y fib(n 2);

fib(4)

4
y = fib(n-2);
cilk_sync;
return (x+y);

}

y = fib(n-2);
cilk_sync;
return (x+y);

} 3 2}
}

}
}

2 1 1 0

“Processor
oblivious”

2

1

1 1 0

0 The computation dag
unfolds dynamically.

1 0

Multicore programming The fork-join multithreaded programming model

The fork-join parallelism model

Figure: Instruction stream DAG.

Tp is the minimum running time on
p processors.

T1 is the sum of the number of
instructions at each vertex in
the DAG, called the work.

T∞ is the minimum running time
with infinitely many processors,
called the span. This is the
length of a path of maximum
length from the root to a leaf.

T1/T∞ : Parallelism.

Work law: Tp ≥ T1/p.

Span law: Tp ≥ T∞.

Multicore programming The fork-join multithreaded programming model

For loop parallelism in Cilk++

a11 a12 ⋯ a1n
a21 a22 ⋯ a2n

a11 a21 ⋯ an1
a12 a22 ⋯ an221 22 2n

⋮ ⋮ ⋱ ⋮
an1 an2 ⋯ ann

12 22 n2

⋮ ⋮ ⋱ ⋮
a1n a2n ⋯ annn1 n2 nn 1n 2n nn

A AT

cilk_for (int i=1; i<n; ++i) {

for (int j=0; j<i; ++j) {

double temp = A[i][j];

A[i][j] = A[j][i];

A[j][i] = temp;

}

}

The iterations of a cilk for loop execute in parallel.

Multicore programming The fork-join multithreaded programming model

Implementation of for loops in Cilk++

Up to details (next week!) the previous loop is compiled as follows, using a
divide-and-conquer implementation:

void recur(int lo, int hi) {

if (hi > lo) { // coarsen

int mid = lo + (hi - lo)/2;

cilk_spawn recur(lo, mid);

recur(mid+1, hi);

cilk_sync;

} else

for (int j=0; j<hi; ++j) {

double temp = A[hi][j];

A[hi][j] = A[j][hi];

A[j][hi] = temp;

}

}

}

Multicore programming The fork-join multithreaded programming model

For loops in the fork-join parallelism model: another example

cilk_for (int i = 1; i <= 8; i ++){

f(i);

}

A cilk for loop executes recursively as 2 for loops of n/2 iterations,
adding a span of Θ(log(n)).

Figure: DAG for a cilk for with 8 iterations.

Multicore programming The fork-join multithreaded programming model

The work-stealing scheduler (1/11)

spawn
call spawncall
call
call

spawn
spawn
call
spawn
call

spawn
callcall

P P PP

call
Call!

P P PP

Multicore programming The fork-join multithreaded programming model

The work-stealing scheduler (2/11)

spawn
call spawncall
call
call
spawn

spawn
spawn
call
spawn
call

spawn
callcall

P

spawn

P PP

call
Spawn!

P P PP

Multicore programming The fork-join multithreaded programming model

The work-stealing scheduler (3/11)

spawn
call spawncall
call
call
spawn

spawn
spawn
call
spawn
call

spawn
call
spawn

call

P

spawn
spawn

P PP

call
call

spawn
Spawn!Spawn! Call!

P P PP

Multicore programming The fork-join multithreaded programming model

The work-stealing scheduler (4/11)

spawn
call spawn

spawn
call

call
call
call
spawn

spawn
call
spawn
call

spawn
call
spawn

P

spawn

P PP

call
callspawn

spawn
Return!

P P PP

Multicore programming The fork-join multithreaded programming model

The work-stealing scheduler (5/11)

spawn
call spawn

spawn
call
call
call
spawn

spawn
call
spawn
call

spawn
call
spawn

P

spawn

P PP

call
callspawn

spawn
Return!

P P PP

Multicore programming The fork-join multithreaded programming model

The work-stealing scheduler (6/11)

spawn
call spawncall
call
call
spawn

spawn
call
spawn
call

spawn
call
spawn

P

spawn

P PP

call
callspawn

spawn
Steal!

P P PP

Multicore programming The fork-join multithreaded programming model

The work-stealing scheduler (7/11)

spawn
call spawncall
call
call
spawn

spawn
call
spawn
call

spawn
call
spawn

P

spawn

P PP

call
callspawn

spawn
Steal!

P P PP

Multicore programming The fork-join multithreaded programming model

The work-stealing scheduler (8/11)

spawn
call spawncall
call
call
spawn

spawn
call
spawn
call

spawn
call
spawn

P

spawn

P PP

call
callspawn

spawn

P P PP

Multicore programming The fork-join multithreaded programming model

The work-stealing scheduler (9/11)

spawn
call spawncall
call
call
spawn

spawn
call

spawn
call

spawn
call
spawn

spawn

P

spawn

P PP

call
callspawn

spawn
Spawn!

P P PP

Multicore programming The fork-join multithreaded programming model

The work-stealing scheduler (10/11)

spawn
call spawncall
call
call
spawn

spawn
call

spawn
call

spawn
call
spawn

spawn

P

spawn

P PP

call
callspawn

spawn

P P PP

Multicore programming The fork-join multithreaded programming model

The work-stealing scheduler (11/11)

spawn
call spawncall
call
call
spawn

spawn
call

spawn
call

spawn
call
spawn

spawn

P

spawn

P PP

call
callspawn

spawn

P P PP

Multicore programming The fork-join multithreaded programming model

Performances of the work-stealing scheduler

Assume that

each strand executes in unit time,

for almost all “parallel steps” there are at least p strands to run,

each processor is either working or stealing.

Then, the randomized work-stealing scheduler is expected to run in

TP = T1/p + O(T∞)

Multicore programming The fork-join multithreaded programming model

Overheads and burden

Many factors (simplification assumptions of the fork-join parallelism
model, architecture limitation, costs of executing the parallel
constructs, overheads of scheduling) will make Tp larger in practice
than T1/p + T∞.

Cilk++ estimates Tp as Tp = T1/p + 1.7 burden span, where
burden span is 15000 instructions times the number of continuation
edges along the critical path.

Multicore programming The fork-join multithreaded programming model

Cilkview

Work Law
(linear

Span
Law(linear

speedup)
Measured

Burdened

Measured
speedup

Burdened
parallelism

— estimates Parallelismestimates
scheduling
overheads

Cilkview computes work and span to derive upper bounds on
parallel performance

Cilkview also estimates scheduling overhead to compute a burdened
span for lower bounds.

Multicore programming The fork-join multithreaded programming model

Tuned cache-oblivious parallel matrix multiplication

Multicore programming Anticipating parallelization overheads

Plan

1 Data locality and cache misses
Hierarchical memories and their impact on our programs
Cache complexity and cache-oblivious algorithms put into practice
A detailed case study: counting sort

2 Multicore programming
Multicore architectures
Cilk / Cilk++ / Cilk Plus
The fork-join multithreaded programming model
Anticipating parallelization overheads
Practical issues and optimization tricks

3 GPU programming
The CUDA programming and memory models

4 CUDA Programming: more details and examples
5 CUDA Programming: more details and examples

Tiled matrix multiplication in CUDA
Optimizing Matrix Transpose with CUDA
CUDA programming practices

Multicore programming Anticipating parallelization overheads

Pascal Triangle

1

1

1

0 0 0 0 0 0 0 0

1

1

1

1

1

1
2

1111 111

3 4 5 6 7 8

3 6 10 15 21 28

4 10 20 35 56

5 15 35 70

6 21 56

7 28

8

Construction of the Pascal Triangle: nearly the simplest stencil
computation!

Multicore programming Anticipating parallelization overheads

Divide and conquer: principle

I
II

II

I II

II III

The parallelism is Θ(n2−log23), so roughly Θ(n0.45) which can be regarded
as low parallelism.

Multicore programming Anticipating parallelization overheads

Blocking strategy: principle

a7

a6

a5

a4

a3

a2

a1

a0

0 0 0 0 0 0 0 0

1

4

3

3

3

2

2
4

4

4

Let B be the order of a block and n be the number of elements.

The parallelism of Θ(n/B) can still be regarded as low parallelism,
but better than with the divide and conquer scheme.

Multicore programming Anticipating parallelization overheads

Estimating parallelization overheads

The instruction stream DAG of the blocking strategy consists of n/B
binary tress T0, T1, . . . , Tn/B−1 such that

Ti is the instruction stream DAG of the cilk for loop executing the
i-th band

each leaf of Ti is connected by an edge to the root of Ti+1.

Consequently, the burdened span is

Sb(n) =

n/B∑
i=1

log(i) = log(

n/B∏
i=1

i) = log(Γ(
n

B
+ 1)).

Using Stirling’s Formula, we deduce

Sb(n) ∈ Θ
(n
B

log(
n

B
)
)
. (4)

Thus the burdened parallelism (that is, the ratio work to burdened span)
is Θ(Bn/log(n

B)), that is sub-linear in n, while the non-burdened
parallelism is Θ(n/B).

Multicore programming Anticipating parallelization overheads

Construction of the Pascal Triangle: experimental results

 2

 4

 6

 8

 10

 12

 2 4 6 8 10 12

S
pe

ed
up

 a
nd

 P
ar

al
le

lis
m

Core/Workers

Worker vs Speedup and Parallelism

speedup dynamic block
speedup static block

parallelism dynamic block
parallelism static block

Multicore programming Anticipating parallelization overheads

Summary and notes

Burdened parallelism

Parallelism after accounting for parallelization overheads (thread management,
costs of scheduling, etc.) The burdened parallelism is estimated as the ratio work
to burdened span.
The burdened span is defined as the maximum number of spawns/syncs on a
critical path times the cost for a cilk spawn (cilk sync) taken as 15,000 cycles.

Impact in practice: example for the Pascal Triangle

a7

a6

a5

a4

a3

a2

a1

a0

0 0 0 0 0 0 0 0

1

4

3

3

3

2

2
4

4

4

Consider executing one band after
another, where for each band all B×B
blocks are executed concurrently.
The non-burdened span is in
Θ(B2n/B) = Θ(n/B).
While the burdened span is

Sb(n) =
∑n/B

i=1 log(i)

= log(
∏n/B

i=1 i)
= log(Γ(n

B + 1))
∈ Θ

(
n
B log(n

B)
)
.

Multicore programming Practical issues and optimization tricks

Plan

1 Data locality and cache misses
Hierarchical memories and their impact on our programs
Cache complexity and cache-oblivious algorithms put into practice
A detailed case study: counting sort

2 Multicore programming
Multicore architectures
Cilk / Cilk++ / Cilk Plus
The fork-join multithreaded programming model
Anticipating parallelization overheads
Practical issues and optimization tricks

3 GPU programming
The CUDA programming and memory models

4 CUDA Programming: more details and examples
5 CUDA Programming: more details and examples

Tiled matrix multiplication in CUDA
Optimizing Matrix Transpose with CUDA
CUDA programming practices

Multicore programming Practical issues and optimization tricks

Example 1: a small loop with grain size = 1

Code:

const int N = 100 * 1000 * 1000;

void cilk_for_grainsize_1()

{

#pragma cilk_grainsize = 1

cilk_for (int i = 0; i < N; ++i)

fib(2);

}

Expectations:

Parallelism should be large, perhaps Θ(N) or Θ(N/ logN).

We should see great speedup.

Multicore programming Practical issues and optimization tricks

Speedup is indeed great. . .

Multicore programming Practical issues and optimization tricks

. . . but performance is lousy

Multicore programming Practical issues and optimization tricks

Recall how cilk for is implemented

Source:

cilk_for (int i = A; i < B; ++i)

BODY(i)

Implementation:

void recur(int lo, int hi) {

if ((hi - lo) > GRAINSIZE) {

int mid = lo + (hi - lo) / 2;

cilk_spawn recur(lo, mid);

cilk_spawn recur(mid, hi);

} else

for (int i = lo; i < hi; ++i)

BODY(i);

}

recur(A, B);

Multicore programming Practical issues and optimization tricks

Default grain size

Cilk++ chooses a grain size if you don’t specify one.

void cilk_for_default_grainsize()

{

cilk_for (int i = 0; i < N; ++i)

fib(2);

}

Cilk++’s heuristic for the grain size:

grain size = min

{
N

8P
, 512

}
.

Generates about 8P parallel leaves.

Works well if the loop iterations are not too unbalanced.

Multicore programming Practical issues and optimization tricks

Speedup with default grain size

Multicore programming Practical issues and optimization tricks

Large grain size

A large grain size should be even faster, right?

void cilk_for_large_grainsize()

{

#pragma cilk_grainsize = N

cilk_for (int i = 0; i < N; ++i)

fib(2);

}

Actually, no (except for noise):

Grain size Runtime

1 8.55 s
default (= 512) 2.44 s

N (= 108) 2.42 s

Multicore programming Practical issues and optimization tricks

Speedup with grain size = N

Multicore programming Practical issues and optimization tricks

Trade-off between grain size and parallelism

Use Cilkview to understand the trade-off:

Grain size Parallelism

1 6,951,154
default (= 512) 248,784

N (= 108) 1

In Cilkview, P = 1:

default grain size = min

{
N

8P
, 512

}
= min

{
N

8
, 512

}
.

Multicore programming Practical issues and optimization tricks

Lessons learned

Measure overhead before measuring speedup.
• Compare 1-processor Cilk++ versus serial code.

Small grain size ⇒ higher work overhead.

Large grain size ⇒ less parallelism.

The default grain size is designed for small loops that are reasonably
balanced.

• You may want to use a smaller grain size for unbalanced loops or loops
with large bodies.

Use Cilkview to measure the parallelism of your program.

Multicore programming Practical issues and optimization tricks

Example 2: A for loop that spawns

Code:

const int N = 10 * 1000 * 1000;

/* empty test function */

void f() { }

void for_spawn()

{

for (int i = 0; i < N; ++i)

cilk_spawn f();

}

Expectations:

I am spawning N parallel things.

Parallelism should be Θ(N), right?

Multicore programming Practical issues and optimization tricks

“Speedup” of for spawn()

Multicore programming Practical issues and optimization tricks

Insufficient parallelism

PPA analysis:

PPA says that both work and span are Θ(N).

Parallelism is ≈ 1.62, independent of N .

Too little parallelism: no speedup.

Why is the span Θ(N)?

for (int i = 0; i < N; ++i)

cilk_spawn f();

Multicore programming Practical issues and optimization tricks

Alternative: a cilk for loop.

Code:

/* empty test function */

void f() { }

void test_cilk_for()

{

cilk_for (int i = 0; i < N; ++i)

f();

}

PPA analysis:

The parallelism is about 2000 (with default grain size).

The parallelism is high.

As we saw earlier, this kind of loop yields good performance and
speedup.

Multicore programming Practical issues and optimization tricks

Lessons learned

cilk_for() is different from for(...) cilk_spawn.

The span of for(...) cilk_spawn is Ω(N).

For simple flat loops, cilk_for() is generally preferable because it
has higher parallelism.

(However, for(...) cilk_spawn might be better for recursively
nested loops.)

Use Cilkview to measure the parallelism of your program.

Multicore programming Practical issues and optimization tricks

Example 3: Vector addition

Code:

const int N = 50 * 1000 * 1000;

double A[N], B[N], C[N];

void vector_add()

{

cilk_for (int i = 0; i < N; ++i)

A[i] = B[i] + C[i];

}

Expectations:

Cilkview says that the parallelism is 68,377.

This will work great!

Multicore programming Practical issues and optimization tricks

Speedup of vector add()

Multicore programming Practical issues and optimization tricks

Bandwidth of the memory system

A typical machine: AMD Phenom 920 (Feb. 2009).

Cache level daxpy bandwidth

L1 19.6 GB/s per core
L2 18.3 GB/s per core
L3 13.8 GB/s shared
DRAM 7.1 GB/s shared

daxpy: x[i] = a*x[i] + y[i], double precision.

The memory bottleneck:

A single core can generally saturate most of the memory hierarchy.

Multiple cores that access memory will conflict and slow each other
down.

Multicore programming Practical issues and optimization tricks

How do you determine if memory is a bottleneck?

Hard problem:

No general solution.

Requires guesswork.

Two useful techniques:

Use a profiler such as the Intel VTune.
• Interpreting the output is nontrivial.
• No sensitivity analysis.

Perturb the environment to understand the effect of the CPU and
memory speeds upon the program speed.

Multicore programming Practical issues and optimization tricks

How to perturb the environment

Overclock/underclock the processor, e.g. using the power controls.
• If the program runs at the same speed on a slower processor, then the

memory is (probably) a bottleneck.

Overclock/underclock the DRAM from the BIOS.
• If the program runs at the same speed on a slower DRAM, then the

memory is not a bottleneck.

Add spurious work to your program while keeping the memory
accesses constant.

Run P independent copies of the serial program concurrently.
• If they slow each other down then memory is probably a bottleneck.

Multicore programming Practical issues and optimization tricks

Perturbing vector add()

const int N = 50 * 1000 * 1000;

double A[N], B[N], C[N];

void vector_add()

{

cilk_for (int i = 0; i < N; ++i) {

A[i] = B[i] + C[i];

fib(5); // waste time

}

}

Multicore programming Practical issues and optimization tricks

Speedup of perturbed vector add()

Multicore programming Practical issues and optimization tricks

Interpreting the perturbed results

The memory is a bottleneck:

A little extra work (fib(5)) keeps 8 cores busy. A little more extra
work (fib(10)) keeps 16 cores busy.

Thus, we have enough parallelism.

The memory is probably a bottleneck. (If the machine had a shared
FPU, the FPU could also be a bottleneck.)

OK, but how do you fix it?

vector_add cannot be fixed in isolation.

You must generally restructure your program to increase the reuse of
cached data. Compare the iterative and recursive matrix
multiplication from yesterday.

(Or you can buy a newer CPU and faster memory.)

Multicore programming Practical issues and optimization tricks

Lessons learned

Memory is a common bottleneck.

One way to diagnose bottlenecks is to perturb the program or the
environment.

Fixing memory bottlenecks usually requires algorithmic changes.

Multicore programming Practical issues and optimization tricks

Example 4: Nested loops

Code:

const int N = 1000 * 1000;

void inner_parallel()

{

for (int i = 0; i < N; ++i)

cilk_for (int j = 0; j < 4; ++j)

fib(10); /* do some work */

}

Expectations:

The inner loop does 4 things in parallel. The parallelism should be
about 4.

Cilkview says that the parallelism is 3.6.

We should see some speedup.

Multicore programming Practical issues and optimization tricks

“Speedup” of inner parallel()

Multicore programming Practical issues and optimization tricks

Interchanging loops

Code:

const int N = 1000 * 1000;

void outer_parallel()

{

cilk_for (int j = 0; j < 4; ++j)

for (int i = 0; i < N; ++i)

fib(10); /* do some work */

}

Expectations:

The outer loop does 4 things in parallel. The parallelism should be
about 4.

Cilkview says that the parallelism is 4.

Same as the previous program, which didn’t work.

Multicore programming Practical issues and optimization tricks

Speedup of outer parallel()

Multicore programming Practical issues and optimization tricks

Parallelism vs. burdened parallelism

Parallelism:

The best speedup you can hope for.

Burdened parallelism:

Parallelism after accounting for the unavoidable migration overheads.

Depends upon:

How well we implement the Cilk++ scheduler.

How you express the parallelism in your program.

Cilkview prints the burdened parallelism:

0.29 for inner_parallel(), 4.0 for outer_parallel().

In a good program, parallelism and burdened parallelism are about
equal.

Multicore programming Practical issues and optimization tricks

What is the burdened parallelism?

Code:

A();

cilk_spawn B();

C();

D();

cilk_sync;

E();

Burdened critical path:

The burden is Θ(10000) cycles (locks, malloc, cache warmup, reducers,
etc.)

Multicore programming Practical issues and optimization tricks

The burden in our examples

Θ(N) spawns/syncs on the critical path (large burden):

void inner_parallel()

{

for (int i = 0; i < N; ++i)

cilk_for (int j = 0; j < 4; ++j)

fib(10); /* do some work */

}

Θ(1) spawns/syncs on the critical path (small burden):

void outer_parallel()

{

cilk_for (int j = 0; j < 4; ++j)

for (int i = 0; i < N; ++i)

fib(10); /* do some work */

}

Multicore programming Practical issues and optimization tricks

Lessons learned

Insufficient parallelism yields no speedup; high burden yields
slowdown.

Many spawns but small parallelism: suspect large burden.

Cilkview helps by printing the burdened span and parallelism.

The burden can be interpreted as the number of spawns/syncs on the
critical path.

If the burdened parallelism and the parallelism are approximately
equal, your program is ok.

Multicore programming Practical issues and optimization tricks

Summary and notes

We have learned to identify and (when possible) address these
problems:

High overhead due to small grain size in cilk_for loops.

Insufficient parallelism.

Insufficient memory bandwidth.

Insufficient burdened parallelism.

GPU programming The CUDA programming and memory models

Plan

1 Data locality and cache misses
Hierarchical memories and their impact on our programs
Cache complexity and cache-oblivious algorithms put into practice
A detailed case study: counting sort

2 Multicore programming
Multicore architectures
Cilk / Cilk++ / Cilk Plus
The fork-join multithreaded programming model
Anticipating parallelization overheads
Practical issues and optimization tricks

3 GPU programming
The CUDA programming and memory models

4 CUDA Programming: more details and examples
5 CUDA Programming: more details and examples

Tiled matrix multiplication in CUDA
Optimizing Matrix Transpose with CUDA
CUDA programming practices

GPU programming The CUDA programming and memory models

CUDA design goals

Enable heterogeneous systems (i.e., CPU+GPU)

Scale to 100’s of cores, 1000’s of parallel threads

Use C/C++ with minimal extensions

Let programmers focus on parallel algorithms

GPU programming The CUDA programming and memory models

Heterogeneous programming (1/3)

A CUDA program is a serial program with parallel kernels, all in C.

The serial C code executes in a host (= CPU) thread

The parallel kernel C code executes in many device threads across
multiple GPU processing elements, called streaming processors (SP).

GPU programming The CUDA programming and memory models

Heterogeneous programming (2/3)

Thus, the parallel code (kernel) is launched and executed on a device
by many threads.

Threads are grouped into thread blocks.

One kernel is executed at a time on the device.

Many threads execute each kernel.

GPU programming The CUDA programming and memory models

Heterogeneous programming (3/3)

The parallel code is written for a thread
• Each thread is free to execute a unique code path
• Built-in thread and block ID variables are used to map each thread

to a specific data tile (see next slide).

Thus, each thread executes the same code on different data based on
its thread and block ID.

GPU programming The CUDA programming and memory models

Example: increment array elements (1/2)

See our example number 4 in /usr/local/cs4402/examples/4

GPU programming The CUDA programming and memory models

Example: increment array elements (2/2)

GPU programming The CUDA programming and memory models

Example host code for increment array elements

GPU programming The CUDA programming and memory models

Thread blocks (1/2)

A Thread block is a group of threads that can:
• Synchronize their execution
• Communicate via shared memory

Within a grid, thread blocks can run in any order:
• Concurrently or sequentially
• Facilitates scaling of the same code across many devices

GPU programming The CUDA programming and memory models

Thread blocks (2/2)

Thus, within a grid, any possible interleaving of blocks must be valid.

Thread blocks may coordinate but not synchronize
• they may share pointers
• they should not share locks (this can easily deadlock).

The fact that thread blocks cannot synchronize gives scalability:
• A kernel scales across any number of parallel cores

However, within a thread block, threads may synchronize with
barriers.

That is, threads wait at the barrier until all threads in the same
block reach the barrier.

GPU programming The CUDA programming and memory models

Vector addition on GPU (1/4)

GPU programming The CUDA programming and memory models

Vector addition on GPU (2/4)

GPU programming The CUDA programming and memory models

Vector addition on GPU (3/4)

GPU programming The CUDA programming and memory models

Vector addition on GPU (4/4)

GPU programming The CUDA programming and memory models

Memory hierarchy (1/3)

Host (CPU) memory:

Not directly accessible by CUDA threads

GPU programming The CUDA programming and memory models

Memory hierarchy (2/3)

Global (on the device) memory:

Also called device memory

Accessible by all threads as well as host (CPU)

Data lifetime = from allocation to deallocation

GPU programming The CUDA programming and memory models

Memory hierarchy (3/3)

Shared memory:

Each thread block has its own shared memory, which is accessible
only by the threads within that block

Data lifetime = block lifetime

Local storage:

Each thread has its own local storage

Data lifetime = thread lifetime

GPU programming The CUDA programming and memory models

Blocks run on multiprocessors

GPU programming The CUDA programming and memory models

Streaming processors and multiprocessors

GPU programming The CUDA programming and memory models

Hardware multithreading

Hardware allocates resources to blocks:
• blocks need: thread slots, registers, shared memory
• blocks don’t run until resources are available

Hardware schedules threads:
• threads have their own registers
• any thread not waiting for something can run
• context switching is free every cycle

Hardware relies on threads to hide latency:
• thus high parallelism is necessary for performance.

GPU programming The CUDA programming and memory models

SIMT thread execution

At each clock cycle, a multiprocessor executes the same instruction
on a group of threads called a warp

• The number of threads in a warp is the warp size (32 on G80)
• A half-warp is the first or second half of a warp.

Within a warp, threads
• share instruction fetch/dispatch
• some become inactive when code path diverges
• hardware automatically handles divergence

Warps are the primitive unit of scheduling:
• each active block is split into warps in a well-defined way
• threads within a warp are executed physically in parallel while warps

and blocks are executed logically in parallel.

CUDA Programming: more details and examples

Code executed on the GPU

The GPU code defines and calls C function with some restrictions:
• Can only access GPU memory
• No variable number of arguments
• No static variables
• No recursion (. . . well this has changed recently)
• No dynamic polymorphism

GPU functions must be declared with a qualifier:

global : launched by CPU, cannot be called from GPU, must
return void

device : called from other GPU functions, cannot be launched
by the CPU

host : can be executed by CPU

qualifiers can be combined.

Built-in variables: gridDim, blockDim, blockIdx, threadIdx

CUDA Programming: more details and examples

Variable Qualifiers (GPU code)

device : stored in global memory (not cached, high latency)
accessible by all threads
lifetime: application

constant : stored in global memory (cached)
read-only for threads, written by host
Lifetime: application

shared : stored in shared memory (latency comparable to
registers)
accessible by all threads in the same threadblock
lifetime: block lifetime

Unqualified variables: scalars and built-in vector types are stored in
registers
arrays are stored in device (= global) memory

CUDA Programming: more details and examples

Launching kernels on GPU

Launch parameters:

grid dimensions (up to 2D)

thread-block dimensions (up to 3D)

shared memory: number of bytes per block
• for extern smem variables declared without size
• Optional, 0 by default

stream ID:
• Optional, 0 by default

dim3 grid(16, 16);

dim3 block(16,16);

kernel<<<grid, block, 0, 0>>>(...);

kernel<<<32, 512>>>(...);

CUDA Programming: more details and examples

GPU Memory Allocation / Release

Host (CPU) manages GPU memory:

cudaMalloc (void ** pointer, size t nbytes)

cudaMemset (void * pointer, int value, size t count)

cudaFree (void* pointer)

int n = 1024;

int nbytes = 1024*sizeof(int);

int * d_a = 0;

cudaMalloc((void**)&d_a, nbytes);

cudaMemset(d_a, 0, nbytes);

cudaFree(d_a);

CUDA Programming: more details and examples

Data Copies

cudaMemcpy(void *dst, void *src, size t nbytes, enum
cudaMemcpyKind direction);

• returns after the copy is complete,
• blocks the CPU thread,
• doesn’t start copying until previous CUDA calls complete.

enum cudaMemcpyKind

• cudaMemcpyHostToDevice
• cudaMemcpyDeviceToHost
• cudaMemcpyDeviceToDevice

Non-blocking memcopies are provided (more on this later)

CUDA Programming: more details and examples

Thread Synchronization Function

void syncthreads();

Synchronizes all threads in a block:
• once all threads have reached this point, execution resumes normally.
• this is used to avoid hazards when accessing shared memory.

Should be used in conditional code only if the condition is uniform
across the entire thread block.

CUDA Programming: more details and examples

Example kernel Source Code

CUDA Programming: more details and examples

Kernel variations and output: what is in a?

CUDA Programming: more details and examples

Kernel variations and utput: answers

CUDA Programming: more details and examples

Code Walkthrough (1/4)

CUDA Programming: more details and examples

Code Walkthrough (2/4)

CUDA Programming: more details and examples

Code Walkthrough (3/4)

CUDA Programming: more details and examples

Code Walkthrough (4/4)

CUDA Programming: more details and examples

Example: Shuffling Data

CUDA Programming: more details and examples

Kernel with 2D Indexing (1/2)

CUDA Programming: more details and examples

Kernel with 2D Indexing (2/2)

CUDA Programming: more details and examples Tiled matrix multiplication in CUDA

Plan

1 Data locality and cache misses
Hierarchical memories and their impact on our programs
Cache complexity and cache-oblivious algorithms put into practice
A detailed case study: counting sort

2 Multicore programming
Multicore architectures
Cilk / Cilk++ / Cilk Plus
The fork-join multithreaded programming model
Anticipating parallelization overheads
Practical issues and optimization tricks

3 GPU programming
The CUDA programming and memory models

4 CUDA Programming: more details and examples
5 CUDA Programming: more details and examples

Tiled matrix multiplication in CUDA
Optimizing Matrix Transpose with CUDA
CUDA programming practices

CUDA Programming: more details and examples Tiled matrix multiplication in CUDA

Matrix multiplication (1/16)

The goals of this example are:
• Understanding how to write a kernel for a non-toy example
• Understanding how to map work (and data) to the thread blocks
• Understanding the importance of using shared memory

We start by writing a naive kernel for matrix multiplication which
does not use shared memory.

Then we analyze the performance of this kernel and realize that it is
limited by the global memory latency.

Finally, we present a more efficient kernel, which takes advantage of a
tile decomposition and makes use of shared memory.

CUDA Programming: more details and examples Tiled matrix multiplication in CUDA

Matrix multiplication (2/16)

Consider multiplying two rectangular matrices A and B with
respective formats m× n and n× p. Define C = A×B.
Principle: each thread computes an element of C through a 2D grid
with 2D thread blocks.

CUDA Programming: more details and examples Tiled matrix multiplication in CUDA

Matrix multiplication (3/16)

__global__ void mat_mul(float *a, float *b,

float *ab, int width)

{

// calculate the row & col index of the element

int row = blockIdx.y*blockDim.y + threadIdx.y;

int col = blockIdx.x*blockDim.x + threadIdx.x;

float result = 0;

// do dot product between row of a and col of b

for(int k = 0; k < width; ++k)

result += a[row*width+k] * b[k*width+col];

ab[row*width+col] = result;

}

CUDA Programming: more details and examples Tiled matrix multiplication in CUDA

Matrix multiplication (4/16)

Analyze the previous CUDA kernel for multiplying two rectangular
matrices A and B with respective formats m× n and n× p. Define
C = A×B.

Each element of C is computed by one thread:
• then each row of A is read p times and
• each column of B is read m times, thus
• 2mnp reads in total for 2mnp flops.

Let t be an integer dividing m and p. We decompose C into t× t
tiles. If tiles are computed one after another, then:

• (m/t)(t n)(p/t) slots are read in A
• (p/t)(t n)(m/t) slots are read in B, thus
• 2mnp/t reads in total for 2mnp flops.

For a CUDA implementation, t = 16 such that each tile is computed
by one thread block.

CUDA Programming: more details and examples Tiled matrix multiplication in CUDA

Matrix multiplication (5/16)

The previous explanation can be adapted to a particular GPU
architecture, so as to estimate the performance of the first (naive)
kernel.

The first kernel has a global memory access to flop ratio (GMAC)
of 8 Bytes / 2 ops, that is, 4 B/op.

Suppose using a GeForce GTX 260, which has 805 GFLOPS peak
performance.

In order to reach peak fp performance we would need a memory
bandwidth of GMAC× Peak FLOPS = 3.2 TB/s.

Unfortunately, we only have 112 GB/s of actual memory bandwidth
(BW) on a GeForce GTX 260.

Therefore an upper bound on the performance of our implementation
is BW / GMAC = 28 GFLOPS.

CUDA Programming: more details and examples Tiled matrix multiplication in CUDA

Matrix multiplication (6/16)

The picture below illustrates our second kernel

Each thread block computes a tile in C, which is obtained as a dot
product of tile-vector of A by a tile-vector of B.

Tile size is chosen in order to maximize data locality.

CUDA Programming: more details and examples Tiled matrix multiplication in CUDA

Matrix multiplication (7/16)

So a thread block computes a t× t tile of C.

Each element in that tile is a dot-product of a row from A and a
column from B.

We view each of these dot-products as a sum of small dot products:

ci,j = Σt−1
k=oai,kbk,j + Σ2t−1

k=t ai,kbk,j + · · ·Σn−1
k=n−1−tai,kbk,j

Therefore we fix ` and then compute Σ
(`+1)t−1
k=`t ai,kbk,j for all i, j in

the working thread block.

We do this for ` = 0, 1, . . . , (n/t− 1).

This allows us to store the working tiles of A and B in shared memory.

CUDA Programming: more details and examples Tiled matrix multiplication in CUDA

Matrix multiplication (8/16)

We assume that A, B, C are stored in row-major layout.

Observe that for computing a tile in C our kernel code does need to
know the number of rows in A.

It just needs to know the width (number of columns) of A and B.

#define BLOCK_SIZE 16

template <typename T>

__global__ void matrix_mul_ker(T* C, const T *A, const T *B,

size_t wa, size_t wb)

// Block index; WARNING: should be at most 2^16 - 1

int bx = blockIdx.x; int by = blockIdx.y;

// Thread index

int tx = threadIdx.x; int ty = threadIdx.y;

CUDA Programming: more details and examples Tiled matrix multiplication in CUDA

Matrix multiplication (9/16)

We need the position in *A of the first element of the first working
tile from A; we call it aBegin.

We will need also the position in *A of the last element of the first
working tile from A; we call it aEnd.

Moreover, we will need the offset between two consecutive working
tiles of A; we call it aStep.

int aBegin = wa * BLOCK_SIZE * by;

int aEnd = aBegin + wa - 1;

int aStep = BLOCK_SIZE;

CUDA Programming: more details and examples Tiled matrix multiplication in CUDA

Matrix multiplication (10/16)

Similarly for B we have bBegin and bStep.

We will not need a bEnd since once we are done with a row of A, we
are also done with a column of B.

Finally, we initialize the accumulator of the working thread; we call it
Csub.

int bBegin = BLOCK_SIZE * bx;

int bStep = BLOCK_SIZE * wb;

int Csub = 0;

CUDA Programming: more details and examples Tiled matrix multiplication in CUDA

Matrix multiplication (11/16)

The main loop starts by copying the working tiles of A and B to
shared memory.

for(int a = aBegin, b = bBegin; a <= aEnd; a += aStep, b += bStep) {

// shared memory for the tile of A

__shared__ int As[BLOCK_SIZE][BLOCK_SIZE];

// shared memory for the tile of B

__shared__ int Bs[BLOCK_SIZE][BLOCK_SIZE];

// Load the tiles from global memory to shared memory

// each thread loads one element of each tile

As[ty][tx] = A[a + wa * ty + tx];

Bs[ty][tx] = B[b + wb * ty + tx];

// synchronize to make sure the matrices are loaded

__syncthreads();

CUDA Programming: more details and examples Tiled matrix multiplication in CUDA

Matrix multiplication (12/16)

Compute a small “dot-product” for each element in the working tile
of C.

// Multiply the two tiles together

// each thread computes one element of the tile of C

for(int k = 0; k < BLOCK_SIZE; ++k) {

Csub += As[ty][k] * Bs[k][tx];

}

// synchronize to make sure that the preceding computation is

// done before loading two new tiles of A dnd B in the next iteration

__syncthreads();

}

CUDA Programming: more details and examples Tiled matrix multiplication in CUDA

Matrix multiplication (13/16)

Once computed, the working tile of C is written to global memory.

// Write the working tile of C to global memory;

// each thread writes one element

int c = wb * BLOCK_SIZE * by + BLOCK_SIZE * bx;

C[c + wb * ty + tx] = Csub;

CUDA Programming: more details and examples Tiled matrix multiplication in CUDA

Matrix multiplication (14/16)

Each thread block should have many threads:
• TILE WIDTH = 16 implies 16× 16 = 256 threads

There should be many thread blocks:
• A 1024× 1024 matrix would require 4096 thread blocks.
• Since one streaming multiprocessor (SM) can handle 768 threads, each

SM will process 3 thread blocks, leading it full occupancy.

Each thread block performs 2× 256 reads of a 4-byte float while
performing 256× (2× 16) = 8, 192 fp ops:

• Memory bandwidth is no longer limiting factor

CUDA Programming: more details and examples Tiled matrix multiplication in CUDA

Matrix multiplication (15/16)

Experimentation performed on a GT200.

Tiling and using shared memory were clearly worth the effort.

CUDA Programming: more details and examples Tiled matrix multiplication in CUDA

Matrix multiplication (16/16)

Effective use of different memory resources reduces the number of
accesses to global memory

But these resources are finite!

The more memory locations each thread requires, the fewer threads
an SM can accommodate.

CUDA Programming: more details and examples Optimizing Matrix Transpose with CUDA

Plan

1 Data locality and cache misses
Hierarchical memories and their impact on our programs
Cache complexity and cache-oblivious algorithms put into practice
A detailed case study: counting sort

2 Multicore programming
Multicore architectures
Cilk / Cilk++ / Cilk Plus
The fork-join multithreaded programming model
Anticipating parallelization overheads
Practical issues and optimization tricks

3 GPU programming
The CUDA programming and memory models

4 CUDA Programming: more details and examples
5 CUDA Programming: more details and examples

Tiled matrix multiplication in CUDA
Optimizing Matrix Transpose with CUDA
CUDA programming practices

CUDA Programming: more details and examples Optimizing Matrix Transpose with CUDA

Matrix transpose characteristics (1/2)

We optimize a transposition code for a matrix of floats. This operates
out-of-place:

• input and output matrices address separate memory locations.

For simplicity, we consider an n× n matrix where 32 divides n.
We focus on the device code:

• the host code performs typical tasks: data allocation and transfer between host
and device, the launching and timing of several kernels, result validation, and
the deallocation of host and device memory.

Benchmarks illustrate this section:
• we compare our matrix transpose kernels against a matrix copy kernel,
• for each kernel, we compute the effective bandwidth, calculated in GB/s as

twice the size of the matrix (once for reading the matrix and once for writing)
divided by the time of execution,

• Each operation is run NUM REFS times (for normalizing the measurements),
• This looping is performed once over the kernel and once within the kernel,
• The difference between these two timings is kernel launch and synchronization

overheads.

CUDA Programming: more details and examples Optimizing Matrix Transpose with CUDA

Matrix transpose characteristics (2/2)

We present hereafter different kernels called from the host code, each
addressing different performance issues.

All kernels in this study launch thread blocks of dimension 32x8,
where each block transposes (or copies) a tile of dimension 32x32.

As such, the parameters TILE DIM and BLOCK ROWS are set to 32 and
8, respectively.

Using a thread block with fewer threads than elements in a tile is
advantageous for the matrix transpose:

• each thread transposes several matrix elements, four in our case, and
much of the cost of calculating the indices is amortized over these
elements.

This study is based on a technical report by Greg Ruetsch (NVIDIA)
and Paulius Micikevicius (NVIDIA).

CUDA Programming: more details and examples Optimizing Matrix Transpose with CUDA

A simple copy kernel (1/2)

__global__ void copy(float *odata, float* idata, int width,

int height, int nreps)

{

int xIndex = blockIdx.x*TILE_DIM + threadIdx.x;

int yIndex = blockIdx.y*TILE_DIM + threadIdx.y;

int index = xIndex + width*yIndex;

for (int r=0; r < nreps; r++) { // normalization outer loop

for (int i=0; i<TILE_DIM; i+=BLOCK_ROWS) {

odata[index+i*width] = idata[index+i*width];

}

}

}

CUDA Programming: more details and examples Optimizing Matrix Transpose with CUDA

A simple copy kernel (2/2)

odata and idata are pointers to the input and output matrices,

width and height are the matrix x and y dimensions,

nreps determines how many times the loop over data movement
between matrices is performed.

In this kernel, xIndex and yIndex are global 2D matrix indices,

used to calculate index, the 1D index used to access matrix elements.

__global__ void copy(float *odata, float* idata, int width,

int height, int nreps)

{

int xIndex = blockIdx.x*TILE_DIM + threadIdx.x;

int yIndex = blockIdx.y*TILE_DIM + threadIdx.y;

int index = xIndex + width*yIndex;

for (int r=0; r < nreps; r++) {

for (int i=0; i<TILE_DIM; i+=BLOCK_ROWS) {

odata[index+i*width] = idata[index+i*width];

} } }

CUDA Programming: more details and examples Optimizing Matrix Transpose with CUDA

A naive transpose kernel

_global__ void transposeNaive(float *odata, float* idata,

int width, int height, int nreps)

{

int xIndex = blockIdx.x*TILE_DIM + threadIdx.x;

int yIndex = blockIdx.y*TILE_DIM + threadIdx.y;

int index_in = xIndex + width * yIndex;

int index_out = yIndex + height * xIndex;

for (int r=0; r < nreps; r++) {

for (int i=0; i<TILE_DIM; i+=BLOCK_ROWS) {

odata[index_out+i] = idata[index_in+i*width];

}

}

}

CUDA Programming: more details and examples Optimizing Matrix Transpose with CUDA

Naive transpose kernel vs copy kernel

The performance of these two kernels on a 2048x2048 matrix using a
GTX280 is given in the following table:

Routine Bandwidth (GB/s)

copy 105.14

naive transpose 18.82

The minor differences in code between the copy and nave transpose
kernels have a profound effect on performance.

CUDA Programming: more details and examples Optimizing Matrix Transpose with CUDA

Coalesced Transpose (1/11)

Because device memory has a much higher latency and lower
bandwidth than on-chip memory, special attention must be paid to:
how global memory accesses are performed?

The simultaneous global memory accesses by each thread of a
half-warp (16 threads on G80) during the execution of a single read or
write instruction will be coalesced into a single access if:

1 The size of the memory element accessed by each thread is either 4, 8,
or 16 bytes.

2 The address of the first element is aligned to 16 times the element’s
size.

3 The elements form a contiguous block of memory.
4 The i-th element is accessed by the i-th thread in the half-warp.

Last two requirements are relaxed with compute capabilities of 1.2.

Coalescing happens even if some threads do not access memory
(divergent warp)

CUDA Programming: more details and examples Optimizing Matrix Transpose with CUDA

Coalesced Transpose (2/11)

CUDA Programming: more details and examples Optimizing Matrix Transpose with CUDA

Coalesced Transpose (3/11)

CUDA Programming: more details and examples Optimizing Matrix Transpose with CUDA

Coalesced Transpose (4/11)

CUDA Programming: more details and examples Optimizing Matrix Transpose with CUDA

Coalesced Transpose (5/11)

Allocating device memory through cudaMalloc() and choosing
TILE DIM to be a multiple of 16 ensures alignment with a
segment of memory, therefore all loads from idata are coalesced.

Coalescing behavior differs between the simple copy and naive
transpose kernels when writing to odata.

In the case of the naive transpose, for each iteration of the i-loop a
half warp writes one half of a column of floats to different segments
of memory:

• resulting in 16 separate memory transactions,
• regardless of the compute capability.

CUDA Programming: more details and examples Optimizing Matrix Transpose with CUDA

Coalesced Transpose (6/11)

The way to avoid uncoalesced global memory access is
1 to read the data into shared memory and,
2 have each half warp access non-contiguous locations in shared memory

in order to write contiguous data to odata.

There is no performance penalty for non-contiguous access patterns in
shared memory as there is in global memory.

a synchthreads() call is required to ensure that all reads from
idata to shared memory have completed before writes from shared
memory to odata commence.

CUDA Programming: more details and examples Optimizing Matrix Transpose with CUDA

Coalesced Transpose (7/11)

__global__ void transposeCoalesced(float *odata,

float *idata, int width, int height) // no nreps param

{

__shared__ float tile[TILE_DIM][TILE_DIM];

int xIndex = blockIdx.x*TILE_DIM + threadIdx.x;

int yIndex = blockIdx.y*TILE_DIM + threadIdx.y;

int index_in = xIndex + (yIndex)*width;

xIndex = blockIdx.y * TILE_DIM + threadIdx.x;

yIndex = blockIdx.x * TILE_DIM + threadIdx.y;

int index_out = xIndex + (yIndex)*height;

for (int i=0; i<TILE_DIM; i+=BLOCK_ROWS) {

tile[threadIdx.y+i][threadIdx.x] =

idata[index_in+i*width];

} __syncthreads();

for (int i=0; i<TILE_DIM; i+=BLOCK_ROWS) {

odata[index_out+i*height] =

tile[threadIdx.x][threadIdx.y+i];

} }

CUDA Programming: more details and examples Optimizing Matrix Transpose with CUDA

Coalesced Transpose (8/11)

1 The half warp writes four half rows of the idata matrix tile to the
shared memory 32x32 array tile indicated by the yellow line
segments.

2 After a syncthreads() call to ensure all writes to tile are
completed,

3 the half warp writes four half columns of tile to four half rows of an
odata matrix tile, indicated by the green line segments.

CUDA Programming: more details and examples Optimizing Matrix Transpose with CUDA

Coalesced Transpose (9/11)

Routine Bandwidth (GB/s)

copy 105.14

shared memory copy 104.49

naive transpose 18.82

While there is a dramatic increase in effective bandwidth of the coalesced
transpose over the naive transpose, there still remains a large performance
gap between the coalesced transpose and the copy:

One possible cause of this performance gap could be the
synchronization barrier required in the coalesced transpose.

This can be easily assessed using the following copy kernel which
utilizes shared memory and contains a syncthreads() call.

CUDA Programming: more details and examples Optimizing Matrix Transpose with CUDA

Coalesced Transpose (10/11)

_global__ void copySharedMem(float *odata, float *idata,

int width, int height) // no nreps param

{

__shared__ float tile[TILE_DIM][TILE_DIM];

int xIndex = blockIdx.x*TILE_DIM + threadIdx.x;

int yIndex = blockIdx.y*TILE_DIM + threadIdx.y;

int index = xIndex + width*yIndex;

for (int i=0; i<TILE_DIM; i+=BLOCK_ROWS) {

tile[threadIdx.y+i][threadIdx.x] =

idata[index+i*width];

}

__syncthreads();

for (int i=0; i<TILE_DIM; i+=BLOCK_ROWS) {

odata[index+i*width] =

tile[threadIdx.y+i][threadIdx.x];

} }

CUDA Programming: more details and examples Optimizing Matrix Transpose with CUDA

Coalesced Transpose (11/11)

Routine Bandwidth (GB/s)

copy 105.14

shared memory copy 104.49

naive transpose 18.82

coalesced transpose 51.42

The shared memory copy results seem to suggest that the use of shared
memory with a synchronization barrier has little effect on the performance,
certainly as far as the Loop in kernel column indicates when comparing
the simple copy and shared memory copy.

CUDA Programming: more details and examples Optimizing Matrix Transpose with CUDA

Shared memory bank conflicts (1/6)

1 Shared memory is divided into 16 equally-sized memory modules,
called banks, which are organized such that successive 32-bit words
are assigned to successive banks.

2 These banks can be accessed simultaneously, and to achieve maximum
bandwidth to and from shared memory the threads in a half warp
should access shared memory associated with different banks.

3 The exception to this rule is when all threads in a half warp read
the same shared memory address, which results in a broadcast where
the data at that address is sent to all threads of the half warp in one
transaction.

4 One can use the warp serialize flag when profiling CUDA
applications to determine whether shared memory bank conflicts
occur in any kernel.

CUDA Programming: more details and examples Optimizing Matrix Transpose with CUDA

Shared memory bank conflicts (2/6)

CUDA Programming: more details and examples Optimizing Matrix Transpose with CUDA

Shared memory bank conflicts (3/6)

CUDA Programming: more details and examples Optimizing Matrix Transpose with CUDA

Shared memory bank conflicts (4/6)

1 The coalesced transpose uses a 32× 32 shared memory array of
floats.

2 For this sized array, all data in columns k and k+16 are mapped to
the same bank.

3 As a result, when writing partial columns from tile in shared
memory to rows in odata the half warp experiences a 16-way bank
conflict and serializes the request.

4 A simple way to avoid this conflict is to pad the shared memory array
by one column:

__shared__ float tile[TILE_DIM][TILE_DIM+1];

CUDA Programming: more details and examples Optimizing Matrix Transpose with CUDA

Shared memory bank conflicts (5/6)

The padding does not affect shared memory bank access pattern when
writing a half warp to shared memory, which remains conflict free,

but by adding a single column now the access of a half warp of data
in a column is also conflict free.

The performance of the kernel, now coalesced and memory bank
conflict free, is added to our table on the next slide.

CUDA Programming: more details and examples Optimizing Matrix Transpose with CUDA

Shared memory bank conflicts (6/6)

Device : Tesla M2050

Matrix size: 1024 1024, Block size: 32 8, Tile size: 32 32

Routine Bandwidth (GB/s)

copy 105.14

shared memory copy 104.49

naive transpose 18.82

coalesced transpose 51.42

conflict-free transpose 99.83

While padding the shared memory array did eliminate shared memory
bank conflicts, as was confirmed by checking the warp serialize

flag with the CUDA profiler, it has little effect (when implemented at
this stage) on performance.

As a result, there is still a large performance gap between the
coalesced and shared memory bank conflict free transpose and the
shared memory copy.

CUDA Programming: more details and examples CUDA programming practices

Plan

1 Data locality and cache misses
Hierarchical memories and their impact on our programs
Cache complexity and cache-oblivious algorithms put into practice
A detailed case study: counting sort

2 Multicore programming
Multicore architectures
Cilk / Cilk++ / Cilk Plus
The fork-join multithreaded programming model
Anticipating parallelization overheads
Practical issues and optimization tricks

3 GPU programming
The CUDA programming and memory models

4 CUDA Programming: more details and examples
5 CUDA Programming: more details and examples

Tiled matrix multiplication in CUDA
Optimizing Matrix Transpose with CUDA
CUDA programming practices

CUDA Programming: more details and examples CUDA programming practices

Four principles

Expose as much parallelism as possible

Optimize memory usage for maximum bandwidth

Maximize occupancy to hide latency

Optimize instruction usage for maximum throughput

CUDA Programming: more details and examples CUDA programming practices

Expose Parallelism

Structure algorithm to maximize independent parallelism

If threads of same block need to communicate, use shared memory
and syncthreads()

If threads of different blocks need to communicate, use global
memory and split computation into multiple kernels

Recall that there is no synchronization mechanism between blocks

High parallelism is especially important to hide memory latency by
overlapping memory accesses with computation

Take advantage of asynchronous kernel launches by overlapping CPU
computations with kernel execution.

CUDA Programming: more details and examples CUDA programming practices

Optimize Memory Usage: Basic Strategies

Processing data is cheaper than moving it around:
• Especially for GPUs as they devote many more transistors to ALUs

than memory

Basic strategies:
• Maximize use of low-latency, high-bandwidth memory
• Optimize memory access patterns to maximize bandwidth
• Leverage parallelism to hide memory latency by overlapping memory

accesses with computation as much as possible
• Write kernels with high arithmetic intensity (ratio of arithmetic

operations to memory transactions)
• Sometimes recompute data rather than cache it

CUDA Programming: more details and examples CUDA programming practices

Minimize CPU < − > GPU Data Transfers

CPU < − > GPU memory bandwidth much lower than GPU memory
bandwidth

Minimize CPU < − > GPU data transfers by moving more code from
CPU to GPU

• Even if sometimes that means running kernels with low parallelism
computations

• Intermediate data structures can be allocated, operated on, and
deallocated without ever copying them to CPU memory

Group data transfers: One large transfer much better than many
small ones.

CUDA Programming: more details and examples CUDA programming practices

Optimize Memory Access Patterns

Effective bandwidth can vary by an order of magnitude depending on
access pattern:

• Global memory is not cached on G8x.
• Global memory has High latency instructions: 400-600 clock cycles
• Shared memory has low latency: a few clock cycles

Optimize access patterns to get:
• Coalesced global memory accesses
• Shared memory accesses with no or few bank conflicts and
• to avoid partition camping.

CUDA Programming: more details and examples CUDA programming practices

A Common Programming Strategy

1 Partition data into subsets that fit into shared memory

2 Handle each data subset with one thread block

3 Load the subset from global memory to shared memory, using
multiple threads to exploit memory-level parallelism.

4 Perform the computation on the subset from shared memory.

5 Copy the result from shared memory back to global memory.

CUDA Programming: more details and examples CUDA programming practices

A Common Programming Strategy

Carefully partition data according to access patterns

If read only, use constant memory (fast)

for read/write access within a tile, use shared memory (fast)

for read/write scalar access within a thread, use registers (fast)

R/W inputs/results cudaMalloc’ed, use global memory (slow)

CUDA Programming: more details and examples CUDA programming practices

A Common Programming Strategy

Partition data into subsets that fit into shared memory

CUDA Programming: more details and examples CUDA programming practices

A Common Programming Strategy

Handle each data subset with one thread block

CUDA Programming: more details and examples CUDA programming practices

A Common Programming Strategy

Load the subset from global memory to shared memory, using multiple
threads to exploit memory-level parallelism.

CUDA Programming: more details and examples CUDA programming practices

A Common Programming Strategy

Perform the computation on the subset from shared memory.

CUDA Programming: more details and examples CUDA programming practices

A Common Programming Strategy

Copy the result from shared memory back to global memory.

	Data locality and cache misses
	Hierarchical memories and their impact on our programs
	Cache complexity and cache-oblivious algorithms put into practice
	A detailed case study: counting sort

	Multicore programming
	Multicore architectures
	Cilk / Cilk++ / Cilk Plus
	The fork-join multithreaded programming model
	Anticipating parallelization overheads
	Practical issues and optimization tricks

	GPU programming
	The CUDA programming and memory models

	CUDA Programming: more details and examples
	CUDA Programming: more details and examples
	Tiled matrix multiplication in CUDA
	Optimizing Matrix Transpose with CUDA
	CUDA programming practices

