Elements of correction

$ (1)$
With $ {\alpha}_2 = 2$ , we have $ u_f = x_1^3 + x_1^4 + x_1^2$ and with $ {\alpha}_2 = 3$ , we have $ u_f = x_1^4 + x_1^6 + x_1^2$ .
$ (2)$
$ {\alpha}_2 \geq {\deg}(f,x_1) + 1$ .
$ (3)$
$ {\alpha}_2 \geq d_1 + c_1 + 1$ .
$ (4)$
Using $ {\alpha}_2 = d_1 + c_1 + 1$ compute $ u_f$ and $ u_g$ the respective images of $ f$ and $ g$ , then the product $ u_f u_g$ in $ {\mbox{${\mathbb{K}}$}}[x_1]$ , then its (unique) preimage $ fg$ . It is easy to check that the transformations $ f \rightarrow u_f$ , $ g \rightarrow u_g$ , and $ u_f u_g \rightarrow f g$ have a linear cost in the number of terms of their results. So the dominant cost is the computation of the product $ u_f u_g$ which is clearly in $ M( ({\deg}(fg,x_1) +1) {\deg}(fg,x_2) ) = M( {\alpha}_2 {\deg}(fg,x_2) )$ operations in $ {\mathbb{K}}$ .

Marc Moreno Maza
2008-03-18