Orders of magnitude

Let $ f$ , $ g$ et $ h$ be functions from $ {\mathbb{N}}$ to $ {\mathbb{R}}$ Let us give some examples. We have the following properties. In practice $ \in$ is replaced by $ =$ in each of the expressions $ f(n) \in {\Theta}(g(n))$ , $ f(n) \in {\cal O}(g(n))$ and $ f(n) \in {\Omega}(g(n))$ . Hence, the following

$\displaystyle f(n) = h(n) + {\Theta}(g(n))$ (11)

means

$\displaystyle f(n) - h(n) \in {\Theta}(g(n)).$ (12)

Let us give another fundamental example. Let $ p(n)$ be a (univariate) polynomial with degree $ d > 0$ . Let $ a_d$ be its leading coefficient and assume $ a_d > 0$ . Then we have
$ (1)$
if $ k \geq d$ then $ p(n) \in {\cal O}(n^k)$ ,
$ (2)$
if $ k \leq d$ then $ p(n) \in {\Omega}(n^k)$ ,
$ (3)$
if $ k = d$ then $ p(n) \in {\Theta}(n^k)$ .
Exercise: Prove the following

$\displaystyle {\Sigma}_{k=1}^{k=n} \, {k} \ \in \ {\Theta}(n^2).$ (13)

Marc Moreno Maza
2008-01-07