Formulas for Linear Symbolic Newton Iteration.

Let $ R$ be an Euclidean domain with a regular Euclidean size $ {\delta}$ . Let $ p \in R$ be a prime element. Let $ {\phi} \in R[y]$ and let $ a, a_0 \in R$ such that
  1. $ {\phi}(a) = 0$ ,
  2. $ a \equiv a_0 \mod{p}$ ,
  3. $ {\phi}'(a_0) \neq 0 \mod{p}$ .
If $ a$ is unknown, but $ {\phi}$ and $ a_0$ are known then we can compute a $ p$ -adic expansion of $ a$ as follows. Let $ (a_0, a_1, \ldots, a_d)$ be a $ p$ -adic expansion of $ a$ w.r.t. $ p$ . Let $ k < d + 1$ be a positive integer. Recall that the element

$\displaystyle a^{(k)} = a_0 + a_1 p + \cdots a_{k-1} p^{k-1}$ (1)

is a $ p$ -adic approximation of $ a$ at order $ k$ . Let us denote by $ {\Phi}_p$ the canonical homomorphism from $ R$ to $ R/\langle p \rangle$ . The following formula computes $ a_k$ from $ a^{(k)}$ :

$\displaystyle {\Phi}_p(\frac{{\phi}(a^{(k)})}{p^k}) = - {\Phi}_p({\phi}'(a_0)) {\Phi}_p(a_k)$ (2)

Marc Moreno Maza
2008-01-31