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ABSTRACT
We study algorithm based fault tolerance techniques for sup-
porting malicious errors in distributed computations based
on Chinese remainder theorem. The description holds for
both computations with integers or with polynomials over
a field. It unifies the approaches of redundant residue num-
ber systems and redundant polynomial systems through the
Reed Solomon decoding algorithm proposed by Gao. We
propose several variations on the application of the extended
Euclid algorithm, where the error correction rate is adap-
tive. Several improvements are studied, including the use
of various criterions for the termination of the Euclidean
Algorithm, and an acceleration using the Half-GCD tech-
niques. When there is some redundancy in the input, a
gap in the quotient sequence is stated at the step matching
the error correction, which enables early termination paral-
lel computations. Experiments are shown to compare these
approaches.

Keywords
Algorithm Based Fault Tolerance, Redundant Residue Num-
ber System, Early termination, Adaptive algorithm, Fast
extended Euclidean algorithm

1. INTRODUCTION
In the context of distributed computations, grid comput-

ing or more recently cloud computing, the computation has
to be secured against failures of several kinds: crash fault,
where an expected data is never received, or malicious errors
where a data is still being transmitted but is corrupted (e.g.
by a malicious code). The model of Byzantine errors [13,
17] illustrates the case where the computation is not always
corrupted, and therefore, one might still want to use the re-
sults provided by this computing node. These errors can be
managed, at least heuristically, using error detection: for in-
stance blacklisting of corrupted machines, or checking post
conditions on the results. Yet, errors can be corrected using
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fault tolerant techniques based on redundancy: either by
duplicating the same computation on several machines (e.g.
using replication codes); or, to further improve efficiency, by
introducing redundancy at the algorithm level in the frame-
work of Algorithm Based Fault Tolerance (ABFT) [9]. For
instance, to manage some crash faults, ABFT matrix-vector
computation is achieved in [2]: redundancy is added in the
matrix-vector product by slightly increasing the dimension
of the matrix based one an error correcting code.

Evaluation/interpolation techniques, such as Chinese re-
maindering algorithm, are very well suited for parallel com-
putations, as they allow to split a computation into inde-
pendent tasks. For example, the computation of the de-
terminant of an integer matrix, can be parallelized with a
residue number system (RNS), where each parallel task is
the computation of a determinant modulo a prime number.

When the result to be reconstructed by a RNS is expected
to be small, but no bound is known, the early termination
approach [?] allows to limit the number of modular compu-
tations to the appropriate amount. This adaptive approach
lead to a complexity that is output-sensitive. It is of great
interest for e.g. computations with sparse or structured ma-
trices.

Residue systems also allow to easily introduce redundancy,
by doing additional modular computations, in order to form
a redundant residue number system (RRNS) [20, 14]. But
they heavily rely on an a priori knowledge of a bound on the
output, thus preventing the use of early termination.

In this paper, we propose a unified point of view on re-
dundant residue systems for both polynomial and integer
computations, gathering together Gao’s algorithm [4] for the
polynomials and Mandelbaum’s algorithm [15] for the inte-
gers. We then relax the prerequisites for these algorithms
to make them output sensitive. The advantage is twofold:
the computation is adaptive in both the output size and the
error rate induced by the varying reliability of a global com-
puting environment. We also describe how to incorporate a
fast Euclidean algorithm [19] in this framework.

2. REDUNDANT RESIDUE SYSTEMS

2.1 Notations and state of the art
Let R be an Euclidean ring equipped with an Euclidean

function ν : R → Z+. We will assume that ν is multiplicative
and sub-additive, i.e. for all a, b ∈ R:

ν(ab) = ν(a)ν(b),
ν(a + b) ≤ ν(a) + ν(b).



For R = Z, the usual Euclidean function ν(x) = |x| can
be used. For R = K[X], where K is a field, one can use the

function ν(a) = 2deg(a) (see [5, Note 3.1]). For an element
x ∈ R, we define its amplitude as the valuation ν(x) and its
size as the logarithm of its amplitude log2 ν(x). Note that
the size is a real number.

Let P1, · · · , Pm be m elements in R pairwise relatively
prime. Define Π =

Qm
i=1 Pi.

The usual construction of redundant residue system (or
ideal error correcting codes) proceeds as follows: consider
M = {X ∈ R | ν(X) < κ} with 0 ≤ κ ≤ ν(Π). The
code C is a subset of R/(P1) × · · · × R/(Pm) defined by
C = {(p mod P1, · · · , p mod Pm) | p ∈M}. This allows to
easily define the notion of symbol of the code (each residue
of p modulo a Pi). In the literature [15, 6, 12] the Pi are
usually sorted by increasing valuation ν(Pi) and κ is de-

fined as κ = ν
“Qk

i=1 Pi

”
for 0 < k ≤ m. The redundant

symbols are the residues modulo the Pi’s for k < i ≤ m.
Defining the distance between x = (x[P1], . . . , x[Pm]) and
y = (y[P1], . . . , y[Pm]), as the number of non-zero coordi-
nates of x − y (i.e. the Hamming weight of the support of
x − y), one can prove that this code has minimal distance
m − k + 1 [15, Theorem 1]. The code is therefore bm−k

2
c-

corrector in theory.
Now finding a polynomial time algorithm decoding up to

this bound has been a complicated story for the case R =
Z. Mandelbaum [15] uses a perturbation technique, and
requires that P1, · · · , Pn remain relatively close (with pi =
ν(Pi)). In [6], a unique decoding algorithm is given for up
to

t ≤ (m− k) log P1

log P1 + log Pm

errors, where P1 < · · · < Pm. This highlights a specificity
of redundant residue number systems, that some residues
provide more information if their modulo is large. Thus the
errors are weighted depending on the symbol on which they
occur, and one is tempted to think that it will make the
bm−k

2
c error correction rate unreachable. Now interestingly,

Guruswami & Al. [8] have shown that this is not the case,
since the heterogeneous distribution of weight has already
been accounted for, when computing the distance (as the
primes are sorted by increasing order). They can conse-
quently produce the first algorithm that matches the m−k

2
error correction capacity.

These algorithms all require that the residues are all avail-
able when the correction starts, and that they are sorted by
increasing valuation of the corresponding modulo. In the
context of distributed or cloud computations, we wish to
be able to treat them as they come in order to avoid syn-
chronizations. We also want to permit early termination:
the Chinese remaindering reconstruction and decoding are
stopped whenever a valid result is detected.

In this section, we will present an adaptation of the usual
decoding algorithm (originating from [15, 4]), where no order
on the moduli is assumed and where the parameters k and
t of the code are unknown. In order to relax these assump-
tions we move away from the standard description of the
code, where information is described by a vector of residues,
and prefer to consider the reconstructed values in the main
ring R. The Chinese remainder theorem states that these
descriptions are equivalent. Our contribution only consists
in the introduction of a different metric on the Euclidean

ring R, that fits more naturally the decoding algorithm (al-
gorithm 1) based on extended Euclidean algorithm: it allows
to describe the decoding algorithm in an unified manner over
the Euclidean rings of polynomials and integers, and with-
out conditions on the size and order of the moduli. After the
description of a first bounded error decoding algorithm (al-
gorithm 1), we propose an improvement making it adaptive
in the error correction capacity in algorithms 2 and 3.

The following notations will be used throughout the se-
quel. X is a codeword and Y is the erroneous word re-
ceived. Then E = Y −X is the error. We define I = {i ∈
1 · · ·m | X 6= Y mod Pi} as the set of indices of the erro-
neous residues. The impact ΠF of the error is defined by
ΠF =

Q
i∈I Pi and we denote ΠT = Π/ΠF =

Q
i/∈I Pi.

We will define an amplitude-code as a subset C = {x ∈
R | ν(x) < κ} of the set A = {x ∈ R | ν(x) < ν(Π)}.
In order to form an error correcting code, there remain to
define a distance in A.

Lemma 2.1. The function

∆ : A×A → R+

(x, y) 7→
X

i|x6=y[Pi]

log2 ν (Pi)

is a metric over A.

Proof. ∆ is positive, symmetric, satisfies the triangular
inequality, and ∆(x, y) = 0 if and only if x = y.

The distance ∆ is a real number; it leads to the defini-
tion of an amplitude-code in the ring R which characteristics
(n, k, d) are real numbers. Informally, ∆ corresponds to the
maximal amount of information that differs between the two
words.

Definition 2.2. Let Π =
Qm

i=1 Pi, where P1, · · · , Pm are
pairwise relatively prime. Let n = log2 ν(Π), k = log2 κ. A
(n, k, d)-amplitude code is a subset C = {x ∈ R | ν(x) < κ}
of the set A = {x ∈ R | ν(x) < ν(Π)} such that the minimal
distance between two elements of C is d.

Proposition 2.3. For any (n, k, d)-amplitude code,

d > n− k − 1

Proof. Let X, Y ∈ C and X 6= Y . Let E = Y −X and
I be the subset of {1, · · · , m} such that X 6= Y mod Pi if
and only if i ∈ I. Let ΠF =

Q
i∈I Pi and ΠT = Π/ΠF .

∆(X, Y ) = log2 ν(ΠF )
Now E is a multiple of ΠT , as E = 0 mod Pi for any

i /∈ I. Therefore

ν(E) ≥ ν(Π)/ν(ΠF )

On the other hand ν(E) ≤ ν(X)+ν(Y ) < 2κ. Consequently
ν(Π)/ν(ΠF ) < 2κ and then d > n− k − 1.

Corollary 2.4. When the Euclidean function ν satisfies
the following identity: ν(a + b) = max(ν(a), ν(b)) for all
a, b ∈ R, then a tighter bound on the minimal distance can
be achieved:

d > n− k.

Moreover, in the case of the ring R = K[x], where K is a

field, choosing ν(a) = 2deg(a) leads to the equivalent of the
Singleton bound d ≥ n− k + 1 .



Proof. In that case ν(E) = max(ν(X), ν(Y )) < κ . It
follows ν(Π)/ν(ΠF ) < κ and then d > n−k. When R = K[x]

and ν(a) = 2deg(a), the characteristics n, k, d are integers,
therefore d ≥ n− k + 1.

In the setting of coding theory, the minimal distance gives
a bound on the maximal number of errors that can be cor-
rected: t = b d−1

2
c. Here, it corresponds to the maximal

amplitude that can be corrected. More precisely, let ΠF =Q
i∈I Pi be the impact, and ν(ΠF ) its amplitude. Then a

code will be amplitude-τ corrector if it can correct errors of
impact ΠF , such that ν(ΠF ) ≤ τ .

Hence, we could aim at correcting impact of amplitude τ
such that log2 τ = d−1

2
= n−k−2

2
. This approach prevents us

from reaching the optimal correction rate of [8] but remains
close to it when the valuations ν(P1), · · · , ν(Pn) remain of
the same order of magnitude.

2.2 The bounded impact amplitude algorithm
The Euclidean function and metric defined in the previous

section allow to unify both algorithms from [15] for integers
and [18, 4] for polynomials. In the following, the Euclidean
ring R can be either Z or K[X], where K is a field. We
present the decoding algorithm based on the usual extended
Euclidean algorithm. It allows to correct up to the largest
impact amplitude with respect to the bound on the minimal
distance (property 2.3).

Algorithm 1: Amplitude based decoder over R

Data: Π ∈ R: the product of the moduli
Data: Y ∈ R: the possibly erroneous message

Data: τ ∈ R+ | τ < ν(Π)
2

: a bound on the amplitude of
the maximal impact of an error to correct

Result: X ∈ R: the corrected message satisfying
ν(X)4τ2 ≤ ν(Π)

begin
α0 = 1, β0 = 0, r0 = Π;
α1 = 0, β1 = 1, r1 = Y ;
i = 1;
while (ν(ri) > ν(Π)/2τ) do

Let ri−1 = qiri + ri+1 be the Euclidean division
of ri−1 by ri;
αi+1 = αi−1 − qiαi;
βi+1 = βi−1 − qiβi;
i = i + 1;

return X = − ri
βi

end

Theorem 2.5. Algorithm 1 decodes any corrupted mes-
sage Y originating from a codeword X affected by an error
impact ΠF such that 4ν(X)ν(ΠF )2 ≤ ν(Π) and ν(ΠF ) ≤ τ .

Proof. In the last iteration of the loop, the invariant
relation in the extended Euclidean algorithm is written

αi+1Π− βi+1Y = ri+1

Developing the noisy message Y = E + X gives:

αi+1Π− βi+1E = ri+1 + βi+1X.

Now gcd(Π, E) = ΠT , therefore there is a Z ∈ R such
that

ZΠT = ri+1 + βi+1X.

We now will prove that Z = 0 which implies that X = − ri+1
βi+1

upon termination of the algorithm.
A usual result [5, Lemma 5.15] in the extended Euclidean

algorithm over R states that ν(βi+1) ≤ ν(Π)
ν(ri)

(the inequal-

ity is strict in Z and becomes an equality in K[X]). The
condition of termination of the while loop writes

ν(ri+1) ≤
ν(Π)

2τ
< ν(ri)

Hence, ν(βi+1) < 2τ , and we have

ν(Z ·ΠT ) ≤ ν(ri+1) + ν(X)ν(βi+1)

< ν(ri+1) + 2τν(X)

< ν(ri+1) + 2τ
ν(Π)

4τ2

<
ν(Π)

2τ
+

ν(Π)

2τ

Now, by definition ν(ΠT ) ≥ ν(Π)/τ . Finally the only possi-
ble value for Z is 0.

Corollary 2.6. When the Euclidean function ν satisfies
the identity ν(a+b) = max(ν(a), ν(b)) for all a, b ∈ R, then a
tighter bound for the error correction bound can be achieved:
ν(X)2τ2 ≤ ν(Π). This is the case for the ring R = K[x],

where K is a field, and ν(a) = 2deg(a).

In this situation again, the algorithm corrects up to the
largest error amplitude with respect to the bound on the
minimal distance given in corollary 2.4.

Proof.

ν(ZΠT ) ≤ max(ν(ri+1), ν(X)ν(βi+1))

Now ν(ri+1) ≤ ν(Π)
2τ

and

ν(X)ν(βi+1) < 2τ
ν(Π)

2τ2

<
ν(Π)

τ

Therefore

ν(ZΠT ) <
ν(Π)

τ
.

Since ν(ΠT ) ≥ ν(Π)/τ we have Z = 0.

The next proposition states the complexity of algorithm 1.

Proposition 2.7. The complexity of algorithm 1 (arith-
metic complexity over K[X] or bit complexity over Z) is
O (tn), where t ≤ log2 τ is the size of the error.

Proof. From the analysis of the classical Extended Eu-
clidean algorithm [11, §4.5.3] applied to two integers or poly-
nomials of size n the number of iterations to reach a remain-
der ri with size λ is less than 2(n − λ) = O (t). The total
binary complexity is

µX
i=1

M(n, log2 ν(qi)) = O (nt)



Fast algorithm using HGCD.
The complexity can be improved based on the use of a

fast truncated gcd algorithm. Indeed, the stopping condi-
tion (ν(ri) > ν(Π)/2τ) is related to the valuation of the
remainder ri. This valuation is derived from the size of ri

(degree for a polynomial, log2 for an integer) without re-
quiring a computation of the exact value of ri. Thus, a
divide-and-conquer algorithm, such as HGCD [5, §11], [19] ,
can be used to compute the Euclidean sequence of quotients
but not the exact remainders, until the modified stopping
condition (based on the size) is reached: then only, the cor-
responding remainder is computed. The complexity of this
algorithm becomes O (log t ·M(n)) where M(n) is the cost
of the multiplication of two elements of size n in R.

2.3 Comparison with previous decoding algo-
rithms

The decoding algorithm 1 allows to correct a bounded
amplitude of the error impact in a (n, k, d)-amplitude code
defined over Z or K[X] equipped with a sub-additive and
multiplicative euclidean function. As it has been mentioned
in previous sections algorithm 1 can be seen as a general-
ization of the algorithm of Mandelbaum [15] over the set of
integers or a generalisation of the algorithms of Shiozaki [18]
and Gao [4] over the set of polynomials.

Furthermore, when R = K[X] and the Pi’s all have degree
one, then algorithm 1 corresponds exactly to that of Gao [4]
presented as an alternative decoder for Reed-Solomon codes.
The bounds and error correction capacity are also the same.

Apart from the special case of Reed-Solomon codes, our
representation makes a significant difference in the correc-
tion capacity. Algorithm 1 is only correcting an amplitude
of error impact: this does not mean anything on the number
of erroneous residues that can actually be corrected. There-
fore, two single errors affecting two different moduli Pi and
Pj such that ν(Pi) < ν(Pj) don’t have the same weight in
the error correction. This fact fits naturally in our setting
but must be masked in the standard representation (any
moduli should have the same weight in the correction rate
of the code). Hence the correction algorithms usually have
to be ”patched” to avoid the problem and then match the
optimal correction capacity: Mandelbaum algorithm uses a
perturbation technique and requires the moduli to stay rel-
atively close, equivalently the algorithm of Shiozaki require
the moduli to have same degree. On the other hand, Gol-
dreich, Ron and Sudan [6] modify the correction capacity in
order to make it dependent to the difference of amplitude
of the moduli. Finally Guruswami & Al. [8] use weights on
the residues to express this distortion.

3. OUTPUT SENSITIVE DECODING AND
EARLY TERMINATION

The Chinese remainder algorithm requires a bound on the
result to be reconstructed which in turn determines how
many modular computations need to be done. In practice
the bound might be pessimistic, and a smaller number of
modular computations are sufficient for the reconstruction.
We show in sections 3.1 and 3.2 how to take advantage of this
unnecessary redundancy to increase the error correction ca-
pacity, generalizing algorithm 1 into an adaptive algorithm.

Now this approach still assumes that the total number of
modular computations is fixed. Section 3.4 proposes an early

termination framework, that allows both adaptive correction
rate and output sensitive number of modular computations.

3.1 A first adaptive heuristic
We assume here that no information on the bound κ nor

any bound on the maximal error amplitude τ is known, but
only the values of the product Π, and the message Y . The
general approach is to define a termination criterion based
on the current state of the execution of the Extended Eu-
clidean algorithm.

This first criterion is adapted from a step in the algorithm
by Mandelbaum [15]. The idea is to check that βi+1 divides
Π. Indeed, since the error E = Y − X satisfies: αi+1Π −
βi+1E = 0, we have E = αi+1

Π
βi+1

, which implies that βi+1

divides Παi+1. More precisely, lemma 3.1 shows that βi+1

actually divides Π, yet is a multiple of the impact ΠF .

Lemma 3.1. Suppose that ν(Π) ≥ ν(X)4ν(ΠF )2. Let i be
the iteration where the relation

ν(ri+1) ≤
ν(Π)

2ν(ΠF )
< ν(ri)

holds. Then ΠF divides βi+1 and ν(βi+1) = ν(ΠF ).

Proof. First, ν(βi+1) ≤ ν(Π)
ν(ri)

< 2ν(ΠF ). Now, αi+1Π−
βi+1E = 0 (applying the proof of theorem 2.5 with τ = ΠF ),
hence ΠF divides Eβi+1. Since E and ΠF are relatively
prime, we deduce that ΠF divides βi+1: there exist γ ∈ R
such that βi+1 = γΠF .

Therefore ν(ΠF ) ≤ ν(βi+1) < 2ν(ΠF ) which implies that
ν(γ) = 1.

Lemma 3.1 implies two necessary conditions for X to be
a valid codeword: βj divides Π and

ν(X) ≤ ν(Π)

4ν(βj)2
,

at some iteration j of the Extended Euclidean algorithm
applied to Π and Y .

Algorithm 2 summarizes the adaptive algorithm based on
divisibility check.

Since no information is known about the maximal size of
the codewords κ or the maximal error correction capacity τ
the algorithm returns a list of candidates that all satisfy a
condition of the type ν(X)4τ2 ≤ ν(Π), for varying values of
τ . In order to discriminate the right solution, one needs to
check a postcondition on the result, as will be described in
section 3.4.

3.2 Detecting a gap
An alternative termination criterion is to consider the

size of the quotients in the Euclidean algorithm. Let us
consider a relaxed bound on the amplitude of Π: ν(Π) ≥
4ν(X)ν(ΠF )22g, with g an arbitrarily chosen positive inte-
ger referred in the sequel as the gap. Indeed, the larger the
gap g, the smaller the valuation of the impact ΠF . Thus, the
product ΠT of the correct moduli includes a large degree of
redundancy, characterized by ν(ΠT ) ≥ 4ν(X)ν(ΠF )2g. The
next theorem states that the gap g is a lower bound on the
size of the quotient qi at the step i that enables to recover
X.



Algorithm 2: Adaptive decoding by divisibility check

Data: Π ∈ R: the product of the moduli
Data: Y ∈ R: the possibly erroneous message
Result: C: a list of possible candidates Xi satisfying:

ν(Xi)4τ2 ≤ ν(Π) if an impact of amplitude τ
occurred

begin
α0 = 1, β0 = 0, r0 = Π
α1 = 0, β1 = 1, r1 = Y
i = 1
while ν(ri) > 0 do

Let ri−1 = qiri + ri+1 be the Euclidean division
of ri−1 by ri

αi+1 = αi−1 − qiαi

βi+1 = βi−1 − qiβi

if βi+1 divides Π then
X = − ri+1

βi+1

if ν(X) ≤ ν(Π)

4ν(βi+1)2
then

Push X in C

i = i + 1
return C

end

Lemma 3.2. Suppose that ν(Π) = ν(X)4ν(ΠF )22g with
g ∈ Z+. Let i be the iteration where the relation

ν(ri+1) ≤
ν(Π)

2ν(ΠF )
< ν(ri)

holds. Then ν(qi+1) ≥ 2g.

Proof. First, ν(βi+1) ≤ ν(Π)
ν(ri)

< 2ν(ΠF ). Now, αi+1Π−
βi+1E = 0 (applying the proof of theorem 2.5 with τ =
ΠF ), hence ri+1 = βi+1X and then ν(ri+1) = ν(βi+1)ν(X).
Consequently ν(ri+1) < 2ν(ΠF )ν(X).

On another hand, ν(ri) > ν(Π)
2ν(ΠF )

= 2ν(X)ν(ΠF )2g. Thus
ν(ri)

ν(ri+1)
> 2g. Now, ν(ri) ≤ ν(ri+2) + ν(qi+1)ν(ri+1) implies

ν(ri) < ri+1(1 + ν(qi+1)). Finally

2g <
ν(ri)

ν(ri+1)
≤ 1 + ν(qi+1)

which completes the proof.

Lemma 3.2 states a necessary condition for X = − rj

βj

to be a valid codeword at the iteration j of the Extended
Euclidean algorithm applied to Π and Y : ν(qj) ≥ 2g. This
property is used in algorithm 3 : only steps corresponding to
a quotient with valuation larger than the gap are considered
for the recovery of X. The main interest is to decrease the
complexity, since the average amplitude for the quotient in
the Euclidean algorithm is small: less than 3 for the integers
in average [11].

Similarly to algorithm 2, the algorithm based on the gap’s
criterion allows to keep the valuations of X and ΠF unknown
(as far as the relation ν(X)4ν(ΠF )22g = ν(Π) is verified).
Even though the presence of a gap seems to decrease the
overall capacity of the code compared to algorithm 2, it al-
lows to restrain the number of acceptable candidate: we will
see in section 3.3 (table 1) that a relatively small size of the
gap (i.e. in our experiments in Z, a small number of extra
redundant bits in comparison to the size of one moduli) leads

Algorithm 3: Adaptive algorithm, by detection of a
gap

Data: Π ∈ R: the product of the moduli
Data: g ∈ Z+: the size of the gap
Data: Y ∈ R: the possibly erroneous message
Result: C: a list of possible candidates Xi satisfying:

ν(Xi)4τ22g = ν(Π) if an error of amplitude τ
occurred

begin
α0 = 1, β0 = 0, r0 = Π
α1 = 0, β1 = 1, r1 = Y
i = 1
while ν(ri) > 0 do

Let ri−1 = qiri + ri+1 be the Euclidean division
of ri−1 by ri

if ν(qi) ≥ 2g then
if βi divides Π then

X = − ri
βi

if ν(X) ≤ ν(Π)

4ν(βi)2
then

Push X in C

αi+1 = αi−1 − qiαi

βi+1 = βi−1 − qiβi

i = i + 1
return C

end

to a list of only one or two valid candidates and reduces the
number of divisibility checks as much.

Again here, the removal of the invalid remaining candi-
dates in the list C needs to be done, for instance using an
external certifier (see section 3.4).

Fast algorithm using HGCD.
Interestingly, algorithm 3 allows to use a fast Extended

Euclidean algorithm instead of the standard algorithm. In-
deed, when the algorithm HGCD [5, §11], [19], improves
the complexity by an order of magnitude, it still constructs
the whole list of quotients of the classic Extended Euclidean
Algorithm. Algorithm 3, with a termination criterion based
on the size of the quotient, can then be easily upgraded in
a fast version.

On the contrary, algorithm 2 needs to check every re-
minder of the Extended Euclidean Algorithm and then won’t
allow to use a fast version.

3.3 Experimental comparison
We implemented these algorithms for R = Z in C using the

GMP library [7] for the multi-precision integer arithmetic.
In each experiment, Π is the product of the first m prime
numbers of 21 bits, and κ is the product of the first ` < m
of them.

In figure 2 and 1 we compare the computation time of
the static algorithm 1 (Threshold), and the adaptative algo-
rithms 2 (Divisibility) and algorithm 3 (Gap detection), for
three parameters of the gap: g = 2, 5, 10.

First the best computation time is always achieved by
algorithm 1, where the parameters are known, since it re-
quires no additional computation for the termination. Now
if no information is known on κ, the first adaptive algo-
rithm, based on divisibility checks, is slowed down by these
expensive tests, performed at each iteration of the Euclidean
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Figure 1: Comparison of the variants of the decoder
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Figure 2: Comparison of the variants of the decoder
for n ≈ 200 917 (m = 10000 moduli of 20 bits), κ ≈
17 0667 (8500 moduli) and τ ≈ 10498 (500 moduli).

algorithm. The gap detection of algorithm 3 is much cheaper
(a simple evaluation of the size of the current quotient qi).
Now the gap can be set arbitrarily: if it is large, it will re-
duce the maximal error capacity, for a given n and X, and if
it is too small, it will reveal several false positives, that need
to be discarded by a test of divisibility. For the extremely
small value of g = 2, the computation time is already signif-
icantly reduced, compared to algorithm 2. Then changing it
to g = 5 bits, still drastically reduce the computation time,
as it reduces the number of false positives. For g = 10 (half
the size of a modulo), the computation time almost matches
that of the static algorithm 1.

Now, since no information on the size of the message is
known, the gap algorithm has to keep going in the Extended
Euclidean algorithm down to the end. Thus if the ampli-
tude of X is relatively large compared to Π, this will make
significant useless amount of work. Figure 1 shows this phe-
nomenon: as the gap g increases, the computation time re-
duces down to a limit, that roughly corresponds to the time

of executing the Extended Euclidean algorithm to the end.
The static algorithm, takes advantage of the a priori knowl-
edge of the threshold τ to terminate earlier. This motivates
the introduction of an external certification algorithm, that
will test each candidate produced by the decoder on the fly,
against a few independent additional modular residues, and
stop the decoder whenever a certification succeeded. This
will be described in section 3.4.

Error size 10 50 100 200 500 1000

g = 2 1/446 1/765 1/1118 2/1183 2/4165 1/7907

g = 3 1/244 1/414 1/576 2/1002 2/2164 1/4117

g = 5 1/53 1/97 1/153 2/262 1/575 1/1106

g = 10 1/1 1/3 1/9 1/14 1/26 1/35

g = 20 1/1 1/1 1/1 1/1 1/1 1/1

Table 1: Number of candidates in the gap algorithm:
c/d means that d candidates appeared with a gap
larger than g, and c out of them passed the divis-
ibility check. n ≈ 6001 (3000 moduli), κ ≈ 201 (100
moduli).

However, the amount of candidates that remain after the
divisibility check is very small, and in most cases there is
only one of them: the correct result. Table 1 displays the
fraction of candidates passing the divisibility check over the
total number of candidates passing the gap condition for
different values of g and error size.

3.4 A framework for early termination

Early termination
In the previous section, the number m of modular com-
putations was fixed, and only the correction capacity was
made output-sensitive In order to limit the number of mod-
ular computations, early termination Chinese remaindering
is commonly used [10, 3]: an increasing number of modu-
lar residues are computed until the reconstructed value in R
stabilizes. In the context of parallel computing, a chunk of
modular computations will be done in parallel at each step
and if the stabilization condition is not met, then another
chunk will be computed. Following [1] the cardinality ui of
each chunk needs to follow an amortized function f in order
to guarantee a minimal work overhead. They are defined as
follows u1 = C and ui+1 = f(ui). The function f could be
e.g. f(x) = x/ log x or f(x) = x1−ε, with 1 � ε > 0.

Certifier
The decoder (algorithm 3) only returns a list of candidates

< X(1), X(2), · · · >, since the parameters of the code are
unknown. Therefore a certifier is needed, in order to with-
draw the invalid candidates. This can be implemented by a
simple algorithm, maintaining a list of results (ri mod Pi)
of modular computations, independent from the one used in
the decoder. The certification consists in testing if X(j) = ri

mod Pi and return the residue that succeeds every tests. By
choosing an appropriate number of ri’s, any probability of
success can be guaranteed (refer to [10] for a detailed anal-
ysis).

Note that this certifier naturally plays the role of checking
the stabilization, as needed for the early termination.
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Chinese remaindering lifter
The residues computed on each distributed node must be
lifted using the Chinese remainder theorem to form the mes-
sage Y . This operation could either be done on a safe re-
source running the Decoder, but this can be a significant
work load. Another strategy is to have every worker do
the reconstruction, and then select the appropriate one by
a majority vote, thus preventing a possible corruption by a
corrupted node.

A framework for global computing
We now describe a framework for an output-sensitive dis-
tributed computation using the components described pre-
viously. Following [16], the computing environment is par-
titioned in two parts: U and R. R is a closed set of reliable
interconnected computing resources; R is assumed reliable
and trustfully, thus it provides a limited computation power
πR. On the other hand, U includes a large number of re-
sources that operate in an unbounded environment, such
as a peer to peer computation environment, and provides a
very large computation power πU . Such a large scale parallel
system is well suited to perform independent computations,
such as modular computations. However, since U is open,
computations performed on U cannot be considered as fully
reliable which motivates the introduction of a fault tolerant
reconstruction system.

Figure 3 summarizes the framework of such a system. A
program called Master forks the parallel computations fol-
lowing the amortized function f . Then the value R is recon-
structed by the Lifter and the Decoder (algorithm 3) lists
all codewords X that are candidates. The Certifier then
discards the invalid candidates. If no candidate is left, then
Master forks the next chunk of modular computations. Oth-
erwise, the probabilistically certified result is returned.

4. CONCLUSION
We presented adaptations of the well studied unique de-

coding algorithm for redundant residue systems, making its
error correction capacity adaptive in the effective amount
of redundancy. In this process, we cut free from the usual

description of the code in terms of residues, but instead de-
scribed it directly over the ring, using the euclidean function,
and a specific metric for the distance between two elements.
The (n, k, d) parameters of the code now refer to the cor-
responding amplitudes in the ring and we provided lower
bounds on the minimal distance, matching the Singleton
bound in the case of a ring of polynomials over a field.

In this more general framework, the moduli no longer need
to be sorted, and the correction capacity is more tightly
bounded to the total amount of redundancy available. Al-
gorithm 1 is presented over an Euclidean ring, but we could
only prove its validity and that it achieves the maximal error
correction capacity, given by the previous bounds in the case
where R = Z or R = K[x]. In these proofs, the argument

that ν(βi+1) ≤ ν(Π)
ν(ri)

was repeatedly needed. So far, we were

not able to prove it in the general context of an Euclidean
ring, with a multiplicative and sub-additive valuation ν, and
we are not aware of any such result in the literature. It can
be reduced to showing that

ν(Π) = ν(βi+1ri − βiri+1) ≥ ν(βi+1ri).

It holds over Z and K[X], but for two different reasons: over
Z because the βi’s alternate in sign, and over K[X] by an
argument on the degrees. This raises the question to know
what the least requirements on the ring or the valuation ν
are, for this to be true.

We then introduced two termination criterions to form an
adaptive decoding algorithm that performs very efficiently in
practice: allowing a very small amount of extra redundancy
(less than half of the amplitude of one modulo), it tends
to be as fast as the static algorithm especially if it can be
interrupted by an external certifier.

A further analysis on the average distribution of the false
positives appearing in the gap algorithm, as a function of the
gap, would help understand why this parameter only needs
to be set to extremely small values in practice.
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