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Lecture 2
= Remind: Work W and depth D :

= With work-stealing schedule:
- #steals = O(pD)
- Execution time on p procs = W/p + O(D) w.h.p.
- Similar bound achieved with processors with changing
speed or multiprogrammed systems.

= How to parallelize ?

» 1/ There exists a fine-grain parallel algorithm that
Is optimal in sequential

- Work-stealing and Communications

= 2/ Extra work induced by parallel can be amortized

» 3/ Work and Depth are related
- Adaptive parallel algorithms
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First examples

= Put overhead on the steals :
= Example Accumulate

= Follow an optimal sequential algorithm:
» Example: Find_if

Adaptive coupling: Amortizing synchronizations
(parallel work extraction)

Example : STL transform STL : loop with n independent computations
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Amortizing Parallel Arithmetic overhead:
example: find_if

= For some algorithms:
Wseq Unknown prior to execution
* Worst case work W is not precise enough: we may have W>> W,

= Example: find_if : returns the index of the first element that verifies a predicate.

Index of the matching element

* Sequential time is T ., =2

= Parallel time= time of the last processor to complete: here, on 4 processors: T, =6

Amortizing Parallel Arithmetic overhead:
example: find_if

= To adapt with provable performances (W, ~W ) : compute in parallel no more
work thant the work performed by the sequential algorithm
(Macro-loop [Danjean, Gillard, Guelton, Roch, Roche, PASCO’07]),

&
<

> pa
n_curelts = — n_cur/l?g(n_cur)

= Example : find_if

P,.P.,P, P,P.P,  P,P.P,
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Amortizing Parallel Arithmetic overhead:
example: find_if [Daouda Traore 2009]

= Example : find_if STL
=  Comparison with find_if parallel MPTL [Baertschiger 06]

12

find_if adaptatif ==
find_if de MPTL

10

Machine : sl
AMD Opteron (16 cceurs);
Data: doubles;
Array size: 10°;
Position element: 10°;
TimeSTL : 3,60 s; af
Predicate time = 36

Accélération
o

Speed-down ( speed-up < 1) o 2 4 6 8 10 12 14 16

Nonbre de processeurs

Amortizing Parallel Arithmetic overhead:
example: find_if [Daouda Traore 2009]

= Example : find_if STL
= Speed-up w.r.t. STL sequential tim and the position of the matching element.

Machine : == pos=100
AMD Opteron (16 cceurs); pos=1000
Data: doubles; = POS=10000
pos=100000

Size Array: 105,

Predicate time= 36 == POS=500000

=@=pos=1000000
=t accCélération idéale

1 3 5§ 7 9 11 13 15

#processors




Overview

¢ Introduction : interactive computation, parallelism and processor oblivious
* Overhead of parallelism : parallel prefix

* Machine model and work-stealing

e Scheme 1: Extended work-stealing : concurently sequential and par

3. Work-first principle and adaptability 5

*  Work-first principle: -implicit- dynamic choice between two executions :
* asequential “depth-first” execution of the parallel algorithm (local, default) ;
*  aparallel “breadth-first” one.
*  Choice is performed at runtime, depending on resource idleness:
rare event if Depth is small to Work
* WS adapts parallelism to processors with practical provable performances
*  Processors with changing speeds / load (data, user processes, system, users,
*  Addition of resources (fault-tolerance [Cilk/Porch, Kaapi, ...])

* The choice is justified only when the sequential execution of the parallel
algorithm is an efficient sequential algorithm:

»  Parallel Divide&Conquer computations

-> But, this may not be general in practice
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How to get both optimal work W, and D=W, small?

« General approach: to mix both
+ a sequential algorithm with optimal work W,
+ and a fine grain parallel algorithm with minimal depth D = critical time W,

« Folk technique : parallel, than sequential
Parallel algorithm until a certain « grain »; then use the sequential one
Drawback : W, increases ;0) ...and, also, the number of steals

«  Work-preserving speed-up technique isini-pansa) Sequential, then parallel Cascading aiasz :
Careful interplay of both algorithms to build one with both

W, small and W, =0(W,,)

+ Use the work-optimal sequential algorithm to reduce the size
+ Then use the time-optimal parallel algorithm to decrease the time
+ Drawback : sequential at coarse grain and parallel at fine grain ;o0(
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Extended work-stealing: concurrently sequential and parallel

Based on the work-stealing and the Work-first principle :

Instead of optimizing the sequential execution of the best parallel algorithm,
let optimize the parallel execution of the best sequential algorithm

Execute always a sequential algorithm to reduce parallelism overhead

= parallel algorithm is used only if a processor becomes idle (ie workstealing) [Roch&al2005....]
to extract parallelism from the remaining work a sequential computation

Assumption : two concurrent algorithms that are complementary:

- one sequential : SeqCompute (always performed, the priority)
- the other parallel, fine grain : (often not performed)

—

SeqCompute

SeqCompute
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Extended work-stealing : concurrently sequential and parallel

Based on the work-stealing and the Work-first principle :

Instead of optimizing the sequential execution of the best parallel algorithm,
let optimize the parallel execution of the best sequential algorithm

Execute always a sequential algorithm to reduce parallelism overhead

= parallel algorithm is used only if a processor becomes idle (ie workstealing) [Roch&al2005,...]
to extract parallelism from the remaining work a sequential computation

Assumption : two concurrent algorithms that are complementary:
- one sequential : SeqCompute (always performed, the priority)

- the other parallel, fine grain : (often not performed)
= merge/jump F """ "7 [
SeqCompute main L Seq '
reempt'--=---- 3
e
SeqCompute [~ complete
L |
Note:
. operations to ensure non-idleness of the victim

* Once SeqCompute _main completes, it becomes a work-stealer

Overview

¢ Introduction : interactive computation, parallelism and processor oblivious
* Overhead of parallelism : parallel prefix

* Machine model and work-stealing

* Scheme 1: Extended work-stealing : concurently sequential and parallel

* Scheme 2: Amortizing the overhead of synchronization (Nano-loop) <«
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Extended work-stealing and granularity

Scheme of the sequential process : nanoloop
While (not completed(Wrem) ) and (next_operation hasn’t been stolen)

%

atomic { extract_next k operations ; Wrem -= k ; }
process the k operations extracted ;

}
» Processor-oblivious algorithm
= Whatever pis, it performs O( p.D ) preemption operations (« continuation faults »)
-> D should be as small as possible to maximize both speed-up and locality

= If no steal occurs during a (sequential) computation, then its arithmetic work is optimal
to the one W, of the sequential algorithm (no spawn/fork/copy )

-> W should be as close as possible to W,,,,

= Choosing k = Depth(W,,,, ) does not increase the depth of the parallel algorithm
while ensuring O(W / D ) atomic operations :
since D> log, W,,,,, thenifp=1. W~W,,

* Implementation : atomicity in nano-loop based without lock
= Efficient mutual exclusion between sequential process and parallel work-stealer

Self-adaptive granularity
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Interactive application with time constraint

Anytime Algorithm:
« Can be stopped at any time (with a result)
* Result quality improves as more time is allocated

In Computer graphics, anytime algorithms are common:
Level of Detail algorithms (time budget, triangle budget, etc...)
Example: Progressive texture loading, triangle decimation (Google Earth)

Anytime processor-oblivious algorithm:

On p processors with average speed I1,,, it outputs in a fixed time T
a result with the same quality than

a sequential processor with speed I1,,,,, in time p.I1,,.

Example: Parallel Octree computation for 3D Modeling




Parallel 3D Modeling

3D Modeling :
build a 3D model of a scene from a set of calibrated images

On-line 3D modeling for interactions: 3D modeling from
multiple video streams (30 fps)
4

OCtI‘ee Ca I‘Ving [L. Soares 06]

A classical recursive anytime 3D modeling algorithm.

1 T
Qf | @2 4+
) =5
| e | |
|
7 i %T:
o L
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Sxmennis la:nnrs I

Standard algorithms with time control:

Level 0 ' Level 0
State of a cube:
Level 1

- Grey: mixed => split

- Black: full  : stop
Level 1 - White: empty : stop
Level 2

Level 2 % Width first

Depth first
+ iterative deepening

At termination: quick test to decide all grey cubes time control
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Width first parallel octree carving44

Well suited to work-stealing

-Small critical path, while huge amount of work (eg. D =8, W = 164 000)
- non-predictable work, non predictable grain :

For cache locality, each level is processed by a self-adaptive grain :
“sequential iterative” / "parallel recursive split-half”

Octree needs to be “balanced” when stopping:
« Serially computes each level (with small overlap)
- Time deadline (30 ms) managed by signal protocol

v Camera (Euclidean vie: v Cam Euclids

x

Unbalanced Balanced

Theorem: W.r.t the adaptive in time T on p procs., the sequential algorithm:
- goes at most one level deeper : 1dg-d 1 <1;
- computes at most : ng<n,+ O(log ny) .

45
Resu Its - 16 core Opteron machine, 64 images
- Sequential: 269 ms, 16 Cores: 24 ms
[L. Soares 06] - 8 cores: about 100 steals (167 000 grey cells)
Time : Time
- I — R :
g o] b= ; ool :
£ o A e Lo e
AN a0m
e e ——
234557°;U:10M“13M15m 0 12345670:U5910111213141516 —_— |
8 cameras, levels 2 to 10 64 cameras, levels 2 to 7

result: CPUs+GPU

1000

= Time GPU
+ Time CPU

) v |deal
A
100 +—8&

-1 GPU + 16 CPUs

- GPU programmed in OpenGL

- efficient coupling till 8 but
does not scale

log (Time (ms) )

T T T T T T T T T T T T
12 3 4 5 6 7 8 9 10 11 12 13 14 15 1§
CPUs




Overview

¢ Introduction : interactive computation, parallelism and processor oblivious
* Overhead of parallelism : parallel prefix

* Machine model and work-stealing

» Scheme 1: Extended work-stealing : concurently sequential and parallel
* Scheme 2: Amortizing the overhead of synchronization (Nano-loop)

* Scheme 3: Amortizing the overhead of parallelism (Macro-loop)
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4. Amortizing the arithmetic overhead
of parallelism

Adaptive scheme : extract_seqg/nanoloop // extract_par
* ensures an optimal number of operation on 1 processor
* but no guarantee on the work performed on p processors

Eg (C++ STL): find_if (first, last, predicate)
locates the first element in [First, Last) verifying the predicate

This may be a drawback (unneeded processor usage) :
* undesirable for a library code that may be used in a complex application,
with many components
* (or not fair with other users)
* increases the time of the application :
sany parallelism that may increase the execution time should be avoided

Motivates the building of work-optimal parallel adaptive algorithm
(processor oblivious)
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4. Amortizing the arithmetic overhead
of parallelism (cont’d)

Similar to nano-loop for the sequential process :
« that balances the -atomic- local work by the depth of the remaindering one

Here, by amortizing the work induced by the extract_par operation,
ensuring this work to be small enough :

+ Either w.r.t the -useful- work already performed

+ Or with respect to the - useful - work yet to performed (if known)
* or both.

Eg : find_if (first, last, predicate) :
+ only the work already performed is known (on-line)
- then prevent to assign more than a(Wy,,,.) Operations to work-stealers
+ Choices fora(n) :
- n/2 : similar to Floyd’s iteration ( approximation ratio = 2)
* n/log* n : to ensure optimal usage of the work-stealers
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- - [S. Guelton]
Results on find if _ _
= N doubles : time predicate ~ 0.31 ms

Find_if on a double (1000 ¢ task tine

nnnnnnnn

With amortization macroloop
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5. Putting things together

processor-oblivious prefix computation

Parallel algorithm based on :
- compute-seq / extract-par scheme

- nano-loop for compute-seq

- macro-loop for extract-par
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Parallelism induces overhead :
e.g. Parallel prefix on fixed architecture

® Prefix problem : ;
.lnputao, 31,...,an 7‘(',[/: H a’k
s output : w4, ..., m, with

® Sequential algorithm :

® for (0] =a[0], i=1;i<=n; i++) ni]=n[i-1]+a[i]; | Performs only n operations

® Fine grain optlmal paraIIeI algorithm :

E:L.:ggre:m <§§ k?é /\Cé fé Critical time = 2. log n Parallel

refnx fsnze n/ but performs 2.n ops :
e
operations

than

* Tight lower bound on p identical processors:

Optimal time T, =2n/ (p+1) —>
but performs 2 n.p/(p+1) ops

sequential !!

[Nicolau&al. 1996]
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Lower bound(s) for the prefix

Prefix circuit of depth d
|} tFitensol
#operations > 2n - d

2n

parallel time > (

p‘|‘1)-r|afve

P-Oblivious Prefix on 3 proc.

Sequential

noaaaaaaaaaaaa
Seq.
. ]

& Parallel

Work-
stealer 1

P1

stealer 2




P-Oblivious Prefix on 3 proc.

Sequential
Main >
Seq. Ty Ty T3

Parallel
ai=ab*...*ai

d: dz a dg dg dqnpdqq A
sl
5\69‘\‘60‘“6
Work-
stealer 2

Work-
stealer 1

P-Oblivious Prefix on 3 proc.

Sequential
Main
g U1 Ty TU3 Ty Og
A\
Preempt \ T4
Parallel
a a a a Oti=85*...*ai
Work-
stealer 1 a6(x7(18
Bi=a9*...*ai
Work-
stealer 2

Po




P-Oblivious Prefix on 3 proc.

Sequential
ngay a, as a, — >~ >

Main
Seq.
Preempt | JTg [31 1
Parallel
ai=ab*...*ai
Work-
stealer 1
Work-
stealer 2

P-Oblivious Prefix on 3 proc.

Sequential
ngay a, as a, — >~ >

Main
Seq.
Parallel
as ag ay ai=ab*...*ai
Work-
stealer 1
5706 Tl7
Bi=a0*..*ai
39 3dq
Work-
stealer 2 J'Eg J'E1 0




P-Oblivious Prefix on 3 proc.

Sequential
ngay a, as a, — >~ >

Seq. !
%

~
Implicit critical path on the sequential process T,=7 T,=6
Parallel
35 a6 a7 ai=ab*...*ai
Work-
stealer 1
P, [
Bi=a9*...*ai
%310 P
Work-
stealer 2 p I O O
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Analysis of the algorithm

>

2n
(p-l- 1)~ Mave

. Execution time <

o (12

I_I(Z’Ue

Lower bound
= Sketch of the proof :
Dynamic coupling of two algorithms that complete simultaneously:

= Sequential: (optimal) number of operations S on one processor

= Extract_par : work stealer perform X operations on other processors

- dynamic splitting always possible till finest grain BUT local sequential
¢ Critical path small (eg :log X witha W=n/log*n macroloop )
« Each non constant time task can potentially be splitted (variable speeds)

_ S _ X log X
Ts = - and T = D) Tone + O ( %3%)

= Algorithmic scheme ensures T, = T, + O(log X)

=> enables to bound the whole number X of operations performed
and the overhead of parallelism = (s+X) - #ops_optimal
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Results 1 / 2 [D Traore]

Prefix sum of 8.10% double on a SMP 8 procs (1A64 1.5GHz/ linux)

5

seqs seqlllential ';i.neI (S) w—
static grain: average tine {s)

Single user COnteXt adapt grain: average tine (s}

- Pure sequential

Tinelsl]

Time (s)

- Optimal off-line on p procs

Oblivious
5 ;
1 2 3 4 5 6 7 8
#processors e

Single-usercontext : processor-oblivious prefix achieves near-optimal performance :
- close to the lower bound both on 1 proc  and on p processors

- Less sensitive to system overhead : even better than the theoretically “optimal” off-line parallel algorithm on p processor:
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Results 2 / 2 [D Traore]

Prefix sum of 8.108 double on a SMP 8 procs (1A64 1.5GHz/ linux)

Multi-user context :

EES LR
XXX

ON External charge

g ‘ (9-p external processes)

=, fim for p processors
: Oblivious

#processors

Multi-user context :
Additional external charge: (9-p) additional external dummy processes are concurrently executed

Processor-oblivious prefix computation is always the fastest
15% benefit over a parallel algorithm for p processors with off-line schedule,
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Conclusion

Fine grain parallelism enables efficient execution on a small number of
processors

= Interest : portability ; mutualization of code ;
= Drawback : needs work-first principle => algorithm design

Efficiency of classical work stealing relies on Work-first principle :
= Implicitly defenerates a parallel algorithm into a sequential efficient ones ;

= Assumes that parallel and sequential algorithms perform about the same amount of
operations

Processor Oblivious algorithms based on Work-first principle

= Based on anytime extraction of parallelism from any sequential algorithm (may
execute different amount of operations) ;

= Oblivious: near-optimal whatever the execution context is.

Generic scheme for stream computations :
parallelism introduce a copy overhead from local buffers to the output
gzip / compression, MPEG-4 / H264
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Kaapi (kaapi.gforge.inria.fr)
« Work stealing / work-first principle
* Dynamics Macro-dataflow :
7147 ¢ T partitioning (Metis, ...)
«_ =+ Fault Tolerance (add/del resources)

"Kaapi

FlowVR (flowvr.sf.net)
+ Dedicated to interactive applications
« Static Macro-dataflow
« Parallel Code coupling

Thank you !

[E Boyer, B Raffin 2006]




Back slides

The Prefix race:
sequential/parallel fixed/ adaptive

Race between 9 algorithms (44 processes) on

an octo-SMPSMP

| Adaptat}lve 8 proc.‘
Parallel 8 proc. ‘
Para}llel 7 proc,
Parrallel 6 prac. ‘
Parallel 5 proc. ‘
Parallel 4 proc. ‘
Parall(?l 3 proc. ‘
ParaTllel 2 proc.‘

= N W A U1 OO N Vv
L L L L L L L

Sequential |

Execution time (seconds)

|

\

\

\

! !
0 5 10 15 20

25

Sequentiel Statique Adaptatif
p=2 p=4 p=6 p=7 p=8 p=8
Minimum 21,83 18,16 | 15,89 | 1499 | 13,92 @ 12,51 8,76
Maximum 23,34 20,73 | 17,66 | 16,51 15,73 | 14,43 12,70
Moyenne 22,57 19,50 | 17,10 | 1558 | 14,84 @ 13,17 11,14
Mediane 22,58 19,64 | 17,38 | 15,57 | 1463 | 13,11 11,01

On each of the 10 executions, adaptive completes first




Adaptive prefix : some experiments

Prefix of 10000 elements on a SMP 8 procs (IA64 / linux)

20

— 15
2
@ 0
£ ©
. E
s [
Parallel
5 / =
Adaptive Adaptive
° 2 3 4 5 6 7 8
°y 2 s a 5 s 7 #processors
#processors

Single user context
Adaptive is equivalent to:
- sequential on 1 proc
- optimal parallel-2 proc. on 2 processors

Multi-user context
Adaptive is the fastest

15% benefit over a static grain algorithm

- optimal parallel-8 proc. on 8 processors

67

With * = double sum ( f[i]=r[i-1] + x[i] )

s = 2048 double

adapt. gr:
adapt. g
adapt.

tis
tis

1 2 3 ] 5 6 7 8
Nunbre de processeurs

Single user Processors with variable speeds

Remark for n=4.096.000 doubles :
- “pure” sequential : 0,20 s
- minimal "grain” = 100 doubles : 0.26s on 1 proc
and 0.175 on 2 procs (close to lower bound)




The Moais Group

Scheduling

Adaptive
Algorithms

Execution
Control

Coupling

Moais Platforms

= |cluster 2 :
- 110 dual Itanium bi-processors with Myrinet network
= Grlmage (“Grappe” and Image):
- Camera Network
- 54 processors (dual processor cluster)
- Dual gigabits network
- 16 projectors display wall
= Grids:
- Regional: Ciment
- National: Grid5000
» Dedicated to CS experiments
= SMPs:
- 8-way Itanium (Bull novascale)
- 8-way dual-core Opteron + 2 GPUs
= MPSoCs
- Collaborations with ST Microelectronics on STE




Parallel Interactive App.

Human in the loop :
Parallel machines (cluster) to enable large interactive applications

Two main performance criteria:
- Frequency (refresh rate)

* Visualization: 30-60 Hz lamn
[Pos] [erid]

e Haptic : 1000 Hz
- Latency (makespan for one iteration)
* Object handling: 75 ms
A classical programming approach: data-flow model
- Application = static graph
e Edges: FIFO connections for data transfert
* Vertices: tasks consuming and producing data
» Source vertices: sample input signal (cameras)
e Sink vertices: output signal (projector)
One challenge:
Good mapping and scheduling of tasks on process




