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Context: High Performance Interactive Computation
INRIA - LIG Moais team

I Performance: multi-criteria trade-off
↪→ computation latency and computation bandwidth

I Application domains: interactive simulations (latency),
computer algebra (bandwidth), ...



HPC platforms

From low computation latency to high computation
bandwidth

I Parallel chips & multi/many-core architectures:
multicore cpu, GP-GPU, FPGA, MPSoCs

I Servers: Multi-processor with ”sharedi” memory (CPUs +
GPUs+...)

I Clusters: 72% of top 500 machines, Heterogeneous
(CPUs + GPUs + ...)
E.g. Tianhe-1A, ranked 1 in TOP500 nov 2010: 4.7 PFlops

I Global computing platforms: grids, P2P, clouds
E.g. BOINC : in April 2010= 5.1 PFlops



Cloud / Global computing platforms

Applications

I Data sharing (1980’s), Data storage, Computation (1990’s)

”Unbound” computation bandwidth

I Volunteer Computing: steal idle cycles through the Internet

I Folding@Home – 5 PFLOPS, as of March 17, 2009
I MilkyWay@Home - 1.6 PFLOPS, as of April 2010

Thanks to GPUs !



Grid or cloud ?
Beyond computation bandwidth, two important criteria:

I granularity: how small is the smallest bit of computational
resource that you can buy;

I speed of scaling: how long it takes to increase the size of
available resources.



Global computing architecture and trust

Open platforms are subject to attacks:
I machine badly configured, over clocking,
I malicious programs,
I client patched and redistributed: possibly large scale
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Global computing platforms: drawbacks

Peers volatility

Peers can join/leave at any time.

Faults, crashes

As the number of nodes increases, the number of faults,
process crashes increases as well.

Trust in Peers
Malicious Peers (intentionally or infected by malwares).

I Random Crashes
I Random Forgeries
I Byzantine behaviour (e.g., Peers collusion)



Related work: trusting the Cloud

Volatility

Replication, (partial) Re-execution, Checkpoint/restart

Trust

I Challenges / blacklisting [Sramenta&ak 01]

⇒expensive

I Replication of tasks:
I BOINC: credit evaluation

⇒Attacks can be adjusted

I Byzantine agreement: n processes for n/3 faulty (one-third
faulty replicas [Lamport82s] )

⇒often expensive

I Check / Verification using postconditions (on the output)
[Blum97]

⇒not always possible
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Related work: trusting the Cloud

I Without trust assumptions, basic properties (eg integrity,
atomicity, weak consistency, ...) cannot be guaranteed

I But, by maintaining a small amount of trusted memory and
trusted computation units,
well-known cryptographic methods reduce the need for
trust in the storage [Cachin&al. ACM SIGACT 2009]

I integrity by storing small hash (hash tree for huge data)
I authentication of data
I proofs of retrievability (POR) and of data possession (PDP)



Considered cloud computing platform

=⇒ Two disjoint set of resources:
I U: The cloud, unreliable
I R: Resources blindly trusted by the user (reliable),

but with limited computation bandwidth
interconnected through a stable memory

Grid

INTERNET
user

Unsafe Resources 
Safe Resources 

Verifier
Controler

Checkpoint Server
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How to take benefit of the Cloud for HPiC?

Performance and correction

I Performance: massive parallelism (work � depth)
↪→ workstealing, adaptive scheduling [Leiserson&al. 2007]

I Correction of the results: proof
↪→ verifications on R (e.g. randomized checking)

I Fault tolerance: to support resilience and/or errors
↪→ ABFT: Algorithm Based Fault Tolerance



Execution time model on the cloud
Resource average computation Total computation Usage

type bandwidth per proc bandwidth
Cloud U ΠU Πtot

U computation
Client R ΠR Πtot

R certification
bandwidth: number of unit operations per second

Bound on the time required for computation+certification

Based on work-stealing, with high probability [Bender-Rabin02] :

Execution time ≤ Wc

Πtot
U

+O
(

Dc

ΠU

)
+

Wr

Πtot
R

+O
(

Dr

ΠR

)
.

Notations and target context:

I Wc (resp. Dc) = total work (resp. depth) executed on the cloud U;

I Wr (resp. Dr ) = total work (resp. depth) executed on the client R;

I Target context: Wc = O(W 1+ε
1 ); Dc � Wc ; Wr , Dr � Dc .

I Correction: may be computed either on R, or on U, or on both.
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ABFT: Algorithmic Based Fault Tolerance

Idea: incorporate redundancy in the algorithm
[Huang&Abraham 98] [Saha 2006] [Dongarra & al. 2006]
⇒use properties specific to the problem

Example: Matrix-vector product

u uA

A

I pre-compute the product B = A×
[
I R

]
I compute x = uB in parallel
I decode/correct x
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Summary

Typical considered global computation

I Interactive computation between R (reliable) and
the cloud U (unreliable);

I On U: Computations loosely coupled
and fault tolerant

I On R: submission of the computation
correction (if not too much errors)
verification (if not too much errors)

↪→ homorphic residue system
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Homomorphic residue system

I One-to-one mapping Φ from E to E1 × . . .× En that
preserves the algebraic structure

I Φ : x 7→ x1, . . . xn : projection
Φ−1(x1, . . . , xn): lifting

I ↪→ For a fixed computation P (straight-line program):
For input x : Φ(Px) = Φ(P)x1 , . . . ,Φ(P)xn .

I Classical examples: residue number/polynomial systems:
I Polynomials: Φ(Q) = (Q(a1), . . . , Q(an))

[evaluation/interpolation]
I Integers: Φ(x) = (x mod a1, . . . , x mod an)

a1, . . . , an: residue number system (relatively prime)



Integers: Chinese remainder algorithm

Z/(n1 . . . nk )Z ≡ Z/n1Z× · · · × Z/nkZ

i

Computation of y = f (x) over Z

begin
Compute a bound β on max(|f |);
Pick n1, . . . nk , pairwise prime, s.t. n1 . . . nk > β;
for i = 1 . . . k do

Compute yi = f (x mod ni) mod ni

; /* Evaluation */

Compute y = CRT(y1, . . . , yk )

; /* Interpolation */

end

CRT : Z/n1Z× · · · × Z/nkZ → Z/(n1 . . . nk )Z
(x1, . . . , xk ) 7→

∑k
i=1 xiΠiYi mod Π

where


Π =

∏k
i=1 ni

Πi = Π/ni
Yi = Π−1

i mod ni
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Chinese remaindering and evaluation/interpolation

Evaluate P in a ↔ Reduce P modulo X − a

Polynomials

Integers

Evaluation:
P mod X − a

N mod m

Evaluate P in a

“Evaluate’ N in m

Interpolation:

P =
∑k

i=1

Q
j 6=i (X−aj )Q
j 6=i (ai−aj )

N =
∑k

i=1 ai
∏

j 6=i mj(
∏

j 6=i mj)
−1[mi ]

Analogy: complexities over Z↔ over K [X ]

For a program with Talgebr. algebraic operations:

I size of coefficients

I O
(
log ‖result‖ × Talgebr.

)

I det(n, ‖A‖) =
O˜(n log ‖A‖ × nω)

I degree of polynomials

I O
(
deg(result)× Talgebr.

)

I det(n, d) = O˜(nd × nω)
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Early termination
Classic Chinese remaindering

I bound β on the result
I Choice of the ni : such that n1 . . . nk > β

⇒deterministic algorithm

Early termination
I For each new modulo ni :

I reconstruct yi = f (x) mod n1 × · · · × ni
I If yi = yi−1 ⇒terminated

⇒if ni chosen at random: randomized algorithm (Monte Carlo)

Advantage:

I Adaptive number of moduli depending on the output value
I Interesting when

I pessimistic bound: sparse/structured matrices, ...
I no bound available
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Redundant residues codes

Principle:
I Chinese remaindering based parallelization
I Byzantines faults affecting some modular computations
I Fault tolerant reconstruction

⇒Algorithm Based Fault Tolerance (ABFT)



Plan

Introduction
High performance computing and cloud

Related works on trusting the clouds
Cloud computing and performance
ABFT

Redundant residue codes
Homomorphic residue system
Over Z: Mandelbaum algorithm
Over K[X]: Reed Solomon point of view
Generalization

Adaptive approach
First approach and the gap
Experiments
Early termination



Mandelbaum algorithm over Z

Chinese Remainder Theorem

x1 x2 . . . xkx ∈ Z

where p1 × · · · × pk > x and xi = x mod pi ∀i

Definition
(n, k)-code: C ={

(x1, . . . , xn) ∈ Zp1 × · · · × Zpn s.t. ∃!x ,

{
x < p1 . . . pk
xi = x mod pi ∀i

}
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Principle

Property

X ∈ C iff X < Πk .

p1 p2 . . . pk pk+1 pn. . .

Πk = p1 × · · · × pk

Πn = p1 × · · · × pn

Redundancy : r = n − k



Principle

Noisy

Transmission Channel ≡

Unsecured

Computation

Correction

Computation

Encoding

Decoding

Input

Solution
x = (x1, . . . , xn)

x′ = (r1, . . . , rn)

A = (A1, . . . An)

x′ < Mn

x < Mk

A
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Properties of the code

Error model:
I Error: E = X ′ − X
I Error support: I = {i ∈ 1 . . . n, E 6= 0 mod pi}
I Impact of the error: ΠF =

∏
i∈I pi

Detects up to r errors:

If X ′ = X + E with X ∈ C,#I ≤ r ,

X ′ > Πk .

I Redundancy r = n − k , distance: r + 1
I ⇒can correct up to

⌊ r
2

⌋
errors in theory

I More complicated in practice...
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Correction

I ∀i /∈ I : E mod pi = 0
I E is a multiple of ΠV : E = ZΠV = Z

∏
i /∈I

I gcd(E ,Π) = ΠV

Mandelbaum 78: rational reconstruction

X = X ′ − E = X ′ − ZΠv

X
Π

=
X ′

Π
− Z

ΠF

⇒|X ′

Π − Z
ΠF
| ≤ 1

2Π2
F

⇒ Z
ΠF

= E
Π is a convergent of X ′

Π

⇒rational reconstruction of X ′ mod Π



Correction capacity

Mandelbaum 78:

I 1 symbol = 1 residue
I Polynomial algorithm if e ≤ (n − k) log pmin−log 2

log pmax+log pmin

I worst case: exponential (random perturbation)

Goldreich Ron Sudan 99 weighted residues ⇒equivalent
Guruswami Sahai Sudan 00 invariably polynomial time

Interpretation:
I Errors have variable weights depending on their impact

ΠF =
∏

i∈I pi
I Example: X = 20, p1 = 2, p2 = 3, p3 = 101

I 1 error on X mod 2, or X mod 3, can be corrected
I but not on X mod 101
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Analogy with Reed Solomon

Gao02 Reed-Solomon decoding by extended Euclidean
Alg:

I Chinese Remaindering over K [X ]

I pi = X − ai

I Encoding = evaluation in ai

I Decoding = interpolation
I Correction = Extended Euclidean algorithm étendu

⇒Generalization for pi of degrees > 1
⇒Variable impact, depending on the degree of pi
⇒Necessary unification [Sudan 01,...]
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Generalized point of view: amplitude code

I Over a Euclidean ring A with a Euclidean function ν

I Distance

∆ : A×A → R+

(x , y) 7→
∑

i|x 6=y [Pi ]

log2 ν (Pi)

Definition
(n,k) amplitude code C = {x ∈ A : ν(x) < κ},
n = log2 Π, k = log2 κ.

Property (Quasi MDS)

d > n − k in general, and d ≥ n − k + 1 over K [X ].

⇒correction rate = maximal amplitude of an error that can be
corrected
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Advantages

I Generalization over any Euclidean ring
I Natural representation of the amount of information
I No need to sort moduli
I Finer correction capacities

I Adaptive decoding: taking advantage of all the available
redundancy

I Early termination: with no a priori knowledge of a bound
on the result
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Interpretation of Mandelbaum’s algorithm

Remark
Rational reconstruction ⇒Partial Extended Euclidean
Algorithm

Property

The Extended Euclidean Algorithm, applied to (E ,Π) and to
(X ′ = X + E ,Π), performs the same first iterations until ri < ΠV .

ui−1E + vi−1Π = Πv ui−1X ′ + vi−1Π = ri−1

uiE + viΠ = 0 uiX ′ + viΠ = ri

⇒uiX = ri



Amplitude decoding, with static correction capacity
Amplitude based decoder over R

Data: Π, X ′

Data: τ ∈ R+ | τ < ν(Π)
2 : bound on the maximal error amplitude

Result: X ∈ R: corrected message s.t. ν(X )4τ2 ≤ ν(Π)
begin

α0 = 1, β0 = 0, r0 = Π;
α1 = 0, β1 = 1, r1 = X ′;
i = 1;
while (ν(ri) > ν(Π)/2τ ) do

Let ri−1 = qi ri + ri+1 be the Euclidean division of ri−1 by ri ;
αi+1 = αi−1 − qiαi ;
βi+1 = βi−1 − qiβi ;
i = i + 1;

return X = − ri
βi

end

I reaches the quasi-maximal correction capacity

I requires a a priori knowledge of τ
⇒How to make the correction capacity adaptive?



Amplitude decoding, with static correction capacity
Amplitude based decoder over R

Data: Π, X ′

Data: τ ∈ R+ | τ < ν(Π)
2 : bound on the maximal error amplitude

Result: X ∈ R: corrected message s.t. ν(X )4τ2 ≤ ν(Π)
begin

α0 = 1, β0 = 0, r0 = Π;
α1 = 0, β1 = 1, r1 = X ′;
i = 1;
while (ν(ri) > ν(Π)/2τ ) do

Let ri−1 = qi ri + ri+1 be the Euclidean division of ri−1 by ri ;
αi+1 = αi−1 − qiαi ;
βi+1 = βi−1 − qiβi ;
i = i + 1;

return X = − ri
βi

end

I reaches the quasi-maximal correction capacity
I requires a a priori knowledge of τ

⇒How to make the correction capacity adaptive?



Adaptive approach

Multiple goals:

I With a fixed n, the correction capacity depends on a bound
on X
⇒pessimistic estimate
⇒how to take advantage of all the available redundancy?

X

borne sur X

redondance effective utilisable

redondance utilisee

I Allow early termination: variable n and unknown bound
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A first adaptive approach

Termination criterion in the Extended Euclidean alg.:

I αi+1Π− βi+1E = 0
⇒E = αi+1Π/βi+1
⇒test if βj divides Π

I check if X satisfies:ν(X ) ≤ ν(Π)
4ν(βj )2

I But several candidates are possible
⇒discrimination by a post-condition on the result

Example

pi 3 5 7
xi 2 3 2

I x = 23 with 0 error
I x = 2 with 1 error
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Detecting a gap

αiΠ− βi(X + E) = ri ⇒ αiΠ− βiE = ri + βiX

ri

βi X

X = −ri/βi

I At the final iteration: ν(ri) ≈ ν(βiX )
I If necessary, a gap appears between ri−1 and ri .

I ⇒Introduce a blank 2g in order to detect a gap > 2g

Property

I Loss of correction capacity: very small in practice
I Test of the divisibility for the remaining candidates
I Strongly reduces the number of divisibility tests
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Experiments

Size of the error 10 50 100 200 500 1000

g = 2 1/446 1/765 1/1118 2/1183 2/4165 1/7907

g = 3 1/244 1/414 1/576 2/1002 2/2164 1/4117

g = 5 1/53 1/97 1/153 2/262 1/575 1/1106

g = 10 1/1 1/3 1/9 1/14 1/26 1/35

g = 20 1/1 1/1 1/1 1/1 1/1 1/1

Table: Number of remaining candidates after the gap detection: c/d

means d candidates with a gap > 2g , and c of them passed the
divisibility test. n ≈ 6001 (3000 moduli), κ ≈ 201 (100 moduli).



Experiments
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Figure: Comparison for n ≈ 26 016 (m = 1300 moduli of 20 bits),
κ ≈ 6001 (300 moduli) and τ ≈ 10007 (about 500 moduli).

Gap: Euclidean Algorithm down to the end ⇒overhead
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Gap: Euclidean Algorithm down to the end ⇒overhead
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Early termination

P2P workers
Decoder

Secured workers

Certifier

MasterInput

Fork tasks

Output X

Y

CRT Lifter
residues

Empty or X

List of candidates

Figure: Fault tolerant distributed computation with early termination



Conclusion
Residue systems : “technology” suited to cloud computing:

parallelism, fault-tolerant, verification

New metric for redundant residue codes:

I Unification with finer bounds on the correction capacities
I Enables adaptive decoding

Adaptative decoding and early termination

I Gap method: limited overhead, better performances
I Framework for interactive computing with a cloud

Perspective

I ABFT in exact linear algebra, determinant [LinBox]
I ABFT with (exact) floating point arithmetic
I Theoretical efficiency of the gap method,
I Generalization to adaptive list decoding [Sudan,

Guruswami]
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