
Cache and Bandwidth Aware Matrix Multiplication on the GPU

Jesse D. Hall Nathan A. Carr John C. Hart
University of Illinois

Abstract
Recent advances in the speed and programmability of con-
sumer level graphics hardware has sparked a flurry of re-
search that goes beyond the realm of image synthesis and
computer graphics. We examine the use of the GPU (graph-
ics processing unit) as a tool for scientific computing, by an-
alyzing techniques for performing large matrix multiplies in
GPU hardware. An earlier method for multiplying matrices
on the GPU suffered from problems of memory bandwidth.
This paper examines more efficient algorithms that make the
implementation of large matrix multiplication on upcoming
GPU architectures more competitive, using only 25% of the
memory bandwidth and instructions of previous GPU algo-
rithms.

1 Introduction
The multiplication of matrices is one of the most central
operations applied in scientific computing. Recent history
has shown continued research for better tuned algorithms
that improve the efficiency of matrix multiplication. The
ATLAS system for automatic tuning of matrix multiplica-
tion for target CPU’s has shown much success [Whaley et al.
2001]. New advances in PC chip design (such as streaming
SIMD extensions) has led to research into how to best lever-
age modern mico-architectures for this task [Aberdeen and
Baxter 2000].

Recently, consumer based graphics processors (GPU’s)
have become increasingly more powerful and are starting to
support programmable features. The parallelism in graphics
hardware pipelines makes the GPU a strong candidate for
performing many computational tasks including matrix mul-
tiplication [Larson and McAllister 2001]. We detail a new
approach for multiplying matrices on GPU hardware. This
approach takes advantage of multiple levels of parallelism
found in modern GPU hardware and reduces the bandwidth
requirements necessary to make this technique effective.

The architecture of modern GPUs relevant to this paper is
described in Section 2. In summary, GPUs receive 3D graph-
ics primitives (typically triangles or quadrilaterals) specified
as a set of vertices from the application. These vertices are
transformed into screen coordinates, and a fragment is gen-
erated for each pixel covered by the primitive (generating
these fragments is called rasterization). Fragments contain
information such as colors and texture coordinates which are
interpolated across the primitive from values associated with
the vertices. These auxiliary attributes are used to shade
each fragment, which results in a final color which is written
to a pixel in the framebuffer. One of the most common ways
of shading fragments is to use auxiliary attributes known as
texture coordinates to index into a previously supplied im-
age (texture). Multiple sets of texture coordinates can be
used to retrieve colors from multiple textures; the results
are combined to form the final color for the fragment. This
is multitexturing. Finally, a shaded fragment can either re-
place the current value of the pixel in the frame buffer or

it can be added to the current value. This version of the
graphics pipeline is described in [Woo et al. 1997].

The performance of GPUs comes from the fact that large
amounts of parallelism are available in this pipeline. In par-
ticular, each fragment is independent of all other fragments,
so they can be processed in parallel. Processing of fragments
can also be overlapped to hide pipeline stalls and memory
latencies, resulting in very efficient use of the hardware.

Multitexturing can be used to multiply matrices [Larson
and McAllister 2001]. An m× n matrix can be represented
by a greyscale texture, with the each pixel containing an ele-
ment of the matrix 1. These matrices can be displayed on the
screen by drawing an m× n-pixel rectange with the texture
coordinates (0, 0), (0, n−1), (m−1, n−1), (m−1, 0) assigned
to the vertices (clockwise starting with the upper-left ver-
tex). One benefit of this is that we can access the transpose
of a matrix by drawing an n×m-pixel rectangle with texture
coordinates (0, 0), (m−1, 0), (m−1, n−1), (0, n−1). The ex-
act same texture is used for drawing the matrix transposed
and untransposed. We have only changed the mapping of
the texture image onto the rectangle.

Matrix multiplication performs C = AB where A is an
m× l-element matrix and B is an l× n-element matrix. By
storing matrices A and B as textures, we can compute C in
l multitexturing passes as shown in Figure 1.

Clear the screen.
Set the drawing mode to overlay.
Load texture texA with matrix A.
Load texture texB with matrix B.
Set the multitexturing mode to modulate.
Set framebuffer write mode to accumulate.
for i = 0 . . . l − 1

draw an m× n-pixel rectangle with
texA coords (0, i), (0, i), (m− 1, i), (m− 1, i), and
texB coords (i, 0), (i, n− 1), (i, n− 1), (i, 0).

end
Screen contains result of A×B.

Figure 1: The Larson-McAllister multipass algorithm for
multiplying two matrices.

The texture coordinates (0, i), (0, i), (m − 1, i), (m − 1, i)
replicate the ith column across the entire rectangle, whereas
the texture coordinates (i, 0), (i, n− 1), (i, n− 1), (i, 0) repli-
cate the ith row. These textured rectangles are then com-
bined as demonstrated in Figure 2.

1Textures are typically indexed using (s, t), with s indexing
the horizontal axis and t indexing the vertical axis. This is the
opposite of standard matrix notation, where the first index rep-
resents the row and the second index representing the column. In
the rest of this paper, we’ll use the matrix style rather than the
texture style. Also, texture coordinates have traditionally been
in the range [0 . . . 1], with various filters used to generate a color
for indices that fall between pixels. We use an extension [Kilgard
2001] to allow integer indexing, and disable filtering.



Pass
1

A col. 1

×

B row 1

=

+

Pass
2

A col. 2

×

B row 2

=

+

Pass
3

A col. 3

×

B row 3

=

+

Pass
4

A col. 4

×

B row 4

=

=

Result

A

×

B

=

Figure 2: Demonstration of Larson-McAllister matrix mul-
tiplication on a pair of 4 × 4 matrices. (The output in this
example is saturated, such that results greater than one ap-
pear uniformly white.)

2 Modern GPU Organization
The graphics pipeline implemented on graphics acceleration
hardware was classically organized in a series of transfor-
mations, clipping and rasterization steps. Modern graphics
hardware has generalized this pipeline into programmable el-
ements. The modern graphics pipeline consists of vertex pro-
cessing, rasterization and fragment processing. The vertex
processor performs operations on the individual vertices of
triangles sent to the graphics accelerator. Once transformed,
these triangles are rasterized into a collection of pixels. Each
pixel output by the rasterizer is called a fragment. The ras-
terization process linearly interpolates attributes, such as
texture coordinates, stored at the vertices and stores the
interpolated values at each fragment. A fragment proces-
sor uses the interpolated texture coordinates to lookup tex-
ture values from texture memory, and can perform special-
purpose arithmetic operations on both the texture addresses
and the fetched texture values.

The vertex processor is structured similarly to vector
processors (pipeline on a stream of vertices), whereas the
fragment processor is structured similarly to a SIMD array
processor (one processor per pixel). Our experiments have
shown that the vertex processor does not provide much ad-
vantage over existing CPU capabilities, whereas the frag-
ment processor already outperforms the CPU on some op-
erations like ray-triangle intersections [Carr et al. 2002].

Because these processors were originally developed for
texturing, the programs the GPU executes are called
shaders. A fragment shader is a program executed by the

fragment processor that describes the color each fragment
before it is possibly assigned to its corresponding pixel. The
inputs to a fragment shader are a set of program constants,
interpolated attribute data from triangle vertices, and tex-
ture maps (blocks of texture memory addressed by the tex-
ture coordinates). Before rendering, the fragment shader is
compiled and loaded into the graphics hardware. Primitives
(in our case quadrilaterals) are then sent down the graphics
pipeline invoking the enabled fragment shader as they are
rasterized. The output of a fragment shader is an output
color plotted to the screen.

A fragment shader is alloted a fixed set of temporary reg-
isters R0 . . . Rn. Each register holds a single 4-vector corre-
sponding to the four color channels red, green, blue, alpha.
The color channels of each register may be accessed indi-
vidually as follows: Ri.c where c ∈ {r, g, b, a}, i ∈ {1..n}.
Standard arithmetic operations are defined over the set of
registers, such as addition and multiplication. For example:
R2.b = R1.a + R0.g, assigns the blue channel of register R2
to be the sum of the alpha channels of registers R1 with the
green channel of R0.

Modern fragment shaders allow for up to four-instruction
to be executed simultaneously, much like that of the SIMD
instructions found in modern PC architectures. For exam-
ple:

R2 = R1.abgr ∗R0.ggab (1)

can be issued as a single GPU instruction which refers to
four simultaneous multiplications numerically equivalent to:

R2.r = R1.a ∗R0.g

R2.g = R1.b ∗R0.g

R2.b = R1.g ∗R0.a

R2.a = R1.r ∗R0.b (2)

The SIMD nature of the operation defined in (1) allows for
four additions to occur in parallel, taking one fourth the
computation time of (2).

In equation (1), R1’s color channels are referenced in ar-
bitrary order. This is referred to as swizzling. The green
channel of R0 is referenced multiple times. This is known as
smearing. Arbitrary swizzling and smearing (and also nega-
tion) of input operands can be done with no performance
penalty. This is in contrast to the Intel’s SSE instructions,
where moving data between channels requires additional in-
structions.

The output color of a fragment program is placed in a des-
ignated register (usually R0) upon termination of the pro-
gram. This value is written to the fragment’s screen location
in the frame buffer.

Fragment shaders have access to three kinds of data: con-
stants, interpolated vertex attribute data (e.g. texture coor-
dinates), and texture data (indexed by texture coordinates).
Interpolated vertex attributes data are accessed as the reg-
isters T0 . . . Tm where m + 1 is the number of attributes
stored with each vertex.

Data is fetched from texture memory by the lookup() op-
eration. For example, R0 = lookup(T0.r, T0.g, M) uses the
first two coordinates of T0 to access the texture M. We can
also perform arithmetic on the texture coordinate before the
fetch, or we can use the result of one texture fetch as the co-
ordinates for a second texture fetch (dependent texturing).

Although fragment shaders provide a very powerful SIMD
model for programming, they are currently limited in a num-
ber of ways. Modern implementations restrict the number
of available registers, the total instruction length, and the



number of lookup() operations that may occur in a given
fragment shader. Control flow is also restricted in fragment
shading. For example, branching is not supported and con-
ditional execution is limited to predicating instructions on
previously set condition codes.

Our model for a fragment shaders is based on the one
described by the upcoming DirectX 9.0 specification [Mar-
shall 2001]. This model provides capabilities currently found
in vertex shaders at the fragment shader level. This model
has also been used to describe the implementation of a ray
tracer as a fragment shader [Purcell et al. 2002]. This paper
assumes similar fragment processor capabilities, specifically
fragment shaders of up to 256 instructions, an unrestricted
number of texture access operations, a set of at least six
registers, and standard single-precision floating point data
formats.

3 Cache Aware Matrix Multiply
Suppose we are muliplying two large matrices X and Y , wlog
who’s dimensions are a perfect power of two, with n = 2i

rows and n = 2i columns. A general algorithm for comput-
ing Z = XY can be expressed as follows:

for i = 1 . . . n
for j = 1 . . . n

Zij = 0
for m = 1 . . . n

Zij = Zij + Xim ∗ Ymj

end
end

end

(3)

The outer two loops are implemented on the GPU by ren-
dering a single screen filling quadrilateral. This implies that
everthing within the outer two loops must be handled by
the fragment shader. Below we have inserted pixel shader
pseudo-code in the appropriate places. Matrices X and Y are
now assumed to be stored in single channel texture maps and
accessed through the fragment shader lookup() operation.

for i = 1 . . . n
for j = 1 . . . n

fragment
shader




R3.r = 0
for m = 1 . . . n

R1.r = lookup(i, m, X)
R2.r = lookup(m, j, Y )
R0.r = R0.r + R1.r ∗R2.r

end
end

end

(4)

The above psuedo-code in (4) requires that either loops
are available in fragment shaders or that the fragment shader
instruction count is long enough to allow the innermost loop
to be unrolled. We assume neither are realistic assumptions.
To address this issue, we turn to a standard blocking strat-
egy.

Blocking has been shown to improve cache performance,
but for this application blocking also serves the purpose of al-
lowing us to work within the constraints of our fragment pro-
gramming model. The psuedo-code for our blocking strategy
is shown in (5). A new matrix F is introduced that is ini-
tialized to be all zeroes and used as a temporary store by
the routine. The value b is a scalar representing the block
size.

for k = 1..n step b
for i = 1 . . . n
for j = 1 . . . n

fragment
shader




R3.r = 0
for m = k . . . k + b− 1

R1.r = lookup(i, m, X)
R2.r = lookup(m, j, Y )
R3.r = R3.r + R1.r ∗R2.r

end
R4.r = lookup(i, j, F )
R0.r = R3.r + R4.r

end
end
Copy frame buffer into texture F

end

(5)

This new algorithm is a multipass method requiring mul-
tiple renderings to the frame buffer. The outer three loops
are handled by rendering screen filling quadrilateral to the
frame buffer n/b times. Between each of the n/b passes, the
frame buffer is copied into texture map F to be accumulated
with result of the next pass. This copy operation is required
since modern GPU hardware does not support direct lookup
operations on the framebuffer. Some graphics hardware does
however, support blending modes allowing fragment values
to accumulate directly with the contents of the frame buffer
eliminating the need for the temporary texture F , and con-
sequently more efficient rendering.

The fragment program (which covers the portion inside
the j loop), can now be unrolled by choosing an appropriate
value of b. For our tests we have chosen b = 32. We were
able to reduce our total fragment program instruction count
to be four instructions per iteration of the m loop, for a total
of 6 + 4b = 134 total instructions.

4 Multi-Channel GPU Matrix Multiplies
Texture map sizes on modern day GPU’s are often restricted.
Let n being the maximum size of any dimension. NVidia’s
GeForce4 Ti4600 has a maximum allowable renderable size
of n = 2048, limiting multipass programs to two-dimensional
textures containing at most 2048 × 2048 elements. Tex-
ture maps may consist of between one and four channels
(luminance, luminance-alpha, RGB or RGBA). This im-
plies that the GeForce4 can handle textures in size up to
2048× 2048× 4.

Methods have already been presented for handling ma-
trices whose dimensions are at most n = 2048 using single
channel texture maps. It is naturally desirable to be able to
handle matrices of larger sizes. The GeForce4 for example
should be able to multiply matrices 4096×4096 in size by uti-
lizing all four of the color channels. This section describes a
matrix multiplication algorithm that takes advantage of this
four-component storage capability.

These four-channel textures store matrices of 4096× 4096
32-bit floating point values, and occupy 64MB. Our GPU
matrix multiplication implementation requires four times
this space for storing the two operands, a temporary store,
and the result. Current consumer level GPU’s such as the
GeForce4 currently ship with 128MB of on-board memory,
suggesting a maximum capable matrix side of 2828 × 2828.
Exceeding this memory threshold under a non-unified mem-
ory architecture of present-day PC GPU’s results in pag-
ing to main system memory, and increased traffic over the
graphics card bus.



4.1 Basic Formulation

Suppose we are muliplying two large matrices X and Y , wlog
whose dimensions are a perfect power of two, with 2i rows
and 2i columns.

XY = Z (6)

The matrix multiply in (6) can be expressed as the fol-
lowing series of matrix multiplies of smaller matrices

X︷ ︸︸ ︷[
A B
C D

] Y︷ ︸︸ ︷[
E F
G H

]
=

Z︷ ︸︸ ︷[
AE + BG AF + BH
CE + DG CF + DH

]
(7)

Elements A, B, C, D, E, F, G, and H are sub-matrices de-
composing X and Y . Let the dimensions of A . . . H be 2i−1

rows by 2i−1 columns.

4.2 Blocked Matrix Texture Maps

We can store matrices X and Y as texture maps in a 2i−1

by 2i−1 sized texture maps on the GPU, by placing the four
sub-matrices in the different color channels RGBA as

X =

(
Ar Bg

Cb Da

)
, Y =

(
Er Fg

Gb Ha

)
. (8)

We now introduce subscript notation on matrices M , such
that Mi for i ∈ r, g, b, a refers to the submatrices composing
M . For example XrYg = AF .

We have presented our technique for multiplying matrices
contained in a single color channel XrYr = Zr in Section 3.
We can extend this same approach to a SIMD notation by
using multiple subscripts r, g, b, a. For example:

XrrbbYrgrg =

(
AEr AFg

CEb CFa

)
. (9)

The above notation assumes an architecture where four
sub-matrices may be operated on in parallel by a single in-
struction. This notation is useful since graphics hardware is
designed in a SIMD manner to work simulateously on four
color channels at a time. Using this notation, we can now
concisely express matrix multiplication X and Y as follows:

XrgbaYrgba = XrrbbYrgrg + XggaaYbaba

=

(
AEr AFg

CEb CFa

)
+

(
BGr BHg

DGb DHa

)

= Zrgba (10)

4.3 The Multi-Channel Algorithm

To apply the formulation derived in (10) into an algorithm
usable by graphics hardware, we must first re-examine frag-
ment shader programming. As discussed in Section 1, a sin-
gle lookup() operation can retrieve a 4-vector corresponding
the four color channels. If we store X as a texture map in
blocked form (8) then a single lookup R0 = lookup(i, j, X)
can be used to retrieve four values coming from the sub-
matrices of R0 = Aij , Bij , Cij , Dij . The four matrix multi-
plies from equation (10) may now be parallelized within a
single fragment shader. The matrix swizzling and smearing
suggested by (10) is handled at the per-element level utiliz-
ing the capabilities of graphics hardware, as shown in (11).

for k = 1 . . . n/2step b
for i = 1 . . . n/2
for j = 1 . . . n/2

fragment
shader




R3 = 0
for m = k . . . k + b− 1

R1 = lookup(i, m, X)
R2 = lookup(m, j, Y )
R3 = R1.rrbb ∗R2.rgrg + R3
R3 = R1.ggaa ∗R2.baba + R3

end
R4 = lookup(i, j, F )
R0 = R3 + R4

end
end
copy frame buffer into texture F

end

(11)

The above algorithm represents an efficient use of the
SIMD computation power of the GPU by working on all
four color channels in parallel. This implementation only
increases the fragment shader instruction count by one per
iteration of m, thus resulting in a total fragment program
length of 6 + 5b = 166 with b = 32.

5 Analysis
We have analyzed the new blocked and multichannel GPU
matrix multiplication algorithms with respect to memory
bandwidth, instruction count and predicted performance.

5.1 Bandwidth Considerations

To analyze the potential bandwidth limitations for our ap-
proach, we first distinguish between the two bandwidth lim-
ited areas of modern GPUs. The external bandwidth is the
rate at which data may be transferred between the GPU and
the main system memory. On modern PC’s this is limited
by the speed of the AGP graphics bus which can transer
data at the rate of 1GB/sec. The internal bandwith is the
rate at which the GPU may read and write from its own in-
ternal memory. The GeForce4 Ti 4600 is currently capable
of transferring 10.4 GB/sec.

For our application the external bandwidth of the GPU
affects our application in two areas. First, the matrices must
be copied into the GPU’s memory as texture maps, and the
result of the computation must be read back from the card
into main memory. These transfers use the AGP bus, which
currently has a theoretical bandwidth of about 1 GB/s (for
AGP 4x). However, in practice sending data to the GPU
is much faster than reading data back from the GPU (since
the hardware and drivers are optimized for this case), and
the best speed we’ve measured for reading data back into
host memory is 175 MB/s. Even assuming an average of
200 MB/s transfer for both reads and writes, transfering two
1024×1024 single-precision matrices to the GPU and reading
the 1024×1024 result back requires 60 ms. At 4 GFLOPS the
actual computation takes about 510 ms. For this problem,
transfer time is about 11% of the total time. Thus, external
bandwidth is a significant but not overwhelming fraction of
the total time.

The second part of the algorithm affected by external
bandwidth is the time to send the geometry, the screen fill-
ing quads on which the matrices are texture mapped. In
fact this is a very small amount of data (about 48 bytes per
pass), and graphics hardware is very good at transferring



geometry information in parallel with other tasks, including
running fragment shaders. Thus, this cost is negligible.

One of the primary bottlenecks in performing matrix mul-
tiplies on the GPU is the internal bandwidth [Larson and
McAllister 2001]. This is also true for CPU implementa-
tions. For our analysis we consider mutiplying two n × n
matrices. For both the multi-channel and single-channel
block-matrix approaches, the processing of each fragment
requires two texture lookup() operations per iteration of the
inner m loop, plus an additional lookup() to combine it with
the results from the previous pass. A single write to output
occurs per fragment per pass as its result is written to the
frame buffer. Thus, there are 2b + 2 memory operations
per fragment per pass. In our single channel method, every
memory operation transfers 4 bytes of data. Our multi-
channel method transfers 16 bytes of data (4 channels, 4
bytes per channel) per memory operation.

method passes frags/pass bytes/frag total
L-M n n2 16 16n3

single n
b

n2 (2b + 2)4 8n3(b+1)
b

multi n
2b

(n
2
)2 (2b + 2)16 4n3(b+1)

b

Table 1: Bytes transferred internally by each GPU matrix
multiplication method.

Table 1 summarizes these results and shows the total in-
ternal bandwidth in bytes transferred by each method, which
is just the product of the number of passes, the fragments
per pass and the bytes per fragment. The L-M (Larson-
McAllister) figures assume an implementation based on a
single floating-point channel. (Even though multiple chan-
nels were mentioned, [Larson and McAllister 2001] did not
describe a multi-channel implementation.) The four-byte
floats are accessed four times (two matrices, a temporary
store and a result) for a total of 16 bytes transferred per
fragment.

Our single-channel block matrix algorithm performs iden-
tically to L-M when b is set to one (no blocking). As the
blocking size b grows, the bandwidth drops by nearly a factor
of two when compared to L-M. The multi-channel method
further reduces the memory bandwidth by exactly one half
over the single channel method, reducing the bandwidth to
nearly 25% of L-M.

5.2 Instructions

The GPU uses the fact that the same instructions are be-
ing executed for a large number of fragments to overlap the
processing of different fragments. As no communication be-
tween executions of the fragment shaders is needed, a large
amount of parallelism is available. This parallelism is used
to hide the latency of memory operations and other causes
of stalls. As a result, when enough fragments are available
(as in our case), the running time of a fragment shader is
approximately linear in the number of instructions executed
(assuming computation is the limiting factor). Therefore, it
makes sense to analyze the number of instructions used by
our algorithm.

Each execution of the fragment shader needs four instruc-
tions for setup and adding in the result of the previous pass.
The multi-channel algorithm also needs three instructions
per iteration of the inner loop (two multiply-add instruc-
tions and one addition to update the texture indices). The
single-channel algorithm removes one of the multiply-add
instructions. Therefore, the instruction counts are 3b + 4

for the multi-channel case and 2b + 4 for the single-channel
case. Note that in the multi-channel case, each many of
the instructions involve a 4-wide data issue, operating on
the four color channels in parallel. Currently there is no
performance penalty for this since modern GPU’s designed
to natively work on multiple channels. Table 2 summarizes
the analysis and the total GPU floating point instructions
required by each method.

method passes frags/pass inst/frag total inst
L-M n n2 2 2n3

single n
b

n2 2b + 4 n3(2b+4)
b

multi n
2b

(n
2
)2 3b + 4 n3(3b+4)

8b

Table 2: Floating point operations required by each GPU
matrix multiplication method.

The additional fragment program overhead makes the sin-
gle channel block-structured matrix multiplication longer
than the L-M algorithm. As b increases, the instruction
count asymptotically approaches that of the L-M algorithm.
The multi-channel method executes 3/16ths as many in-
structions of either of the single channel methods as the
block size grows.

5.3 Performance

ATLAS has demonstrated 4.0 GFLOPS/s for matrix mul-
tiplication on a 1.5GHz Pentium4 using Intel’s SSE2 SIMD
instructions [Dongarra 2001]. Is the GPU comparable to
this? For a matrix size of 1024 × 1024 and a block size of
32 (n = 1024, b = 32), our multi-channel algorithm trans-
fers 4.125 GB of data. In order to match the ATLAS P4
SSE numbers, we need to perform this multiplication in 0.5
seconds. This means we will need 8.25 GB/s of bandwidth.
Current hardware has a theoretical bandwidth of 10.4 GB/s
to the main memory; as with CPUs, it also has a cache be-
tween the GPU and memory which supports much higher
bandwidth. Thus, existing hardware should be able to sup-
port our bandwidth needs. Future hardware is likely to im-
prove both cache size and performance and memory band-
width.

Performance of CPU implementations of matrix multi-
plication are typically limited by memory bandwidth, not
CPU speed. Larson and McAllister [Larson and McAllister
2001] reported similar results with their GPU implementa-
tion. However, due to much lower clock speeds on CPUs
relative to CPUs, the move from fixed-point byte operations
to floating point may increase the processing requirements
enough to make the GPU speed the bottleneck.

6 Conclusion
We have presented a multichannel block-based GPU matrix
multiplication algorithm. The block structured approach
should yield greater cache coherence than previous meth-
ods. We also demonstrated that our implementation uses
only about 25% of the memory bandwidth and instructions
when compared to the previous method.

Our results are currently theoretical as we anticipate the
implementation of graphics hardware that supports the Di-
rectX 9.0 standard. We expect such hardware will be avail-
able before the final version of this paper is required. (For
example, as of this writing, 3Dlabs has just announced a pro-
cessor, the P10, that partially satisfies upcoming standards.)



We will then be able to provide actual implementation times
comparing our cache and bandwidth aware algorithms to the
previous work [Larson and McAllister 2001].

We have made numerous assumptions about the perfor-
mance of the upcoming hardware. These assumptions are
based on the speed of existing hardware, but with the gener-
ality to handle the upcoming standards. These simulations
and analyses suggest our method to be competitive with
modern CPU implementations. The existence of hardware
implemenations will allow us to perform further tuning and
validate our claims with empirical data.

Available hardware would allow us to automatically tune
our algorithm for a given GPU in much the same manner as
performed by Altas. Emperical tests may be run to provide
searches over algorithm’s parameter space to select the best
aglorithm for a target GPU. Our algorithm is currently pa-
rameterized by its block size b, but we could also introduce
additional parameters to control order of rasterization and
blocking of memory layouts.

The increased memory bandwidth and SIMD organization
of the GPU should make it a good choice for scientific appli-
cations. We have nonetheless found that the GPU remains
about as powerful as the CPU on actual tasks like matrix
multiplication and ray tracing [Carr et al. 2002]. This has
been disappointing given the increased bandwidth and pro-
cessing power of the GPU. The constraints of GPU program-
ming coupled with the low bandwidth connection from the
GPU back into the CPU have been major obstacles in the
capitalization of the GPU for scientific applications.

We are nonetheless encouraged by the potential of the
GPU. Whereas future enhancements to the CPU explore
parallelism through speculative execution and other prob-
abilistic methods, the GPU can exploit parallelism across
the frame buffer and across the geometric data. This has
been partially responsible for the dominance of the GPU
performance growth rate over that of the CPU. As GPU
growth continues to outpace CPU growth, we expect the
GPU will become the preferred platform for personal high-
performance scientific computing.

Acknowledgments

This research was supported in part by the NSF under the
ITR grant ACI-0113968, and by NVidia Corp. Conversa-
tions with Jack Dongarra and Jim Demmel (and his stu-
dents) were also quite helpful.

References
Aberdeen, D., and Baxter, J. 2000. General matrix-

matrix multiplication using SIMD features of the PIII
(research note). In European Conference on Parallel Pro-
cessing, 980–983.

Carr, N. A., Hall, J. D., and Hart, J. C. 2002. The ray
engine. Tech. Rep. UIUCDCS-R-2002-2269, University of
Illinois at Urbana-Champaign, Mar.

Dongarra, J. 2001. An update of a couple of tools: AT-
LAS and PAPI. DOE Salishan Meeting (Available from
http://www.netlib.org/utk/people/JackDongarra/
SLIDES/salishan.ps), Apr.

Kilgard, M. J. 2001. GL NV texture rectangle.
http://www.nvidia.com/dev content/nvopenglspecs/
GL NV texture rectangle.txt.

Larson, S. E., and McAllister, D. 2001. Fast ma-
trix multiplies using graphics hardware. Super Computing
(Nov.).

Marshall, B. 2001. DirectX graphics future. Microsoft
DirectX Meltdown 2001 (Jul.).

Purcell, T. J., Buck, I., Mark, W. R., and Hanrahan,
P. 2002. Ray tracing on programmable graphics hard-
ware. In Proceedings of SIGGRAPH 2002, ACM Press /
ACM SIGGRAPH, J. F. Hughes, Ed., Computer Graph-
ics Proceedings, Annual Conference Series, ACM.

Whaley, R. C., Petitet, A., and Dongarra, J. 2001.
Automated empirical optimizations of software and the
ATLAS project. Parallel Computing 27, 1-2, 3–35.

Woo, M., Neider, J., Davis, T., and Shreiner, D. 1997.
OpenGL Programming Guide. Addison-Wesley, Reading,
MA, USA.


