Analysing cache effects in distribution sorting

Naila Rahman

and

Rajeev Raman

King's College London

‘We study cache effects in distribution sorting algorithms for sorting keys drawn independently at
random from a uniform distribution (‘uniform keys’). We note that the performance of a recently-
published distribution sorting algorithm, Flashsortl, which sorts n uniform floating-point keys in
O(n) expected time, does not scale well with the input size due to poor cache utilisation. We
present an approximate analysis for distribution sorting uniform keys which, as validated by simu-
lation results, predicts the expected cache misses of Flashsortl quite well. Using this analysis, we
design a multiple-pass variant of Flashsortl which outperforms Flashsortl and comparison-based
algorithms on uniform floating-point keys for moderate to large values of n. Using experimental
results we also show that the integer distribution sorting algorithm MSB radix sort performs well
on both uniform integer and uniform floating-point keys.

Categories and Subject Descriptors: F.2.2 [Theory of Computation]: Analysis of Algorithms
and Problem Complexity—Nonnumerical Algorithms and Problems; E.5 [Datal: Files—Sort-
ing/searching

General Terms: Efficient sorting algorithms, Memory hierarchy, External-memory algorithms

Additional Key Words and Phrases: Cache

1. INTRODUCTION

Most algorithms are analysed on the random-access machine (RAM) model of com-
putation [Aho et al. 1974], using some variety of unit-cost criterion. In particular,
the RAM model assumes that accessing a location in memory costs the same as a
built-in arithmetic operation, such as adding two word-sized operands. However,
over the last 20 years or so CPU clock rates have grown explosively, with an average
annual rate of increase of 35 — 55% [Hennessy and Patterson 1996]. As a result,
nowadays even entry-level machines come with CPUs with clock frequencies of 400
Mhz or above. Unfortunately, the speeds of main memory have not increased as

Address: Department of Computer Science, King’s College London, Strand, London WC2R 2LS,
U. K. e-mail: {naila, raman}@dcs.kcl.ac.uk

This work was supported in part by grant GR/L92150 from the UK Engineering and Physical
Sciences Research Council (EPSRC).

Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must
be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on
servers, to redistribute to lists, or to use any component of this work in other works, requires prior
specific permission and/or a fee. Permissions may be requested from Publications Dept, ACM
Inc., 1515 Broadway, New York, NY 10036 USA, fax +1 (212) 869-0481, or permissions@acm.org.

2 . N. Rahman and R. Raman

rapidly, and today’s main memory typically has a latency of about 70ns. Hence, a
conservative estimate is that a main memory access can take 30+ CPU clock cycles.

In order to overcome this difference in speeds, modern computers have a memory
hierarchy which inserts multiple levels of cache between CPU and main memory.
A cache is a fast associative memory which holds the values of some main memory
locations. If the CPU requests the contents of a memory location, and the value of
that location is held in some level of cache, the CPU’s request is answered by the
cache itself (a cache hit); otherwise it is answered by consulting the main memory
(a cache miss). A cache hit has small or no penalty (1-3 cycles is fairly typical) but
a cache miss is very expensive.

Having a hierarchy of memories is not new: when dealing with very large input
sizes, which are considerably larger than main memory, it is well known that al-
gorithms which explicitly take into account the difference in speeds between main
memory and external (disk) memory can considerably outperform algorithms which
ignore this difference. A large number of external-memory algorithms have been
developed, mostly using refinements of a model introduced in [Aggarwal and Vit-
ter 1988]. However, there are significant differences between the two frameworks,
a major one being the cost of a disk access (which could be tens or hundreds of
thousands of CPU cycles) versus the cost of a cache miss. If one wishes to obtain
the best practical performance on problem instances which fit into main memory, it
can be better to tune the cache performance of proven internal-memory algorithms
as was shown by [LaMarca and Ladner 1999] and as we demonstrate here in the
context of distribution sorting.

Distribution sorting is a popular technique for sorting data which is assumed to
be randomly distributed, and involves distributing the n input keys into m classes
based on their value. The classes are chosen so that all the keys in the ith class are
smaller than all the keys in the (i+1)st class, for i =0, ...,m—2, and furthermore,
the class to which a key belongs can be computed in O(1) time. In O(n) time, the
problem is reduced to sorting the m < n classes. Distribution sorting can be used to
sort independent randomly distributed keys in O(n) time on average [Knuth 1997,
Ch 5.2, 5.2.1], which is asymptotically faster than the ©(nlogn) average running
time of comparison-based approaches. An important special case is when the keys
are drawn independently at random from a uniform distribution (‘uniform keys’).

Neubert [Neubert 1998] presented an implementation of a distribution sorting
algorithm Flashsortl, which used a combination of a well-known counting method
and an ‘in-place’ permutation method similar to one described in [Knuth 1997,
Soln 5.2-13]. With Neubert’s choice of parameters Flashsort1 uses only n/10 words
of memory in addition to the memory required by the data, and sorts n uniform
floating-point keys in O(n) time. Neubert’s experiments showed that his implemen-
tation of Flashsortl was twice as fast as Quicksort when sorting about 10,000 keys.
In the RAM model, the lower asymptotic growth rate of Flashsortl and the fact
that Flashsortl outperforms Quicksort for n = 10,000 would indicate that Flash-
sortl would continue to outperform Quicksort for larger values of n. Unfortunately,
this is not the case. We translated Neubert’s FORTRAN code for Flashsortl into
C++ and performed extensive experiments, see Figure 3, which clearly indicated
that although Flashsortl was significantly faster than Quicksort for n in the range
4K to 128K, Quicksort caught up with and surpassed Flashsortl at 1M keys. In

Analysing cache effects in distribution sorting . 3

fact, the ratio of the running times of Flashsortl to Quicksort continued to grow
with n, up to n = 64M.

Our simulations verify that this is due to the poor cache performance of Flash-
sortl. We present an analysis of the cache behaviour of ‘in-place’ distribution
sorting algorithms for uniform keys. The analysis holds for a wide range of param-
eter choices, including those of Neubert, and assumes a direct-mapped single-level
cache. The analysis is approximate in that it simplifies the underlying probability
distributions, but our simulations show that the formulae that we obtain accurately
predict cache misses to within a few percent in most cases. In some cases, how-
ever, the number of misses is much higher than is predicted by our formulae. We
analyse the reasons why our predictions are inaccurate in these cases, and we sug-
gest heuristics (Sections 4.4.2 and 4.4.3) for avoiding these ‘bad’ cases. One of these
heuristics appears to work well. Using the analyses, we determine that when sorting
n uniform single-precision floating-point keys, for roughly 600000 < n < 5.3 x 109
one should do the distribution in two passes on our test platform (more passes
are necessary for larger values of n). By incorporating these heuristics we obtain
a distribution sorting algorithm multi-pass Flashsort (MPFlashsort) which is over
twice as fast as Flashsortl for medium to large n, even though it can perform many
more operations than Flashsort1.

We compare these distribution sorting algorithms against a multi-pass implemen-
tation of most-significant-bit first radix sort (MSB radix sort) [Knuth 1997]. This
exploits the well-known fact that in the IEEE 754 standard, the relative order of
two non-negative floating-point numbers is the same as the order of the bit-strings
which represent them [Hennessy and Patterson 1996]. As a uniform distribution
on the floats does not induce a uniform distribution on the underlying integers,
it is not clear a priori that MSB radix sort is a good algorithm in this context.
However, we observe that this implementation performs well, as it uses fast integer
operations such as shifts and masks and also appears to have good cache utilisation.

We also compare these algorithms against cache-tuned implementations of
comparison-based sorting algorithms. We considered all implementations of Quick-
sort and Mergesort by [LaMarca and Ladner 1999] and Heapsort by [Sanders 1999].
On our machine Memory-Tuned Quicksort (MTQuicksort) was the fastest in-place
algorithm, marginally faster than Sedgewick’s Quicksort and at least 8% faster than
all other Quicksort or Mergesort implementations. Heapsort using Sanders’ cache-
tuned heaps [Sanders 1999] seemed to be the fastest out-of-place algorithm, and its
performance seemed roughly comparable to MTQuicksort.

All our distribution sorting algorithms here are ‘in-place’ in that they use very
little additional space. We note that both MPFlashsort and MSB radix sort clearly
outperform MTQuicksort even when the data to be sorted is ‘small’, i.e. single-
precision (4-byte) floats. For double precision floats (8-byte data) the gap between
MPFlashsort and MTQuicksort is quite large®.

1 As our machine does not have native support for 64-bit integers we did not test MSB radix sort
with double precision floats

4 . N. Rahman and R. Raman

2. PRELIMINARIES

This section introduces some terminology and notation regarding caches. The size
of the cache is normally expressed in terms of two parameters, the block size (B)
and the number of cache blocks (C'). We consider main memory as being divided
into equal-sized blocks consisting of B consecutively-numbered memory locations,
with blocks starting at locations which are multiples of B. The cache is also divided
into blocks of size B; one cache block can hold the value of exactly one memory
block. Data is moved to and from main memory only as blocks.

In a direct-mapped cache, the value of memory location x can only be stored
in cache block ¢ = (z div B) mod C. If the CPU accesses location xz and cache
block ¢ holds the values from z’s block the access is a cache hit; otherwise it is a
cache miss and the contents of the block containing x are copied into cache block ¢,
evicting the current contents of cache block ¢. For our purposes, cache misses can
be classified into compulsory misses, which occur when a memory block is accessed
for the first time, and conflict misses, which happen when a block is evicted from
cache because another memory block that mapped to the same cache block was
accessed.

An important consideration is what happens when a value is written to a location
stored in cache. If the cache is write-through the value is simultaneously updated
in the cache and in the next lower level of the memory hierarchy; if the cache is
write-back, the change is recorded only in cache. Of course, when a block is evicted
from a write-back cache it must be copied to the next lower level of the hierarchy.

We performed our experiments on a Sun UltraSparc-II, which has a blocksize of
64 bytes, a L1 cache size of 16KB and a L2 cache size of 512KB 2. Both L1 and L2
caches are direct-mapped, the L1 cache is write-through and the L2 cache is write-
back. As our programs hardly ever read a memory location without immediately
modifying it, the L1 cache is ineffective for our programs and we focus on the L2
cache. Hence, for our machine’s L2 cache we have C = 8192. This paper deals
mainly with single-precision floating-point numbers and integers, both of which are
4 bytes long on this system. It is useful to express B in terms of the number of
‘items’ (integers or floats) which fit in a block; hence we use B = 16 in what follows.

3. OVERVIEW OF ALGORITHMS

We now describe the steps in one pass of a generic ‘in-place’ distribution sorting
algorithm. This description embraces Flashsortl, MPFlashsort and MSB radix sort.
After the description we explain how to obtain the algorithms Flashsortl and MSB
radix sort, but the description of MPFlashsort is given only after the cache analysis.
While describing these algorithms, the term data array refers to the array holding
the input keys, and the terms count and start refer to auxiliary arrays used by these
algorithms. After one pass of an ‘in-place’ distribution sorting algorithm, the data
array should have been permuted so that all elements of class k lie consecutively
before all elements of class k + 1, for kK = 0,...,m — 2. The pseudocode that
accomplishes this is given in Fig 1. In the pseudocode it is assumed that m has
been appropriately initialised, and that the function classify maps a key to a

2K = 1024 and M = 1024K in this paper.

Analysing cache effects in distribution sorting . 5

(a) A count phase (b) A permute phase
1 for ¢ := 0 to m—1 do 1 leader := n —1;
COUNT[i] := 0; 2 idz := leader; x := DATA[idx];
2 for i := 0 to n—1 do 3 ¢ := classify(z); 4dz := COUNT[c];
COUNT [classify (DATA[¢])]++; COUNT[c]l++; swap & and DATA[idz];
3 COUNT[m — 1] :=n if 4dx # leader repeat 3;
- COUNT[m — 1]; 4 while (¢ > 0 A COUNT[c — 1] > START[c])
4 for ¢ := m — 2 downto 0 do c--;
COUNT[4] := COUNT[Z + 1] 5 if (¢ > 0) leader := START[c]—1;
- COUNT[Z]; go to 2;

Fig. 1. Count and permute phases for an ‘in-place’ distribution sorting algorithm. DATA holds
the input keys. COUNT and START are auxiliary arrays, and COUNT is copied into START at the end
of the count phase.

class numbered {0,...,m —1} in O(1) time.

It is convenient to divide a pass into a count phase and a permute phase. The
count phase consists of four steps. Step 1 initialises each element of COUNT to
zero. Step 2 counts the frequency of keys in each class by applying the classify
function. Steps 3 and 4 perform a prefix-summation of the count array, after which
COUNT[0] =0 and fori=1,...,m—1, COUNT [¢] holds the number of keys in classes
0,...,i—1.

Before the permute phase begins, a copy of the count array is made in the start
array. During the permute phase, for any class £, an invariant is that locations
START [k],START[k]+1,...,COUNT [k] —1 contain elements of class k, i.e. COUNT [&]
points to the leftmost (lowest-numbered) available location for an element of class
k. Thus, for £k = 0,...,m — 2, all elements of class k£ have been permuted if
COUNT [k] > START [k + 11, and such a class will be called complete in what follows.
Class m — 1 is complete when COUNT [m — 1] > n.

We will now describe the permute phase, which consists of two main activities:
cycle following and cycle leader finding. In cycle following, keys are moved to their
final destinations in the data array along a cycle in the permutation (Steps 2 and
3). Once a cycle is completed, we move to cycle leader finding, where we find the
‘leader’ (index of the rightmost element) of the next cycle (Steps 1, 4 and 5). A
cycle leader is simply the rightmost location of the highest-numbered incomplete
class. By the definition of a complete class, initially the leader must be position
n — 1. In more detail, the steps are as follows:

—In Step 1 n — 1 is selected as the the first cycle leader.

—In Step 2 the key at the leader’s position is copied into the variable x, thus leaving
a ‘hole’ in the leader’s position.

—In Step 3 the key x is swapped with the key at x’s final position. If x ‘fills the
hole’, the cycle is complete, otherwise we repeat this step.

—In Step 4 the algorithm searches for a new cycle leader. Suppose the leader of
the cycle which just completed was the last location of class k. When this cycle
ends, class k must also be complete, as a key of class k has been moved into
the last location of class k. Note that classes k + 1,k + 2, ... must already have
been complete when the leader of this cycle was found. Note that the program
variable ¢ has value k at the end of this cycle, so the search for the next leader

6 . N. Rahman and R. Raman

begins with class k£ — 1, counting down (Step 4).

—In Step 5 we check to see if all classes have completed and terminate if this is the
case.

Clearly the count and permute phases take O(n) time whenever m < n. We now
describe the algorithms Flashsortl and MSB radix sort.

3.1 Flashsortl

In Flashsortl, it is assumed that the keys are real numbers drawn from a uniform
distribution. Flashsortl first scans the input numbers to determine the largest
(maz) and smallest (min) values in the input. After this, we perform one distribu-
tion pass into m > 2 classes, using the function

. T —min
classify(z) = {m J .

" maz — min

Finally, the data array is sorted using insertion sort. If m < n the total expected
cost of the insertion sort is easily seen to be O(n?/m), while the rest of the algorithm
evidently runs in O(n) time. The algorithm uses 2m extra memory locations®.
After experimentation Neubert chose m = n/10 to minimise extra memory while
maintaining a near-minimum expected running time [Neubert 1998]. However, for
large values of n, it is intuitively apparent that the cache performance of Flashsort1
will be poor: e.g., for n = 64M the count array will be approximately 50 times the
size of cache, which suggests that almost all accesses to the count array will be
cache misses.

3.2 MSB radix sort

Most significant bit (MSB) radix sort is a distribution sorting algorithm for integers.
In one pass of MSB radix sort with radix r for some integer r > 1, we distribute
the keys into m = 2 classes by letting classify(z) return the value of the r most
significant bits of z. Each class is then either sorted recursively or by insertion sort.
In a recursive sub-problem, the radix r’ may be chosen afresh, and also it will be
the case that all keys in this recursive sub-problem will have a common value in
some of their most significant bits: classify(z) should then skip over the common
bits and return the next most significant r’ bits.

Although it is an integer sorting algorithm, MSB radix sort can sort floating
point numbers. It is well-known that if the floating point numbers are represented
according to the IEEE 754 standard, then the [bit-strings viewed as] integers that
represent two floating point numbers have the same ordering as the floats them-
selves, at least if both the numbers are non-negative [Hennessy and Patterson 1996.
Hence, one can sort floats by sorting the representing integers using MSB radix sort.
It is important to note that a uniform distribution on floating point numbers does
not induce a uniform distribution on the representing integers. For example, if the
keys are uniform numbers in the range [0, 1), half the numbers will have value in
[0.5,1); after normalisation their exponents will all be 0. This means that in the
IEEE 754 standard representation of single-precision floating-point numbers, half

3In fact, Neubert’s code had a more complex procedure for cycle leader finding which used only
m extra memory locations. As this was significantly slower we did not implement it.

Analysing cache effects in distribution sorting . 7

the keys will have the pattern 001111110 in their most significant 9 bits. Due to
this non-uniform distribution, the approach used in this paper to approximately
analyse the cache misses of Flashsortl and MPFlashsort does not extend to sorting
uniform floats using MSB radix sort.*

Here we present a somewhat ad hoc implementation of MSB radix sort. We
first perform a distribution according to the most significant r bits, where r =
min{[logn]—2,16} and n is the number of keys to be sorted. Each class consisting
of ' > 40 keys is then sorted recursively using MSB radix sort with radix r’ =
min{[logn']—2,16}. Classes consisting of 40 or fewer keys are solved with insertion
sort.

4. CACHE ANALYSIS

In this section we analyse the cache behaviour of Flashsortl and some variants.
Our analysis is actually more general in that it applies to one pass of the generic
‘in-place’ distribution sorting algorithm described in Section 3 for uniform keys.
More precisely, we require that classify(z) returns each value in {0,...,m — 1}
with equal probability for a randomly generated key x . For example, it applies
also to MSB radix sort applied to uniform integers. However, the parameters for
which the analysis holds are guided by Flashsortl and its variants. Also, a complete
cache analysis also must include algorithm-specific details such as the minimum and
maximum finding phase for Flashsortl. Hence, the following description is tailored
specifically to Flashsortl and its variants.

We will assume that the input size is an integral multiple of CB if n > C'B and
that important arrays begin at locations which are multiples of B. A memory block
in the data array will be called a data block and one in the count array will be called
a count block. From the above, the data array consists of a number of complete
data blocks.

The analysis assumes the cache is single-level and direct-mapped. For the sake
of simplicity we will assume that the various phases are independent, i.e. the cache
is emptied after each phase. This assumption causes inaccuracies for small input
sizes, where a significant part of the input may stay in cache between say the count
and permute phases, so we report only the predicted values for n > 2C'B = 256K.
Throughout we assume that m < n.

In each case we calculate the expected number of cache misses per key for a given
phase of the algorithm, which we will denoted by p with a subscript to indicate
the phase of the algorithm. In some cases the analyses are approximate, in that
a simplified probabilistic process is analysed. Hence, the formulae that we obtain
may be higher or lower than the actual expected number of misses, and we do
not attempt to mathematically quantify the extent of any errors. However, we do
validate the formulae by simulations. We use the notation p := to highlight cases
where the analysis is approximate in the above sense.

The analysis of the count phase uses the results of [Ladner et al. 1999] to a large

4Recently the authors have analysed distribution sorting under non-uniform key distributions
[Rahman and Raman 2000].

5The classify function for Flashsortl does not generate a perfectly uniform distribution—e.g.
only the maximum-valued key is in class m — 1-—but this effect is ignored in the analysis.

3 . N. Rahman and R. Raman

extent.

4.1 Determining the range of the keys

Before the count phase Flashsortl sequentially accesses n elements of the data array
to determine the minimum and maximum valued keys. Since n/B data blocks must
be loaded into cache, this step requires 1/B cache misses per key. Hence:

Hrange = 1/B. (1)
4.2 The count phase

We now give three cases which describe the cache misses during the count phase.
The results were obtained by slight modifications to the results in [Ladner et al.
1999] and details can be found in Appendix A.

Case 1: n > CB and m > CB. In this case the data and count arrays are larger
than the cache and:

1 m—CB

Mecount = E + T +
c . <l_l>CBB+1 (B-1)(m+ CB) +2m/B_ @)
m C CBm n

Case 2: n > CB and m < CB. In this case the data array is larger than the

cache but the count array fits in cache and:
1 m/B B\°P7Pt 2B-1) 2m/B
/B, _ () LA), 2m/B

Mcount = E + C—B

1- m CB n (3)

Case 3: n < CB and m < CB. In this case the data and count arrays fit in
cache and:

1 +m/B+2(B—1)+m/B
Heount 3= g+ = CB CB -

4.3 The insertion sort phase

(4)

Given that the problems which need to be solved are of expected size < 10 in
Flashsortl it is extremely unlikely in practice that any problem will exceed the size
of the cache. As we will see, the same holds for MPFlashsort. Hence we allocate
1/B misses per key for this phase:

Mins_sort *=]-/B (5)

(MPFlashsort may incur no additional misses for the insertion sort phase for some
values of n.)

4.4 The permute phase

In this section we present an analysis of the permute phase of Flashsortl and
its variants. The permute phase can be viewed as alternating cycle-following with
finding cycle leaders. During the cycle following phase we make 2n memory accesses
which may lead to cache misses. These comprise alternating accesses to the count

Analysing cache effects in distribution sorting . 9

array and to the data array. Any access to the data array must be to one of the m
active locations pointed to by the data pointers for the m classes (the data pointer
for class j points to the next available location for a key of class j). It is not hard
to see that for any fixed 4, the ith access to the count array is equally likely to be to
any of the m count array locations, independently of the previous accesses to the
count array; similarly, the ith access to the data array is equally likely to access
any of the m active locations, independently of the previous accesses to the data
array.

However, this is not enough to analyse the permute phase exactly. For example,
it appears difficult even to get a good understanding of the distribution of the
active locations at the start of the permute phase. Hence, we use an approximate
analysis. This analysis uses the idea that although the active locations change as
keys are moved to their destinations within classes, the movement is at roughly the
same rate and thus the active locations should maintain roughly the same relative
position. Therefore, we fix some ‘typical’ positions of active locations, giving a
‘snapshot’ of the algorithm, and analyse a simple process which involves accesses
to the count array and to the fixed active locations. Of course, the accuracy of the
formulae we get will depend heavily on how well we fix the active locations, and we
also ignore other accesses, such as those for the cycle leader finding phase.

In what follows, an active block is either a count block or a data block that has
an active location in it. Having fixed the active locations, we consider a sequence
of memory accesses, where each access reads or writes one of the m count array
locations or one of the m active locations with equal probability 1/m, independently
of the previous accesses®. We calculate the probability pgy of a miss if an active
location is accessed, and the probability p. of a miss if a count array location is
accessed; we then estimate:

perm = 1/B + (1= 1/B)pa + pe. (6)

The reason for using this formula is that pg only estimates the probability of misses
on data array accesses due to conflicts between active blocks. However, the n
accesses to the data array cover n distinct locations in all, resulting in at least
n/B compulsory misses. Thus, pg should be applied only to the approximately
n(1 —1/B) accesses that remain.

Using the probabilities specified in the above process, and having fixed the active
locations, we can easily calculate the probability that the process accesses a given
active block. For example, we can infer that a count block has an access probability
of B/m. After this, the analyses make extensive use of the following elementary idea
[LaMarca and Ladner 1999]. Suppose we consider a process which accesses k blocks
of memory b1, ...,bg, with each access being made independently to block b; with
probability p;, for i = 1,..., k. Let S C {1,...,k} and suppose that exactly the
blocks {b;|i € S} are mapped to some cache block ¢. Let ¢ be randomly initialised
to b;, i € S with probability p;. Then, at any stage in the process, for any i € S:

. Dbi
Pr[b; is in cache block ¢] = =———.)
Zjes by

6These probabilities add up to 2, and should be normalised to 1/(2m) each. Since we are only
interested in the ratios of probabilities, we omit the normalisation to improve readability.

10 . N. Rahman and R. Raman

An arbitrary initialisation of the cache may result in at most one more miss per
cache block than given by the above equation, which is negligible. Equation 7
implies the following as well. If there are 7 data blocks mapped to a cache block
and the number of active locations in data block 1,...,7 is ni,n9,...,n, and
N =3"7_, n; then the probability of a hit in accesses to that cache block is:

1 T
i=1

For a given value of N, by Jensen’s inequality (see e.g. [Rudin 1974]), the proba-
bility of a hit is minimised when n; = N/7 for ¢ = 1,...,7. A similar calculation
can be made when 7 data blocks, with N active locations in all, conflict with one
or more count blocks.

In order to fix the active locations, we consider three cases; these cases cover the
possible parameter choices in our two Flashsort variants. The first pair of cases
deal with the situation that the expected class sizes are smaller than the block size
B. If so, it will often be the case that there are multiple active locations in a single
data block. The third case deals with the situation where the expected class sizes
are much larger than B. In this case it is (intuitively) very unlikely that two active
locations are present in a single data block.

Case 1: m < CB and n/m < B. In this case the count array fits in cache
and the expected class size is less than a cache block. We assume that there are
p = m/(n/B) data pointers in each data block, allowing p to be non-integral. By
the reasoning associated with Equation 8, this should overestimate the number of
misses. There are two regions in the cache: region R; which has no count blocks
mapped to it, and region Ro which has count blocks mapped to it.

We first consider the case n > CB. In this case each cache block in R; has
7 = n/(CB) data array blocks mapped to it, whereas each block in Ry has one
count block and 7 data blocks mapped to it (recall that 7 is assumed to be integral).
The probability of accessing a count array block is B/m and of accessing any data
block is p- (1/m) = B/n. For any cache block ¢ in Ry, an access to a data block
which is mapped to ¢ is a hit only if that data block is currently stored in c. As the
sum of the probabilities of the blocks mapped to ¢ is B/m+7- B/n, by Equation 7
we have:

B/n 1

Pr[Data access in Ry is a hit] := B/m+r7-B/n nim+1
T- T

)

Similarly, we get:

B/m B B
B/m+71-B/n B+m/C’
In region Ry, there are 7 active blocks (from the data array) mapped to each cache
block. As each active block has the same probability of being accessed, we get

that Pr[Data access in R; is a hit] = 7—1. Since a data access goes to R; with
probability 1 —m/(CB), and Ry with probability m/CB, we have:

pd;_(l—%)(l—%)+%(1—ﬁ>. (11)

Pr[Count access in Ry is a hit] := (10)

Analysing cache effects in distribution sorting . 11

Input size | 256K | 512K 1M 2M 4M 8M 16M 32M 64M
Predicted | 0.7760 | 1.1183 | 1.3793 | 1.6582 | 1.8291 | 1.9146 | 1.9573 | 1.9786 | 1.9893
Simulated | 0.7919 | 1.1446 | 1.4079 | 1.6950 | 1.8627 | 1.9482 | 1.9813 | 2.0178 | 2.0187

Fig. 2. Predicted and simulated miss rates for permute phase of Flashsortl. For details of the
simulation framework, see Section 6

As there are no count array accesses in R, p. is given by Equation 10. By Equa-
tion 6,:

-1 B +
Mperm = B B+m/C

0= (-1 & (-ames)] -

if n > CB, and where 7 = n/(CB). For Flashsortl, this formula explains data
points for 256K to 1M as shown in Fig 2.

We now consider the case n < C'B. In this case data blocks cannot conflict with
each other so there are no cache misses in R;. To determine the cache misses in
Ry we assume the start of the data array is uniformly and randomly distributed at
cache block boundaries so the probability of a data block being mapped to a cache
block in region R is mT/B. Using the above reasoning, if a data block is mapped to

This

Ry the probability that an access to it results in a hit is 3 /7]3_{_% 7 = m /731 -

gives pg = &g (1 - W) A given count block has probability % of being in
conflict with a data block. In case there is a conflict, the probability of a hit on
a count array access is B/(B 4 m/C). This gives p. = &% (1 - %;/C). Using

Equation 6 we get:

= 5025 () (75 [em ()] 09

if n < CB. Equation 13 is applicable to the last pass of MPFlashsort. The misses
for a given sorting problem may be more or less than the expected value, depending
on the exact number of data blocks in Ry. However, averaged over all problems
the result should be accurate since they are in consecutive segments of the data
array so an underestimate for some problems will lead to an overestimate for other
problems.

Case 2: m > CB and n/m < B. In this case the size of the count array exceeds
the cache size and the expected class size is less than a cache block. Equation 14
is derived in a manner similar to Case 1. First, we assume that m is a multiple of
CB, and apply the above reasoning, taking region R; to be empty and Ry as the
whole cache. Then we use the same formula when m is not a multiple of CB. The
final formula is:

Hperm = 1/B + (1= CB/(2m)) + (B~ 1)/B)- (1 - CB/(2n)). (14)

For Flashsort1, this formula explains data points for 2M to 64M as shown in Fig 2.

12 . N. Rahman and R. Raman

Case 3: m < CB andn/m > B. In this case the count array fits in cache and the
expected class size is much larger than a cache block. Since n/m > B we assume
that there is at most one data pointer per data block. Again, we divide the cache
into two regions: region R; which has no count blocks mapped to it, and region R»
which has count blocks mapped to it. Note that R occupies a m/(CB) fraction of
the cache. We assume that N = m - (m/(CB)) data pointers are mapped to Rp.
Again, by Jensen’s inequality, the overall hit rate is minimised when each of the
m/B blocks comprising Ry has N/(m/B) = m/C = p data pointers mapped to it.
We proceed with the calculation based upon p data pointers mapped to each cache
block in Ry, each with an access probability of 1/m; note, however, that p may be
non-integral, and possibly even much smaller than 1. Consider a cache block ¢ in
Rs. The count block mapped to i is accessed with probability B/m, and each of
the p data blocks mapped to i are accessed with probability 1/m. The sum of the
access probabilities of the blocks mapped to ¢ is B/m +p-(1/m) = B/m+1/C.
Thus:

B B

Pr[Count access in Ry is a hit] := B/m {}_ml/c =3 s (15)
1 1

Pr[Data access in Ry is a hit] := fm (16)

B/m+1/C B+p’

It is more interesting to study the hit rate in region R;, which only has data
pointers mapped to it. It will be convenient to assume that R; covers the entire
cache, and has m data pointers mapped to it; as we will see, we can scale down the
values without changing the hit rate. Let the number of data pointers mapped to
cache block i be m;. If cache block ¢ has m; # 0, then the probability that a data
array access reads cache block i is m;/m, but the probability of this access being a
hit is 1/m;. Hence, the probability of a hit given that cache block i was accessed is
1/m. Summing over all ¢ such that m; # 0 gives the overall hit rate as simply v/m,
where v is the number of cache blocks such that m; # 0. Assuming that the data
pointers are independently and uniformly located in cache blocks, we calculate the
expected value of v as:

C-1-(1-1/C)™")=C-(1—e7"). (17)
Hence we have:
Pr[Data access in Ry a hit] :=v/m = p 1(1 —e?), (18)

and note that this is invariant to scaling C' and m by the same amount. We now
derive the misses per key for this case. First, the probability that a data access is
to Ry is m/(CB); using Equations 18 and 16, we get that pg = 1 — (m/(CB)) -
1/(B+p)— (1 —m/(CB))-p~1(1 —e~"), and hence using Equations 6 and 15 we
get that:

SERL Y EPN
:uperm-—B B~|—p

%5 [() () o]

Analysing cache effects in distribution sorting . 13

where p=m/C.

Case 4: m > CB and n/m > B. Finally, for the sake of completeness we study
the case where m > CB and n/m > B. The approach is similar to that of Case
2: we assume that m is a multiple of CB, and use the formula even in the case
that it is not. If m is a multiple of C'B, then we have m/(CB) count blocks
mapped to each cache block, along with p = m/C active locations; this gives the
probability of a count hit as H#M = CB/(2m). The probability of a data

fperm = 1/B + (1 = CB/(2m)) + (B - 1)/B)(1 - C/(2m)), (20)
where p=m/C.

4.4.1 Accuracy of predictions. In Appendix B we summarise extensive experi-
ments which study the cache misses during the permute phase in Flashsortl vari-
ants where m < CB and n/m > B. Figure 11 in Appendix B shows cache misses
per key during the permute phase for n = 224 and 100 random values of m between
25 and 8192 and for some selected values of m. Excluding the selected values of m
we see that the values predicted using Equation 19 are quite close to the simulated
values, indicating that the equation seems to be accurate for most values of m.
However, the equations are very inaccurate for the selected values of m, which are:
128, 256, 384, 512, 640, 768, 896, 1024, 1152, 1280, 1408, 1536, 1664, 1792, 1920,
2047, 2048, 2049, 4095, 4096 and 4097.

This suggests that the assumption of random data pointer placement is not always
a good one. We now analyse this further. To simplify the analysis, we make the
assumption that a ‘typical’ value for the number of non-empty blocks, v, is simply
the value of v at the start of the permute phase. As argued before, one would
expect all data pointers to move at roughly the same rate, hence maintaining the
original pattern of data pointers. Figure 11 can be used to validate this. We see
that, for most m, the misses per key predicted using actual v at the start of the
permute phase are quite close to the simulated values. From now onwards, we will
focus the discussion on the initial value of v.

We first note that it is surprising that predictions made by assuming a uniform
and independent mapping of data blocks are at all accurate, since these assumptions
are manifestly untrue. The expected starting location of the k-th data pointer in
the data array is precisely the expected number of elements in classes 0, ...,k —1,
and so it very much depends on the locations of the previous pointers. Furthermore,
the number of elements in classes 0,...,k — 1 is a binomial random variable with
expected value k - n/m, and is not uniformly distributed over cache blocks.

We now make some observations regarding the expected starting locations of the
data pointers. If n is a multiple of C'B then one can reason about this particularly
simply. We view the cache as being ‘continuous’ and place m marks on the cache
numbered 0,1,...,m — 1, with the i-th mark being i - (CB)/m words from the
beginning of the cache. Letting 7 = n/(CB), we get that the expected number of
elements in classes 0,...,k —1is k-n/m = (k1) - (CB)/m. Hence the expected
starting location in cache of the k-th data pointer is seen to be at the mark numbered
(k1) mod m.

14 . N. Rahman and R. Raman

The number of distinct marks among 0, 7 mod m, 27 mod m, ..., (m—1)7 mod m
depends upon the ged of 7 and m; more precisely, if ged(r,m) = g then there will
be m/g marks, each of which is the expected starting location of g data pointers.
If g is large, one can expect the number of non-empty blocks to be quite small at
the start of the permute phase. For example, in Figure 11, the prediction using
Equation 19 is very inaccurate when m = 512. Since n = 16M = 22, giving
7 = 128 = ged(r,m), and there are only 512/128 = 4 different marks where the
data pointers’ expected locations lie, and one would expect v to be very small at
the outset.

However, it appears that it is difficult to obtain a simple closed-form expression
for the initial value of v for arbitrary m. One way out might be to choose m so that
the analysis is made convenient. We now present two heuristics for selecting m and
show that the first heuristic though plausible is not always effective, whereas the
second appears to be effective.

4.4.2 Heuristic 1 for selection of m. If 7 = n/CB is an integer, and we choose
m to be relatively prime to 7, then we know that all the data pointers are expected
to start at different marks. As the marks are precisely evenly spaced in the cache,
it would appear that this heuristic is optimal. Unfortunately, the examples of
m = 2047 or m = 2049 below, taken from Figure 11, show that this is not so:

m | Simulate | Predict m | Simulate | Predict m | Simulate | Predict
2047 0.245 0.198 || 2048 0.320| 0.198 | 2049 0.241 0.198

In our experiment, 7 = 128 and ged(2047,128) = ged(2049, 128) = 1. Although all
the data pointers are expected to start at different marks, the miss rates for m =
2047 and 2049 are still quite high. We note that the expected data pointer starting
locations for m = 2047 are as follows:
mark | 0] 1] 2| 3|...| 126 127|128 129|130 ...
pointer|0|16|32|48|...|2016|2032| 1| 17| 33|...

The standard deviation of the kth data pointer location is \/n - (k/m) - (1 — k/m).
Thus, data pointers with low or high indices have low standard deviation, so the
data pointers which will stay close to their expected positions are all clustered
around marks 0,128,256..., while the data pointers which are expected to start
around mark 64,192,320, ... all have high standard deviation and can vary con-
siderably from their expected starting position. Hence there is a concentration of
pointers again around marks 0,128, We see other occurrences of this at m =
2239, 2945, 3841, 4095, 4096 and 5634, where ged(T, m—1) or ged(r, m+1) is large.

We do not know how to compensate for this additional requirement in this heuris-
tic, but there are other serious disadvantages: one is that the heuristic only works
when n is a multiple of C'B, and another, more theoretical, objection is that for
sufficiently large m, it may not be possible to pick m within a certain range of
values which is relatively prime to 7. For instance, if we wish to pick a good m
from the range [my, ..., ms] for integers m; and mag, this is clearly impossible if T
isml-(ml—i—l)-...-mg.

4.4.3 Heuristic 2 for selection of m. Another heuristic for selecting m comes
from the following fact [Knuth 1997, pp. 550, Q8,9]. Let € be an irrational number

Analysing cache effects in distribution sorting . 15

which has the form ﬁdfi where k > 1 is an integer and ¢ = (1 + v/5)/2. If (z)
denotes x — |z], then for all [> k the smallest segment of [0,1] that is induced
by the points (6),(20),...,(l0) is at most 1 + ¢ times smaller than the largest
segment. By symmetry, if 6 is of the above form, then the intervals formed by
(—0),(—20),...,(—10) are also roughly evenly sized. We can use the above to get
a ‘good’ value m* in the rough vicinity of a given value m. The value m™* is chosen

such that n/m* = yCB, where ~ is chosen from:

{1/(k+¢ ") | k=1,2,3,.. JU{j£1/(k+¢ ') |j=1,2,...and k = 1,...,10}

(21)
(There may be some duplication among these values: for instance 1/(1 + ¢~ 1) =
1-1/(2+¢~1).) Suppose now that we choose m* = n/(yCB), where () = £1/(r+
¢~1) for some integer r > 1. Again, if we consider the cache to be continuous, the
ith class has an expected starting location which is offset (iv)C'B locations from
the start of the cache. By the above fact, we may conclude that the expected
starting locations of the classes are roughly evenly spaced in the cache, provided
that m* > r. Furthermore, all data pointers for classes > r are evenly spaced with
respect to the data pointers for lower-numbered classes.

The limit £ < 10 in Equation 21 when 7 > 1 is somewhat arbitrary and is
chosen so that m* can always be chosen to within about 10% of m, provided that
n/m > 0.5CB, as can easily be verified. As an example the ‘good’ values of n/m
in the range [0.5CB,1.5CB] are (roughly) 0.62CB, 0.72CB, 0.79CB, 0.82CB,
1.18CB, 1.21CB, 1.28CB and 1.38CB, so the nearest larger approximations to
n/m = CB and n/m = 0.5CB are respectively 0.62CB and 1.18CB. (When n/m
is small we can remove the restriction on k, as the data pointers 0, ...,k —1 anyway
do not collide with each other.)

It should be noted that this gives a non-integral value of m, but the algorithm
remains essentially unchanged. In the analysis, the last pointer now may have a
lower access rate (as the final class may be small), but the effect appears to be
negligible. The main advantages of this approach are: (i) it works even when n is
not a multiple of CB and (ii) the low-numbered and high-numbered data pointers
are also equally spaced. Figure 15 in Appendix B shows that this heuristic appears
to place pointers more or less at random.

5. DESIGN OF MPFLASHSORT

In the previous section we saw that cache misses during both the count and per-
mute phase are greatly influenced by the number of classes and it is clear that an
algorithm which, when appropriate, uses fewer classes in a pass and applies distri-
bution sorting recursively to keys within each class would out-perform Flashsortl.
The algorithm should switch to a higher number of passes only when the reduction
in cache misses can compensate for the increase in the number of operations. We
now make this calculation. Firstly, we begin by estimating the relative cost ¢ of the
“pure computation” cost of one distribution pass versus a cache miss. Inspecting
the optimised assembly code produced by our compiler, g++ 2.8.1 using optimi-
sation level 6, there are approximately 30 operations per key in one distribution
pass, and the cost of a L2 cache miss on our machine is approximately 30 cycles, so
d ~ 1. (It should be noted that this calculation can only yield a rough guide, since

16 . N. Rahman and R. Raman

the underlying model is very crude.)
MPFlashsort uses one pass until the number of keys is larger than a threshold
value T;. The value of Tj is selected to be minimum value of n such that:

Mi(z) > Mi(y) + Ma(z) + 6. (22)
Here M1(m) is the number of misses per item for sorting 10m keys in one pass by
classifying into m classes, as described in cases 1 and 2. Similarly, Ma(m) is the
number of cache misses incurred in a distribution sorting pass using m classes as
described in case 3. Recall that the analysis of case 3 is applicable only when n/m >
B and the value of m is not “bad”. Hence we fix x = n/(#CB) where 0 = m;
since we want xy = z = n/10, this fixes y = (CB)/10. Performing the calculation
gives z = 62153, giving n = 621530, which is the value coded into MPFlashsort.
For reference, in an earlier paper [Rahman and Raman 1999] we noted that a single
pass with m = n/10 was slower than two passes with m approximately nt/2 in
each pass at n > 220 ~ 1,040,000 but faster at n < 219 ~ 520,000, so this rough
calculation appears not too inaccurate. Another demonstration of the accuracy of
our calculation may be found in the next section.

We now explain how to generalise this to multiple passes. We first set the ex-
pected problem size in the final distribution pass to 6CB. Again letting z =
n/(0CB), we have to perform distribution passes until the expected class size is
reduced by a factor of z. In the k-pass algorithm for & > 2, this is done in &k — 1
distribution passes with z1/(*=1) classes in each pass. The algorithm switches to
k+1 passes when it is more efficient to reduce the expected problem size by a factor
of z in k passes with z!/¥ classes in each pass. Thus, we switch from k& > 2 to k+1
passes when:

(k — 1) My(x**=D) > k- My (/%) + 6. (23)
Doing the calculations for k = 2, we get that we should switch from two to three
passes when x > 65587, corresponding to n > z - 0CB = 5, 313, 000, 000.

It should be borne in mind that Mz(m) does not predict cache misses well if m is
‘bad’, and selecting m according to Heuristic 2 is our only suggestion for avoiding
‘bad’ m. Hence, we modify the operation of the k-pass algorithm as follows. Instead
of performing k passes with z!/(*=1) classes in each pass, the number of classes used
in the passes are m1,ma, ..., mg_1, which satisfy: (i) the expected problem size for
the final pass is 0CB as required; (ii) m; is of the required form for all 4, and (iii)
m; varies by no more than about 10% from z/*~1 for all i. With such a small
variation in the class sizes, the calculations will continue to be broadly correct.

We illustrate how this may be done for k£ = 3. First, we should choose m; classes
for the first pass, such that 0.92'/2 < m; < 1.12/2, and m; is of the appropriate
form. As noted in the text after Equation 21, this can always be done. The expected
class sizes after the first pass are n’ = n/m;. In the second pass, we simply choose
my = n//(CB) and note that 0.9my < z'/2 < 1.1my. The following element of
approximation should be noted: the expected class sizes after the first pass are
n’ = n/m; for all classes but one (as m; is not an integer). The misses incurred by
the ‘small’ class are ignored in the calculation.

Also, these threshold values of 62153 and 65587, which are approximately 8C),
should be contrasted with the fact that in the I/O model, the number of classes

Analysing cache effects in distribution sorting . 17

in a pass should be no more than C [Aggarwal and Vitter 1988]. Furthermore,
N log(N/B)
B logC

Vitter 1988] in the presence of conflicts using a direct-mapped cache, we need to
have no more than O(C/B) classes in all passes but the last one (this is arrived at
by trying to find p such that the bound in case 3 equals O(1/B) misses per key).
However, the above accounting shows that these choices would result in excessive
operations, which would not be paid for by the reduced number of cache misses.

in order to get the optimal © () number of cache misses [Aggarwal and

6. EXPERIMENTAL RESULTS

We have implemented Flashsortl, MPFlashsort and MSB radix sort, and have
used them to sort n uniform floating-point numbers, for n = 2¢, 4 = 10,11,...,26.
Memory-tuned Quicksort (MTQuicksort) was found to be the fastest algorithm
from [LaMarca and Ladner 1999] on our machine and we also tested this. We have
also included some run-times from Sanders’ heapsort (an out-of-place algorithm),
but as we note below, it is not easy to compare the other algorithms with Sanders’
heapsort.

Our algorithms and Sanders’ heapsort were coded in C++ and MTQuicksort was
coded in C. All algorithms were compiled using g++ 2.8.1 with optimisation level
6. For each algorithm, we have measured actual running times as well as simulated
numbers of cache misses. The running times were measured on a Sun UltraSparc-IT
with 2 x 300 Mhz processors and 512MB main memory. As mentioned in Section 2,
this machine has a 16KB L1 data cache and a 512KB L2 cache, both of which are
direct-mapped. Our simulator simulates only the L2 cache on this machine, and
only reports cache hit/miss statistics. Each run time and simulation value reported
in this section is the average of 50 runs.

Figure 3 summarises the running times for Flashsortl, MPFlashsort, MTQuick-
sort and MSB radix sort on single precision keys. We observe that:

—For small values of n Flashsortl gets steadily faster than MTQuicksort until it
uses about 75% of the time of MTQuicksort for n = 64K. After that the perfor-
mance advantage narrows until at n = 512K MTQuicksort overtakes Flashsort1.
From 1M onwards the relative gap between MTQuicksort and Flashsortl (the
ratio of the running times) generally increases steadily until the largest input
value we considered. This is interesting given that MTQuicksort has a higher
asymptotic running time than Flashsortl.

—The performance of MPFlashsort matches that of Flashsort1 upto n = 512K, after
which point the algorithm performs two passes on the data and out-performs both
Flashsortl and MTQuicksort. At the largest value of n considered MPFlashsort
is over twice as fast as Flashsortl. Note that the running time of MPFlashsort
at n=1M is almost exactly twice the running time of MPFlashsort at n=512K,
even though the algorithm switches from one to two passes. This suggests that
the threshold value for switching from one to two passes has been calculated
accurately.

—MSB radix sort out-performs the other algorithms for all values of n >2K shown.

Figure 5 summarises the running times for Flashsortl, MPFlashsort and
MTQuicksort on 8-byte data, using double precison keys. This is a limited test

18 . N. Rahman and R. Raman

Timings (s) on UltraSparc-11, single precision keys
n Flashl | MPFlash | MTQuick | MSB radix
1K | 0.0004 0.0004 0.0004 0.0004
2K | 0.0007 0.0007 0.0008 0.0007
4K | 0.0015 0.0015 0.0017 0.0013
8K | 0.0032 0.0031 0.0037 0.0027
16K | 0.0065 0.0064 0.0081 0.0055
32K | 0.0134 0.0132 0.0175 0.0110
64K | 0.0282 0.0280 0.0376 0.0225
128K | 0.0634 0.0630 0.0800 0.0481
256K | 0.1555 0.1547 0.1700 0.1209
512K | 0.3623 0.3645 0.3591 0.2572
1M | 0.9420 0.7102 0.7760 0.5440
2M | 2.3250 1.4302 1.6630 1.1360
AM | 5.2690 2.8622 3.5260 2.3348
8M | 12.047 6.4995 7.4709 4.8096
16M | 26.088 14.045 15.863 9.8264
32M | 54.613 29.276 33.372 21.394
64M | 124.80 59.852 69.969 47.041

Fig. 3. Running times of Flashsortl, MPFlashsort, MTQuicksort and MSB radix sort on a Sun
UltraSparc-II using single-precision floating-point keys.

2 T

Flashsortl ——
MPFlash -
18 icksort -8--
MSB radix sort -x

time per key (microseconds)

0 Il Il Il Il Il Il
0 1le+07 2e+07 3e+07 4e+07 5e+07 6e+07 7e+07
number of keys

Fig. 4. Time per key to sort single-precision floating-point keys using Flashsort1l, MPFlashsort,
MTQuicksort and MSB radix sort on a Sun UltraSparc-11

Analysing cache effects in distribution sorting . 19

in some ways. First of all, we could not include MSB radix sort as our platform
does not offer native support for 64-bit integers. To apply MSB radix sort to 64-bit
floating-point keys would require us to use emulated 64-bit integers which would
slow down MSB radix sort. A second problem is that our analyses assume B = 16
throughout, but when using the Flashsort variants, we have B = 16 for the count
array and B = 8 for the data array. Hence the one to two pass threshold for
MPFlashsort is not as accurate as for the single-precision case. We note that:

—MTQuicksort starts to out-perform Flashsortl later than for single-precision
data, namely only for n > 2M.

—MPFlashsort is 35% faster than MTQuicksort for the largest values of n, a bigger
performance gap than for the single-precision case.

—MPFlashsort and Flashsortl are only slightly slowed down relative to the single-
precision case, but MTQuicksort is signficantly slower. Although the distribution
sorting algorithms are slowed down about 10-15% relative to the single-precision
case, with no clear trend, MTQuicksort for doubles is about 35% slower than
for floats at 64K, with the slowdown gradually increasing to about 50% at 32M.
Possibly this is due to the fact that Quicksort makes ©(nlogn) data moves but
the distribution sorts make only O(n) data moves.

Finally, we attempted comparisons with Sanders’ heapsort, but it should be noted
that Sanders’ algorithm sorts 8-byte records with a key and a pointer, whereas our
implementations are optimised for simply sorting keys. Indeed, the only common-
ality with Sanders’ code is that 8-byte data are being sorted. Nevertheless, we have
included these running times as a very rough guide.

6.1 Performance of MSB radix sort

We now try to understand the reasons behind the better performance of MSB radix
sort. As discussed in Section 3.2 applying MSB radix sort to uniform floating-point
numbers in the range [0.0,1.0) does not induce a uniform distribution of keys to
classes, so a direct comparison to the Flashsort algorithms is difficult. However,
if MSB radix sort is applied to uniform unsigned integers then its memory access
patterns will be similar to the Flashsort variants. The other differences between
the implementations of these algorithms are:

—the number of classes in the first pass is different;

—MPFlashsort has to determine the range of keys, but MSB radix sort does not,
—the classify functions are different.

We will now show that the performance is attributable to faster integer operations

used in the classify function of MSB radix sort, by removing the other differences.
For this, we modify MSB radix sort in the following manner:

—we determine the range of keys before the count and permute phases,
—we select the radix such that for a given value of n the number of classes is as
close as possible to that selected by MPFlashsort.

At n = 1.3 x 1062.6 x 105 5.2 x 106 10.4 x 10% 20.8 x 106 41.5 x 106 and 83 x 106
MPFlashsort chooses radix values which are close to powers of two. For instance,

20 . N. Rahman and R. Raman

Timings (s) on UltraSparc-11

8-byte keys 8-byte rec’s

n Flashl | MPFlash | MTQuick Sanders
1K | 0.0004 0.0004 0.0005 0.0007
2K | 0.0008 0.0009 0.0010 0.0016
4K | 0.0017 0.0017 0.0023 0.0036
8K | 0.0034 0.0035 0.0051 0.0079
16K | 0.0069 0.0070 0.0109 0.0164
32K | 0.0144 0.0145 0.0238 0.0341
64K | 0.0317 0.0320 0.0510 0.0693
128K | 0.0765 0.0774 0.1093 0.1413
256K | 0.1723 0.1733 0.2330 0.3016
512K | 0.4463 0.4502 0.5099 0.6321
1M | 1.0362 0.7922 1.1082 1.3088
2M | 2.4700 1.5906 2.4014 2.7248
4M | 5.5752 3.5402 5.1698 5.6428
8M | 12.706 7.6008 11.050 11.704
16M | 27.487 15.722 23.533 24.697
32M | 60.917 32.227 50.111 50.472

Fig. 5. Running times of Flashsort1, MPFlashsort, MTQuicksort using 8-byte (double-precision
floating-point) keys and Sanders’ heapsort using 8-byte records on a Sun UltraSparc-II

T
Flashsortl ——
MPFlashsort -+-
18 Quicksort -¢- |
amnders sort -

time per key (microseconds)

04 % 1

0.2 Il Il Il Il Il Il
0 5e+06 1le+07 1.5e+07 2e+07 2.5e+07 3e+07 3.5e+07
number of keys

Fig. 6. Time per key to sort 8-byte (double-precision floating-point) keys using Flashsortl,
MPFlashsort, MTQuicksort and 8-byte records using Sanders’ heapsort on a Sun UltraSparc-II

Analysing cache effects in distribution sorting . 21

Timings (s) on UltraSparc-II

n (millions) | MPFlashsort | MSB radix
1.3 0.8885 0.5045

2.6 1.7855 1.0050

5.2 3.6550 2.0740

104 8.2570 5.1360

20.8 17.399 11.225

41.5 35.884 23.608

83.0 75.327 51.228

Fig. 7. Running times of MPFlashsort using single-precision floating-point keys and modified
MSB radix sort using unsigned 32-bit integers on a Sun UltraSparc-II.

with n = 83 x 10%, MPFlashsort chooses about 1024.6 classes in the first pass.
At this value of n, the running time of MPFlashsort is compared with MSB radix
sort with r = 10 = log, 1024 in the first pass and with the subsequent passes left
the same. By doing so, we ensure that for the selected values of n, the cost of
memory accesses in both algorithms should be almost exactly the same. We can
then conclude that any remaining difference in running time must be due to the
different classify functions.

Figure 7 shows the running times for the modified MSB radix sort on uniform
32-bit unsigned integers and MPFlashsort on uniform single-precision floating-point
numbers in the range [0.0, 1.0) at the above values of n. We see that MSB radix sort
outperforms MPFlashsort by about the same margin in this case, suggesting that
its better performance is due to faster integer operations in the classify function.

6.2 Cache simulations

We also ran these algorithms on an L2 cache simulator for the Sun UltraSparc-II.
Figure 8 compares MTQuicksort and Flashsortl, while Fig 9 compares the three
faster algorithms. These figures show the number of L2 cache misses per key for
the four algorithms on single-precision floating-point keys. We observe that:

—when the problem is small and fits in L2 cache, for n < 64K, the number of
misses per key are almost constant for each algorithm, these are the compulsory
misses.

—in Flashsortl for n > 128K we see a rapid increase in the number of misses per
key as n grows, appearing to level off at over 3 misses per key (virtually every
access that could be a miss is a miss).

—in MTQuicksort the number of cache misses per key increases linearly with logn
for n > 128K, reaching about 0.82 misses per key at 64M. Note that MTQuicksort
makes O((logn)/B) misses per key on average, so this is not unexpected.

—in MPFlashsort we first see a rapid increase in misses per key going from 0.331 at
n = 128K to 1.361 at n = 512K. At n = 1M the misses per key drops to 0.446, as
the algorithm switches to two passes, and we see a very gradual increase reaching
0.504 at n = 64M.

—in MSB radix sort the number of cache misses per key increases gradually reaching
a maximum of 1.1. Other than for small n, the cache utilisation for MSB radix

22 . N. Rahman and R. Raman

35

quicksort —
Flashsortl/;t:_,

,"‘F//
3 e

25

15

misses per key

Il Il Il
10000 100000 1e+06 1e+07
number of keys

Fig. 8. L2 cache misses per key on single-precision floating-point keys: Flashsortl vs MTQuick-
sort. Note that the z-axis is on a log scale.

1.4 T
ﬁ quicksort -—
! MPFlashsort -+-
I MSBRadixsort -£--
12 | .
1 /
> ’,' v“
2 08| / \ i
5] ! |
a ! |
%] ! \
a /
¢ 06 - ! R
£ 0
pal
O -
04 B -
0.2 B
————— Boggeg al
0 Il Il Il Il
10000 100000 1e+06 1e+07

number of keys

Fig. 9. L2 cache misses per key on single-precision floating-point keys: MPFlashsort vs MTQuick-
sort vs MSB radix sort. Note that the z-axis is on a log scale.

sort is much better than Flashsortl. The number of misses per key for MSB
radix sort increases relatively rapidly for the larger values of n considered. One
possible explanation for this is that the non-uniform distribution in the first pass

of MSB radix sort results in sub-problems which may be larger than the size of
the cache.

Analysing cache effects in distribution sorting . 23

0.13 :
predicted —
actual -o---
012 A
0.11 i
>
2 01t i
T
o
12
4 4
£ o009F E
0.08 | p
e ,
0.07 | |
4
er‘”/
006 Il Il Il Il Il Il
1e+07 2e+07 3e+07 4e+07 5e+07 6e+07
number of keys
Fig. 10. Predicted L2 cache misses per key for values of n = 1M, ..., 64M in increments of 128K

using MPFlashsort and simulated L2 cache misses per key for n = 1M, 2M, 4M, 8M, 16M, 32M,
64M during the first ‘in-place’ permutation.

Fig 10 shows for the first permutation phase of MPFlashsort the cache misses
per key predicted using Equation 19 for values of n = 1M, ..., 64M in increments
of 128K and the simulated cache misses per key for n = 1M, 2M, 4M, 8M, 16M,
32M, 64M and we see that the two lines follow each other very closely.

7. CONCLUSIONS

We have shown that Flashsortl is fast when sorting a small number of random
keys, but due to poor cache utilisation it starts to perform poorly when the data
is larger than the cache size. We have shown that a variant of Flashsortl which
increases the number of passes when appropriate, called MPFlashsort, matches or
outperforms Flashsortl and MTQuicksort for all values of n, as it makes many fewer
cache misses. We have analysed the cache miss rates of the Flashsort variants and
can accurately predict the miss rates in the permute phases of these algorithms.
We have also shown that the integer sorting algorithm MSB radix sort can be used
very effectively on floating-point data. The algorithm is very fast due to fast integer
operations and relatively good cache utilisation.

REFERENCES

AGGARWAL, A. AND VITTER, J. S. 1988. The I/O complexity of sorting and related prob-
lems. Communications of the ACM 31, 1116-1127.

AHO, A. V., HOPCROFT, J. E., AND ULLMAN, J. D. 1974. The Design and Analysis of
Computer Algorithms. Addison-Wesley.

HANDY, J. 1998. The Cache Memory Handbook. Academic Press.

HENNESSY, J. L. AND PATTERSON, D. A. 1996. Computer Architecture: A Quantitative
Approach (Second ed.). Morgan Kaufmann.

RuDIN, W. 1974. Real & Complex Analysis. McGraw-Hill, New York.

24 . N. Rahman and R. Raman

KnutH, D. E. 1997. The Art of Computer Programming. Volume 38: Sorting and Searching,
3rd ed.. Addison-Wesley.

LADNER, R. E., FIx, J. D., AND LAMARCA, A. 1999. Cache performance analysis of traver-
sals and random accesses. In Proc. 10th ACM-SIAM SODA (1999), pp. 613-622.

LAMARCA, A. AND LADNER, R. E. 1999. The influence of caches on the performance of
sorting. Journal of Algorithms 31, 66-104. Preliminary version in Proc. 8th ACM-SIAM
SODA (1997), pp. 370-379.

NEUBERT, K. D. 1998. The Flashsortl algorithm. In Dr Dobb’s Journal (February 1998),
pp. 123-125. FORTRAN code listing, p. 131, 4bid.

RaHMAN, N. AND RAMAN, R. 1999. Analysing cache effects in distribution sorting. Prelim-
inary version in Algorithm Engineering: Proc. 3rd Workshop on Algorithm Engineering
(1999), Number 1668 in LNCS, pp. 184-198.

RAaHMAN, N. AND RAMAN, R. 2000. Analysing the Cache Behaviour of Non-uniform Dis-
tribution Sorting Algorithms. In Proc. 8th Annual European Symposium on Algorithms
(2000), Number 1879 in LNCS, pp. 380-391.

SANDERS, P. 1999. Accessing multiple sequences through set-associative cache. In Proc.
26th ICALP (1999), Number 1644 in LNCS, pp. 655-664.

Appendix A

Using results in [Ladner et al. 1999] we now give results for the number of cache
misses during the count phase of Flashsortl and its variants. Our approach is to
briefly describe the results in [Ladner et al. 1999] and then discuss how the results
have been extended to deal with the count phase in Flashsortl and its variants.
The analysis in [Ladner et al. 1999] assumes that the cache is single level and
direct mapped, that count array locations are accessed uniformly and randomly,
that n = xCB for integer x > 2 and that m = yB for integer y > 1. The expected
number of cache misses per memory access predicted in that analysis is as follows:

T+R+I+1I.

Where T is the cache misses per memory access due to the traversal of the data
array and is given by:
1
T=—.
2B
R is the expected number of cache misses per memory access due to memory blocks
from the count array conflicting with each other and is given by:
R_ 0 ifm<CB
131 -79) ifm>CB.

1 is the expected number of cache misses per memory access caused by the traversal
periodically capturing each block in the cache and is given by:

_ m/B '1_ 1_# CB—(B—1)
" 2CB m/B

when m < C'B, otherwise it is approximately:

CB—(B-1)
I i 1—(1-— 1
2m C

Analysing cache effects in distribution sorting . 25

I' is the expected number of cache misses per memory access caused by random
count array accesses to a block that is mapped to the same one as being traversed
and is given by:

oy
—

r C itm<CB
"\ 5% (1+79) iEm>CB.

There are n memory accesses to the data array and n memory accesses to the
count array, so to express these results in terms of cache misses per key we have to
multiply each of the terms above by a factor of 2.

Since the keys are uniform, the accesses to count blocks are uniform and random,
so these results are applicable to Flashsortl and its variants. However these results
are only for the cache misses during the frequency counting step of the count phase
(Step 2 of the count phase pseudo-code shown in Figure 1) and they do not take
into account cache misses to initialise and prefix-sum the count array (Steps 1 and
3)

o

Assuming the cache is empty at the start of the count phase there will be m/B
cache misses to initialise the count array. If the cache does not contain any count
blocks before the prefix-sum phase, because the first C' blocks were removed due
to the traversal of data, then there will be an additional m/B cache misses. So
there will be at most (2m/B)/n cache misses per key to initialise and prefix-sum
the count array.

We now give three cases which describe the cache misses per key during the count
phase when distribution sorting uniform keys. In the first two cases we ignore the
fact that n may not be a multiple of CB as the effect of this to the cache miss
rate is not significant - only the values of I and T " would be inaccurate and their
contribution is small. In all three cases we ignore the fact that m may not be a
multiple of B.

Case 1: n > CB and m > CB. In this case the data and count arrays are larger
than the cache. The misses per key are as described by [Ladner et al. 1999] plus at
most 2(m/B)/n misses per key for initialisation and prefix-summation of the count
array. Thus re-writing 2(T + R+ I 4+ I') + (2m/B)/n we obtain:

m—CB
=+
m

1\ CB-B+1
1-(1-3)

Case 2: n > CB and m < CB. In this case the data array is larger than the
cache but the count array fits in cache. The misses per key are as described by
[Ladner et al. 1999] plus at most 2(m/B)/n misses per key for initialisation of the
count array. Thus re-writing 2(T + R+ I + I') 4 (2m/B)/n we obtain:

Meount =

3lQ W~

(B-1)(m+CB) , 2m/B

CBm n (24)

1 n m/B
Hcount = B CB

m CB n

CB—B+1
1_<1_E> +‘|+2(B—1)+2m/B_ (25)

26 . N. Rahman and R. Raman

Case 3: n < CB and m < CB. In this case the data and count arrays fit in
cache. Most of the misses here are as in Cases 1 and 2 above. There are (m/B)/n
misses per key for initialisation of the count array. The misses per key for the
traversal acting alone, from T, is 1/B. There are no conflict misses between count
blocks. The misses per key due to random access to a count block mapped to the
cache block being traversed by the data array, from I ' is %.

For a cache block 7 which has a count block mapped to it, after the last data
traversal access in ¢ the count block is no longer in ¢ so the count block must be re-
loaded at most once, either during the remaining data traversal accesses or during
prefix-summation. The probability that cache block ¢ has a data block mapped to
it is (n/B)/C, so the combined expected number of cache misses per key is at most
"/TB (mnﬂ. So the overall number of cache misses per key is:

1 m/B 2B-1) m/B

= = . 2
Mcount B + n + CB + CB (6)

This case is applicable to the count phase in the final pass of MPFlashsort.

Appendix B

Figure 11 shows cache misses per key during the ‘in-place’ permutation phase for
n = 224 and 100 random values of m between 25 and 8192 and for selected values
of m = 128, 256, 384, 512, 640, 768, 896, 1024, 1152, 1280, 1408, 1536, 1664, 1792,
1920, 2047, 2048, 2049, 4095, 4096 and 4097. The misses per key were obtained:

—from 20 cache simulations, labelled Sim,

—predicted from actual values of v taken at the start of permutation in the full
simulations above, labelled Act,

—using Equation 19, labelled Pred.

For a value of m where there is greater than 5% variation between these values m
is prefixed with a superscript of a,...,c, the superscripts denote variations:

a) between simulated and predicted alone,
b) between simulated and predicted and between actual and predicted,
¢) between all three values.

Some observations on the results are:

—For most random values of m the variation between the simulated and predicted
misses per key is at-most 5%.

—For most values of m where there is greater than 5% variation the superscript
is b, indicating that simulated misses per key and misses per key predicted from
actual v vary together.

—TFor most random values of m where there is greater than 5% variation we note
that ged(7,m) is small but ged(r,m — 1) or ged(r,m + 1) is large. These are
examples of heuristic 1 not being effective, as discussed in Section 4.4.2.

Note that greater than 5% variation between other combinations are not observed,
for instance there was never a more than 5% variation between the actual and
predicted values alone.

Analysing cache effects in distribution sorting . 27

Figures 12, 13 show for n = 1M, 4M and 16M all values of m between 32 and 8192
where there was greater than 5% variation between the actual value of v at the start
of permutation, averaged over 20 experiments, and v predicted using Equation 17.
Figure 14 shows these results at n = 16M where the actual value of v was averaged
over 195 experiments. Values of m where ged(7,m) is not equal to 7, 7/2, 7/4, or
m are prefixed with a *. Some observations on the results are:

—We note that values which are prefixed with * have ged(7,m—1) = 7 or ged(r, m+
1). These are further examples of heuristic 1 not being effective.

—As m increases fewer and fewer values are listed in the table, this shows that our
equations will be accurate for most values of m > 32 while n/m > B.

We can report that at n = 16M for 6676 values of m between 32 and 8192 the
actual value of v averaged over 195 experiments was higher than the value predicted
using Equation 17.

Figure 15 shows for n = 16M at values of m selected using heuristic 2, actual v
at the start of permutation, averaged over 20 experiments, and v predicted using
Equation 17. We note that at all these values of m the actual value of v was higher
than the predicted value.

28 . N. Rahman and R. Raman

m Sim Act | Pred m Sim Act | Pred ™m Sim Act | Pred

49 | 0.065 | 0.065 | 0.066 5128 | 0.301 | 0.290 | 0.072 %129 | 0.065 | 0.065 | 0.072
210 | 0.076 | 0.077 | 0.077 5240 | 0.094 | 0.093 | 0.080 b253 | 0.076 | 0.076 | 0.080
5256 | 0.297 | 0.291 | 0.081 b384 | 0.287 | 0.293 | 0.090 2472 | 0.094 | 0.090 | 0.096
b512 | 0.300 | 0.292 | 0.098 554 | 0.103 | 0.102 | 0.101 615 | 0.106 | 0.104 | 0.105
5640 | 0.290 | 0.294 | 0.107 662 | 0.109 | 0.109 | 0.109 b768 | 0.292 | 0.297 | 0.116
781 | 0.116 | 0.113 | 0.117 789 | 0.121 | 0.118 | 0.117 b896 | 0.293 | 0.298 | 0.124
930 | 0.125 | 0.124 | 0.127 || 1024 | 0.295 | 0.298 | 0.133 1038 | 0.133 | 0.130 | 0.134
1105 | 0.137 | 0.136 | 0.138 || #1120 | 0.147 | 0.145 | 0.139 1123 | 0.140 | 0.135 | 0.139
1137 | 0.140 | 0.140 | 0.140 1152 | 0.296 | 0.302 | 0.141 1178 | 0.147 | 0.142 | 0.143
1267 | 0.148 | 0.145 | 0.149 1280 | 0.298 | 0.301 | 0.150 1318 | 0.151 | 0.150 | 0.152
51408 | 0.299 | 0.306 | 0.158 || 1536 | 0.301 | 0.306 | 0.166 || 1664 | 0.302 | 0.309 | 0.174
1792 | 0.304 | 0.311 | 0.182 1888 | 0.192 | 0.189 | 0.188 1910 | 0.188 | 0.185 | 0.189
51920 | 0.306 | 0.312 | 0.190 2042 | 0.201 | 0.195 | 0.198 || 2047 | 0.245 | 0.239 | 0.198
2048 | 0.320 | 0.313 | 0.198 || 2049 | 0.241 | 0.240 | 0.198 2060 | 0.198 | 0.192 | 0.199
2164 | 0.204 | 0.198 | 0.205 2239 | 0.228 | 0.221 | 0.210 2293 | 0.212 | 0.206 | 0.213
2364 | 0.221 | 0.216 | 0.217 2420 | 0.220 | 0.215 | 0.220 2456 | 0.223 | 0.218 | 0.222
2500 | 0.230 | 0.222 | 0.225 2545 | 0.227 | 0.222 | 0.228 2582 | 0.231 | 0.225 | 0.230
2596 | 0.233 | 0.227 | 0.231 2618 | 0.234 | 0.227 | 0.232 2629 | 0.236 | 0.230 | 0.233
2693 | 0.246 | 0.241 | 0.236 2842 | 0.246 | 0.242 | 0.245 2885 | 0.251 | 0.245 | 0.247
2937 | 0.256 | 0.250 | 0.250 €2945 | 0.304 | 0.286 | 0.251 3266 | 0.280 | 0.269 | 0.269
3368 | 0.279 | 0.273 | 0.275 3658 | 0.295 | 0.287 | 0.291 3662 | 0.295 | 0.286 | 0.291
3742 | 0.298 | 0.289 | 0.295 3768 | 0.301 | 0.292 | 0.296 || ©3841 | 0.345 | 0.328 | 0.300
4040 | 0.315 | 0.307 | 0.311 || 24095 | 0.355 | 0.352 | 0.314 || 4096 | 0.354 | 0.355 | 0.314
4097 | 0.353 | 0.338 | 0.314 4143 | 0.320 | 0.310 | 0.316 4148 | 0.321 | 0.312 | 0.317
4170 | 0.322 | 0.312 | 0.318 4200 | 0.322 | 0.313 | 0.319 4312 | 0.329 | 0.322 | 0.325
4387 | 0.333 | 0.324 | 0.329 4677 | 0.350 | 0.340 | 0.344 4845 | 0.357 | 0.346 | 0.352
4896 | 0.359 | 0.350 | 0.355 4977 | 0.364 | 0.358 | 0.359 5015 | 0.365 | 0.357 | 0.360
5115 | 0.383 | 0.374 | 0.365 5344 | 0.380 | 0.372 | 0.376 5447 | 0.387 | 0.379 | 0.381
5470 | 0.387 | 0.378 | 0.382 5499 | 0.401 | 0.394 | 0.384 5562 | 0.393 | 0.385 | 0.387
25634 | 0.415 | 0.405 | 0.390 5691 | 0.401 | 0.392 | 0.393 5700 | 0.399 | 0.389 | 0.393
5778 | 0.403 | 0.394 | 0.397 5809 | 0.403 | 0.396 | 0.398 5811 | 0.404 | 0.395 | 0.398
5812 | 0.404 | 0.396 | 0.398 5929 | 0.409 | 0.398 | 0.404 5935 | 0.410 | 0.401 | 0.404
6119 | 0.418 | 0.408 | 0.412 6243 | 0.423 | 0.415 | 0.418 6249 | 0.424 | 0.414 | 0.418
6260 | 0.427 | 0.420 | 0.419 6503 | 0.435 | 0.426 | 0.430 6515 | 0.439 | 0.431 | 0.430
6855 | 0.451 | 0.441 | 0.445 6911 | 0.464 | 0.454 | 0.447 6990 | 0.457 | 0.449 | 0.451
7013 | 0.457 | 0.449 | 0.452 7039 | 0.469 | 0.458 | 0.453 7106 | 0.463 | 0.453 | 0.456
7120 | 0.462 | 0.453 | 0.456 7262 | 0.468 | 0.459 | 0.462 7273 | 0.470 | 0.461 | 0.463
7274 | 0.469 | 0.459 | 0.463 7278 | 0.470 | 0.462 | 0.463 7279 | 0.472 | 0.462 | 0.463
7324 | 0.471 | 0.461 | 0.465 7356 | 0.473 | 0.463 | 0.466 7436 | 0.479 | 0.471 | 0.469
7584 | 0.482 | 0.473 | 0.475 7593 | 0.482 | 0.472 | 0.476 7839 | 0.492 | 0.481 | 0.486
8073 | 0.506 | 0.499 | 0.495

Fig. 11. Misses/n during inplace-permutation for n = 224 using random and selected values of
m, the misses/n values are: simulated; predicted using actual v at start of permutation; predicted
using Equation 19.

m | Actual | Predict m | Actual | Predict m | Actual | Predict
40 37.900 39.903 56 53.150 55.809 96 90.850 95.440

Fig. 12. For n = 220 all values of m between 32 and 8192 where there was greater than 5%
variation between actual v and v predicted using Equation 17 at start of permutation.

Analysing cache effects in distribution sorting . 29

m Actual Predict ™m Actual Predict ™m Actual Predict
32 27.600 31.938 48 44.750 47.860 64 55.650 63.751
80 74.800 79.611 96 83.300 95.440 112 104.650 111.238

128 111.550 127.005 144 134.950 142.742 160 138.650 158.448
176 164.350 174.123 192 166.700 189.767 208 194.900 205.382
224 196.250 220.965 240 225.000 236.518 256 223.300 252.041
288 251.800 282.996 320 277.950 313.831 352 307.800 344.545
384 335.100 375.139 416 363.800 405.614 448 392.750 435.970
480 417.450 466.208 512 447.850 496.328 544 476.750 526.331
576 502.200 556.216 608 532.750 585.985 640 558.200 615.639
672 587.300 645.176 704 615.850 674.598 736 644.000 703.906
768 670.650 733.099 800 700.000 762.179 832 729.100 791.145
864 756.900 819.998 896 782.900 848.739 928 809.200 877.367
960 835.650 905.884 992 863.650 934.290 || 1024 895.600 962.585
1056 922.550 990.770 1088 953.850 | 1018.845 || 1120 982.150 | 1046.811
1152 | 1006.550 | 1074.667 1184 | 1035.450 | 1102.415 || 1216 | 1061.700 | 1130.055
1248 | 1092.900 | 1157.587 1280 | 1114.600 | 1185.011 1312 | 1143.950 | 1212.329
1344 | 1175.800 | 1239.540 1376 | 1203.050 | 1266.645 || 1408 | 1228.550 | 1293.644
1440 | 1255.200 | 1320.538

Fig. 13. For n = 222 all values of m between 32 and 8192 where there was greater than 5%
variation between actual v and v predicted using Equation 17 at start of permutation.

m Actual Predict m Actual Predict m Actual Predict

32 30.103 31.940 64 56.256 63.755 96 90.200 95.445
128 98.764 127.013 160 150.062 158.457 192 168.503 189.779
224 210.359 220.979 256 197.487 252.056 320 280.862 313.849
384 295.564 375.161 448 392.764 435.996 512 395.077 496.358
576 504.195 556.249 640 493.672 615.675 704 616.995 674.638
768 590.964 733.142 832 729.518 791.191 896 689.979 848.788
960 841.841 905.936 1024 789.215 962.641 1088 953.882 | 1018.903
1152 885.713 | 1074.728 1216 | 1066.462 | 1130.119 1280 986.990 | 1185.078
1344 | 1177.482 | 1239.610 1408 | 1082.513 | 1293.717 1536 | 1183.000 | 1400.671
1664 | 1281.949 | 1505.967 1792 | 1378.677 | 1609.631 || *1793 | 1529.574 | 1610.434
1920 | 1477.467 | 1711.687 || *1921 | 1622.308 | 1712.478 || *2047 | 1724.036 | 1811.382
2048 | 1577.923 | 1812.161 || *2049 | 1713.836 | 1812.940 || *2175 | 1816.959 | 1910.311
2176 | 1675.385 | 1911.078 || *2177 | 1805.559 | 1911.844 || *2303 | 1907.713 | 2007.705
2304 | 1772.359 | 2008.460 || *2305 | 1894.251 | 2009.215 || *2431 | 1997.749 | 2103.590
2432 | 1872.549 | 2104.333 || *2433 | 1982.041 | 2105.076 || *2559 | 2088.015 | 2197.987
2560 | 1972.785 | 2198.719 || *2561 | 2067.682 | 2199.451 || *2687 | 2175.426 | 2290.922
2688 | 2066.862 | 2291.642 || *2689 | 2157.744 | 2292.362 || *2815 | 2263.800 | 2382.415
2816 | 2163.441 | 2383.124 || *2817 | 2243.610 | 2383.833 || *2943 | 2354.072 | 2472.490
2944 | 2259.780 | 2473.188 || *2945 | 2330.426 | 2473.886 3072 | 2356.205 | 2561.855
*3073 | 2419.210 | 2562.542 3200 | 2449.185 | 2649.148 || *3201 | 2503.903 | 2649.824
3328 | 2544.554 | 2735.087 || *3329 | 2587.631 | 2735.753 3456 | 2633.533 | 2819.694
*3457 | 2672.313 | 2820.349 3584 | 2726.615 | 2902.989 || *3585 | 2754.549 | 2903.634
3712 | 2814.467 | 2984.992 || *3713 | 2838.764 | 2985.628 3840 | 2901.872 | 3065.724
*3841 | 2919.005 | 3066.350 3968 | 2988.113 | 3145.204

Fig. 14. For n = 22* all values of m between 32 and 8192 where there was greater than 5%
variation between actual v and v predicted using Equation 17 at start of permutation.

30 . N. Rahman and R. Raman

m Actual | Predict m Actual | Predict m Actual | Predict
46.997 46.940 46.865 136.196 | 136.210| 135.078 144.802 | 144.060 | 143.538
163.378 | 162.760 | 161.769 176.892 | 175.490 | 175.006 207.108 | 205.860 | 204.524
335.108 | 330.130 | 328.366 591.108 | 573.350 | 570.319 || 1103.108 | 1037.320 | 1032.121
2127.108 | 1882.650 | 1873.477 || 4175.108 | 3290.240 | 3271.204 || 8271.108 | 5232.550 | 5207.478

Fig. 15. For n = 224 at values of m selected using the ¢ heuristic, actual v and v predicted using
Equation 17 at start of permutation.

