
The Implementation of the Cilk�� Multithreaded Language

Matteo Frigo Charles E� Leiserson Keith H� Randall

MIT Laboratory for Computer Science

��� Technology Square

Cambridge� Massachusetts ����	

fathena�cel�randallg�lcs�mit�edu

Abstract

The �fth release of the multithreaded language Cilk uses a
provably good �work�stealing� scheduling algorithm similar
to the �rst system� but the language has been completely re�
designed and the runtime system completely reengineered�
The e�ciency of the new implementation was aided by a
clear strategy that arose from a theoretical analysis of the
scheduling algorithm� concentrate on minimizing overheads
that contribute to the work� even at the expense of overheads
that contribute to the critical path� Although it may seem
counterintuitive to move overheads onto the critical path�
this �work��rst� principle has led to a portable Cilk�	 im�
plementation in which the typical cost of spawning a parallel
thread is only between 
 and � times the cost of a C function
call on a variety of contemporary machines� Many Cilk pro�
grams run on one processor with virtually no degradation
compared to equivalent C programs� This paper describes
how the work��rst principle was exploited in the design of
Cilk�	�s compiler and its runtime system� In particular� we
present Cilk�	�s novel �two�clone� compilation strategy and
its Dijkstra�like mutual�exclusion protocol for implementing
the ready deque in the work�stealing scheduler�

Keywords

Critical path� multithreading� parallel computing� program�
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� Introduction

Cilk is a multithreaded language for parallel programming

that generalizes the semantics of C by introducing linguistic

constructs for parallel control� The original Cilk�
 release

��� �� 
�� featured a provably e�cient� randomized� �work�

stealing� scheduler ��� 	�� but the language was clumsy�

because parallelism was exposed �by hand� using explicit

continuation passing� The Cilk language implemented by
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our latest Cilk�	 release ��� still uses a theoretically e�cient

scheduler� but the language has been simpli�ed considerably�

It employs call�return semantics for parallelism and features

a linguistically simple �inlet� mechanism for nondeterminis�

tic control� Cilk�	 is designed to run e�ciently on contem�

porary symmetric multiprocessors �SMP�s�� which feature

hardware support for shared memory� We have coded many

applications in Cilk� including the �Socrates and Cilkchess

chess�playing programs which have won prizes in interna�

tional competitions�

The philosophy behind Cilk development has been to

make the Cilk language a true parallel extension of C� both

semantically and with respect to performance� On a paral�

lel computer� Cilk control constructs allow the program to

execute in parallel� If the Cilk keywords for parallel control

are elided from a Cilk program� however� a syntactically and

semantically correct C program results� which we call the C

elision �or more generally� the serial elision� of the Cilk

program� Cilk is a faithful extension of C� because the C

elision of a Cilk program is a correct implementation of the

semantics of the program� Moreover� on one processor� a

parallel Cilk program �scales down� to run nearly as fast as

its C elision�

Unlike in Cilk�
� where the Cilk scheduler was an identi��

able piece of code� in Cilk�	 both the compiler and runtime

system bear the responsibility for scheduling� To obtain ef�

�ciency� we have� of course� attempted to reduce scheduling

overheads� Some overheads have a larger impact on execu�

tion time than others� however� A theoretical understanding

of Cilk�s scheduling algorithm ��� 	� has allowed us to iden�

tify and optimize the common cases� According to this ab�

stract theory� the performance of a Cilk computation can be

characterized by two quantities� its work � which is the to�

tal time needed to execute the computation serially� and its

critical�path length � which is its execution time on an in�

�nite number of processors� �Cilk provides instrumentation

that allows a user to measure these two quantities�� Within

Cilk�s scheduler� we can identify a given cost as contribut�

ing to either work overhead or critical�path overhead� Much

of the e�ciency of Cilk derives from the following principle�

which we shall justify in Section ��

�



The work��rst principle� Minimize the schedul�
ing overhead borne by the work of a computation�
Speci�cally� move overheads out of the work and
onto the critical path�

The work��rst principle played an important role during the

design of earlier Cilk systems� but Cilk�	 exploits the prin�

ciple more extensively�

The work��rst principle inspired a �two�clone� strategy

for compiling Cilk programs� Our cilk�c compiler �
�� is a

type�checking� source�to�source translator that transforms a

Cilk source into a C postsource which makes calls to Cilk�s

runtime library� The C postsource is then run through the

gcc compiler to produce object code� The cilk�c compiler

produces two clones of every Cilk procedure�a �fast� clone

and a �slow� clone� The fast clone� which is identical in

most respects to the C elision of the Cilk program� executes

in the common case where serial semantics su�ce� The slow

clone is executed in the infrequent case that parallel seman�

tics and its concomitant bookkeeping are required� All com�

munication due to scheduling occurs in the slow clone and

contributes to critical�path overhead� but not to work over�

head�

The work��rst principle also inspired a Dijkstra�like �

��

shared�memory� mutual�exclusion protocol as part of the

runtime load�balancing scheduler� Cilk�s scheduler uses a

�work�stealing� algorithm in which idle processors� called

thieves� �steal� threads from busy processors� called vic�

tims� Cilk�s scheduler guarantees that the cost of steal�

ing contributes only to critical�path overhead� and not to

work overhead� Nevertheless� it is hard to avoid the mutual�

exclusion costs incurred by a potential victim� which con�

tribute to work� To minimize work overhead� instead of using

locking� Cilk�s runtime system uses a Dijkstra�like protocol�

which we call the THE protocol� to manage the runtime

deque of ready threads in the work�stealing algorithm� An

added advantage of the THE protocol is that it allows an

exception to be signaled to a working processor with no ad�

ditional work overhead� a feature used in Cilk�s abort mech�

anism�

The remainder of this paper is organized as follows� Sec�

tion 
 overviews the basic features of the Cilk language� Sec�

tion � justi�es the work��rst principle� Section � describes

how the two�clone strategy is implemented� and Section 	

presents the THE protocol� Section � gives empirical evi�

dence that the Cilk�	 scheduler is e�cient� Finally� Section �

presents related work and o�ers some conclusions�

� The Cilk language

This section presents a brief overview of the Cilk extensions

to C as supported by Cilk�	� �For a complete description�

consult the Cilk�	 manual ����� The key features of the lan�

guage are the speci�cation of parallelism and synchroniza�

tion� through the spawn and sync keywords� and the speci�

�cation of nondeterminism� using inlet and abort�

�include �stdlib�h�
�include �stdio�h�
�include �cilk�h�

cilk int fib �int n�
�

if �n��� return n	
else �

int x
 y	
x � spawn fib �n�
�	
y � spawn fib �n���	
sync	
return �x�y�	

�
�

cilk int main �int argc
 char �argv���
�

int n
 result	
n � atoi�argv�
��	
result � spawn fib�n�	
sync	
printf ��Result� �d�n�
 result�	
return �	

�

Figure �� A simple Cilk program to compute the nth Fibonacci
number in parallel �using a very bad algorithm��

The basic Cilk language can be understood from an exam�

ple� Figure 
 shows a Cilk program that computes the nth

Fibonacci number�� Observe that the program would be an

ordinary C program if the three keywords cilk� spawn� and

sync are elided�

The keyword cilk identi�es fib as a Cilk procedure�

which is the parallel analog to a C function� Parallelism

is created when the keyword spawn precedes the invocation

of a procedure� The semantics of a spawn di�ers from a

C function call only in that the parent can continue to ex�

ecute in parallel with the child� instead of waiting for the

child to complete as is done in C� Cilk�s scheduler takes the

responsibility of scheduling the spawned procedures on the

processors of the parallel computer�

A Cilk procedure cannot safely use the values returned by

its children until it executes a sync statement� The sync

statement is a local �barrier�� not a global one as� for ex�

ample� is used in message�passing programming� In the Fi�

bonacci example� a sync statement is required before the

statement return �x�y� to avoid the anomaly that would

occur if x and y are summed before they are computed� In

addition to explicit synchronization provided by the sync

statement� every Cilk procedure syncs implicitly before it

returns� thus ensuring that all of its children terminate be�

fore it does�

Ordinarily� when a spawned procedure returns� the re�

turned value is simply stored into a variable in its parent�s

frame�

�This program uses an ine�cient algorithm which runs in exponen�
tial time
 Although logarithmic�time methods are known 
�� p
 �	���
this program nevertheless provides a good didactic example
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cilk int fib �int n�
�

int x � �	
inlet void summer �int result�
�

x �� result	
return	

�

if �n��� return n	
else �

summer�spawn fib �n�
��	
summer�spawn fib �n����	
sync	
return �x�	

�
�

Figure �� Using an inlet to compute the nth Fibonnaci number�

x � spawn foo�y��

Occasionally� one would like to incorporate the returned

value into the parent�s frame in a more complex way� Cilk

provides an inlet feature for this purpose� which was in�

spired in part by the inlet feature of TAM �
���

An inlet is essentially a C function internal to a Cilk pro�

cedure� In the normal syntax of Cilk� the spawning of a

procedure must occur as a separate statement and not in an

expression� An exception is made to this rule if the spawn

is performed as an argument to an inlet call� In this case�

the procedure is spawned� and when it returns� the inlet is

invoked� In the meantime� control of the parent procedure

proceeds to the statement following the inlet call� In princi�

ple� inlets can take multiple spawned arguments� but Cilk�	

has the restriction that exactly one argument to an inlet

may be spawned and that this argument must be the �rst

argument� If necessary� this restriction is easy to program

around�

Figure 
 illustrates how the fib�� function might be coded

using inlets� The inlet summer�� is de�ned to take a returned

value result and add it to the variable x in the frame of the

procedure that does the spawning� All the variables of fib��

are available within summer��� since it is an internal function

of fib����

No lock is required around the accesses to x by summer�

because Cilk provides atomicity implicitly� The concern is

that the two updates might occur in parallel� and if atomic�

ity is not imposed� an update might be lost� Cilk provides

implicit atomicity among the �threads� of a procedure in�

stance� where a thread is a maximal sequence of instruc�

tions ending with a spawn� sync� or return �either explicit

or implicit� statement� An inlet is precluded from containing

spawn and sync statements� and thus it operates atomically

as a single thread� Implicit atomicity simpli�es reasoning

�The C elision of a Cilk program with inlets is not ANSI C� because
ANSI C does not support internal C functions
 Cilk is based on Gnu
C technology� however� which does provide this support


about concurrency and nondeterminism without requiring

locking� declaration of critical regions� and the like�

Cilk provides syntactic sugar to produce certain commonly

used inlets implicitly� For example� the statement x ��

spawn fib�n��� conceptually generates an inlet similar to

the one in Figure 
�

Sometimes� a procedure spawns o� parallel work which it

later discovers is unnecessary� This �speculative� work can

be aborted in Cilk using the abort primitive inside an in�

let� A common use of abort occurs during a parallel search�

where many possibilities are searched in parallel� As soon as

a solution is found by one of the searches� one wishes to abort

any currently executing searches as soon as possible so as not

to waste processor resources� The abort statement� when

executed inside an inlet� causes all of the already�spawned

children of the procedure to terminate�

We considered using �futures� �
�� with implicit synchro�

nization� as well as synchronizing on speci�c variables� in�

stead of using the simple spawn and sync statements� We

realized from the work��rst principle� however� that di�er�

ent synchronization mechanisms could have an impact only

on the critical�path of a computation� and so this issue was

of secondary concern� Consequently� we opted for imple�

mentation simplicity� Also� in systems that support re�

laxed memory�consistency models� the explicit sync state�

ment can be used to ensure that all side�e�ects from previ�

ously spawned subprocedures have occurred�

In addition to the control synchronization provided by

sync� Cilk programmers can use explicit locking to syn�

chronize accesses to data� providing mutual exclusion and

atomicity� Data synchronization is an overhead borne on

the work� however� and although we have striven to min�

imize these overheads� �ne�grain locking on contemporary

processors is expensive� We are currently investigating how

to incorporate atomicity into the Cilk language so that pro�

tocol issues involved in locking can be avoided at the user

level� To aid in the debugging of Cilk programs that use

locks� we have been developing a tool called the �Nonde�

terminator� ��� 
��� which detects common synchronization

bugs called data races�

� The work��rst principle

This section justi�es the work��rst principle stated in Sec�

tion 
 by showing that it follows from three assumptions�

First� we assume that Cilk�s scheduler operates in practice

according to the theoretical analysis presented in ��� 	�� Sec�

ond� we assume that in the common case� ample �parallel

slackness� �
�� exists� that is� the average parallelism of a

Cilk program exceeds the number of processors on which we

run it by a su�cient margin� Third� we assume �as is indeed

the case� that every Cilk program has a C elision against

which its one�processor performance can be measured�

The theoretical analysis presented in ��� 	� cites two funda�
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mental lower bounds as to how fast a Cilk program can run�

Let us denote by TP the execution time of a given computa�

tion on P processors� Then� the work of the computation is

T� and its critical�path length is T�� For a computation with

T� work� the lower bound TP � T��P must hold� because at

most P units of work can be executed in a single step� In

addition� the lower bound TP � T� must hold� since a �nite

number of processors cannot execute faster than an in�nite

number��

Cilk�s randomized work�stealing scheduler ��� 	� executes

a Cilk computation on P processors in expected time

TP � T��P �O�T�� � �
�

assuming an ideal parallel computer� This equation resem�

bles �Brent�s theorem� ��� 
	� and is optimal to within a

constant factor� since T��P and T� are both lower bounds�

We call the �rst term on the right�hand side of Equation �
�

the work term and the second term the critical�path term�

Importantly� all communication costs due to Cilk�s scheduler

are borne by the critical�path term� as are most of the other

scheduling costs� To make these overheads explicit� we de�

�ne the critical�path overhead to be the smallest constant

c� such that

TP � T��P � c�T� � �
�

The second assumption needed to justify the work��rst

principle focuses on the �common�case� regime in which a

parallel program operates� De�ne the average parallelism

as P � T��T�� which corresponds to the maximum pos�

sible speedup that the application can obtain� De�ne also

the parallel slackness �
�� to be the ratio P�P � The as�

sumption of parallel slackness is that P�P � c�� which

means that the number P of processors is much smaller than

the average parallelism P � Under this assumption� it follows

that T��P � c�T�� and hence from Inequality �
� that

TP � T��P � and we obtain linear speedup� The critical�

path overhead c� has little e�ect on performance when su��

cient slackness exists� although it does determines how much

slackness must exist to ensure linear speedup�

Whether substantial slackness exists in common applica�

tions is a matter of opinion and empiricism� but we suggest

that slackness is the common case� The expressiveness of

Cilk makes it easy to code applications with large amounts

of parallelism� For modest�sized problems� many applica�

tions exhibit an average parallelism of over 
��� yielding sub�

stantial slackness on contemporary SMP�s� Even on Sandia

National Laboratory�s Intel Paragon� which contains 
�
�

nodes� the �Socrates chess program �coded in Cilk�
� ran

in its linear�speedup regime during the 
��	 ICCA World

Computer Chess Championship �where it placed second in

a �eld of 
��� Section � describes a dozen other diverse

applications which were run on an ��processor SMP with

�This abstract model of execution time ignores real�life details�
such as memory�hierarchy e�ects� but is nonetheless quite accurate 
��


considerable parallel slackness� The parallelisim of these ap�

plications increases with problem size� thereby ensuring they

will run well on large machines�

The third assumption behind the work��rst principle is

that every Cilk program has a C elision against which its

one�processor performance can be measured� Let us denote

by TS the running time of the C elision� Then� we de�ne the

work overhead by c� � T��TS� Incorporating critical�path

and work overheads into Inequality �
� yields

TP � c�TS�P � c�T� ���

� c�TS�P �

since we assume parallel slackness�

We can now restate the work��rst principle precisely� Min�

imize c�� even at the expense of a larger c�� because c� has a

more direct impact on performance� Adopting the work��rst

principle may adversely a�ect the ability of an application

to scale up� however� if the critical�path overhead c� is too

large� But� as we shall see in Section �� critical�path over�

head is reasonably small in Cilk�	� and many applications

can be coded with large amounts of parallelism�

The work��rst principle pervades the Cilk�	 implementa�

tion� The work�stealing scheduler guarantees that with high

probability� only O�PT�� steal �migration� attempts occur

�that is� O�T�� on average per processor�� all costs for which

are borne on the critical path� Consequently� the scheduler

for Cilk�	 postpones as much of the scheduling cost as pos�

sible to when work is being stolen� thereby removing it as

a contributor to work overhead� This strategy of amortiz�

ing costs against steal attempts permeates virtually every

decision made in the design of the scheduler�

� Cilk�s compilation strategy

This section describes how our cilk�c compiler generates C

postsource from a Cilk program� As dictated by the work�

�rst principle� our compiler and scheduler are designed to

reduce the work overhead as much as possible� Our strategy

is to generate two clones of each procedure�a fast clone and

a slow clone� The fast clone operates much as does the C

elision and has little support for parallelism� The slow clone

has full support for parallelism� along with its concomitant

overhead� We �rst describe the Cilk scheduling algorithm�

Then� we describe how the compiler translates the Cilk lan�

guage constructs into code for the fast and slow clones of

each procedure� Lastly� we describe how the runtime sys�

tem links together the actions of the fast and slow clones to

produce a complete Cilk implementation�

As in lazy task creation �
��� in Cilk�	 each proces�

sor� called a worker � maintains a ready deque �doubly�

ended queue� of ready procedures �technically� procedure

instances�� Each deque has two ends� a head and a tail �

from which procedures can be added or removed� A worker

operates locally on the tail of its own deque� treating it much

�



� int fib �int n�
	 �

 fib�frame �f	 frame pointer
� f � alloc�sizeof��f��	 allocate frame
� f��sig � fib�sig	 initialize frame

 if �n��� �
� free�f
 sizeof��f��	 free frame
� return n	
� �
�� else �
�� int x
 y	
�	 f��entry � 
	 save PC
�
 f��n � n	 save live vars
�� �T � f	 store frame pointer
�� push��	 push frame
�
 x � fib �n�
�	 do C call
�� if �pop�x� �� FAILURE� pop frame
�� return �	 frame stolen
�� � � � second spawn
	� 	 sync is free�
	� free�f
 sizeof��f��	 free frame
		 return �x�y�	
	
 �
	� �

Figure �� The fast clone generated by cilk�c for the fib proce�
dure from Figure �� The code for the second spawn is omitted�
The functions alloc and free are inlined calls to the runtime
system�s fast memory allocator� The signature fib sig contains
a description of the fib procedure� including a pointer to the slow
clone� The push and pop calls are operations on the scheduling
deque and are described in detail in Section ��

as C treats its call stack� pushing and popping spawned acti�

vation frames� When a worker runs out of work� it becomes

a thief and attempts to steal a procedure another worker�

called its victim � The thief steals the procedure from the

head of the victim�s deque� the opposite end from which the

victim is working�

When a procedure is spawned� the fast clone runs� When�

ever a thief steals a procedure� however� the procedure is

converted to a slow clone� The Cilk scheduler guarantees

that the number of steals is small when su�cient slackness

exists� and so we expect the fast clones to be executed most

of the time� Thus� the work��rst principle reduces to mini�

mizing costs in the fast clone� which contribute more heavily

to work overhead� Minimizing costs in the slow clone� al�

though a desirable goal� is less important� since these costs

contribute less heavily to work overhead and more to critical�

path overhead�

We minimize the costs of the fast clone by exploiting the

structure of the Cilk scheduler� Because we convert a pro�

cedure to its slow clone when it is stolen� we maintain the

invariant that a fast clone has never been stolen� Further�

more� none of the descendants of a fast clone have been

stolen either� since the strategy of stealing from the heads

of ready deques guarantees that parents are stolen before

their children� As we shall see� this simple fact allows many

optimizations to be performed in the fast clone�

We now describe how our cilk�c compiler generates post�

source C code for the fib procedure from Figure 
� An ex�

ample of the postsource for the fast clone of fib is given

in Figure �� The generated C code has the same general

structure as the C elision� with a few additional statements�

In lines ��	� an activation frame is allocated for fib and

initialized� The Cilk runtime system uses activation frames

to represent procedure instances� Using techniques similar

to �
�� 
��� our inlined allocator typically takes only a few

cycles� The frame is initialized in line 	 by storing a pointer

to a static structure� called a signature� describing fib�

The �rst spawn in fib is translated into lines 

�
�� In

lines 

�
�� the state of the fib procedure is saved into

the activation frame� The saved state includes the program

counter� encoded as an entry number� and all live� dirty vari�

ables� Then� the frame is pushed on the runtime deque in

lines 
��
	�� Next� we call the fib routine as we would

in C� Because the spawn statement itself compiles directly

to its C elision� the postsource can exploit the optimization

capabilities of the C compiler� including its ability to pass

arguments and receive return values in registers rather than

in memory�

After fib returns� lines 
��
� check to see whether the

parent procedure has been stolen� If it has� we return im�

mediately with a dummy value� Since all of the ancestors

have been stolen as well� the C stack quickly unwinds and

control is returned to the runtime system�� The protocol

to check whether the parent procedure has been stolen is

quite subtle�we postpone discussion of its implementation

to Section 	� If the parent procedure has not been stolen�

it continues to execute at line 
�� performing the second

spawn� which is not shown�

In the fast clone� all sync statements compile to no�ops�

Because a fast clone never has any children when it is exe�

cuting� we know at compile time that all previously spawned

procedures have completed� Thus� no operations are re�

quired for a sync statement� as it always succeeds� For exam�

ple� line 
� in Figure �� the translation of the sync statement

is just the empty statement� Finally� in lines 

�

� fib deal�

locates the activation frame and returns the computed result

to its parent procedure�

The slow clone is similar to the fast clone except that

it provides support for parallel execution� When a proce�

dure is stolen� control has been suspended between two of

the procedure�s threads� that is� at a spawn or sync point�

When the slow clone is resumed� it uses a goto statement

to restore the program counter� and then it restores local

variable state from the activation frame� A spawn statement

is translated in the slow clone just as in the fast clone� For a

sync statement� cilk�c inserts a call to the runtime system�

which checks to see whether the procedure has any spawned

children that have not returned� Although the parallel book�

�If the shared memory is not sequentially consistent� a memory
fence must be inserted between lines �� and �	 to ensure that the
surrounding writes are executed in the proper order


�The setjmp�longjmp facility of C could have been used as well� but
our unwinding strategy is simpler


�



keeping in a slow clone is substantial� it contributes little to

work overhead� since slow clones are rarely executed�

The separation between fast clones and slow clones also

allows us to compile inlets and abort statements e�ciently

in the fast clone� An inlet call compiles as e�ciently as an

ordinary spawn� For example� the code for the inlet call from

Figure 
 compiles similarly to the following Cilk code�

tmp � spawn fib�n�
�	
summer�tmp�	

Implicit inlet calls� such as x �� spawn fib�n���� compile

directly to their C elisions� An abort statement compiles to

a no�op just as a sync statement does� because while it is

executing� a fast clone has no children to abort�

The runtime system provides the glue between the fast and

slow clones that makes the whole system work� It includes

protocols for stealing procedures� returning values between

processors� executing inlets� aborting computation subtrees�

and the like� All of the costs of these protocols can be amor�

tized against the critical path� so their overhead does not

signi�cantly a�ect the running time when su�cient parallel

slackness exists� The portion of the stealing protocol exe�

cuted by the worker contributes to work overhead� however�

thereby warranting a careful implementation� We discuss

this protocol in detail in Section 	�

The work overhead of a spawn in Cilk�	 is only a few reads

and writes in the fast clone�� reads and 	 writes for the fib

example� We will experimentally quantify the work overhead

in Section �� Some work overheads still remain in our im�

plementation� however� including the allocation and freeing

of activation frames� saving state before a spawn� pushing

and popping of the frame on the deque� and checking if a

procedure has been stolen� A portion of this work overhead

is due to the fact that Cilk�	 is duplicating the work the C

compiler performs� but as Section � shows� this overhead is

small� Although a production Cilk compiler might be able

eliminate this unnecessary work� it would likely compromise

portability�

In Cilk��� the precursor to Cilk�	� we took the work��rst

principle to the extreme� Cilk�� performed stack�based al�

location of activation frames� since the work overhead of

stack allocation is smaller than the overhead of heap alloca�

tion� Because of the �cactus stack� �
	� semantics of the Cilk

stack�� however� Cilk�� had to manage the virtual�memory

map on each processor explicitly� as was done in �
��� The

work overhead in Cilk�� for frame allocation was little more

than that of incrementing the stack pointer� but whenever

the stack pointer over�owed a page� an expensive user�level

interrupt ensued� during which Cilk�� would modify the

memory map� Unfortunately� the operating�system mech�

anisms supporting these operations were too slow and un�

predictable� and the possibility of a page fault in critical sec�

�Suppose a procedure A spawns two children B and C
 The two
children can reference objects in A�s activation frame� but B and C
do not see each other�s frame


tions led to complicated protocols� Even though these over�

heads could be charged to the critical�path term� in practice�

they became so large that the critical�path term contributed

signi�cantly to the running time� thereby violating the as�

sumption of parallel slackness� A one�processor execution of

a program was indeed fast� but insu�cient slackness some�

times resulted in poor parallel performance�

In Cilk�	� we simpli�ed the allocation of activation frames

by simply using a heap� In the common case� a frame is

allocated by removing it from a free list� Deallocation is

performed by inserting the frame into the free list� No user�

level management of virtual memory is required� except for

the initial setup of shared memory� Heap allocation con�

tributes only slightly more than stack allocation to the work

overhead� but it saves substantially on the critical path term�

On the downside� heap allocation can potentially waste more

memory than stack allocation due to fragmentation� For a

careful analysis of the relative merits of stack and heap based

allocation that supports heap allocation� see the paper by

Appel and Shao �
�� For an equally careful analysis that

supports stack allocation� see �

��

Thus� although the work��rst principle gives a general un�

derstanding of where overheads should be borne� our expe�

rience with Cilk�� showed that large enough critical�path

overheads can tip the scales to the point where the assump�

tions underlying the principle no longer hold� We believe

that Cilk�	 work overhead is nearly as low as possible� given

our goal of generating portable C output from our compiler��

Other researchers have been able to reduce overheads even

more� however� at the expense of portability� For example�

lazy threads �
�� obtains e�ciency at the expense of im�

plementing its own calling conventions� stack layouts� etc�

Although we could in principle incorporate such machine�

dependent techniques into our compiler� we feel that Cilk�	

strikes a good balance between performance and portability�

We also feel that the current overheads are su�ciently low

that other problems� notably minimizing overheads for data

synchronization� deserve more attention�

� Implemention of work�stealing

In this section� we describe Cilk�	�s work�stealing mecha�

nism� which is based on a Dijkstra�like �

�� shared�memory�

mutual�exclusion protocol called the �THE� protocol� In

accordance with the work��rst principle� this protocol has

been designed to minimize work overhead� For example� on

a 
���megahertz UltraSPARC I� the fib program with the

THE protocol runs about 
	� faster than with hardware

locking primitives� We �rst present a simpli�ed version of

the protocol� Then� we discuss the actual implementation�

which allows exceptions to be signaled with no additional

overhead�

�Although the runtime system requires some e�ort to port between
architectures� the compiler requires no changes whatsoever for di�er�
ent platforms


	



Several straightforward mechanisms might be considered

to implement a work�stealing protocol� For example� a thief

might interrupt a worker and demand attention from this

victim� This strategy presents problems for two reasons�

First� the mechanisms for signaling interrupts are slow� and

although an interrupt would be borne on the critical path�

its large cost could threaten the assumption of parallel slack�

ness� Second� the worker would necessarily incur some over�

head on the work term to ensure that it could be safely

interrupted in a critical section� As an alternative to send�

ing interrupts� thieves could post steal requests� and workers

could periodically poll for them� Once again� however� a cost

accrues to the work overhead� this time for polling� Tech�

niques are known that can limit the overhead of polling �

��

but they require the support of a sophisticated compiler�

The work��rst principle suggests that it is reasonable to

put substantial e�ort into minimizing work overhead in the

work�stealing protocol� Since Cilk�	 is designed for shared�

memory machines� we chose to implement work�stealing

through shared�memory� rather than with message�passing�

as might otherwise be appropriate for a distributed�memory

implementation� In our implementation� both victim and

thief operate directly through shared memory on the victim�s

ready deque� The crucial issue is how to resolve the race con�

dition that arises when a thief tries to steal the same frame

that its victim is attempting to pop� One simple solution

is to add a lock to the deque using relatively heavyweight

hardware primitives like Compare�And�Swap or Test�And�

Set� Whenever a thief or worker wishes to remove a frame

from the deque� it �rst grabs the lock� This solution has

the same fundamental problem as the interrupt and polling

mechanisms just described� however� Whenever a worker

pops a frame� it pays the heavy price to grab a lock� which

contributes to work overhead�

Consequently� we adopted a solution that employs Di�

jkstra�s protocol for mutual exclusion �

�� which assumes

only that reads and writes are atomic� Because our proto�

col uses three atomic shared variables T� H� and E� we call

it the THE protocol� The key idea is that actions by the

worker on the tail of the queue contribute to work overhead�

while actions by thieves on the head of the queue contribute

only to critical�path overhead� Therefore� in accordance with

the work��rst principle� we attempt to move costs from the

worker to the thief� To arbitrate among di�erent thieves

attempting to steal from the same victim� we use a hard�

ware lock� since this overhead can be amortized against the

critical path� To resolve con�icts between a worker and the

sole thief holding the lock� however� we use a lightweight

Dijkstra�like protocol which contributes minimally to work

overhead� A worker resorts to a heavyweight hardware lock

only when it encounters an actual con�ict with a thief� in

which case we can charge the overhead that the victim incurs

to the critical path�

In the rest of this section� we describe the THE protocol

Worker�Victim
� push�� �
	 T��	

 �

� pop�� �
� T��	

 if �H � T� �
� T��	
� lock�L�	
� T��	
�� if �H � T� �
�� T��	
�	 unlock�L�	
�
 return FAILURE	
�� �
�� unlock�L�	
�
 �
�� return SUCCESS	
�� �

Thief
� steal�� �
	 lock�L�	

 H��	
� if �H � T� �
� H��	

 unlock�L�	
� return FAILURE	
� �
� unlock�L�	
�� return SUCCESS	
�� �

Figure �� Pseudocode of a simpli�ed version of the THE protocol�
The left part of the �gure shows the actions performed by the
victim� and the right part shows the actions of the thief� None
of the actions besides reads and writes are assumed to be atomic�
For example� T��	 can be implemented as tmp � T	 tmp � tmp �

	 T � tmp	�

in detail� We �rst present a simpli�ed protocol that uses

only two shared variables T and H designating the tail and

the head of the deque� respectively� Later� we extend the

protocol with a third variable E that allows exceptions to be

signaled to a worker� The exception mechanism is used to

implement Cilk�s abort statement� Interestingly� this exten�

sion does not introduce any additional work overhead�

The pseudocode of the simpli�ed THE protocol is shown

in Figure �� Assume that shared memory is sequentially

consistent �
���� The code assumes that the ready deque is

implemented as an array of frames� The head and tail of

the deque are determined by two indices T and H� which are

stored in shared memory and are visible to all processors�

The index T points to the �rst unused element in the array�

and H points to the �rst frame on the deque� Indices grow

from the head towards the tail so that under normal con�

ditions� we have T � H� Moreover� each deque has a lock L

implemented with atomic hardware primitives or with OS

calls�

The worker uses the deque as a stack� �See Section ���

Before a spawn� it pushes a frame onto the tail of the deque�

After a spawn� it pops the frame� unless the frame has been

stolen� A thief attempts to steal the frame at the head of

the deque� Only one thief at the time may steal from the

deque� since a thief grabs L as its �rst action� As can be

seen from the code� the worker alters T but not H� whereas

the thief only increments H and does not alter T�

The only possible interaction between a thief and its vic�

�If the shared memory is not sequentially consistent� a memory

fence must be inserted between lines 	 and � of the worker�victim

code and between lines � and � of the thief code to ensure that these

instructions are executed in the proper order
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Figure �� The three cases of the ready deque in the simpli�ed THE
protocol� A shaded entry indicates the presence of a frame at a
certain position in the deque� The head and the tail are marked
by T and H�

tim occurs when the thief is incrementing H while the vic�

tim is decrementing T� Consequently� it is always safe for

a worker to append a new frame at the end of the deque

�push� without worrying about the actions of the thief� For

a pop operations� there are three cases� which are shown in

Figure 	� In case �a�� the thief and the victim can both get

a frame from the deque� In case �b�� the deque contains only

one frame� If the victim decrements T without interference

from thieves� it gets the frame� Similarly� a thief can steal

the frame as long as its victim is not trying to obtain it� If

both the thief and the victim try to grab the frame� however�

the protocol guarantees that at least one of them discovers

that H � T� If the thief discovers that H � T� it restores

H to its original value and retreats� If the victim discovers

that H � T� it restores T to its original value and restarts the

protocol after having acquired L� With L acquired� no thief

can steal from this deque so the victim can pop the frame

without interference �if the frame is still there�� Finally� in

case �c� the deque is empty� If a thief tries to steal� it will

always fail� If the victim tries to pop� the attempt fails and

control returns to the Cilk runtime system� The protocol

cannot deadlock� because each process holds only one lock

at a time�

We now argue that the THE protocol contributes little to

the work overhead� Pushing a frame involves no overhead

beyond updating T� In the common case where a worker

can succesfully pop a frame� the pop protocol performs only

� operations�
 memory loads� 
 memory store� 
 decre�

ment� 
 comparison� and 
 �predictable� conditional branch�

Moreover� in the common case where no thief operates on

the deque� both H and T can be cached exclusively by the

worker� The expensive operation of a worker grabbing the

lock L occurs only when a thief is simultaneously trying to

steal the frame being popped� Since the number of steal

attempts depends on T�� not on T�� the relatively heavy

cost of a victim grabbing L can be considered as part of the

critical�path overhead c� and does not in�uence the work

overhead c��

We ran some experiments to determine the relative per�

formance of the THE protocol versus the straightforward

protocol in which pop just locks the deque before accessing

it� On a 
���megahertz UltraSPARC I� the THE protocol

is about 
	� faster than the simple locking protocol� This

machine�s memory model requires that a memory fence in�

struction �membar� be inserted between lines 	 and � of the

pop pseudocode� We tried to quantify the performance im�

pact of the membar instruction� but in all our experiments

the execution times of the code with and without membar

are about the same� On a 
���megahertz Pentium Pro run�

ning Linux and gcc 
���
� the THE protocol is only about

	� faster than the locking protocol� On this processor� the

THE protocol spends about half of its time in the memory

fence�

Because it replaces locks with memory synchronization�

the THE protocol is more �nonblocking� than a straightfor�

ward locking protocol� Consequently� the THE protocol is

less prone to problems that arise when spin locks are used

extensively� For example� even if a worker is suspended

by the operating system during the execution of pop� the

infrequency of locking in the THE protocol means that a

thief can usually complete a steal operation on the worker�s

deque� Recent work by Arora et al� �
� has shown that a

completely nonblocking work�stealing scheduler can be im�

plemented� Using these ideas� Lisiecki and Medina �

� have

modi�ed the Cilk�	 scheduler to make it completely non�

blocking� Their experience is that the THE protocol greatly

simpli�es a nonblocking implementation�

The simpli�ed THE protocol can be extended to support

the signaling of exceptions to a worker� In Figure �� the

index H plays two roles� it marks the head of the deque� and

it marks the point that the worker cannot cross when it pops�

These places in the deque need not be the same� In the full

THE protocol� we separate the two functions of H into two

variables� H� which now only marks the head of the deque�

and E� which marks the point that the victim cannot cross�

Whenever E � T� some exceptional condition has occurred�

which includes the frame being stolen� but it can also be used

for other exceptions� For example� setting E �� causes the

worker to discover the exception at its next pop� In the

new protocol� E replaces H in line � of the worker�victim�

Moreover� lines ��
	 of the worker�victim are replaced by

a call to an exception handler to determine the type of

exception �stolen frame or otherwise� and the proper action

to perform� The thief code is also modi�ed� Before trying to

�



Program Size T� T� P c� T� T��T� TS�T�
fib �	 ��
�� �
���	 �		�� �
�� �
�� �
� �
�
blockedmul ���� ��
� �
���� ���� �
�	 �
� �
� �
�
notempmul ���� ��
� �
��	 ���� �
�	 �
� �
� �
�
strassen ���� ��
� �
	� �	 �
�� �
	� 	
� 	
�
�cilksort �� ���� ��� 	
� �
���� ���� �
�� �
�� �
� 	
�
yqueens �� �	�
 �
���	 ����� �
�� ��
� �
� �
�
yknapsack �� �	
� �
���� 	���� �
�� �
	 �
� �
�
lu ���� �		
� �
�� ��� �
�� ��
� �
� �
	
�cholesky BCSSTK�� ����
 �
� ��� �
�	 ���
 �
� 	
	
heat ����� 	�� ��
� �
�� ��� �
�� �
� �
� �
�
fft ��	 �
� �
���� ���	 �
�� �
�� 	
� �
�
Barnes�Hut ��� ���
 �
�	 �	� �
�� ��
	 �
	 �
�

Figure �� The performance of example Cilk programs� Times are in seconds and are accurate to within about ���� The serial programs
are C elisions of the Cilk programs� except for those programs that are starred ���� where the parallel program implements a di�erent
algorithm than the serial program� Programs labeled by a dagger �y� are nondeterministic� and thus� the running time on one processor
is not the same as the work performed by the computation� For these programs� the value for T� indicates the actual work of the
computation on � processors� and not the running time on one processor�

steal� the thief increments E� If there is nothing to steal� the

thief restores E to the original value� Otherwise� the thief

steals frame H and increments H� From the point of view of

a worker� the common case is the same as in the simpli�ed

protocol� it compares two pointers �E and T rather than H

and T��

The exception mechanism is used to implement abort�

When a Cilk procedure executes an abort instruction� the

runtime system serially walks the tree of outstanding descen�

dants of that procedure� It marks the descendants as aborted

and signals an abort exception on any processor working on

a descendant� At its next pop� an aborted procedure will

discover the exception� notice that it has been aborted� and

return immediately� It is conceivable that a procedure could

run for a long time without executing a pop and discovering

that it has been aborted� We made the design decision to

accept the possibility of this unlikely scenario� �guring that

more cycles were likely to be lost in work overhead if we

abandoned the THE protocol for a mechanism that solves

this minor problem�

	 Benchmarks

In this section� we evaluate the performance of Cilk�	� We

show that on 

 applications� the work overhead c� is close

to 
� which indicates that the Cilk�	 implementation exploits

the work��rst principle e�ectively� We then present a break�

down of Cilk�s work overhead c� on four machines� Finally�

we present experiments showing that the critical�path over�

head c� is reasonably small as well�

Figure � shows a table of performance measurements taken

for 

 Cilk programs on a Sun Enterprise 	��� SMP with �


���megahertz UltraSPARC processors� each with 	

 kilo�

bytes of L
 cache� 
� kilobytes each of L
 data and instruc�

tion caches� running Solaris 
�	� We compiled our programs

with gcc 
���
 at optimization level �O	� For a full descrip�

tion of these programs� see the Cilk 	�
 manual ���� The

table shows the work of each Cilk program T�� the critical

path T�� and the two derived quantities P and c�� The ta�

ble also lists the running time T� on � processors� and the

speedup T��T� relative to the one�processor execution time�

and speedup TS�T� relative to the serial execution time�

For the 

 programs� the average parallelism P is in most

cases quite large relative to the number of processors on a

typical SMP� These measurements validate our assumption

of parallel slackness� which implies that the work term dom�

inates in Inequality ���� For instance� on 
�
�� 
�
� matri�

ces� notempmul runs with an average parallelism of 
����

yielding adequate parallel slackness for up to several hun�

dred processors� For even larger machines� one normally

would not run such a small problem� For notempmul� as well

as the other 

 applications� the average parallelism grows

with problem size� and thus su�cient parallel slackness is

likely to exist even for much larger machines� as long as the

problem sizes are scaled appropriately�

The work overhead c� is only a few percent larger than


 for most programs� which shows that our design of Cilk�	

faithfully implements the work��rst principle� The two cases

where the work overhead is larger �cilksort and cholesky�

are due to the fact that we had to change the serial algo�

rithm to obtain a parallel algorithm� and thus the compar�

ison is not against the C elision� For example� the serial C

algorithm for sorting is an in�place quicksort� but the par�

allel algorithm cilksort requires an additional temporary

array which adds overhead beyond the overhead of Cilk it�

self� Similarly� our parallel Cholesky factorization uses a

quadtree representation of the sparse matrix� which induces

more work than the linked�list representation used in the

serial C algorithm� Finally� the work overhead for fib is

large� because fib does essentially no work besides spawn�

ing procedures� Thus� the overhead c� � ���� for fib gives a

good estimate of the cost of a Cilk spawn versus a traditional

C function call� With such a small overhead for spawning�

one can understand why for most of the other applications�

which perform signi�cant work for each spawn� the overhead

of Cilk�	�s scheduling is barely noticeable compared to the


�� �noise� in our measurements�

�
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Figure �� Breakdown of overheads for fib running on one pro�
cessor on various architectures� The overheads are normalized to
the running time of the serial C elision� The three overheads are
for saving the state of a procedure before a spawn� the allocation
of activation frames for procedures� and the THE protocol� Ab�
solute times are given for the per�spawn running time of the C
elision�

We now present a breakdown of Cilk�s serial overhead c�
into its components� Because scheduling overheads are small

for most programs� we perform our analysis with the fib

program from Figure 
� This program is unusually sensi�

tive to scheduling overheads� because it contains little actual

computation� We give a breakdown of the serial overhead

into three components� the overhead of saving state before

spawning� the overhead of allocating activation frames� and

the overhead of the THE protocol�

Figure � shows the breakdown of Cilk�s serial overhead

for fib on four machines� Our methodology for obtaining

these numbers is as follows� First� we take the serial C fib

program and time its execution� Then� we individually add

in the code that generates each of the overheads and time

the execution of the resulting program� We attribute the

additional time required by the modi�ed program to the

scheduling code we added� In order to verify our numbers�

we timed the fib code with all of the Cilk overheads added

�the code shown in Figure ��� and compared the resulting

time to the sum of the individual overheads� In all cases�

the two times di�ered by less than 
���

Overheads vary across architectures� but the overhead of

Cilk is typically only a few times the C running time on this

spawn�intensive program� Overheads on the Alpha machine

are particularly large� because its native C function calls are

fast compared to the other architectures� The state�saving

costs are small for fib� because all four architectures have

write bu�ers that can hide the latency of the writes required�

We also attempted to measure the critical�path over�

head c�� We used the synthetic knary benchmark ��� to

synthesize computations arti�cially with a wide range of

work and critical�path lengths� Figure � shows the outcome

from many such experiments� The �gure plots the measured
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Figure �� Normalized speedup curve for Cilk��� The horizontal
axis is the number P of processors and the vertical axis is the
speedup T��TP � but each data point has been normalized by di�
viding by T��T�� The graph also shows the speedup predicted
by the formula TP � T��P � T��

speedup T��TP for each run against the machine size P for

that run� In order to plot di�erent computations on the same

graph� we normalized the machine size and the speedup by

dividing these values by the average parallelism P � T��T��

as was done in ���� For each run� the horizontal position of

the plotted datum is the inverse of the slackness P�P � and

thus� the normalized machine size is 
�� when the number of

processors is equal to the average parallelism� The vertical

position of the plotted datum is �T��TP ��P � T��TP � which

measures the fraction of maximum obtainable speedup� As

can be seen in the chart� for almost all runs of this bench�

mark� we observed TP � T��P � 
��T�� �One exceptional

data point satis�es TP � T��P � 
��	T��� Thus� although

the work��rst principle caused us to move overheads to the

critical path� the ability of Cilk applications to scale up was

not signi�cantly compromised�


 Conclusion

We conclude this paper by examining some related work�

Mohr et al� �
�� introduced lazy task creation in their im�

plementation of the Mul�T language� Lazy task creation

is similar in many ways to our lazy scheduling techniques�

Mohr et al� report a work overhead of around 
 when com�

paring with serial T� the Scheme dialect on which Mul�T

is based� Our research con�rms the intuition behind their

methods and shows that work overheads of close to 
 are

achievable�

The Cid language �
�� is like Cilk in that it uses C as

a base language and has a simple preprocessing compiler to

convert parallel Cid constructs to C� Cid is designed to work

in a distributed memory environment� and so it employs

latency�hiding mechanisms which Cilk�	 could avoid� �We

�




are working on a distributed version of Cilk� however�� Both

Cilk and Cid recognize the attractiveness of basing a parallel

language on C so as to leverage C compiler technology for

high�performance codes� Cilk is a faithful extension of C�

however� supporting the simplifying notion of a C elision

and allowing Cilk to exploit the C compiler technology more

readily�

TAM �
�� and Lazy Threads �
�� also analyze many of

the same overhead issues in a more general� �nonstrict� lan�

guage setting� where the individual performances of a whole

host of mechanisms are required for applications to obtain

good overall performance� In contrast� Cilk�s multithreaded

language provides an execution model based on work and

critical�path length that allows us to focus our implemen�

tation e�orts by using the work��rst principle� Using this

principle as a guide� we have concentrated our optimizing

e�ort on the common�case protocol code to develop an e��

cient and portable implementation of the Cilk language�
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