
Cache-oblivious comparison-based algorithms on
multisets

Arash Farzan1, Paolo Ferragina2, Gianni Franceschini2, and J. Ian Munro1

1 {afarzan, imunro}@uwaterloo.ca
School of Computer Science, University of Waterloo

2 {ferragin,francesc}@di.unipi.it
Department of Computer Science, University of Pisa

Abstract. We study three comparison-based problems related to mul-
tisets in the cache-oblivious model: Duplicate elimination, multisorting
and finding the most frequent element (the mode). We are interested
in minimizing the cache complexity (or number of cache misses) of al-
gorithms for these problems in the context under which cache size and
block size are unknown. We give algorithms with cache complexities that
are within a constant factor of the optimal for all the first two problems.
For the mode, The deterministic algorithm differs from the lower bound
by a sublogarithmic factor. We can achieve optimality either with a ran-
domized method or if given lg lg(relative frequency of the mode) with a
constant additive error.

1 Introduction

The memory in modern computers consists of multiple levels. Traditionally, al-
gorithms were analyzed in a flat random-access memory model (RAM) in which
access times are uniform. However, the ever growing difference between access
times of different levels of a memory hierarchy makes the RAM model ineffective.
Hierarchical memory models have been introduced to tackle this problem. These
models usually suffer from the complexity of having too many parameters which
result in algorithms that are often too complicated and hardware configuration
dependant.

The cache-aware (DAM) model [1] is the simplest of hierarchical memory
models, taking into account only two memory levels. On the first level, there is
a cache memory of size M which is divided into blocks of size B; on the second
level there is an arbitrarily large memory with the same block size. A word must
be present in the cache to be accessed. If it is not in the cache, we say a cache
miss/fault has occurred, and in this case the block containing the requested word
must be brought in from the main memory. In case, all blocks in the cache are
occupied, a block must be chosen for eviction and replacement. Thus, a block
replacement policy is necessary for any algorithm in the model.

The cache-oblivious model, which was introduced by Frigo et al. [2], is a
simple hierarchical memory model and differs from the DAM model in that
it avoids any hardware configuration parametrization, and in particular it is

2 Arash Farzan, Paolo Ferragina, Gianni Franceschini, and J. Ian Munro

not aware of M, B. This makes cache-oblivious algorithms independent of any
hardware configuration. The block replacement policy is assumed to be the off-
line optimal one. However, using a more realistic replacement policy such as
the least recently used policy (LRU) increases the number of cache misses by
only a factor of two if the cache size is also doubled [3]. It is known that if an
algorithm in this model performs optimally on this two-level hierarchy, it will
perform optimally on any level of a multiple-level hierarchy.

Cache complexity of an algorithm is the number of cache misses the algorithm
causes or equivalently the number of block transfers it incurs between these
two levels. In this paper, our concern is with the order of magnitude of the
cache complexities of algorithms and we ignore constant factors. Following a
usual practice in studying sorting problems, we make the so called tall cache
assumption, that is, we assume the cache has size M = Ω(B2). Work complexity
of an algorithm is the complexity of the number of operations performed and,
since here we focus on comparison-based problems, the work complexity is the
number of comparisons the algorithm performs.

We will study three problems regarding the searching and sorting in multisets,
namely duplicate elimination, sorting and determining the mode. A multiset is
a generalization of a set in which repetition is allowed, so we can have several
elements with the same key value. Suppose we are given a multiset of size N with
k distinct elements whose multiplicities are N1, . . . , Nk and set f = maxi Ni.The
problem of reducing the original multiset to the set of distinct elements is called
duplicate elimination. The problem of sorting the elements of the multiset and
outputting the list of elements in the sorted order, is called multisorting. The
problem of finding the most frequent element (the mode) in a multiset, is called
determining the mode.

Sorting can be studied in two models: In the first model, elements are such
that one of the two equal elements can be removed and then later on, it can be
copied from the other one to be regenerated again . In this model, we can keep
only one copy of an element and throw away duplicates as encountered. However,
in the second model, elements cannot be deleted and regenerated as elements are
viewed complex objects with some satellite data in addition to their key values.
Obviously, an entire object cannot be deleted just because it has a key equal
to the key of another object. By multisorting, then, we infer the second, more
difficult problem.

Munro and Spira [4] studied these problems in the comparison model and
showed tight lower bounds for them. Their results are summarized in Table 1.
Later, Arge et al. [5] proved how the lower bounds in the comparison model can
be turned into lower bounds for the cache-aware model. They used the method
to obtain lower bounds for the problems of determining the mode and duplicate
elimination. A lower bound on the multisorting problem can be obtained sim-
ilarly. A lower bound in the cache-aware model is certainly a lower bound in
cache oblivious model as well. The lower bounds are summarized in Table 1. In
the following sections, we give optimal cache-oblivious algorithms that all match
these lower bounds. The optimal algorithm for determining the mode is random-

Cache-oblivious comparison-based algorithms on multisets 3

ized. The deterministic algorithm differs from the cache-complexity lower bound
of a sublogarithmic factor or requires “a little hint”.

Comparisons I/Os

Multisorting N log N −∑k

i=1
Ni log Ni max

{
N
B

log M
B

N
B
−∑k

i=1
Ni
B

log M
B

Ni,
N
B

}

Duplicate Elimination N log N −∑k

i=1
Ni log Ni max

{
N
B

log M
B

N
B
−∑k

i=1
Ni
B

log M
B

Ni,
N
B

}

Determining the Mode N log N
f

max
{

N
B

log M
B

N
f

, N
B

}

Table 1. The lower bounds in the comparison model and the cache-oblivious model

2 Duplicate Elimination

Our duplicate removal technique is an adaptation of the lazy funnelsort [6] which
sorts a set of (distinct) values. Hence, we first give a quick overview of the method
in Section 2.1 and then present our modifications in Section 2.2.

2.1 Funnelsort

To sort a set of (distinct) values, Frigo et al. [2] proposed funnelsort which can be
described as a cache-oblivious version of the mergesort. In funnelsort, the set of
N input values are first divided into N1/3 subsequences each of size N2/3. Each
subsequence is sorted recursively and then the sorted subsequences are merged
by a data structure which is referred to as a N1/3-funnel.

A k-funnel is indeed a k-way merger that takes k sorted subsequences, merges
them, and outputs the sorted sequence. A k-funnel has an output buffer of size
k3 and k input buffers. As Figure 1 illustrates, a k-funnel is built recursively
out of

√
k
√

k-funnels (on the left) and one
√

k-funnel (on the right). There are√
k intermediate buffers of size 2k3/2 each. They are FIFO queues that form the

output buffers of the left funnels and the input buffers of the right funnel. It can
be proved by induction that a k-funnel occupies O

(
k2

)
space.

A k-funnel works recursively as follows. The k-funnel must output k3 ele-
ments at any invocation. To do this, the right funnel is invoked many times each
outputting k3/2 values. Therefore the right funnel is eventually executed k3/2

times to get k3 elements. Before each invocation though, the k-buffer checks all
its input buffers to see if they are more than half full. If any buffer is less than
half full, the associated left funnel is invoked to fill-up its output buffer.

Later, Brodal and Fagerberg [6] simplified funnels by introducing the notion
of lazy funnelsort. Their modification consists of relaxing the requirement that
all input buffers must be checked before each invocation of a funnel. Rather, a
buffer is filled up on demand, when it runs empty. This modification simplifies

4 Arash Farzan, Paolo Ferragina, Gianni Franceschini, and J. Ian Munro

Fig. 1. ([2]) Recursive structure
of a k-funnel.

Fig. 2. ([7]) Structure of a lazy k-funnel.

the description of a funnel and as we will see in next sections, it also makes the
analysis easier.

In lazy funnel sort, a k-funnel can be thought of as a complete binary tree
with k leaves in which each node is a binary merger and edges are buffers. A
tree of size S is laid out recursively in memory according to the van Emde Boas
layout ([8]): The tree is cut along the edges at half height. The top tree of size√

S is recursively laid out first and it is followed by
√

S bottom trees in order
that are also laid out recursively. The sizes of the buffers can be computed by the
recursive structure of a funnel. As it is illustrated in Figure 2, in a k-funnel the
middle edges (at half height) have size k3/2. The sizes of the buffers in the top
and bottom trees (which are all

√
k-funnels) are recursively smaller. The buffers

are stored along with the trees in the recursive layout of a funnel. For the sake
of consistency, we suppose there is an imaginary buffer at the top of the root
node to which the root merger outputs. The size of this buffer is k3 (this buffer
is not actually stored with the funnel). The objective is to fill up this buffer. At
any node, we perform merging until either of the two input buffers run empty.
In such a case, the merger suspends and control is given to the associated child
to fill up the buffer recursively (the child is the root of its subtree).

The cache complexity analysis of a lazy k-funnel follows an amortized argu-
ment. Consider the largest value s such that an s-funnel along with one block
from each of its input buffers fits in the cache memory. It is easy to see that
under the tall cache assumption s = Ω(4

√
M) and s = O(2

√
M). The whole k-

funnel can be considered as a number of s-funnels that are connected by some
large buffers among them. The sizes of these buffers are at least s3. We denote
these buffers as large buffers (see Figure 3).

An s-funnel fits entirely in cache memory and once completely loaded it does
not cause any extra cache misses during its working. An s-funnel has size s2 and
thus it takes O

(
s2/B + s

)
cache faults to load it in memory. Though it outputs

s3 elements, thus the amortized cost per element that enters in the funnel is
O (1/B). However, in the event that its input buffers run empty, an s-funnel will
have to stop and give control to its lower subfunnels. In that case, the funnel
might get evicted from the memory and when its input buffers are filled up again,

Cache-oblivious comparison-based algorithms on multisets 5

���
���
���
���

���
���
���
���

s−funnels

Fig. 3. The whole funnel can be considered as consisting of a number of s-funnels
connected by some buffers.

it must be reloaded into memory. We have to account for these cache faults as
well. Every time a buffer runs empty, it is filled up with at least s3 elements. The
cost of reloading the s-funnel can be charged to these s3 elements. In the very
last invocation a funnel might not be able to output enough number of elements,
but we can simply charge the cost to the previous invocation (there exists at least
one). Each element is thus charged O (1/B) in each of the large buffers. Since
there are Θ (logM N) such buffers, the total charge is O

(
N
B logM N

)
which is

optimal. The work complexity can be calculated similarly to be O (N log N).

2.2 Duplicate Removal by Funnels

As it was mentioned previously, our duplicate elimination is an adaptation of
the lazy funnelsort. We introduce a constraint on a binary merger: When the
two elements on top of the two input buffers of a binary merger are equal, one
of them is appended to a memory zone devoted to contain the duplicates. In the
end we obtain the set of distinct elements with all the duplicate elements laying
in a separate zone in no particular order.

We now show that the work complexity of the above mentioned algorithm
for duplicate elimination is optimal, i.e. O (N log N −∑

i Ni log Ni). We would
spend N log N comparisons on finding the total ordering of the multiset, if ele-
ments were all pairwise distinct. Therefore, we need only to show that by removal
of duplicates, we save

∑
i Ni log Ni number of comparisons. Consider the set E

of duplicates of an element ij (|E| = Nj). At any comparison of two elements
in E, one of them is removed immediately, thus there can be at most Nj com-
parisons among elements of E. This implies a saving of Nj log Nj − Nj in the
number of comparisons. Hence, in total we have a saving of

∑
i Ni log Ni−

∑
i Ni.

So the total number of comparisons is O (N log N) − ∑
i Ni log Ni +

∑
i Ni =

O (N log N −∑
i Ni log Ni).

Now we show that the cache complexity of the algorithm also matches the
lower bound shown in Section 1. The lower bound for the cache complexity of

6 Arash Farzan, Paolo Ferragina, Gianni Franceschini, and J. Ian Munro

duplicate elimination, by tall cache assumption, is Ω

(
N log N−

∑
i
Ni log Ni

B log M

)
. The

analysis is essentially the same as that of the cache complexity of funnelsort in
Section 2.1, with the difficulty now that it is no longer true that it does exist at
least one invocation of an s-funnel, with s = Ω(M1/4) and s = O(M1/2), having
in input at least s3 elements.

As depicted in Fig. 2, a k-merger can be seen as a complete binary tree with
k leaves, where every internal node is a binary merger and every edge is a buffer.
The whole recursive algorithm can be then abstracted as a complete binary tree
T with buffers on the edges. We know that every recursive call corresponds to
a t-funnel, for some t, having t input buffers of size t2 each (possibly containing
less than t2 elements because of duplicate removal) and an output buffer of
size t3. Given this view, the topmost (1/3) log N levels of T correspond to the
N1/3-funnel which is the last one executed in the algorithm. The leaves of this
funnel have input buffers of size N2/3, which are filled up by the N2/9-funnels
corresponding to the next (2/9) log N levels of T . These funnels are executed
before the top one. The other levels of T are defined recursively.

To evaluate the cost of our algorithm’s recursion, we observe that when the
funnels constituting T are fully confined within main memory no extra I/O
occurs. These small funnels lie in the bottommost l = Θ(log M) levels of T , and
they have size between M2/3 and M . The larger funnels above the small ones
in T thus contain O(N/M2/3) overall binary mergers. Since we know that an
s-funnel takes O(s+ s2/B) extra I/Os to perform its duplicate elimination task,
every binary merger in this funnel pays O(1 + s/B) extra I/Os. Summing over
all the binary mergers of the larger funnels we have that the cache complexity
of loading and using these s-funnels is O(N/M2/3)O(1 + s/B) = O(N/B). This
shows that the cache complexity of an element entering in a s-funnel is O (1/B).

By considering the path an element takes from a leaf of T to its root, we
have that the element enters a number of s-funnels which is proportional to the
number of comparisons it participates in divided by Ω (log M). Since the overall
number of comparisons the algorithm performs is N log N − ∑

i Ni log Ni (see
above), the number of element entrances into s-funnels is O((1/ log M)(N log N−∑

i Ni log Ni)). But, as we argued, every element entrance in an s-funnel costs

O(1/B) and hence the cache complexity of the algorithm is O

(
N log N−

∑
i
Ni log Ni

B log M

)
.

Theorem 1. The cache complexity of the duplicate removal algorithm matches
the lower bound and is O

(
N
B log M

B

N
B −∑k

i=1
Ni

B log M
B

Ni

)
.

3 Multisorting

In this section, we will show how to sort a multiset within a constant factor of
the optimal number of I/Os. We will match the lower bound presented in Section
1 which is the same as the lower bound for duplicate elimination.

The algorithm consists of two phases. The first phase is duplicate elimination,
the second phase is based on a “reverse” application of a funnel now oriented

Cache-oblivious comparison-based algorithms on multisets 7

to elements distribution rather than to elements merging. We run the duplicate
elimination algorithm to discover all the distinct elements in the multiset and
to count their multiplicities as follows. We associate a counter to each element
which is initialized to one in the beginning. When two duplicates are compared,
one of them is appended to a memory zone devoted to contain the duplicates and
we add its counter value to the counter of the element remained. Knowing the
sorted order of the distinct elements and their multiplicities, we can easily figure
out the boundaries of duplicates in the sorted multiset: The sorted multiset
will be composed of subsequences A1A2 . . . Am where Ar consists entirely of
duplicates of element ir. By a scan over the sorted distinct elements, we find out
the beginning and ending positions of each duplicate sequence Ai in the sorted
multiset.

For the second phase, we need the concept of k-splitter. A k-splitter is a
binary tree with k leaves. Each internal node v of a splitter is composed by an
input buffer, a pivot p(v) and a pointer to a contiguous memory portion Z(v)
outside the k-splitter where the duplicates of p(v) will be moved as soon as
they meet with the pivot. The root of the splitter, and leaves are, respectively,
the input and the output buffers of the whole k-splitter. The buffers associated
with the root and the leaves have sizes O(k3) and O(k2), respectively, and are
considered external entities, just like the Z(v), and they will not be accounted
as space occupied by the whole k-splitter. As for the internal nodes, the choice
of the size of their buffers, and the layout in memory of a k-splitter, is done as in
the case of a k-merger and therefore the space occupied is O(k2) (only the buffers
and pivots associated with internal nodes are accounted). When an internal node
v is invoked, the elements of its buffer are partitioned and sent to its two children
according to the results of comparisons with p(v). The duplicates of the pivot
are immediately moved into Z(v). The process involving v stops when its buffer
is empty, or if the buffer of at least one of its children is full: in the first case
the parent of v is invoked, in the second case the child (children) corresponding
to the full buffer(s) is (are) invoked. The root is marked as “done” when there
are no more elements in its buffer. Any node other than the root is marked as
“done” when there are no more elements in its buffer and its parent has been
marked as done.

We are ready now to describe the second phase of our multisorting algorithm.
Recall that the first phase produced two sequences, one containing the sorted
set of distinct elements and the other one with the remaining duplicates in
no particular order. Let us denote respectively with A and B these sequences.
Moreover, for each element e we have counted its multiplicity n(e). The second
phase consists of three main steps.

1. With a simple scan of A a sequence C = A1A2 . . . Am is produced. For any
i, Ai has n(A[i]) positions, its first position is occupied by A[i] and any
other position contains a pointer to the first location of subsequence Ai. Let
D = E1E2 . . . Em be a contiguous memory portion divided into subarrays Ei

of size n(A[i]). In the end, D will contain the sorted multiset. Finally, we let

8 Arash Farzan, Paolo Ferragina, Gianni Franceschini, and J. Ian Munro

F = G1G2 . . . Gm be a contiguous memory portion divided into subarrays
Gi of size n(A[i]).

2. Using C we construct a splitter S of height at most (1/3) log N (not neces-
sarily a complete splitter) and we invoke it. Let Aj be the subsequence of
C that includes the N/2-th location (we need O(1) I/Os to find j). If j > 1
or j < m then we have the element Aj [1] as the pivot of the root of the
splitter. This step is applied recursively to the sequences C ′ = A1 . . . Aj−1

and C ′′ = Aj+1 . . . Am (at least one of them exists). That recursive process
stops when the maximal tree S of pivots of height (1/3) log N is built (not
necessarily a complete binary tree) or when there are no more sequences Aj .
Note that each internal node v of S is associated to a subsequence Aj (the
one from which p(v) has been taken). Let t be the number of internal nodes
of S, let j1, j2 . . . jt be the indices (in increasing order) of the sub-sequences
Aj of C chosen in the process above, and let vjr be the internal node of S
that has Ajr

[1] as pivot. The memory zone Z(vjr
) devoted to contain the

duplicates of vjr , is Ejr . The input buffer of the root of S is B (the one that
contains the duplicates after the first phase). The buffer of the leaf u that is
the right (resp. left) child of a node vjr of S is Bu = Gjr+1Gjr+2 . . . Gjr+1−1

(resp. Bu = Gjr−1+1Gjr−1+2 . . . Gjr−1). Finally, the sizes of the buffers of
all the internal nodes and their layout in memory are chosen as we already
discussed above when we gave the definition of k-splitter. Now, the splitter
is ready and can be invoked.

3. Recursive steps. For any output buffer of the splitter S we apply the Step 2
recursively. Let u be a leaf of S and let us suppose that is the right child of
a node vjr of S (the left-child case is analogous). In the recursive call for u we
have that Bu = Gjr+1Gjr+2 . . . Gjr+1−1 plays the role of B, Ejr+1Ejr+2 . . . Ejr+1−1

plays the role of D, and Ajr+1Ajr+2 . . . Ajr+1−1 plays the role of C. After
the recursive steps, D contains the sorted multiset.

The analysis is similar to the one for the duplicate elimination problem, and
thus we get the same optimal I/O-bound. Indeed, the first step is a simple scan
and requires O(N/B) I/Os. In the second step, the splitter S can be divided
in s-splitters pretty analogously to the case of s-mergers. All the “spurious”
I/O’s— like the O(1) accesses for the construction of any node in the splitter or
the O(s+ s2/B) accesses needed to load a s-splitter— give again O(N/B) I/Os.

Theorem 2. The cache complexity of the multisorting algorithm matches the
lower bound and is O

(
N
B log M

B

N
B −∑k

i=1
Ni

B log M
B

Ni

)
.

4 Determining the mode

In this section, we study the problem of determining the most occurring el-
ement (mode) in a multiset. We will take two approaches: Deterministic and
Randomized. The upper bound we achieve in the randomized approach matches
the lower bound for finding the mode as was mentioned in Section 1, essentially

Cache-oblivious comparison-based algorithms on multisets 9

because we can use samples to get a ”good enough” estimate of the relative fre-
quency of the mode (i.e. f/N). However, the deterministic approach can be in
the worst case an additive term of O

(
N
B log log M

)
away from the lower bound.

The deterministic and randomized approaches are presented in the following two
sections.

4.1 Deterministic Approach

The key idea is to use as a basic block a cache-efficient algorithm for finding “fre-
quent” elements that occur more often than a certain threshold in the multiset.
We then repeatedly run the algorithm for a spectrum of thresholds to hunt the
most frequent element. Let us first precisely define what we mean by a “frequent”
element.

Definition 1. We call an element C-frequent if and only if it occurs more than
N
C times in a multiset of size N (i.e. if its relative frequency is at least 1/C).

The algorithm works in two phases. In the first phase, we try to find a set of
at most C candidates that contains all the C-frequent elements. There may also
be some other arbitrarily infrequent elements in our list of candidates. In the
second phase, we check the C candidates to determine their exact frequencies.
Note that, by definition, the number of C-frequent elements cannot exceed C.

Phase 1. The key idea in this phase is essentially what Misra [9] used. We
find and remove a set of t (t ≥ C) distinct elements from the multiset. The
resulting multiset has the property that those elements that were C-frequent in
the original multiset are still C-frequent in the reduced multiset. Thus, we keep
removing sets of at least C distinct elements from the multiset, one at a time,
until the multiset has no longer more than C distinct elements. The C-frequent
elements in the original multiset must be also present in the final multiset.

We scan the multiset in groups of C elements (there are N/C such groups) by
maintaining an array of C “candidates” which is initially empty and eventually
will hold as many as C distinct values. Each element in this array also has a
counter associated with it which shows the number of occurrences of the element
seen so far. As soon as the number of elements in this array goes over C, we
downsize the array by removing C distinct elements. More precisely, for each
group G of C elements from the multiset, we first sort the elements in G and also
sort the elements in the candidates array. This can be done by using any method
of cache-oblivious sorting by pretending that the elements are all distinct. Then,
we merge the two sorted arrays into another array T ensuring that we keep only
the distinct elements. T may contain up to 2C elements. At this time we remove
groups of at least C distinct elements to downsize T to less than C elements.
This is done by sorting T according to the value of the counters (not the value
of elements), and by finding the C + 1 largest counter mC+1. All elements with
a counter value less than mC+1 are thrown away, and the counter of the other
elements is decreased by mC+1. One can easily see that this is equivalent to

10 Arash Farzan, Paolo Ferragina, Gianni Franceschini, and J. Ian Munro

repeatedly throwing away groups of at least C distinct elements from T one at
a time. The candidates array is then set to T , and the process continues on the
next group of C elements from the multiset. At the end, the candidates array
contains all possible C-frequent elements in the multiset; however, as mentioned,
it may also contain some other arbitrary elements.

Phase 2. This phase is similar to the first phase, except that the candidates
array remains intact throughout this phase. We first zero out all the counters
and sort the array using any method of cache-oblivious sorting for sets. We then
consider N/C groups of C elements from the multiset one at a time; we first
sort the C elements for each group, and by doing a scan of the lists as in the
merge sort, we can count how many times each of the candidates occur in the
group. We accumulate these counts so that after considering the final group, we
know the multiplicities of the candidates in the whole multiset. We finally keep
all elements whose counters are more than N/C and discard the rest.

Cache complexity of both phases are the same and one can see the major
task is N/C executions of sorting C elements. Therefore, the cache complexity
is O

(
N
B max

{
1, log M

B
C

})
. Hence, we have proved the following lemma:

Lemma 1. In a multiset of size N , C-frequent elements and their actual mul-
tiplicities can be determined with cache complexity O

(
N
B max{1, log M

B
C}

)
.

Now we show how the frequent finding algorithm can be used in our hunt for
the mode. We repeatedly apply Lemma 1 for a series of increasing values of C
to determine whether there is any C-frequent element in the multiset. The first
time some C-frequent elements are found, we halt the algorithm and declare the
most frequent among them as the mode.

The algorithm in Lemma 1 is executed in rounds as C goes doubly exponen-
tially for the following values of C in order: C = 221

, 222
, . . . , 22i

, . . . , 22dlg lg ne
.

At the end of each round, we either end up empty-handed or we find some C-
frequent elements. In the former case, the algorithm continues with the next
value of C. In the latter case, we declare the most frequent of the C-frequent
elements to be the mode, and the algorithm halts. Note that the algorithm of
Lemma 1 also produces the actual multiplicities of the C-frequent elements, thus
finding the most frequent element among the C-frequent ones requires only a pass
of the at most C elements to select the element with the maximum multiplicity.

The cache complexity of the algorithm can be analyzed as follows. Let us
denote by f the frequency of the mode. The cache complexity of the algorithm
is the sum of cache complexity of the algorithm in Lemma 1 over different values

of C up to 22
lg lg N

f
+1

, where we find the mode. Hence, the cache complexity is

lg lg N
f +1∑

j=1

O

(
N

B
max

{
1, log M

B
22j

})
= O

(
max

{
N

B
log log

N

f
,

N

B
log M

B

N

f

})
.

It is clear to see that the following cache oblivious upper bound can be in the
worst case an additive term of O

(
N
B log log M

)
larger than the lower bound:

Cache-oblivious comparison-based algorithms on multisets 11

Theorem 3. The cache complexity of the deterministic algorithm for determin-
ing the mode is O

(
max

{
N
B log M

B

N
f , N

B log log N
f

})
. ut

It is worthy to note that the slightest hint on the size of memory or the
relative frequency of the mode would result in an optimal algorithm. Given the
value of M , we can tailor the program so it skips from values of C smaller than
M and starts from C = M . Thus, as a by-product, we have an optimal cache-
aware algorithm which is simpler than the existing one in Arge et al. [5]. Also,
knowing the value of lg lg N

f with a constant additive error helps us to jump start
from the right value for C. Furthermore, given an element, we can confirm with
an optimal cache complexity whether it is indeed the mode. Let us define having
a hint on a value v as knowing the value of lg lg v within a constant additive
error:

Theorem 4. Given a hint on the value of memory size or relative frequency of
the mode (i.e. M or N

f), the cache complexity of the deterministic algorithm for

determining the mode matches the lower bound and is O
(

N
B log M

B

N
f

)
.

4.2 Randomized Approach

We still use the C-frequent finder algorithm, but instead of starting from small
values of C and squaring it at each step, we will estimate a good value for C
using randomized sampling techniques. The sample must be large enough to
produce a good estimate, with high confidence. It must also be small enough so
that working with the sample does not dominate our cost. We have a high degree
of latitude in choosing the sample size. Something around

√
N is a reasonable

choice. Making it
√

N ln N simplifies some of the calculations in the proof. The
proof is also simplified if we sample with replacement (i.e. the same element can
be chosen more than once.)

We can afford to sort these sampled elements as sorting
√

N ln N elements
takes O

(
N
B

)
cache misses. After sorting the sample, we scan and find the mode

in the sample with frequency p. The estimate of the frequency of the mode in the
multiset is f ′ = p

√
N

ln N . Consequently we start by finding C-frequent elements for
C = N

f ′ . If there is no C-frequent element, we square C and re-run the algorithm
for the new value of C and so on.

Let us now sketch the analysis the cache complexity of the randomized algo-
rithm. Clearly, if our estimate for the mode is precise, then the cache complexity
of the algorithm matches the lower bound. However undershoot or overshoot are
possible: We may underestimate the value of f (i.e. f ′ < f), or we may over-
estimate the value of f (i.e. f ′ > f). In the former case, we find the mode on
the first run of the frequent element finder algorithm, but as the value of C is
greater than what it should be, the cache complexity of the algorithm can be po-
tentially larger. In the latter case, multiple runs of the frequent finder algorithm
is likely; Therefore, potentially we can have the problem of too many runs as in
the deterministic approach. Nevertheless, one can show that the probability of

12 Arash Farzan, Paolo Ferragina, Gianni Franceschini, and J. Ian Munro

our estimate for the mode being too far from the real value is small enough so
that the extra work does not effect the expected asymptotic cache complexity.
Hence, the expected cache complexity will match the lower bound.

Theorem 5. The expected cache complexity of the randomized algorithm for de-
termining the mode matches the lower bound and is O

(
max

{
N
B log M

B

N
fB , N

B

})
.

5 Conclusion

We studied three problems related to multisets in the cache-oblivious model:
duplicate removal, multi-sorting, and determining the mode. We presented the
known lower bounds for the cache complexity of each of these problems. De-
termining the mode has the lower bound of Ω

(
N
B log M

B

N
fB

)
where f is the

multiplicity of the most frequent element and M is the size of the cache and B is
size of a block in cache. The lower bound for the cache complexity of duplicate
removal and multi-sorting is Ω

(
N
B log M

B

N
B −∑k

i=1
Ni

B log M
B

Ni

B

)
.

The cache complexities of our algorithms match the lower bounds asymp-
totically. Only exception is the problem of determining the mode where our
deterministic algorithm can be an additive term of O

(
N
B log log M

)
away from

the lower bound. However, the randomized algorithm matches the lower bound.

References

1. Aggarwal, A., Vitter, J.S.: The I/O complexity of sorting and related problems. In:
Proceedings of the 14th International Colloquium on Automata, Languages, and
Programming. Volume 267 of LNCS., Springer-Verlag (1987) 467–478

2. Frigo, M., Leiserson, C.E., Prokop, H., Ramachandran, S.: Cache-oblivious algo-
rithms. In: 40th Annual Symposium on Foundations of Computer Science, IEEE
Computer Society Press (1999) 285–297

3. Sleator, D.D., Tarjan, R.E.: Amortized efficiency of list update and paging rules.
Commun. ACM 28(2) (1985) 202–208

4. Munro, I., Spira, P.: Sorting and searching in multisets. SIAM Journal on Comput-
ing 5 (1976) 1–8

5. Arge, L., Knudsen, M., Larsen, K.: A general lower bound on the i/o-complexity of
comparison-based algorithms. In: In Proceedings of Workshop on Algorithms and
Data Structures, Springer-Verlag (1993)

6. Brodal, Fagerberg: Cache oblivious distribution sweeping. In: ICALP. (2002)
7. Demaine, E.D.: Cache-oblivious algorithms and data structures. In: Lecture Notes

from the EEF Summer School on Massive Data Sets. Lecture Notes in Computer
Science, BRICS, University of Aarhus, Denmark (2002)

8. Bender, M.A., Demaine, E.D., Farach-Colton, M.: Cache-oblivious B-trees. In
IEEE, ed.: Annual Symposium on Foundations of Computer Science 2000, IEEE
Computer Society Press (2000) 399–409

9. Misra, J., Gries, D.: Finding repeated elements. Science of Computer Programming
2 (1982) 143–152

