
A Unified Model for Multicore Architectures∗

John E. Savage
Brown University

Providence,Rhode Island 02912
jes@cs.brown.edu

Mohammad Zubair
Old Dominion University
Norfolk, Virginia 23529
zubair@cs.odu.edu

ABSTRACT
With the advent of multicore and many core architectures,
we are facing a problem that is new to parallel comput-
ing, namely, the management of hierarchical parallel caches.
One major limitation of all earlier models is their inability to
model multicore processors with varying degrees of sharing
of caches at different levels. We propose a unified memory
hierarchy model that addresses these limitations and is an
extension of the MHG model developed for a single proces-
sor with multi-memory hierarchy. We demonstrate that our
unified framework can be applied to a number of multicore
architectures for a variety of applications. In particular,
we derive lower bounds on memory traffic between different
levels in the hierarchy for financial and scientific computa-
tions. We also give a multicore algorithms for a financial
application that exhibits a constant-factor optimal amount
of memory traffic between different cache levels. We imple-
mented the algorithm on a multicore system with two Quad-
Core Intel Xeon 5310 1.6GHz processors having a total of 8
cores. Our algorithms outperform compiler optimized and
auto-parallelized code by a factor of up to 7.3.

Categories and Subject Descriptors
G.4 [Mathematical Software]: Efficiency, Algorithm de-
sign and analysis

General Terms
Algorithms, Performance, Experimentation

Keywords
Memory Hierarchy, Multicore

1. INTRODUCTION
∗This paper appears in the Proceedings of IFMT’08,
the First International Forum on Next-Generation Multi-
core/Manycore Technologies, Cairo, Egypt, November 24-
25, 2008.

Power consumption and heating constraints are limiting the
instruction-level parallelism for improving processor perfor-
mance. The response of the industry has been to increase
the number of cores on a die. The effective use of these cores
requires the parallelization of applications. Parallelization is
a problem that arose in a serious way in the 1980s and 1990s.
The use of multiple cores has introduced a new problem to
parallel computing, namely, the management of hierarchical
parallel caches.

Multicore chips employ a cache structure to simulate a fast
common memory. Unfortunately, the software to exploit
these caches is lagging behind hardware development. To
achieve high performance, applications executed on multi-
core chips need to be explicitly coded. To achieve good
performance it is essential that algorithms be designed to
maximize data locality so as to best exploit the hierarchical
cache structure. While the efficient use of memory hierar-
chies is important in serial processors, it is doubly important
in multicore architectures. Multicore processors have several
levels of memory hierarchy. To obtain good performance on
these processors it is necessary to design algorithms that
minimize I/O traffic to slower memories in the hierarchy
[22]. Researchers have extensively studied the problem of
designing efficient algorithms for processors with memory
hierarchy [15, 16, 26, 20, 18, 5, 21].

Processors with multiple cores are being manufactured by
a number of vendors including IBM, Sun, Intel, AMD, and
Tilera. At present most contain between 2 and 16 cores.
However, a few contain as many as 64 to 80 cores. Plans
exist to scale up chips to several hundred cores. Multicore
processors are organized to share information across cores
using fast buses or a switching network that limit the num-
ber of cores that can be accommodated. To scale processors
to many cores, the trend is to organize the cores in a two
dimensional grid with a router embedded with each core.

One salient characteristics of multicore architectures is that
they have a varying degrees of sharing of caches at differ-
ent levels. Most architectures have cores with a private L1
cache. Depending on the architecture, an L2 cache is shared
by two or more cores and an L3 cache is shared by four
or more cores. The main memory is typically shared by
all cores. The degree of sharing at a level varies from one
multicore processor to another. In this paper, we explore
these architectures from the memory hierarchy perspective.
We propose a unified memory hierarchy model that captures

essential features of each of these architecture.

Researchers in the past have explored various models for par-
allel computing starting with the PRAM [17]. The weakness
of the PRAM model is that it ignores communication cost
for moving data between processors. This is addressed by
later models, for example the LPRAM [8], BSP [34], LogP
[14], and Postal models [12]. These models ignored the mem-
ory hierarchy, which is addressed by the Memory Hierarchy
Game [29] and several parallel hierarchical models such as
LogP-HMM [28], LogP-UMH [10, 28], the Parallel Memory
Hierarchy (PMH) model [11], and parallel versions [35, 37,
36, 25] of the serial memory hierarchy models of Aggarwal
et al [6, 7].

One major limitation of all earlier models is their inability
to model multicore processors with varying degrees of shar-
ing of caches at different levels. In these models sharing
happens for all processors at the level of main memory or
through a network via the processors. By contrast, a mul-
ticore architecture can have an L2 cache shared by a subset
of cores, and an L3 cache by a larger subset of cores, and so
on. (The Intel Dunnington processor has an L2 cache that is
shared by two cores, and an L3 cache that is shared by all six
cores). In a multicore architecture we not only have varying
degrees of sharing of caches at different levels, the degree of
sharing at a level varies from one multicore architecture to
another. For example, the Sun UltraSPARC T2 has an L2
cache that is shared by all eight cores as opposed to the Intel
Dunnington processor that has an L2 cache that is shared by
only two cores. In addition, all earlier models lack a general
strategy that can help in deriving lower bounds for commu-
nication traffic within a core and across cores for different
applications. Most of the efforts in deriving lower bounds
are restricted to using strategies specific to an application
and they work for a limited set of architectures. See for
example [8, 37, 36, 24].

We introduce the Unified Multicore Model (UMM) that ad-
dresses all these limitations. It is an extension of the Mem-
ory Hierarchy Game (MHG) developed for a single processor
attached to a hierarchy of memories [29]. The model as-
sumes that sets of cores share first-level caches, these share
second-level caches, etc. and that the cache capacity is the
same for all caches at a given level. The UMM seamlessly
handles different types of multiple-core processors with vary-
ing degrees of sharing of caches at different levels.

We also provide a framework for deriving lower bounds on
communication traffic between different levels of memory
in the UMM. These bounds are useful to implementers for
not only designing efficient algorithms, but also to see lim-
itations of the architectures in achieving optimal perfor-
mance. For example, the bounds can help to determine that
the bandwidth available on the bus that interconnects main
memory to caches at upper levels is not sufficient to achieve
optimal performance.

The proposed model works for straight-line computations
all of which can be represented as directed acyclic graphs
(DAGs). This includes matrix multiplication, FFT compu-
tation, and binomial option pricing, for example. To de-
rive lower bounds for a given DAG, we first compute its

S-span [29]. The S-span intuitively represents the maxi-
mum amount of computation that can be done after loading
data in a cache at some level without accessing higher lev-
els (those further away from the CPU) memories. A more
precise definition of S-span is given later.

We demonstrate that the S-span of a DAG captures the
computational dependencies inherent in the DAG and use
it to develop lower bounds on communication traffic for a
single core and multiple core architectures. Our model and
associated analysis help in designing efficient multicore algo-
rithms. We demonstrate that our unified framework can be
applied to a variety of multicore architectures for a variety of
applications. In particular, we derive lower bounds on mem-
ory traffic between different levels of hierarchy for financial
and scientific computations. We also give a multicore algo-
rithms for a financial application that exhibits a constant-
factor optimal amount of memory traffic between different
levels. We implemented these algorithms on a multicore sys-
tem with two Quad-Core Intel Xeon 5310 1.6GHz processors
with a total of 8 cores. We demonstrate that our algorithms
outperform compiler-optimized and auto-parallelized code
by a factor of up to 7.5.

In Section 2 we describe a number of commercial multicore
chips. This leads to the formulation of the UMM in Sec-
tion 3. In Section 4 we model computations on the UMM
as a multi-level pebbling game. General lower bounds on
the communication traffic between caches in the UMM are
derived in Section 6. In Section 7 we apply these bounds to
three problems, a method for pricing options as well as ma-
trix multiplication and the FFT algorithm. In Section 8 an
implemention for a method of pricing options is described
and analyzed. Conclusions are stated in Section 9.

2. MULTICORE ARCHITECTURES
In this section, we describe the memory hierarchies associ-
ated with a number of important multicore architectures.
Most of the architectures have a private L1 cache. Depend-
ing on the architecture, the L2 and L3 caches are typically
shared by two or more cores.

Sun UltraSPARC T2
The UltraSPARC T2 processor [4] has eight SPARC proces-
sor cores. A core has an 8-Kbyte, 4-way data cache. Each
is connected through a crossbar to a 4 Mbyte, 16-way L2
cache. The L2 cache is banked eight ways to support eight
cores and connects to four on-chip DRAM controllers, which
directly interface to a pair of fully buffered DIMM (FBD)
channels. (See Figure 1).

Intel Six-Core Dunnington Processor
The Intel Dunnington processor [1] consists of six cores with
each core having its own 96KB L1 data cache. The 3-MB L2
cache is shared by two cores. The 16-MB L3 cache is shared
by all six cores. The interface to main memory is via a front
side bus that operates at 1066 MT/seconds. (See Figure 2).

Sun Rock Processor with 16 Cores
The Rock processor [33] is the latest 16-core SPARC system
from Sun. It was scheduled to be released in 2008 but is now
expected to be released in 2009. The Sun Rock processor

Switch

8KB
L1 Cache

Core 0

2MB Shared L2 Cache

System Memory

8KB
L1 Cache

Core 1

8KB
L1 Cache

Core 7

Figure 1: The 8-Core Sun UltraSPARC T2 Proces-
sor

96KB
L1 Cache

Core 0

16 MB Shared L3 Cache

System Memory

96KB
L1 Cache

Core 1

96KB
L1 Cache

Core 4

96KB
L1 Cache

Core 5

3 MB Shared
L2 Cache

3 MB Shared
L2 Cache

Figure 2: The Intel 6-Core Dunnington Processor

consists of four clusters of four cores each, for a total of 16
cores. There is a 32KB dual banked 4-way L1 data cache
that is shared by two cores. A 2MB 4-bank 8-way L2 cache
is shared by all the cores. The memory hierarchy used by
the Sun Rock Processor is illustrated in Figure 3.

Tilera 64-core Tile64 and Intel 80-core
Tera-Scale Processors
The Tile64 processor [3] consists of an 8×8 grid of processor
cores. The Tile64 architecture eliminates on bus chip inter-
connect, which limits the number of cores that can be put
on a chip. Each processor core has a communication switch
that connects it to a two dimensional on-chip mesh network
called the iMesh. A processor core has an 8KB L1 data
cache and a 64 KB L2 cache. The architecture treats all the
L2 caches together as a single large L3 cache. Multicore co-
herent caching enables data cached on a core to be accessed
by other cores using the iMesh network. The block diagram
illustrating the memory hierarchy for a single core is given
in Figure 4. Intel is experimenting with a large number of
cores in its Tera-Scale 80-core processor [2]. As with the
Tilera processor, it connects cores in a 2D mesh.

Switch

32KB Shared
L1 Cache

Core 0

2MB Shared L2 Cache

Cluster 0

Core 1

32KB Shared
L1 Cache

Core 2 Core 3

32KB Shared
L1 Cache

Core 12

Cluster 3

Core 13

32KB Shared
L1 Cache

Core 14 Core 15

System Memory

Figure 3: The Sun 16-Core Rock Processor

8KB
L1 Cache

Core

L3 Cache
(Aggregation of L2
caches of all cores)

 (64 x 64 KB)

System Memory

64 KB
L2 Cache

Figure 4: Memory Hierarchy for a Single Core of a
64-Core Tile64 Processor from Tilera

256 KB
Software

Controlled
Cache

SPE 0
(2KB)

Element Interconnect Bus (up to 96 bytes/
cycle)

System Memory

SPE 1
(2KB)

SPE 7
(2KB)

256 KB
Software

Controlled
Cache

256 KB
Software

Controlled
Cache

Figure 5: Memory Hierarchy for SPEs in a IBM,
Sony, and Toshiba Cell Broadband Engine

IBM, Sony, and Toshiba Cell Broadband
Engine Multicore Architecture
IBM, Sony, and Toshiba have developed a multicore chip
(the cell broadband engine) [19] that consists of eight syn-
ergistic processor elements (SPEs) and a PowerPC Processor
Element (PPE). The SPE design is optimized for computation-
intensive applciations and the PPE is optimized for control
tasks. The architecture for the SPE does not support a
traditional cache-based memory hierarchy, although it does
have a local store associated with each element under direct
program control. The local store can be viewed as a soft-
ware controlled cache where the data is moved between local
store and memory using DMA. This simplifies the memory
hierarchy hardware and moves the complexity to the pro-
grammer/compiler for managing local store. An SPE has a
register file consisting of 128 registers of 128-bits each (2 KB
of storage), and a local store of 256 KB. (See Figure 5).

3. UNIVERSAL MULTICORE MODEL
In this section we introduce the universal multicore model
(UMM) (see Figure 6) that captures the essential features
of the multicore cache hierarchies described above. It as-
sumes that each core sees L levels of memory including
Level-0, which refers to registers and are typically part of
the core. It also assumes that all caches at a level have the
same size and that they are shared by the same number of
cores. For our model, we define the following parameters for
1 ≤ l ≤ L− 1.

pl: Number of cores sharing a cache at level-l

αl: Number of caches at the lth level

σl: Size of a cache at level-l

Observe that pL−1 = p, the total number of cores. Because
the number of cores sharing a cache at a given level is the
same for all caches at that level, it follows that αl = p/pl.
Parameters of the chips in Section 2 are given in Table 1.

4. THE MULTICORE MEMORY
HIERARCHY GAME

Level 1, p1

Core
Level 0, p0

System Memory
Level L-1, pL-1

Level 2, p2

Figure 6: The Universal Multicore Model in which
pl denotes the number of cores sharing a common
cache.

Product Levels Cores p1 p2 p3 p4

UltraSPARC T2 4 8 1 8 8
Dunnington 5 6 1 2 6 6
Rock 4 16 2 16 16
Tile64 5 64 1 1 64 64
Cell 3 8 1 1 8

Table 1: The parameters of the multicore chips de-
scribed herein.

In this section we introduce the multicore memory hier-
archy game (MMHG), a pebbling game played on a DAG
that models computations done on the UMM. It is an ex-
tension of the memory hierarchy game (MHG) introduced in
[29] and generalized in [30, p. 535]. In Section 5 we improve
upon previous lower bounds on the memory traffic required
by the serial MHG. In Section 6 we extend this analysis to
the UMM.

The MMHG assumes that there are p cores and an L-level hi-
erarchy of caches. Each level-l cache, 1 ≤ l ≤ L−1, is shared
by pl cores. The MMHG assumes that all caches at level l
have capacity σl and that the highest level cache or main
memory has unlimited capacity. The sizes of caches at the
various levels is represented by the tuple Σ = (σ1, . . . , σL−1).
It isn’t necessary to specify the size of the highest level mem-
ory because it is unlimited. The rules of the MMHG are
given below. The purpose of the game is to pebble the out-
put vertices of a graph G = (V,E).

It is important to emphasize that the MMHG is a parallel
pebbling game; pebbles associated with different caches can
be placed and removed simultaneously. It is helpful to think
of pebble moves as occuring synchronously, although this
assumption is not strictly necessary.

We are interested in the communication traffic between ad-
jacent levels in the hierarchy. This is modeled by the number
of times that a level-l pebble is placed on a vertex containing
a level-(l − 1) pebble or vice versa.

4.1 Rules of the MMHG
We now state the rules for the multicore memory hierarchy
game (MMHG). These rules generalize those for the mem-
ory hierarchy game (MHG) [29] that models data movement
up and down a cache hierarchy for uni-processors. As men-
tioned above, in the MMHG multiple pebble moves can oc-
cur simultaneously as long as they don’t violate the rules.

R1. (Computation Step) A zero-level pebble associated with
a core can be placed on any vertex all of whose imme-
diate predecessors carry zero-level pebbles associated
with that core.

R2. (Pebble Deletion) Except for level-L pebbles on output
vertices, a pebble at any level can be deleted from any
vertex.

R3. (Initialization) A level-L pebble can be placed on an
input vertex at any time.

R4. (Input from Level-l) For 1 ≤ l ≤ L − 1, a level-l peb-
ble ξ associated with cache ci,l can be placed on any
vertex carrying a level-(l + 1) pebble associated with
the parent cache of ci,l.

R5. (Output to Level-l) For 2 ≤ l ≤ L, a level-l pebble
ξ associated with a cache ci,l can be placed on any
vertex carrying a level-(l − 1) pebble associated with
any cache cj,l−1 that is a child of ci,l.

R6. Each output vertex must be pebbled with a level-L
pebble.

Rule R1 states that a value associated with a vertex can be
computed in a core only if the data on which the value de-
pends are present in the core. Zero-level pebbles can slide
from a predecessor to a successor vertex, which corresponds
to using a register as both the source and target of an op-
eration. The second rule states that data can be discarded.
Rule R3 says that input data is available in the highest level
cache and can be freely accessed. The fourth and fifth rules
govern input from and output to level l. The fourth rule
allows data associated with a vertex to move to level l from
level l − 1 by placing a level-(l − 1) pebble on a vertex car-
rying a level-l pebble. Of course, this data movement is
only possible from a cache to one of those caches to which
it is connected. The fifth rule works in the same way ex-
cept that it refers to movement from a lower level to the
next higher one. The last rule states the goal of the peb-
ble game, namely, to place a level-L pebble on each output
vertex. This is tantamount to storing computed results in a
permanent memory.

Although the MMHG is a parallel pebbling game, it can be
serialized. That is, we can pebble one vertex at a time. This
restriction does not alter the vertices at which I/O opera-
tions are performed, just the total time for the operations.

In memory hierarchies either the multilevel inclusion or ex-
clusion policy is enforced. In the former policy a copy of
the value in each location in a level-l cache is maintained in
all higher level caches. These copies may be dirty, that is,
not currently consistent with the value in the lowest level
cache containing the original. They are updated as needed.
The exclusion policy does not reserve space for values held
in lower level caches. The rules given above are written for
the exclusion policy. The results derived below are for the
exclusion case. However, the results also hold for the inclu-
sion policy when the memory associated with a cache in the
lower bounds is the amount of memory over and above that
used to hold copies of values in lower level caches.

The MHG is the variant of the MMHG in which there is only
one processor and one cache at each of L−1 levels. The level-

L cache has unlimited size. We denote with T
(L)
l (Σ, G) the

number of I/O operations at level l on the DAG G where
Σ = (σ1, . . . , σL−1) denotes the sizes of the caches.

5. UNI-PROCESSOR LOWER BOUNDS
To set the stage for deriving lower bounds on communication
traffic with the MMHG, we begin by describing the methods
used to otain lower bounds for the MHG. The lower bounds
rely on the S-span measure of a graph G.

Definition 1. The S-span of a DAG G, ρ(S,G), is the
maximum number of vertices of G that can be pebbled in a
zero-level pebble game starting with any initial placement of
S red pebbles.

The S-span is a measure of how many vertices can be peb-
bled without doing any I/O. S pebbles are placed on the
most fortuitous vertices of a graph and the maximum num-
ber of vertices that can be pebbled without doing I/O is the
value of the S-span. Clearly, the measure is most useful for

graphs that have a fairly regular structure. It has provided
good lower bounds on communication traffic for matrix mul-
tiplication, the Fast Fourier Transform, the pyramid graph
and other graphs. This definition applies even if a DAG G
is not a connected graph.

The following theorem derives a lower bound to T
(L)
l (Σ, G),

the number of I/O operations at level l in the MHG. It is a
generalization to hierarchical memories of a result of Hong
and Kung [23]. The first version of this theorem appeared
in [29]. The result given here improves upon the version
given in [30, p. 535] by tightening the lower bound when
the number of memory locations below level l is large. A
proof of this theorem can be found in [32].

Theorem 5.1. Consider a pebbling of the DAG G with n
input and m output vertices in an L-level memory hierar-
chy game. Let ρ(S,G) be the S-span of G and |V ∗| be the
number of vertices in G other than the inputs. Assume that
ρ(S,G)/S is a non-decreasing function of S.

Then, for 1 ≤ l ≤ L − 1 the communication traffic between

the lth and (l − 1)st levels, T
(L)
l (Σ, G), satisfies the follow-

ing lower bound where Σ(l−1) =
Pl−1
r=1 σr is the number of

pebbles at all levels up to and including level l − 1.

T
(L)
l (Σ, G) ≥

Σ(l−1)|V ∗|
ρ(2Σ(l−1), G)

T
(L)
l (Σ, G) also satisfies T

(L)
l (Σ, G) ≥ S0 where S0 is the

smallest integer satisfying ρ(2S0, G) ≥ |V ∗|. It is also triv-

ially true that T
(L)
l (Σ, G) ≥ (n+m).

6. MULTICORE LOWER BOUNDS
We now extend the above results to the uniform multicore
model (UMM). We assume that the task of pebbling the ver-
tices of a graph G with zero-level pebbles is shared among
the cores and that no two cores perform the same computa-
tion. As with the serial model of computation, we assume
that each vertex of a graph G is pebbled once with a zero-
level pebble by some core. Pebbles are local to either core
registers or higher level caches.

The number of I/O operations performed on a cache de-
pends on the vertices of a graph G that are pebbled with
zero-level pebbles by the cores sharing the cache. If these
cores pebble very few (many) vertices, the number of I/O
operations should be small (large).

Let Ti,l(Σ, G) be the number of I/O operations for the ith
cache at level l in the hierarchy where Σ = (σ1, σ2, . . . , σL−1)
is the list of storage capacities of the caches in the UMM.
We derive a lower bound to Ti,l(Σ, G) for the ith cache at
level l whose cores pebble the largest number of vertices of
G with zero-level pebbles.

We generalize Theorem 5.1 to the UMM. Recall that the
multicore memory hierarchy game (MMHG) is a parallel
pebbling game in which it is possible to move multiple peb-
bles at the same time. We establish the following result by
simulating the parallel pebbling of a graph in the UMM by
a serial pebbling of the graph with two levels of pebbles.

The following theorem derives lower bounds to the memory
traffic under two conditions, a) the worst case when it isn’t
known that the workload is balanced between cores and b)
the case when the workload is uniformly distributed across
all cores.

Theorem 6.1. Consider a pebbling of the graph G in an
L-level universal memory hierarchy game with p processors.
Let ρ(S,G) be the S-span of G and |V ∗| be the number of
vertices in G other than the inputs. Assume that ρ(S,G)/S
is a non-decreasing function of S. Let βl−1 be the number
of pebbles at level l − 1 and below in those caches having a
cache at level l as parent. Let αl be the number of caches at
level l.

For any allocation of workload to cores, for each l there is a

level-l cache such that the communication traffic, T
(L)
l,M (Σ, G),

satisfies the following minimal lower bound.

T
(L)
l,M (Σ, G) ≥ βl−1(|V ∗|/αl)

ρ(2βl−1, G)

Also, T
(L)
l,M (Σ, G) ≥ S0 where S0 is the smallest value satis-

fying the bound ρ(2S0, G) ≥ |V ∗|/αl.

When the workload is uniformly distributed over all cores,

the communication traffic at a level-l cache, T
(L)
l,U (Σ, G), sat-

isfies the following bound. It is at least as strong as the above
bound because ρ(S,G)/S is a non-decreasing function of S
and αl/αl−1 ≤ 1.

T
(L)
l,U (Σ, G) ≥ βl−1(αl/αl−1)(|V ∗|/αl)

ρ(2βl−1(αl/αl−1), G)

Also, T
(L)
l,U (Σ, G) ≥ (αl−1/αl)S0 where S0 is the smallest

integer such that ρ(2S0, G) ≥ |V ∗|/αl−1.

Proof. The proof uses Theorem 5.1 for uni-processors.
It has two parts. The first part consists of a lower bound to
the I/O at level l in terms of the number of I/O operations in
a two-level game. The important storage parameter is βl−1,
the number of memory locations in all the caches below level
l that have a common level-l cache as parent. The second
part consists of a lower bound on the I/O complexity for the
two-level serial game.

We extend the first result to the ith cache at level l in the
UMM, denoted ci,l. Let Gi,l denote the subgraph of the
graph G that is computed by the cores that have this cache
as a parent. Recall that no zero-level vertex pebblings are
done by more than one core.

In the proof of Theorem 5.1 we argue that with two types
of pebble we can simulate the restriction on the MHG. One
type of pebble is used to simulate pebbles below level l. The
second is used to simulate pebbles at or above level l. If
we segment these pebbles into pebbles of the proper number
at each of the levels of the hierarchy, the number of I/O
operations at the level-l cache is that determined by the rules
of the MHG. If, however, we now drop these restrictions and
treat them as two types of pebble, we loosen the restrictions
and derive a potentially smaller bound on the I/O at the
level-l cache.

We apply the same type of reasoning here. We also argue
that from the point of view of I/O operations at cache ci,l,
there is no loss in assuming that the pebblings at levels ≤
l − 1 within the cores and caches that have ci,l as a parent
are serial. The same is true for pebblings at higher levels
or in other caches and cores. We use one type of pebble for
levels ≤ l− 1 and a second type for levels ≥ l. The number
of the second type of pebble is unlimited.

Now consider pebbling Gi,l. We first derive a lower bound
that holds for any allocation of work to cores. Let βl−1

be the total number of pebbles associated with all caches
that share cache ci,l as a parent. Since there are αj/αl
caches of capacity σj at level j that have ci,l as parent,

βl−1 =
Pl−1
j=1(αj/αl)σj . Consequently, we see that the num-

ber of I/O operations at cache ci,l satisfies the following
lower bound.

T
(L)
i,l (Σ, G) ≥ T (2)

2 (βl−1, Gi,l)

We have reduced the number of I/O operations at a par-
ticular cache to the number of I/O operations in the serial
two-level game. It remains to derive a lower bound for this
number of I/O operations. We observe that in the UMM
each cache ci,l is associated with a subgraphGi,l. Since there
are αl level-l caches, for some i, Gi,l has |V ∗|/αl non-input
vertices. Now we use the lower bound given in Theorem 5.1

to T
(2)
2 (S,Gi,l)

T
(2)
2 (βl−1, Gi,l) ≥

βl−1(|V ∗|/αl)
ρ(2βl−1, G)

from which the first lower bound follows.

From Theorem 5.1 we also have that T
(2)
2 (βl−1, Gi,l) ≥ S0

where S0 is the smallest integer such that ρ(2S0, G) ≥ |V ∗i,l|
where the latter is the number of non-input vertices in Gi,l.
Since |V ∗i,l| ≥ |V ∗|/αl, the second result follows.

To derive the third result, which holds when the work is
allocated uniformly to cores, we derive a lower bound to the
traffic between a single level-(l − 1) cache, say, cj,l−1 and
its parent, say ci,l. We multiply this traffic by αl−1/αl, the
number of level-(l−1) caches with ci,l as parent. The storage
capacity of cj,l−1 and those caches for which it is a parent
is β∗l−1 = βl−1(αl/αl−1).

Let Gj,l−1 be the subgraph computed by the cores that have
cj,l−1 as parent. Then, a lower bound to the traffic between
cj,l−1 and ci,l is given below. Since Gj,l−1 has |V ∗|/αl−1

non-input vertices, we have the following.

T
(2)
2 (S,Gj,l−1) ≥ αl−1

αl

β∗l−1(|V ∗|/αl−1)

ρ(2β∗l−1, G)

For the last result we have that T
(2)
2 (βl−1, Gj,l−1) ≥ S0

where S0 is the smallest integer such that ρ(2S0, G) ≥ |V ∗j,l−1| ≥
|V ∗|/αl−1. The traffic between all level-(l− 1) caches and a
single level-l caches is (αl−1/αl)S0.

We now illustrate these results on a representative set of
problems.

Figure 7: The graph G
(n)
biop with depth n and n+1 = 8

leaves.

7. BOUNDS FOR SPECIFIC PROBLEMS
In this section, we investigate some common computations
from financial and scientific domains and derive lower bounds
on the number of I/O operations using the methodology
given above. In the financial domain, we examine the op-
tion pricing computation using the binomial model. In the
scientific domain, we study matrix multiplication and FFT
computations.

7.1 Financial Computations
An option contract is a financial instrument that gives the
right to its holder to buy or sell a financial asset at a specified
price referred as the strike price, on or before the expiration
date. Binomial option valuation is one popular discrete time
methods of assigning a value to an option [27, 13].

The binomial option pricing computation is modelled by the

directed acyclic pyramid graph G
(n)
biop of depth n and n + 1

leaves shown in Figure 7. Here the expiration time is divided
into n intervals (defined by n+ 1 endpoints), the root is at
the present time, and the leaves are at expiration times. We

use G
(n)
biop to determine the price of an option at the root

node iteratively, starting from the leaf nodes.

G
(n)
biop models a computation with time of duration dt = T/n.

In G
(n)
biop the level increases as we go up the tree. We identify

ith node at level j by (j, i), where 1 ≤ j ≤ n+1 and 1 ≤ i ≤
n+2−j. As part of initialization we define asset and option
prices at leaf nodes (j = 1). Asset price q1i at node (1, i) is

given by q1i = Qdnu(i−1), where u = eν
√
dt and d = u−1.

Here u and d indicate the fraction by which asset can go up
or down respectively in one time interval. The initial price
of the option at node (1, i), c1i , is simply the option payoff at
the node, which is given by c1i = MAX(K − q1i , 0) where K
is the strike price. Next we iteratively compute option prices
at nodes at level j+1 using prices at level j as defined below.

cj+1
i = (puc

j
i+1 + pdc

j
i)e
−rdt (1)

qj+1
i = qji ∗ u (2)

cj+1
i = MAX(K − qj+1

i , cj+1
i) (3)

Here, cji and qji = Qdnu2(i−1)+j−1 are the option price and
asset price respectively at (j, i). Also, pu and pd are pseudo-
probabilities given by

pu =
erdt − d
u− d

pd = 1− pu

The final output, cn+1
1 is the option price at the root node.

There are two types of options: European options, and
American options. European options can only be exercised
at the time of expiration, while American options can be
exercised at any time prior to expiration. Note that compu-
tation (2) and (3) are only required for American options.
From the communication traffic perspective the difference
between American and European option is that American
option requires access to an additional array that stores as-
set prices. The computation for a call option is similar ex-
cept that the expression for payoff (3) is replaced by the
following.

cj+1
i = MAX(qj+1

i −K, cj+1
i)

In [31] we have obtained the following upper bound on the

S-Span of G
(n)
biop.

Theorem 7.1. The S-Span of G
(n)
biop satisfies ρ(S,G

(n)
biop) ≤

S(S − 1)/2.

Applying Theorem 6.1 to G
(n)
biop we have the following result.

Theorem 7.2. When the workload in computing the bi-
nomial graph on n+ 1 inputs is uniformly distributed across
all cores, each level-l cache in the UMM requires a number
of I/O operations satisfying the following bound where αl is
the number of caches at level l and βl−1 is the number of
storage locations in all caches that have a given level-l cache
as parent.

T
(L)
l,U (Σ, G

(n)
biop) ≥ αl−1n(n+ 1)

4α2
l βl−1

Also, T
(L)
l,U (Σ, G

(n)
biop) ≥

√
αl−1n/2αl.

Proof. The lower bound uses the fact that for all caches
ci,l, 1 ≤ i ≤ αl, the number of non-input vertices in the
subgraph pebbled by the cores that have ci,l as a parent is

|V ∗|/αl. The value of |V ∗| is n(n + 1)/2 for G
(n)
biop. Using

ρ(S,G
(n)
biop) ≤ S(S − 1)/2 ≤ S2/2 we have the lower bound.

The second lower bound is obtained by multiplying S0 by

αl−1/αl where ρ(2S0, Gbiop) ≥ |V ∗|/αl. Using ρ(S,G
(n)
biop) ≤

S2/2 and replacing |V ∗| by the lower bound n2/2, the result
follows.

7.2 Scientific Computations
Matrix Multiplication

We consider straight-line programs for the multiplication of
two square matrices that perform the same set of additions
and multiplications as the standard algorithm but in an ar-
bitrary order. Such computations are described by DAGs.
The result of multiplying two n×n matrices A and B is the
matrix C = AB.

The S-span of matrix multiplication is given in [30, p. 541].

Theorem 7.3. The S-Span of n×n matrix muliplication
satisfies ρ(S,GMM) ≤ 2S3/2.

Applying Theorem 6.1 to GMM we have the following result.
This result, in asymptotic form, was derived by Hong and
Kung [23]. A concrete lower bound is due to Savage [29], [30,
p. 542]. Using essentially the same basic proof technique,
Irony et al [24] also derive a concrete lower bound but solely
in the context of matrix multiplication.

Theorem 7.4. When the workload in computing the n×n
matrix multiplication graph is uniformly distributed across
all cores, each level-l cache in the UMM requires a number
of I/O operations satisfying the following bound where αl
is the number of caches at level l and βl is the number of
storage locations of caches that have a level-l cache as parent.

T
(L)
l,U (Σ, GMM) ≥

√
αl−1n

2(2n− 1)

2
√

2α
3/2
l

p
βl−1

Also, T
(L)
l,U (Σ, GMM) ≥ α1/3

l−1((n− 1)n2)2/3/(25/3αl).

Proof. The lower bound uses the fact that for all caches
ci,l, 1 ≤ i ≤ αl, the number of non-input vertices in the
subgraph pebbled by the cores that have ci,l as a parent is
|V ∗|/αl. The value of |V ∗| is n2(2n − 1) for GMM . Using

ρ(S,GMM) ≤ 2S3/2 we have the lower bound. The sec-
ond lower bound requires the smallest value of S0 satisfying
ρ(2S0, G) ≥ |V ∗|/αl−1. Since ρ(S,G) ≤ 2S3/2 and |V ∗| ≥
2(n − 1)n2, it follows that S0 ≥ ((n − 1)n2)2/3/(25/3α

2/3
l−1)

from which the conclusion follows.

The Fast Fourier Transform Algorithm
The complex Fourier Transform maps a tuple of complex
coefficients a = (a0, a1, . . . , an−1) to a set of n values b =
(b0, b1, . . . , bn−1) by evaluating the polynomial p(x) = a0 +
a1x+ · · ·+ an−1x

n−1 at the roots of unity, that is, values in
{ei2πj/n | 0 ≤ j ≤ n− 1} where bj = p(ei2πj/n) and i is the
solution to x2 = −1.

The Fast Fourier Transform algorithm (FFT) is obtained by
first writing p(x) = pe(x

2)+xpo(x
2) where pe(x

2) (xpo(x
2))

is the polynomial consisting of the coefficients of p(x) of even
(odd) degree. When the same decomposition is applied to
pe(y) and po(y) and their subpolynomials, we obtain the
FFT algorithm. It is represented by the butterfly graph.

The S-span of the FFT graph is implicit in the the work of
Hong and Kung [23]; a simplified proof the S-span is due to
Aggrawal and Vitter [9]. See also [30, p. 546].

Theorem 7.5. The S-Span of the n-input FFT graph sat-
isfies ρ(S,GFFT) ≤ 2S log2 S.

Applying Theorem 6.1 to GFFT we have the following result.

Theorem 7.6. When the workload in computing the n-
input Fast Fourier Transform graph is uniformly distributed
across all cores, each level-l cache in the UMM requires
a number of I/O operations satisfying the following bound
where αl is the number of caches at level l and βl is the num-
ber of storage locations of caches that have a level-l cache as
parent.

T
(L)
l,U (Σ, GFFT) ≥ n log2 n

4αl log2(2βl−1(αl/αl−1))

Also, T
(L)
l,U (Σ, GFFT) ≥ (n log2 n)

(4αl−1)(log2(n log2 n)−log2(2αl−1))
.

Proof. The lower bound uses the fact that for all caches
ci,l, 1 ≤ i ≤ αl, the number of non-input vertices in the
subgraph pebbled by the cores that have ci,l as a parent
is |V ∗|/αl. The value of |V ∗| is n log2 n for GFFT . Using
ρ(S,GFFT) ≤ 2S log2 S, the lower bound follows. The sec-
ond lower bound requires the smallest value of S0 satisfying
ρ(2S0, G) ≥ |V ∗|/αl−1. Since ρ(S,G) ≤ 2S log2 S, it follows
that S0 satisfies (2S0) log2(2S0) ≥ a = (n log2 n)/(2αl−1).
Straightforward substitution shows that if a ≥ 2, then 2S0 ≥
a/ log2 a. In this case,

S0 ≥ (n log2 n)/((4αl−1)(log2(n log2 n)− log2(2αl−1))).

Multiplying by αl−1/αl, we have the desired result.

8. IMPLEMENTATION
In this section, we discuss the implementation on a multicore
architecture of a representative application, option pricing.
We propose and implement a multicore algorithm for bino-
mial option pricing model. We implemented the proposed
algorithms on a multicore system with two Quad-Cores Intel
Xeon 5310 1.6GHz processors for a total of 8 cores described
in Figure 8. A core has a 32KB L1 data cache. The 4MB L2
cache is shared by two cores. A single core of the Intel Xeon
5310 processor executes four floating-point instructions in
one cycle, so the peak performance of a core is 6.4 GFLOPS
with an overall peak of 51.2 GFLOPS for the complete sys-
tem. In the UMM, α1 = 8, α2 = 4, α3 = 1. The sizes
of caches in terms of the number of double-precision words
holding values of ci and qi are σ1 = 2048, and σ2 = 256KB.

To evaluate the performance of an algorithm, we use wall
clock execution time. To evaluate how well a given algo-
rithm matches the underlying architecture, we also compute
algorithm performance as the percentage of the theoretical
peak performance in gigaflops for the target machine. For
example, when we get 25.6 GFLOPS on 8 cores of our test
system, our code is running at 50% of the peak. All our
algorithms were compiled using Intel Visual Fortran Com-
piler 10.1 on Windows XP Professional Operating System.
We compiled all our code with “-fast” option, which com-
bines various complementary optimizations for the target
processor.

System Bus

FSB

4MB Shared
L2 Cache

Xeon

L1
Cache
32KB

Xeon

L1
Cache
32KB

4MB Shared
L2 Cache

Xeon

L1
Cache
32KB

Xeon

L1
Cache
32KB

FSB

4MB Shared
L2 Cache

Xeon

L1
Cache
32KB

Xeon

L1
Cache
32KB

4MB Shared
L2 Cache

Xeon

L1
Cache
32KB

Xeon

L1
Cache
32KB

System Memory

Core 0 Core 1 Core 2 Core 3Core 0 Core 1 Core 2 Core 3

Processor 0 Processor 1

Figure 8: A Dell PowerEdge 2990 system with two
sockets and on each socket we have a Quad-Core
Intel Xeon 5310 1.6GHz processor.

8.1 Vanilla Algorithm
Let us first look at issues in implementing a vanilla algo-
rithm, which refers to a straightforward implementation of
binomial option pricing without any explicit partitioning for
parallelism. A high-level description of the code is given in
Algorithm 1. Note that the main computation is done inside
the two nested loops (lines 15-17). The compiler faces two
challenges to obtain good performance for the vanilla code:
a) effective utilization of the memory hierarchy; and b) dis-
tributing the computation amongst different cores for con-
current execution. Although compiler technology has made
a lot of progress, it still cannot address some of these issues.
The burden falls on the application programmer to parti-
tion a computation for effective utilization of the memory
hierarchy and multiple cores.

Algorithm 1 VanillaBinomial(Q,K, dt, n, r, ν)

1: u← eν
√
dt

2: d← u−1

3: pu ← erdt−d
u−d

4: pd ← 1− pu
5: ṕu ← pue

−rdt

6: ṕd ← pde
−rdt

7: {initialization loop}
8: for i = 1 to n+ 1 do
9: qi ← Qdnu(i−1) {qi is a 1-d array}

10: ci ←MAX(K − q1i , 0) {ci is a 1-d array}
11: end for
12: {main computation loop}
13: for j = 1 to n+ 1 do
14: for i = 1 to n+ 1− j do
15: ci ← ṕuci+1 + ṕdci
16: qi ← qi ∗ u
17: ci ←MAX(K − qi, ci)
18: end for
19: end for
20: return c1

8.2 Multicore Algorithm
For a multicore architecture, we need to partition the com-
putation into blocks such that multiple cores can work con-
currently on different blocks and at the same time effectively
utilize the memory heirarchy. We propose one such parti-
tioning that is illustrated in Figure 9. For this partitioning,

m

11b 12b 13b 14b

23b22b

31b

21b

32b

41b

Figure 9: Partitioning for a multicore architecture
for n = 11 and block size m = 3.

all blocks in a single row, for example blocks in jth row with
labels bj,∗ can be executed concurrently.

We select a block size for this partitioning such that the
required data for a block fits in the L1 cache of a core. Note
that as we consider problem sizes up to a maximum of 64K
leaf nodes, we can accommodate all the required data in a
Level-2 cache. Thus for our experimentation, we ignored
partitioning for Level-2. For the next level of memory, L0,
which is the number of registers in the core, we rely on the
compiler unrolling of the loop to block for registers.

Processing of a block, for example, b32 requires m outputs
each from blocks b22 and b23 that are processed as part of the
previous iteration. A high-level description of the algorithm
is shown in Algorithm 2. In our algorithm description, we
use neb(bj,i) to indicate the north-east boundary elements
of bj,i and nwb(bj,i) to indicate the north-west boundary
elements of bj,i. To keep our presentation simple, we ignore
processing of the first row of blocks, which is similar to other
rows except that a block is an incomplete square and it does
not require input from an earlier processed block. We also
assume that m evenly divides n + 1. If these assumptions
are not correct, the run times are changed by small constant
factors.

Algorithm 2 G
(n)
biop

1: for j = 2 to n+1
m

do
2: {OpenMP thread directive is placed here}
3: for i = 1 to n+1

m
− j + 1 do

4: processSquare(bj,i, neb(bj−1,i), nwb(bj−1,i+1))
5: end for
6: end for

The output of neighbor bj−1,i, north-east boundary, that is
required for processing bj,i is stored as part of the shared
array that holds the option prices. We do in place com-
putation in the shared array as we move from one level to
next similar to the vanilla algorithm. The ith element of the
shared array after processing nodes at level j holds the op-
tion price for node (j, i). The output of the neigbor bj−1,i+1,
north-west boundary, that is required for processing of bj,i
is stored separately from the shared array. To minimize the
storage requirement, we reuse the array that stores north-
west boundary of bj−1,i+1 to store north-east boundary of
bj,i.

0.00

0.05

0.10

0.15

0.20

0.25

64 128 256 512 1024 2048 4096
Block Size

Pe
rf

or
m

an
ce

 (%
 P

ea
k)

Figure 10: Execution time as a function of block size

Observe that a large block size for L1 results in an unbal-
anced load distribution amongst cores. For a given problem
size, there is an optimal block size for L1 as seen from the
plots of Figure 10. The other factor that influences the load
distribution is how various blocks are mapped to different
cores. We use OpenMP directives to parallelize the compu-
tation across different cores. We use a work-sharing directive
of OpenMP to distribute the iterations of the inner loop of
Algorithm 2 among different cores using eight threads, one
for each core. The openMP directives are placed just before
the second loop (line 2).

Observe that processing of a block bj,i in line 3 requires input
from blocks that were processed in previous iteration j − 1.
Hence the blocks in the current iteration can be concurrently
executed. The work load for each thread (core) is decided
by the schedule directive of OpenMP.

There are three main types of schedules supported in OpenMP,
namely static, dynamic, and guided. We experimented with
different schedules and found that the static schedule with
chunk size of one gave optimal performance. The chunk size
greater than one for all schedules results in low performance
due to unbalanced load distribution among cores. We use
the KMP AFFINITY environment variable to control bind-
ing of a thread to a physical core for optimal scheduling.

Analysis
We first estimate the memory traffic between an L2 cache
and one of its children L1 caches. We then multiply it by two

to get the estimate for T
(4)
2 . Observe that our partitioning

results in nb(nb+1)/2 blocks, where nb = (n+1)/m. When
n is large compared to the block sizes and the number of
cores, the number of blocks is large and they are almost
uniformly distributed among the various cores.

Because there are eight cores, the number of blocks allocated
to a core is approximately n2/16m2. A typical block has m2

entries, m at the midpoint and m(m−1)/2 above and below
the midpoint. To compute it requires that the northeast and
northwest boundaries of two neighboring blocks be provided.
The number of data items is 2m. We assume that these
values are not available in the L1 cache. The estimate for
memory traffic between one L2 cache and one of its child L1

caches is given by

T
(4)
2 /2 ≈ 2m

„
n2

16m2

«
T

(4)
2 ≈ n2

4m

From Theorem 7.2, the lower bound for T
(4)
2 is given by

T
(4)
2 ≥ α1n(n+ 1)

4α2
2β1

For our system α1 = 8, α2 = 4 and for β1 = 2m we get the
following lower bound.

T
(4)
2 ≥ n(n+ 1)

16m

Thus the proposed algorithm performance can be bounded
by a constant factor of 4 away from the lower bound. Ob-
serve that we assume the L1 cache holds m words or that
σ1 = β1/2 = m. For our system, σ1 = 2048 data values.
Considering load balancing issues as discussed earlier, when
m = 2048 and the problem size is small, the performance
of the algorithm can be far from optimal. This is due to
an artifact of our lower bounds, which ignores load balanc-
ing issues. It may be possible to strengthen our bounds by
considering these issues. Because our system has a large
L2 cache for the problem sizes considered, we do not have

a strong bound for T
(4)
3 , which is trivially bounded by the

number of inputs. Hence we ignore T
(4)
3 from our analysis.

Performance
We summarize our results in Tables 2 to 5. Our algorithm
performs better for large problem sizes. We achieve 33% of
the peak performance for 64K problem size versus 23% of
the peak performance for the 8K problem size on 8 cores.
For the 64K size problem, we obtained 16.7 GFLOPS. Simi-
larly we observed a better scalability for large problem sizes.
For example, we obtained a speedup of 7.3 for the 64K size
problem on 8 cores versus a speedup of 5.5 for the 8K size
problem on 8 cores.

For comparison, we also implemented a vanilla algorithm,
which refers to a straightforward implementation of binomial
option pricing without any explicit partitioning for paral-
lelism. We compiled the vanilla code with the “-fast” option
along with the “-Qparallel” option that enables the auto-
parallelizer to generate multithreaded code for loops that
can be safely executed in parallel. Our results for the vanilla
algorithm are summarized in Table 6. The best performance
for the vanila algorithm is 4% of the peak as compared to
33% of the peak for our algorithm.

Table 2: Execution time for the binomial algorithm
using OpenMP

8192 0.094 0.050 0.028 0.017
16384 0.372 0.192 0.102 0.058
32768 1.414 0.723 0.379 0.208
65536 5.634 2.848 1.468 0.770

n+1 1 Core 2 Cores 4 Cores

Execution Time (Seconds)

8 Cores

Table 3: Performance of the binomial algorithm as
percentage of theoretical peak

8192 33% 32% 28% 23%
16384 34% 33% 31% 27%
32768 36% 35% 33% 30%
65536 36% 35% 34% 33%

n+1 1 Core 2 Cores 4 Cores

% Peak

8 Cores

Table 4: Performance of the binomial algorithm in
GFLOPS

8192 2.1 4.0 7.2 11.7
16384 2.2 4.2 7.9 14.0
32768 2.3 4.5 8.5 15.5
65536 2.3 4.5 8.8 16.7

GFLOPS

8 Coresn+1 1 Core 2 Cores 4 Cores

Table 5: Scalability performance of the binomial al-
gorithm

8192 1.0 1.9 3.4 5.5
16384 1.0 1.9 3.6 6.5
32768 1.0 2.0 3.7 6.8
65536 1.0 2.0 3.8 7.3

2 Cores 4 Cores 8 Cores

Speedup

n+1 1 Core

Table 6: Performance of the vanilla-binomial algo-
rithm using ”-fast”and ”-Qparallel”compiler options
for optimization and auto-parallelization

8192 0.09 2.15 4.2%
16384 0.38 2.15 4.2%
32768 1.53 2.10 4.1%
65536 6.14 2.10 4.1%

n+1 Execution
Time (sec) GFLOPS % Peak

9. CONCLUSIONS
In this paper, we present a unified memory hierarchy model
for multicore architectures that have a varying degree of
sharing of caches at different levels. We also present a gen-
eral strategy that can help in deriving lower bounds for com-
munication traffic for a single core and multiple cores for
different applications. We show that the S-span of a DAG
captures the computation dependencies inherent in the DAG
and use it to develop lower bounds on communication traf-
fic for a single core and multiple cores. We demonstrate
that our unified framework can be applied to a variety of
multicore architectures for a variety of applications.

We also give multicore algorithms for a financial application
that exhibit a constant-factor optimal amount of memory
traffic between different levels. We implemented these algo-
rithms on a multicore system and demonstrated that our al-
gorithms outperform compiler-optimized and auto-parallelized
code by a factor of up to 7.3.

One of the limitations of our model is that it works for
straight-line computations all of which can be represented
as DAGs.

10. ACKNOWLEDGMENTS
This work was supported in part by NSF Grant CCF-0403674.

11. REFERENCES
[1] Intel’s multicore architecture briefing, 2008.

http://www.intel.com/pressroom/archive/

releases/20080317fact.htm.

[2] Teraflops research chip, 2008. http://techresearch.
intel.com/articles/Tera-Scale/1449.htm.

[3] TILE64 processor family, 2008.
http://www.tilera.com/products/processors.php.

[4] UltraSPARC T2 Processor – Overview, 2008.
http://www.sun.com/processors/UltraSPARC-T2/.

[5] R. C. Agarwal, F. G. Gustavson, and M. Zubair.
Exploiting functional parallelism of POWER2 to
design high-performance numerical algorithms. IBM J.
Res. Dev., 38(5):563–576, 1994.

[6] A. Aggarwal, B. Alpern, A. Chandra, and M. Snir. A
model for hierarchical memory. In Proceedings of 19th
Annual ACM Symposium on the Theory of
Computing, pages 305–314, New York, 1987.

[7] A. Aggarwal, A. Chandra, and M. Snir. Hierarchical
memory with block transfer. In 28th Annual
Symposium on Foundations of Computer Science,
pages 204–216, Los Angeles, California, October 1987.

[8] A. Aggarwal, A. K. Chandra, and M. Snir.
Communication complexity of PRAMs. Theor.
Comput. Sci., 71(1):3–28, 1990.

[9] A. Aggarwal and S. V. Jeffrey. The input/output
complexity of sorting and related problems. Commun.
ACM, 31(9):1116–1127, 1988.

[10] B. Alpern, L. Carter, E. Feig, and T. Selker. The
uniform memory hierarchy model of computation.
Algorithmica, 12(2/3):72–109, 1994.

[11] B. Alpern, L. Carter, and J. Ferrante. Modeling
parallel computers as memory hierarchies. In
Proceedings of the 1993 Conference on Programming

Models for Massively Parallel Computers, pages
116–123, 1993.

[12] A. Bar-Noy and S. Kipnis. Designing broadcasting
algorithms in the Postal model for message-passing
systems. Math. Syst. Theory, 27(5):431–452, 1994.

[13] J. C. Cox, S. A. Ross, and M. Rubinstein. Option
pricing: A simplified approach. Journal of Financial
Economics, 7(3):229–263, September 1979.

[14] D. Culler, R. Karp, D. Patterson, A. Sahay, K. E.
Schauser, E. Santos, R. Subramonian, and T. von
Eicken. LogP: towards a realistic model of parallel
computation. SIGPLAN Not., 28(7):1–12, 1993.

[15] J. J. Dongarra, J. DuCroz, S. Hammarling, and
R. Hanson. An extended set of Fortran basic linear
algebra subprograms. ACM Trans. on Math. Soft.,
14:1–17, 1988.

[16] J. J. Dongarra, J. DuCroz, S.Hammarling, and
R. Hanson. Algorithm 656: An extended set of
Fortran basic linear algebra subprograms: Model
implementation and test programs. ACM Trans.
Math. Soft., 14:18–32, 1988.

[17] S. Fortune and J. Wyllie. Parallelism in random access
machines. In STOC ’78: Proceedings of the tenth
annual ACM symposium on Theory of computing,
pages 114–118, New York, NY, USA, 1978. ACM.

[18] K. Goto and R. A. van de Geijn. Anatomy of
high-performance matrix multiplication. ACM Trans.
Math. Softw., 34(3):1–25, 2008.

[19] M. Gschwind, H. P. Hofstee, B. Flachs, M. Hopkins,
Y. Watanabe, and T. Yamazaki. Synergistic
processing in Cell’s multicore architecture. IEEE
Micro, 26(2):10–24, 2006.

[20] A. Gupta, F. G. Gustavson, M. Joshi, and S. Toledo.
The design, implementation, and evaluation of a
symmetric banded linear solver for
distributed-memory parallel computers. ACM Trans.
Math. Softw., 24(1):74–101, 1998.

[21] F. G. Gustavson. High-performance linear algebra
algorithms using new generalized data structures for
matrices. IBM J. Res. Dev., 47(1):31–55, 2003.

[22] J. L. Hennessy and D. A. Patterson. Computer
Architecture: A Quantitative Approach. Morgan
Kaufmann, San Francisco, CA, 2007.

[23] J.-W. Hong and H. T. Kung. I/O complexity: The
red-blue pebble game. In Proc. 13th Ann. ACM Symp.
on Theory of Computing, pages 326–333, 1981.

[24] D. Irony, S. Toledo, and A. Tiskin. Communication
lower bounds for distributed-memory matrix
multiplication. J. Parallel Distrib. Comput.,
64(9):1017–1026, 2004.

[25] B. H. H. Juurlink and H. A. G. Wijshoff. The parallel
hierarchical memory model. In SWAT ’94: Proceedings
of the 4th Scandinavian Workshop on Algorithm
Theory, pages 240–251, London, UK, 1994.
Springer-Verlag.

[26] B. K̊agström, P. Ling, and C. van Loan. GEMM-based
level 3 BLAS: high-performance model
implementations and performance evaluation
benchmark. ACM Trans. Math. Softw., 24(3):268–302,
1998.

[27] Y. Kwok. Mathematical Models of Financial

Derivatives. Springer-Verlag, Singapore, 1998.

[28] Z. Li, P. H. Mills, and J. H. Reif. Models and resource
metrics for parallel and distributed computation. In
HICSS ’95: Proceedings of the 28th Hawaii
International Conference on System Sciences
(HICSS’95), page 51, Washington, DC, USA, 1995.
IEEE Computer Society.

[29] J. E. Savage. Extending the Hong-Kung model to
memory hierarchies. In D.-Z. Du and M. Li, editors,
Computing and Combinatorics, pages 270–281.
Springer-Verlag, Lecture Notes in Computer Science,
1995.

[30] J. E. Savage. Models of Computation: Exploring the
Power of Computing. Addison Wesley, Reading,
Massachusetts, 1998.

[31] J. E. Savage and M. Zubair. Cache-optimal algorithms
for option pricing, 2008. Submitted for publication.

[32] J. E. Savage and M. Zubair. Memory hierarchy issues
in multicore architectures. Technical Report CS-08-08,
Department of Computer Science, Brown University,
2008.

[33] M. Tremblay and S. Chaudhry. A third-generation
65nm 16-core 32-thread plus 32-scout-thread CMT
SPARC c© processor, 2008. http:
//blogs.sun.com/HPC/resource/RockISSCC08.pdf.

[34] L. G. Valiant. A bridging model for parallel
computation. Commun. ACM, 33(8):103–111, 1990.

[35] J. S. Vitter and E. A. M. Shriver. Optimal disk I/O
with parallel block transfer. In STOC ’90: Proceedings
of the twenty-second annual ACM symposium on
Theory of computing, pages 159–169, New York, NY,
USA, 1990. ACM.

[36] J. S. Vitter and E. A. M. Shriver. Algorithms for
parallel memory I: two-level memories. Algorithmica,
12(2/3):110–147, 1994.

[37] J. S. Vitter and E. A. M. Shriver. Algorithms for
parallel memory II: hierarchical multilevel memories.
Algorithmica, 12(2/3):148–169, 1994.

