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multithreaded programming models have complex run-
time characteristics that prevent traditional performance 
analysis strategies from pinpointing bottlenecks.

Recognizing the critical need for new performance 
analysis methods and tools, we have developed a profil-
ing strategy for identifying bottlenecks in programs that 
use work stealing—a powerful, practical, and influential 
scheduling model for dynamically mapping multithreaded 
computations onto multicore processors. Although work 
stealing provides good load balancing, there is currently 
no way to pinpoint scalability bottlenecks or provide user-
level insight into their causes.

Our strategy, implemented in HPCToolkit (http:// 
hpctoolkit.org), addresses both these deficiencies.1 It quan-
tifies parallel idleness (when threads wait for work) and 
overhead (when threads work on non-user code). It then 
pinpoints regions of the user’s application that need more 
or less concurrency (to reduce idleness or overhead, respec-
tively) and that employ hopeless parallelization (because 
both idleness and overhead are high). In contrast, existing 
profilers compute less insightful metrics and fail to distin-
guish between source code and the scheduler. Finally, our 
strategy incurs no measurement overhead beyond that for 
normal sampling-based profiling (typically 1 to 5 percent). 

To gauge our strategy’s effectiveness, we analyzed 
the performance of a program for Cholesky decom-

W
ith the increase in clock frequencies over 
the past several years, power dissipa-
tion has become a substantial problem 
for microprocessor architectures. In 
response, the microprocessor industry 

has shifted its focus to designs with a higher processor 
core count. For software to benefit from this shift, it must 
exploit threaded parallelism, which in turn requires pro-
gramming models that will facilitate the development of 
efficient multithreaded programs. 

However, even with new programming models, many 
shared-memory algorithms that scale to eight cores are 
unlikely to scale to next-generation machines with scores 
of threaded cores. Because many scaling problems are 
hard to diagnose, programmer productivity demands 
helpful performance tools. However, the most promising 

Work stealing is an effective load-balancing  
strategy for multithreading, but when comp- 
utations based on it underperform, tradi-
tional tools can’t explain why. To resolve a 
computation’s key performance obstacles, 
tools must pinpoint and quantify parallel 
idleness and overhead.
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In Figure 1b, which represents the computation’s (sim-
plified) logical parallelism, the spawns and syncs form 
a tree of dependencies, in which each interior node (not 
a leaf) depends directly on its two children. The tree is 
slightly unbalanced to indicate that more work is on the 
left side than on the right. 

The Cilk runtime system must efficiently map logically 
independent calls onto computational cores. Each asyn-
chronous call can be thought of as a lightweight thread, 
or task. The Cilk work-stealing model combines lazy task 
creation with a work-stealing scheduler. To execute the 
program, the runtime system creates a pool of worker 
threads at the operating-system level, one per available 
core. Then, as Figure 2 shows, the first worker thread 
begins executing the first task. If no other worker threads 
are in the pool, program execution continues sequentially, 
without any additional task creation. Whenever the thread 
pool contains an idle worker, that worker attempts to steal 
a task from a working thread.

The Cilk work-stealing model is attractive because, 
although a spawn identifies an independent task, the over-
head of assigning this work to a separate thread occurs 
only when a worker thread is idle. Moreover, as long as 
worker threads execute enough spawns, work stealing 
will naturally achieve very good load balance. Both these 
features mean that, as long as the program has sufficient 
logical parallelism, the same Cilk program can execute 
efficiently on one core or many. 

THE CHALLENGE OF ANALYZING 
PERFORMANCE

If a Cilk program is slow and does not scale well, the 
Cilk compiler can insert instrumentation to compute an 
abstract measure of the program’s critical path as well 

position written in Cilk, 
a multithreaded lan-
guage based on work 
stealing. Without any 
insight into the source 
code, we were able to 
make strong, precise 
statements about the 
program’s parallel ef-
ficiency. Moreover, our 
method applies to any 
work-scheduling imple-
mentation and to other 
mu l t i t h r e ade d pr o -
gramming models such 
Cilk++, OpenMP, and In-
tel’s Threading Building 
Blocks.

MULTICORE PROGRAMMING LANGUAGES
To become widely adopted, a parallel programming 

language must have four key properties. First, express-
ing parallelism should be simple. Second, the language 
must be expressive enough to easily combine different 
parallel programming models. Many large-scale parallel 
programs are based on data parallelism, in which the 
same computation is mapped across many data elements. 
Although this model dominates high-performance com-
puting, many other applications contain both data and 
task parallelism, and in irregular ways. Third, the lan-
guage must make it possible to exploit parallel resources 
efficiently. Finally, the language should ensure against 
future architectural changes by transparently scaling to 
increasing core counts.

From its conception, Cilk possessed these four proper-
ties.2 It has proven influential, spawning a commercial 
counterpart, Cilk++, and serving as an exemplar for Intel’s 
Threading Building Blocks and Microsoft’s Concurrency 
Runtime, as well as for ongoing research projects.

Cilk, an extension of C, provides two keywords for ex-
pressing parallelism. A spawn transforms a sequential 
(blocking) function call into an asynchronous (nonblock-
ing) call. A sync blocks a function’s execution until all its 
spawned children have completed. 

Figure 1a shows a sample Cilk program for computing 
the nth Fibonacci number. The function computes fib(n) 
as the sum of fib(n – 1) and fib(n – 2). (This program is for 
illustration only; there are more efficient algorithms for 
this computation.) Because the recursive calls to fib are 
spawned, Cilk’s runtime system can execute them in paral-
lel. Because the expression (x + y) depends on the results 
of both calls, the sync ensures that both have completed 
before the addition begins. 

cilk int fib (n) { 
  if (n < 2)  return n; 
  else {
    int x, y;
    x = spawn fib (n - 1);
    y = spawn fib (n - 2); 
    sync;
    return (x + y);
  }
}

(a) (b)

Figure 1. Example of Cilk’s simplicity and expressiveness. A successful parallel language for 
multicore applications must be able to express complex patterns of parallelism relatively 
easily. In (a), asynchronous calls (spawns) in a simple Cilk program to compute the nth 
Fibonacci number create logical tasks that block only at a sync, which (b) quickly creates 
significant logical parallelism.
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approximate the performance of a machine-
independent model, they obscure important 
architectural details, such as memory-system 
performance, which might be critical to an ap-
plication’s actual performance. In addition, the 
instrumentation to compute Cilk’s metrics is 
costly, significantly dilating execution time. 

To pinpoint performance bottlenecks in a 
program based on work stealing, performance 
metrics must reflect the quality of the program’s 
parallelism. A parallel program executes effi-
ciently when the granularity of parallel tasks is 
small enough to keep every core busy, but large 
enough to avoid needless task management. 
Thus, two aspects of parallelism are particularly 
important for efficiency: whether the program 
contains enough parallelism to occupy all the 
processor cores and whether that parallelism 
is sufficiently coarse grained so that the cost of 
managing it is not large relative to the cost of 
performing the program’s actual work.

Additionally, because most programs are 
written in a modular coding style, to identify 
performance bottlenecks, performance met-
rics must be attributed to the calling context in 
which they occur. Unfortunately, work stealing 
makes this very difficult.

THE CHALLENGE OF  
ATTRIBUTING METRICS

Call path profilers attribute metrics to calling 
contexts. To achieve low overhead, sampling-
based call path profilers use statistical sampling 
rather than instrumentation. Figure 3 shows 
how such call path profilers work. The key ad-
vantage of sampling over instrumentation is 
that sampling overhead is proportional to sam-
pling frequency, not call frequency. Moreover, 
sampling naturally elides unimportant data; 
if a region of the profiled program receives no 
samples, that region’s cost is negligible.

Cilk’s work-stealing scheduler renders even 
sophisticated call path profilers useless. To 
understand why, consider the calling contexts 

in Figure 4, which are derived from Figure 2. What hap-
pens if worker thread 3 receives a sample? Because that 
thread began its execution with a steal, its stack of native 
procedure frames represents only a suffix of the full 
calling context. In fact, the rest of thread 3’s context is 
separated in both space and time—space because thread 
1 contains its parent context, and time because thread 
1 continues executing rather than blocking and waiting 
for thread 3 to complete the asynchronous call. As ex-
ecution progresses, call paths can become even more 

as its degree of parallelism relative to that path.3 These 
metrics are attractive because they are largely machine 
independent, and the measure of parallelism provides 
predictive insight for scaling the application to a system 
with more cores. 

But what if the aim is to resolve a scaling bottleneck? 
Where in the source code does it arise? How severe is it? 
Unfortunately, Cilk’s metrics provide little insight into a 
problem’s severity, location, or resolution. Moreover, ab-
stract metrics are a double-edged sword. Although they 

Figure 2. Scheduling work through work stealing. Execution of the Cilk 
program in Figure 1a begins with the Cilk runtime system assigning 
the whole computation to worker thread 1 (red). This worker starts 
elaborating the call tree in a depth-first order and continues down the 
far-left branch, as in a serial execution. An idle thread, worker thread 2 
(green), steals the continuation associated with fib(n), which promptly 
spawns a second asynchronous call to compute fib(n – 2). A second 
idle thread, worker thread 3 (blue), has two threads to steal from. It 
randomly chooses to steal from thread 1 and then selects the next piece 
of available work, the continuation associated with fib(n – 1), a call to 
fib(n – 3).

Instruction  pointer
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“main”
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Figure 3. A sampling call path profiler. The profiler initializes a timer or 
hardware counter that generates a signal when it expires or overflows. 
For each sample event, the profiler gathers the profiled application’s 
calling context using stack unwinding, yielding (a) a call path sample 
represented as a list of instruction pointers, with the leaf being the 
sample point. A collection of samples naturally forms (b) a calling 
context tree whose root is the program’s entry point. 
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We also modified our sampling strategy. If a sample 
event occurs in a thread that is not working, the thread  
ignores it. When a sample event occurs in a working 
thread, the thread attributes one sample unit to the work 
metric for its sample context. The thread then obtains n

w
 

and n
w

 and attributes a fractional sample n
w

/n
w
 to the 

idleness metric for the sample context. Even though the 
thread itself is not idle, it is critical to understand what 
work that thread is performing while other threads are 
idle. Our strategy charges the thread its proportional re-
sponsibility for not keeping the idle processors busy at that 
moment at that point in the program.

As an example, consider a sample of a Cilk execution, 
in which five threads are working and three threads are 
idle. Each working thread records one sample of work in 
its work metric, and a 3/5 sample of idleness in its idleness 
metric. The total amount of work and idleness charged for 
the sample is thus 5 and 3, respectively. 

QUANTIFYING PARALLELIZATION OVERHEAD 
Once we had quantified parallel idleness, we wanted 

to measure parallel overhead. We had already defined a 
program’s effort as the sum of work and idleness, where 
work is nonidle time, but to measure parallel overhead, 
we had to refine the work metric to distinguish useful 
work from parallel overhead. Thus, a program’s work 
becomes the sum of useful work and overhead, where 
overhead is the time spent executing something other 
than the user’s computation. Sources of parallel over-
head include task synchronization and bookkeeping 
operations to prepare tasks for the possibility of being 
stolen. 

The key challenge is that on a sample event, a nonidling 
thread must be able to efficiently determine whether to 
charge the sample to the overhead or useful-work metric. 
Because at the binary level overhead instructions are 
intermingled with useful-work instructions, the two cat-
egories are indistinguishable without prior arrangement. 
A compiler could insert instrumentation, but that would 
be extremely costly. 

fragmented because procedure frames migrate 
between threads during steals. Consequently, 
standard call path profiling of a Cilk program 
yields a result that is at best cumbersome and 
at worst incomprehensible. For effective per-
formance analysis, it is important to bridge the 
gap between user-level abstractions and their 
realization at runtime by attributing costs to 
their full logical calling context. We call this 
logical call path profiling.

QUANTIFYING INSUFFICIENT 
PARALLELISM 

The total computational effort of a program 
is the sum of work and idleness, where “idleness” is time 
that threads wait for “work.” To quantify insufficient par-
allelism, our method directly and efficiently measures and 
attributes the idleness component of an execution using 
logical call path profiling.

Cilk’s work-stealing scheduler creates one worker 
thread per core. When a sample event occurs during 
profiling, each thread receives an asynchronous signal. 
Worker threads are either working or idle. If a worker 
thread is idle, it is spinning within a scheduling loop wait-
ing for another thread to create a task that it can steal. A 
standard call path profiler attributes samples on the basis 
of first-person knowledge of what a thread itself is doing. 
Consequently, working threads accumulate samples 
where they work, but idle threads accumulate samples in 
the scheduling loop. 

Although this method quantifies parallel idleness by 
classifying samples received within the scheduler as idle-
ness, the results are not actionable because they do not 
pinpoint the cause of idleness. To identify cause, an idle 
thread must also have third-person knowledge about 
which other threads are responsible for its own idleness. 
In a work-stealing computation, a thread is idle precisely 
because other threads have no extra tasks available to 
steal. Therefore, when a thread is idle, the current work-
ing threads are culpable because they are not generating 
enough logical parallelism to keep all threads busy. Thus, 
our method changes how samples are attributed for idle 
threads by forming an idleness metric that blames actively 
working threads for not spawning enough tasks to keep 
all workers busy. 

To compute idleness, we first adjusted the Cilk sched-
uler to always maintain the number of working threads, 
n

w
, and idle threads, n

w
. To do this, the scheduler simply 

maintains a nodewide counter to represent n
w
. When a 

thread begins a task, it atomically increments n
w
. When 

a thread completes its current task, it atomically decre-
ments n

w
 to indicate that it is no longer working. Then, at 

any given time, n
w

 = n - n
w
, where n is the number of 

worker threads. 

 Physical call path 
(the thread’s stack):

Logical call path:

�b(n 3)�b(n 1) ...

�b(n 3)�b(n 1) ...�b(n 1)

Figure 4. A case for logical call path profiling. Suppose that thread 3 
(blue) from the example in Figure 2 receives a sample. Because that 
thread began its execution with a steal, sampling cannot capture the full 
context. The rest of the context is separated in space and time. Logical 
call path profiling attributes metrics to their full logical calling context.
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execution. Figure 5 gives a simplified example of recover-
ing the logical context of a Cilk worker thread. A logical call 
path is a list of pairs in which each pair consists of a list of 
source-level frames and their corresponding realization 
as native frames. 

Logical unwinding is applicable to other parallel and 
serial languages. Because the details of mapping native 
to source-level frames are different for each language 
implementation, our profiling strategy provides a general 
application programming interface for obtaining logical 
unwinds given a language-specific plug-in. 

IDENTIFYING PARALLEL BOTTLENECKS
Collecting parallel idleness and overhead metrics and 

attributing them to their logical calling context yields ac-
tionable insight that helps a developer resolve bottlenecks. 
With information about parallel idleness and overhead 
attributed hierarchically over loops, procedures, and the 
calling contexts of a program, it is possible to directly 
assess parallel efficiency and provide guidance about how 
to improve it. (Using a postmortem binary analysis, our 
tools can attribute metrics to loops without any profiling 
overhead.) 

If a region of the program (such as a parallel loop) is at-
tributed with high idleness and low overhead, a decrease 
in the parallelism’s granularity could enhance parallel 
efficiency. If the overhead is high and the idleness low, a 
granularity increase could reduce overhead. If the over-
head is high and there is still insufficient parallelism, the 
parallelism is inefficient and no granularity adjustment 
will help. In this case, keeping the idle processors busy 
requires a different parallelization: for example, a combi-
nation of data and functional parallelism instead of only 
one or the other. 

It is also necessary to consider efficiency on an indi-
vidual core. With logical call path profiling, a profiler can 
associate hardware-performance-counter-based metrics 
to Cilk program contexts. Using hardware-performance 
counters, for example, enables the computation of memory 
bandwidth or memory latency for all loops in a program—
in their full calling context. 

ANALYZING CHOLESKY DECOMPOSITION 
To demonstrate the power of attributing work, parallel 

idleness, and parallel overhead to logical call path profiles, 
we used our method to analyze the performance of the Cho-
lesky program from the Cilk 5.4.6 source distribution. We 
profiled a problem size of 3000 × 3000 (30,000 nonzeros) 
on a symmetric multiprocessor with dual quad-core AMD 
Opterons (2360 SE, 2.5 GHz) and a 4-Gbyte main memory. 

The big picture
In Figure 6, our presentation tool is displaying the call-

ing context view of the aggregated results. The screenshot 

The key insight is this: Because distinguishing over-
head instructions from useful-work instructions can be 
done with static analysis, a performance tool can actually 
create an overhead metric postmortem. For example, we 
modified the Cilk compiler to specially tag instructions that 
are associated with parallelization overhead. These tags 
could take several forms, but a particularly convenient one 
associates overhead instructions with special file or proce-
dure names within the binary’s debugging information. A 
postmortem analysis tool recovers the compiler-recorded 
tags, identifies instructions associated with overhead, and 
attributes any samples of work associated with them to the 
overhead metric. 

Tags have several attractive properties. Because they 
are only metainformation, they can be created and used 
without affecting runtime performance in any way. Al-
though tags consume space, they need not be loaded into 
memory at runtime. In addition, tags can be refined to 
partition overhead sources into several types, providing 
more detailed information to users or analysis tools. 

ATTRIBUTION WITH LOGICAL  
CALL PATH PROFILING 

To attribute parallel idleness and overhead metrics to 
full calling contexts, we developed logical call path profil-
ing to bridge the gap between Cilk’s source-level calling 
contexts and their realization at runtime when load is 
being dynamically rebalanced through work stealing. 

As Figure 4 shows, mapping measurements during ex-
ecution back to a source program requires reassembling 
source-level contexts, which have been fragmented during 

 Four “one-to-one” frame pairsOne “one-to-many” frame pair

Thread’s physical stack

Cilk scheduler
Sample

Worker’s context (w/in Cilk runtime)

Steal
Cilk worker’s stack

Source-level calling context

Figure 5. Recovering the logical context of a Cilk worker 
thread. The logical call path has five pairs, with the outermost 
frame at the left. For each pair, source-level frames are on 
the bottom (green nodes) and native frames (red and blue 
nodes) are on the top. Thus, the top frames represent the 
native frames of a worker thread’s stack. The outermost 
native frame represents Cilk’s scheduler loop, and the next 
native frame represents a steal point. Because of the steal 
point, the outermost native frame corresponds to several 
source-level frames that represent the context of the steal. In 
contrast, each native frame after the steal point corresponds 
to only one source-level frame. 
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In Figure 7, the navigation pane is sorted according to 
relative idleness, the most troubling inefficiency. Unlike 
the metrics in the calling context view, these metrics 
have exclusive (“E”) values because they do not include 
values for a procedure’s callees. The top two routines in 
the list are versions of free, a C library routine. Together 
they account for about 35.8 percent (20.8 percent + 15.0 
percent) of the program’s idleness. When the callers for 
these routines are expanded, it is evident that both are 
called by free_matrix, a serial helper routine that deal-
locates the matrix for the Cholesky driver. Moving down 
the list reveals that every routine shown in the screenshot 
is a serial helper. Because each of these serial routines 
except block_schur_full is related to initialization or 
finalization, the user can see immediately that reducing 
the fraction of parallel idleness requires either a larger 
matrix or parallelization of the initialization and finaliza-
tion routines. 

has three main components. The navigation 
pane shows a top-down view of the calling 
context tree, partially expanded. The pane 
contains several source-level procedure 
instances along the call paths. (Physical pro-
cedure instances are not shown.) The source 
pane shows the procedure cholesky, which 
corresponds to the selected line in the navi-
gation pane. Each entry in the navigation 
pane is associated with metric values. In the 
idleness and overhead columns, the values 
in scientific notation represent idleness and 
overhead as percentages of total effort; the 
values shown as percentages to their right give 
an entry’s proportion of the total idleness or 
overhead, respectively. The “I” qualifier at the 
top of the column denotes that the metrics 
are inclusive—they represent values for the 
associated procedure instance in addition to 
all its callees. Thus, the metric name “work 
(all/I)” means inclusive work summed over all 
threads. The viewer sorts sibling entries with 
respect to the selected metric column, which 
in the figure is “work (all/I).”

At the bottom of the navigation pane is a 
loop within the context of cilk_main. The 
navigation pane actually contains a fusion 
of the dynamic logical calling contexts and 
static loop contexts. 

To obtain an overview of the program’s 
performance, the user can expand the calling 
context tree to the first call of cholesky and 
then note the metrics on the right. As Figure 6 
shows, 50.7 percent of the total work is spent 
in the top-level call to cholesky; the top-level 
call to mul_and_subT (which verifies the fac-
torization) is a close second at about 47 percent. It is also 
immediately apparent that 19.9 percent of the total parallel 
idleness and 54.7 percent of the total overhead occur in 
cholesky. However, because this idleness and overhead are 
only about 2.45 and 1.28 percent of the total effort, respec-
tively, the parallelization of cholesky is very effective for 
this execution. In contrast, the parallelization of the entire 
program (using cilk_main as a proxy) is less effective, with 
overhead accounting for a relatively low 2.33 percent, but 
idleness increasing to 12.1 percent of the total effort. 

The details
To pinpoint exactly where inefficiency occurs, the 

callers view is often useful because it looks up from a pro-
cedure to the procedures that call it. Thus, at the first level, 
the callers view lists all the program’s procedures. If mul-
tiple instances of a given procedure appear in the calling 
context view, the callers view aggregates those instances. 

Figure 6. A calling context view of the Cholesky program. The selected 
line in the navigation pane and the source pane (top) show the cholesky 
procedure. The navigation pane (bottom left) shows a top-down view of 
the calling context tree, partially expanded. The metric columns (bottom 
right) show summed values over the eight worker threads for work (in 
cycles), parallel idleness, and parallel overhead (yielding the “all” qualifier 
in their names). Both idleness and overhead are shown as percentages of 
total effort, where effort is the sum of work, idleness, and overhead.
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stealing-based languages. Our approach is 
effective because it relies on metrics that 
are completely intuitive and can be mapped 
back to the user’s programming abstractions, 
even though the runtime realization of these 
abstractions is significantly different. We 
have also shown that an effective approach 
can be highly efficient: The runtime cost of 
our profiling can be made arbitrarily low by 
reducing the sampling frequency. Finally, 
we have shown that it is possible to collect 
implementation-level measurements and 
project detailed metrics to a much higher 
level of abstraction without compromising 
their accuracy or utility.  
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In hindsight, it is hardly surprising that serial code 
was responsible for idleness. What is surprising is that 
without any prior knowledge of the program, we could 
immediately pinpoint serial code and quantify its impact 
on parallel efficiency. 

T
he growing need to develop applications for 
multicore architectures makes tools that can 
pinpoint and quantify performance bottle-
necks in multithreaded applications absolutely 
essential. Such tools will become critical as less- 

skilled application developers are forced to write paral-
lel programs to benefit from increasing core counts in 
emerging processors. 

Our method demonstrates that attributing work, par-
allel idleness, and parallel overhead to logical calling 
contexts quickly provides insight into the runtime per-
formance of a Cilk program. Although we have focused 
on Cilk, our techniques can be applied to other work-

 Selected CS articles and columns are available for free at 
 http://ComputingNow.computer.org.

Figure 7. A callers view of the Cholesky program. This view is a bottom-
up look at the call chain, which reveals the source of the inefficiency. The 
top pane shows a list of procedures rank-ordered according to the metric 
of interest, in this case, relative idleness. The bottom pane shows an 
expanded view of the callers for these routines. The expanded view shows 
instantly that free_matrix, a serial routine, is calling the top two routines.
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