
COMPUTER	44

COVER FE ATURE

Published by the IEEE Computer Society 0018-9162/09/$26.00 © 2009 IEEE	

multithreaded programming models have complex run-
time characteristics that prevent traditional performance
analysis strategies from pinpointing bottlenecks.

Recognizing the critical need for new performance
analysis methods and tools, we have developed a profil-
ing strategy for identifying bottlenecks in programs that
use work stealing—a powerful, practical, and influential
scheduling model for dynamically mapping multithreaded
computations onto multicore processors. Although work
stealing provides good load balancing, there is currently
no way to pinpoint scalability bottlenecks or provide user-
level insight into their causes.

Our strategy, implemented in HPCToolkit (http://
hpctoolkit.org), addresses both these deficiencies.1 It quan-
tifies parallel idleness (when threads wait for work) and
overhead (when threads work on non-user code). It then
pinpoints regions of the user’s application that need more
or less concurrency (to reduce idleness or overhead, respec-
tively) and that employ hopeless parallelization (because
both idleness and overhead are high). In contrast, existing
profilers compute less insightful metrics and fail to distin-
guish between source code and the scheduler. Finally, our
strategy incurs no measurement overhead beyond that for
normal sampling-based profiling (typically 1 to 5 percent).

To gauge our strategy’s effectiveness, we analyzed
the performance of a program for Cholesky decom-

W
ith the increase in clock frequencies over
the past several years, power dissipa-
tion has become a substantial problem
for microprocessor architectures. In
response, the microprocessor industry

has shifted its focus to designs with a higher processor
core count. For software to benefit from this shift, it must
exploit threaded parallelism, which in turn requires pro-
gramming models that will facilitate the development of
efficient multithreaded programs.

However, even with new programming models, many
shared-memory algorithms that scale to eight cores are
unlikely to scale to next-generation machines with scores
of threaded cores. Because many scaling problems are
hard to diagnose, programmer productivity demands
helpful performance tools. However, the most promising

Work stealing is an effective load-balancing
strategy for multithreading, but when comp-
utations based on it underperform, tradi-
tional tools can’t explain why. To resolve a
computation’s key performance obstacles,
tools must pinpoint and quantify parallel
idleness and overhead.

Nathan R. Tallent and John M. Mellor-Crummey, Rice University

IDENTIFYING
PERFORMANCE
BOTTLENECKS IN
WORK-STEALING
COMPUTATIONS

Authorized licensed use limited to: MIT Libraries. Downloaded on January 28, 2010 at 11:42 from IEEE Xplore. Restrictions apply.

45DECEMBER 2009

In Figure 1b, which represents the computation’s (sim-
plified) logical parallelism, the spawns and syncs form
a tree of dependencies, in which each interior node (not
a leaf) depends directly on its two children. The tree is
slightly unbalanced to indicate that more work is on the
left side than on the right.

The Cilk runtime system must efficiently map logically
independent calls onto computational cores. Each asyn-
chronous call can be thought of as a lightweight thread,
or task. The Cilk work-stealing model combines lazy task
creation with a work-stealing scheduler. To execute the
program, the runtime system creates a pool of worker
threads at the operating-system level, one per available
core. Then, as Figure 2 shows, the first worker thread
begins executing the first task. If no other worker threads
are in the pool, program execution continues sequentially,
without any additional task creation. Whenever the thread
pool contains an idle worker, that worker attempts to steal
a task from a working thread.

The Cilk work-stealing model is attractive because,
although a spawn identifies an independent task, the over-
head of assigning this work to a separate thread occurs
only when a worker thread is idle. Moreover, as long as
worker threads execute enough spawns, work stealing
will naturally achieve very good load balance. Both these
features mean that, as long as the program has sufficient
logical parallelism, the same Cilk program can execute
efficiently on one core or many.

THE CHALLENGE OF ANALYZING
PERFORMANCE

If a Cilk program is slow and does not scale well, the
Cilk compiler can insert instrumentation to compute an
abstract measure of the program’s critical path as well

position written in Cilk,
a multithreaded lan-
guage based on work
stealing. Without any
insight into the source
code, we were able to
make strong, precise
statements about the
program’s parallel ef-
ficiency. Moreover, our
method applies to any
work-scheduling imple-
mentation and to other
mu l t i t h r e ade d pr o -
gramming models such
Cilk++, OpenMP, and In-
tel’s Threading Building
Blocks.

MULTICORE PROGRAMMING LANGUAGES
To become widely adopted, a parallel programming

language must have four key properties. First, express-
ing parallelism should be simple. Second, the language
must be expressive enough to easily combine different
parallel programming models. Many large-scale parallel
programs are based on data parallelism, in which the
same computation is mapped across many data elements.
Although this model dominates high-performance com-
puting, many other applications contain both data and
task parallelism, and in irregular ways. Third, the lan-
guage must make it possible to exploit parallel resources
efficiently. Finally, the language should ensure against
future architectural changes by transparently scaling to
increasing core counts.

From its conception, Cilk possessed these four proper-
ties.2 It has proven influential, spawning a commercial
counterpart, Cilk++, and serving as an exemplar for Intel’s
Threading Building Blocks and Microsoft’s Concurrency
Runtime, as well as for ongoing research projects.

Cilk, an extension of C, provides two keywords for ex-
pressing parallelism. A spawn transforms a sequential
(blocking) function call into an asynchronous (nonblock-
ing) call. A sync blocks a function’s execution until all its
spawned children have completed.

Figure 1a shows a sample Cilk program for computing
the nth Fibonacci number. The function computes fib(n)
as the sum of fib(n – 1) and fib(n – 2). (This program is for
illustration only; there are more efficient algorithms for
this computation.) Because the recursive calls to fib are
spawned, Cilk’s runtime system can execute them in paral-
lel. Because the expression (x + y) depends on the results
of both calls, the sync ensures that both have completed
before the addition begins.

cilk int fib (n) {
 if (n < 2) return n;
 else {
 int x, y;
 x = spawn fib (n - 1);
 y = spawn fib (n - 2);
 sync;
 return (x + y);
 }
}

(a) (b)

Figure 1. Example of Cilk’s simplicity and expressiveness. A successful parallel language for
multicore applications must be able to express complex patterns of parallelism relatively
easily. In (a), asynchronous calls (spawns) in a simple Cilk program to compute the nth
Fibonacci number create logical tasks that block only at a sync, which (b) quickly creates
significant logical parallelism.

Authorized licensed use limited to: MIT Libraries. Downloaded on January 28, 2010 at 11:42 from IEEE Xplore. Restrictions apply.

COVER FE ATURE

COMPUTER	46

approximate the performance of a machine-
independent model, they obscure important
architectural details, such as memory-system
performance, which might be critical to an ap-
plication’s actual performance. In addition, the
instrumentation to compute Cilk’s metrics is
costly, significantly dilating execution time.

To pinpoint performance bottlenecks in a
program based on work stealing, performance
metrics must reflect the quality of the program’s
parallelism. A parallel program executes effi-
ciently when the granularity of parallel tasks is
small enough to keep every core busy, but large
enough to avoid needless task management.
Thus, two aspects of parallelism are particularly
important for efficiency: whether the program
contains enough parallelism to occupy all the
processor cores and whether that parallelism
is sufficiently coarse grained so that the cost of
managing it is not large relative to the cost of
performing the program’s actual work.

Additionally, because most programs are
written in a modular coding style, to identify
performance bottlenecks, performance met-
rics must be attributed to the calling context in
which they occur. Unfortunately, work stealing
makes this very difficult.

THE CHALLENGE OF
ATTRIBUTING METRICS

Call path profilers attribute metrics to calling
contexts. To achieve low overhead, sampling-
based call path profilers use statistical sampling
rather than instrumentation. Figure 3 shows
how such call path profilers work. The key ad-
vantage of sampling over instrumentation is
that sampling overhead is proportional to sam-
pling frequency, not call frequency. Moreover,
sampling naturally elides unimportant data;
if a region of the profiled program receives no
samples, that region’s cost is negligible.

Cilk’s work-stealing scheduler renders even
sophisticated call path profilers useless. To
understand why, consider the calling contexts

in Figure 4, which are derived from Figure 2. What hap-
pens if worker thread 3 receives a sample? Because that
thread began its execution with a steal, its stack of native
procedure frames represents only a suffix of the full
calling context. In fact, the rest of thread 3’s context is
separated in both space and time—space because thread
1 contains its parent context, and time because thread
1 continues executing rather than blocking and waiting
for thread 3 to complete the asynchronous call. As ex-
ecution progresses, call paths can become even more

as its degree of parallelism relative to that path.3 These
metrics are attractive because they are largely machine
independent, and the measure of parallelism provides
predictive insight for scaling the application to a system
with more cores.

But what if the aim is to resolve a scaling bottleneck?
Where in the source code does it arise? How severe is it?
Unfortunately, Cilk’s metrics provide little insight into a
problem’s severity, location, or resolution. Moreover, ab-
stract metrics are a double-edged sword. Although they

Figure 2. Scheduling work through work stealing. Execution of the Cilk
program in Figure 1a begins with the Cilk runtime system assigning
the whole computation to worker thread 1 (red). This worker starts
elaborating the call tree in a depth-first order and continues down the
far-left branch, as in a serial execution. An idle thread, worker thread 2
(green), steals the continuation associated with fib(n), which promptly
spawns a second asynchronous call to compute fib(n – 2). A second
idle thread, worker thread 3 (blue), has two threads to steal from. It
randomly chooses to steal from thread 1 and then selects the next piece
of available work, the continuation associated with fib(n – 1), a call to
fib(n – 3).

Instruction pointer

Return address

Return address

Return address

(a) (b)

“main”

sample point

Figure 3. A sampling call path profiler. The profiler initializes a timer or
hardware counter that generates a signal when it expires or overflows.
For each sample event, the profiler gathers the profiled application’s
calling context using stack unwinding, yielding (a) a call path sample
represented as a list of instruction pointers, with the leaf being the
sample point. A collection of samples naturally forms (b) a calling
context tree whose root is the program’s entry point.

Authorized licensed use limited to: MIT Libraries. Downloaded on January 28, 2010 at 11:42 from IEEE Xplore. Restrictions apply.

47DECEMBER 2009

We also modified our sampling strategy. If a sample
event occurs in a thread that is not working, the thread
ignores it. When a sample event occurs in a working
thread, the thread attributes one sample unit to the work
metric for its sample context. The thread then obtains n

w

and n
w

 and attributes a fractional sample n
w

/n
w
 to the

idleness metric for the sample context. Even though the
thread itself is not idle, it is critical to understand what
work that thread is performing while other threads are
idle. Our strategy charges the thread its proportional re-
sponsibility for not keeping the idle processors busy at that
moment at that point in the program.

As an example, consider a sample of a Cilk execution,
in which five threads are working and three threads are
idle. Each working thread records one sample of work in
its work metric, and a 3/5 sample of idleness in its idleness
metric. The total amount of work and idleness charged for
the sample is thus 5 and 3, respectively.

QUANTIFYING PARALLELIZATION OVERHEAD
Once we had quantified parallel idleness, we wanted

to measure parallel overhead. We had already defined a
program’s effort as the sum of work and idleness, where
work is nonidle time, but to measure parallel overhead,
we had to refine the work metric to distinguish useful
work from parallel overhead. Thus, a program’s work
becomes the sum of useful work and overhead, where
overhead is the time spent executing something other
than the user’s computation. Sources of parallel over-
head include task synchronization and bookkeeping
operations to prepare tasks for the possibility of being
stolen.

The key challenge is that on a sample event, a nonidling
thread must be able to efficiently determine whether to
charge the sample to the overhead or useful-work metric.
Because at the binary level overhead instructions are
intermingled with useful-work instructions, the two cat-
egories are indistinguishable without prior arrangement.
A compiler could insert instrumentation, but that would
be extremely costly.

fragmented because procedure frames migrate
between threads during steals. Consequently,
standard call path profiling of a Cilk program
yields a result that is at best cumbersome and
at worst incomprehensible. For effective per-
formance analysis, it is important to bridge the
gap between user-level abstractions and their
realization at runtime by attributing costs to
their full logical calling context. We call this
logical call path profiling.

QUANTIFYING INSUFFICIENT
PARALLELISM

The total computational effort of a program
is the sum of work and idleness, where “idleness” is time
that threads wait for “work.” To quantify insufficient par-
allelism, our method directly and efficiently measures and
attributes the idleness component of an execution using
logical call path profiling.

Cilk’s work-stealing scheduler creates one worker
thread per core. When a sample event occurs during
profiling, each thread receives an asynchronous signal.
Worker threads are either working or idle. If a worker
thread is idle, it is spinning within a scheduling loop wait-
ing for another thread to create a task that it can steal. A
standard call path profiler attributes samples on the basis
of first-person knowledge of what a thread itself is doing.
Consequently, working threads accumulate samples
where they work, but idle threads accumulate samples in
the scheduling loop.

Although this method quantifies parallel idleness by
classifying samples received within the scheduler as idle-
ness, the results are not actionable because they do not
pinpoint the cause of idleness. To identify cause, an idle
thread must also have third-person knowledge about
which other threads are responsible for its own idleness.
In a work-stealing computation, a thread is idle precisely
because other threads have no extra tasks available to
steal. Therefore, when a thread is idle, the current work-
ing threads are culpable because they are not generating
enough logical parallelism to keep all threads busy. Thus,
our method changes how samples are attributed for idle
threads by forming an idleness metric that blames actively
working threads for not spawning enough tasks to keep
all workers busy.

To compute idleness, we first adjusted the Cilk sched-
uler to always maintain the number of working threads,
n

w
, and idle threads, n

w
. To do this, the scheduler simply

maintains a nodewide counter to represent n
w
. When a

thread begins a task, it atomically increments n
w
. When

a thread completes its current task, it atomically decre-
ments n

w
 to indicate that it is no longer working. Then, at

any given time, n
w

 = n - n
w
, where n is the number of

worker threads.

 Physical call path
(the thread’s stack):

Logical call path:

�b(n 3)�b(n 1) ...

�b(n 3)�b(n 1) ...�b(n 1)

Figure 4. A case for logical call path profiling. Suppose that thread 3
(blue) from the example in Figure 2 receives a sample. Because that
thread began its execution with a steal, sampling cannot capture the full
context. The rest of the context is separated in space and time. Logical
call path profiling attributes metrics to their full logical calling context.

Authorized licensed use limited to: MIT Libraries. Downloaded on January 28, 2010 at 11:42 from IEEE Xplore. Restrictions apply.

COVER FE ATURE

COMPUTER	48

execution. Figure 5 gives a simplified example of recover-
ing the logical context of a Cilk worker thread. A logical call
path is a list of pairs in which each pair consists of a list of
source-level frames and their corresponding realization
as native frames.

Logical unwinding is applicable to other parallel and
serial languages. Because the details of mapping native
to source-level frames are different for each language
implementation, our profiling strategy provides a general
application programming interface for obtaining logical
unwinds given a language-specific plug-in.

IDENTIFYING PARALLEL BOTTLENECKS
Collecting parallel idleness and overhead metrics and

attributing them to their logical calling context yields ac-
tionable insight that helps a developer resolve bottlenecks.
With information about parallel idleness and overhead
attributed hierarchically over loops, procedures, and the
calling contexts of a program, it is possible to directly
assess parallel efficiency and provide guidance about how
to improve it. (Using a postmortem binary analysis, our
tools can attribute metrics to loops without any profiling
overhead.)

If a region of the program (such as a parallel loop) is at-
tributed with high idleness and low overhead, a decrease
in the parallelism’s granularity could enhance parallel
efficiency. If the overhead is high and the idleness low, a
granularity increase could reduce overhead. If the over-
head is high and there is still insufficient parallelism, the
parallelism is inefficient and no granularity adjustment
will help. In this case, keeping the idle processors busy
requires a different parallelization: for example, a combi-
nation of data and functional parallelism instead of only
one or the other.

It is also necessary to consider efficiency on an indi-
vidual core. With logical call path profiling, a profiler can
associate hardware-performance-counter-based metrics
to Cilk program contexts. Using hardware-performance
counters, for example, enables the computation of memory
bandwidth or memory latency for all loops in a program—
in their full calling context.

ANALYZING CHOLESKY DECOMPOSITION
To demonstrate the power of attributing work, parallel

idleness, and parallel overhead to logical call path profiles,
we used our method to analyze the performance of the Cho-
lesky program from the Cilk 5.4.6 source distribution. We
profiled a problem size of 3000 × 3000 (30,000 nonzeros)
on a symmetric multiprocessor with dual quad-core AMD
Opterons (2360 SE, 2.5 GHz) and a 4-Gbyte main memory.

The big picture
In Figure 6, our presentation tool is displaying the call-

ing context view of the aggregated results. The screenshot

The key insight is this: Because distinguishing over-
head instructions from useful-work instructions can be
done with static analysis, a performance tool can actually
create an overhead metric postmortem. For example, we
modified the Cilk compiler to specially tag instructions that
are associated with parallelization overhead. These tags
could take several forms, but a particularly convenient one
associates overhead instructions with special file or proce-
dure names within the binary’s debugging information. A
postmortem analysis tool recovers the compiler-recorded
tags, identifies instructions associated with overhead, and
attributes any samples of work associated with them to the
overhead metric.

Tags have several attractive properties. Because they
are only metainformation, they can be created and used
without affecting runtime performance in any way. Al-
though tags consume space, they need not be loaded into
memory at runtime. In addition, tags can be refined to
partition overhead sources into several types, providing
more detailed information to users or analysis tools.

ATTRIBUTION WITH LOGICAL
CALL PATH PROFILING

To attribute parallel idleness and overhead metrics to
full calling contexts, we developed logical call path profil-
ing to bridge the gap between Cilk’s source-level calling
contexts and their realization at runtime when load is
being dynamically rebalanced through work stealing.

As Figure 4 shows, mapping measurements during ex-
ecution back to a source program requires reassembling
source-level contexts, which have been fragmented during

 Four “one-to-one” frame pairsOne “one-to-many” frame pair

Thread’s physical stack

Cilk scheduler
Sample

Worker’s context (w/in Cilk runtime)

Steal
Cilk worker’s stack

Source-level calling context

Figure 5. Recovering the logical context of a Cilk worker
thread. The logical call path has five pairs, with the outermost
frame at the left. For each pair, source-level frames are on
the bottom (green nodes) and native frames (red and blue
nodes) are on the top. Thus, the top frames represent the
native frames of a worker thread’s stack. The outermost
native frame represents Cilk’s scheduler loop, and the next
native frame represents a steal point. Because of the steal
point, the outermost native frame corresponds to several
source-level frames that represent the context of the steal. In
contrast, each native frame after the steal point corresponds
to only one source-level frame.

Authorized licensed use limited to: MIT Libraries. Downloaded on January 28, 2010 at 11:42 from IEEE Xplore. Restrictions apply.

49DECEMBER 2009

In Figure 7, the navigation pane is sorted according to
relative idleness, the most troubling inefficiency. Unlike
the metrics in the calling context view, these metrics
have exclusive (“E”) values because they do not include
values for a procedure’s callees. The top two routines in
the list are versions of free, a C library routine. Together
they account for about 35.8 percent (20.8 percent + 15.0
percent) of the program’s idleness. When the callers for
these routines are expanded, it is evident that both are
called by free_matrix, a serial helper routine that deal-
locates the matrix for the Cholesky driver. Moving down
the list reveals that every routine shown in the screenshot
is a serial helper. Because each of these serial routines
except block_schur_full is related to initialization or
finalization, the user can see immediately that reducing
the fraction of parallel idleness requires either a larger
matrix or parallelization of the initialization and finaliza-
tion routines.

has three main components. The navigation
pane shows a top-down view of the calling
context tree, partially expanded. The pane
contains several source-level procedure
instances along the call paths. (Physical pro-
cedure instances are not shown.) The source
pane shows the procedure cholesky, which
corresponds to the selected line in the navi-
gation pane. Each entry in the navigation
pane is associated with metric values. In the
idleness and overhead columns, the values
in scientific notation represent idleness and
overhead as percentages of total effort; the
values shown as percentages to their right give
an entry’s proportion of the total idleness or
overhead, respectively. The “I” qualifier at the
top of the column denotes that the metrics
are inclusive—they represent values for the
associated procedure instance in addition to
all its callees. Thus, the metric name “work
(all/I)” means inclusive work summed over all
threads. The viewer sorts sibling entries with
respect to the selected metric column, which
in the figure is “work (all/I).”

At the bottom of the navigation pane is a
loop within the context of cilk_main. The
navigation pane actually contains a fusion
of the dynamic logical calling contexts and
static loop contexts.

To obtain an overview of the program’s
performance, the user can expand the calling
context tree to the first call of cholesky and
then note the metrics on the right. As Figure 6
shows, 50.7 percent of the total work is spent
in the top-level call to cholesky; the top-level
call to mul_and_subT (which verifies the fac-
torization) is a close second at about 47 percent. It is also
immediately apparent that 19.9 percent of the total parallel
idleness and 54.7 percent of the total overhead occur in
cholesky. However, because this idleness and overhead are
only about 2.45 and 1.28 percent of the total effort, respec-
tively, the parallelization of cholesky is very effective for
this execution. In contrast, the parallelization of the entire
program (using cilk_main as a proxy) is less effective, with
overhead accounting for a relatively low 2.33 percent, but
idleness increasing to 12.1 percent of the total effort.

The details
To pinpoint exactly where inefficiency occurs, the

callers view is often useful because it looks up from a pro-
cedure to the procedures that call it. Thus, at the first level,
the callers view lists all the program’s procedures. If mul-
tiple instances of a given procedure appear in the calling
context view, the callers view aggregates those instances.

Figure 6. A calling context view of the Cholesky program. The selected
line in the navigation pane and the source pane (top) show the cholesky
procedure. The navigation pane (bottom left) shows a top-down view of
the calling context tree, partially expanded. The metric columns (bottom
right) show summed values over the eight worker threads for work (in
cycles), parallel idleness, and parallel overhead (yielding the “all” qualifier
in their names). Both idleness and overhead are shown as percentages of
total effort, where effort is the sum of work, idleness, and overhead.

Authorized licensed use limited to: MIT Libraries. Downloaded on January 28, 2010 at 11:42 from IEEE Xplore. Restrictions apply.

COVER FE ATURE

COMPUTER	50

stealing-based languages. Our approach is
effective because it relies on metrics that
are completely intuitive and can be mapped
back to the user’s programming abstractions,
even though the runtime realization of these
abstractions is significantly different. We
have also shown that an effective approach
can be highly efficient: The runtime cost of
our profiling can be made arbitrarily low by
reducing the sampling frequency. Finally,
we have shown that it is possible to collect
implementation-level measurements and
project detailed metrics to a much higher
level of abstraction without compromising
their accuracy or utility.

References
	1. 	N.R. Tallent and J. Mellor-Crummey, “Ef-
		 fective Performance Measurement and Anal-
		 ysis of Multithreaded Applications,” Proc.
		 Symp. Principles and Practice of Parallel Pro-
		 gramming (SIGPLAN 09), ACM Press, 2009, pp.
		 229-240.
	2. 	M. Frigo, C.E. Leiserson, and K.H. Randall,
		 “The Implementation of the Cilk-5 Multi-
		 threaded Language,” Proc. Conf. Programming
		 Language Design and Implementation (SIG-
		 PLAN 98), ACM Press, 1998, pp. 212-223.
	3. 	Supercomputing Technologies Group, MIT
		 Laboratory for Computer Science, Cilk Refer-
		 ence Manual; http://supertech.csail.mit.edu/
		 cilk.

Nathan R. Tallent is a PhD candidate in the
Department of Computer Science at Rice

University. His research interests include the performance
measurement, attribution, analysis, and interpretation of
parallel programs. He received an MS in computer science
from Rice University. Contact him at tallent@rice.edu.

John M. Mellor-Crummey is a professor in the Depart-
ments of Computer Science and Electrical and Computer
Engineering at Rice University. His research interests in-
clude compilers, tools, and runtime libraries for multicore
processors and scalable parallel systems. He received a PhD
in computer science from the University of Rochester. He
is a member of the IEEE Computer Society and the ACM.
Contact him at johnmc@rice.edu.

In hindsight, it is hardly surprising that serial code
was responsible for idleness. What is surprising is that
without any prior knowledge of the program, we could
immediately pinpoint serial code and quantify its impact
on parallel efficiency.

T
he growing need to develop applications for
multicore architectures makes tools that can
pinpoint and quantify performance bottle-
necks in multithreaded applications absolutely
essential. Such tools will become critical as less-

skilled application developers are forced to write paral-
lel programs to benefit from increasing core counts in
emerging processors.

Our method demonstrates that attributing work, par-
allel idleness, and parallel overhead to logical calling
contexts quickly provides insight into the runtime per-
formance of a Cilk program. Although we have focused
on Cilk, our techniques can be applied to other work-

	 Selected CS articles and columns are available for free at
	 http://ComputingNow.computer.org.

Figure 7. A callers view of the Cholesky program. This view is a bottom-
up look at the call chain, which reveals the source of the inefficiency. The
top pane shows a list of procedures rank-ordered according to the metric
of interest, in this case, relative idleness. The bottom pane shows an
expanded view of the callers for these routines. The expanded view shows
instantly that free_matrix, a serial routine, is calling the top two routines.

Authorized licensed use limited to: MIT Libraries. Downloaded on January 28, 2010 at 11:42 from IEEE Xplore. Restrictions apply.

