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ABSTRACT

We have developed a multithreaded implementation of breadth-first

search (BFS) of a sparse graph using the Cilk++ extensions to C++.

Our PBFS program on a single processor runs as quickly as a stan-

dard C++ breadth-first search implementation. PBFS achieves high

work-efficiency by using a novel implementation of a multiset data

structure, called a “bag,” in place of the FIFO queue usually em-

ployed in serial breadth-first search algorithms. For a variety of

benchmark input graphs whose diameters are significantly smaller

than the number of vertices — a condition met by many real-world

graphs — PBFS demonstrates near-perfect linear speedup in the

number of processing cores, as long as the machine has sufficient

memory bandwidth.

Since PBFS employs a nonconstant-time “reducer” — a “hyper-

object” feature of Cilk++ — the work inherent in a PBFS execution

depends nondeterministically on how the underlying work-stealing

scheduler load-balances the computation. We provide a general

method for analyzing nondeterministic programs that use reduc-

ers. PBFS also is nondeterministic in that it contains benign races

which affect its performance but not its correctness. Fixing these

races with mutual-exclusion locks slows down PBFS empirically,

but it makes the algorithm amenable to analysis. In particular, we

show that for a graph G = (V,E) with diameter D and bounded out-

degree, this data-race-free version of PBFS algorithm runs in time

O((V +E)/P +O(D lg3(V/D)) on P processors.
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1. INTRODUCTION
Algorithms to search a graph in a breadth-first manner have

been studied for over 50 years. The first breadth-first search

(BFS) algorithm was discovered by Moore [28] in the context

of finding paths through mazes. Lee [23] independently discov-

ered the same algorithm in the context of routing wires on circuit

boards. A variety of parallel BFS algorithms have since been ex-

plored [3, 9, 22, 26, 33, 35]. Some of these parallel algorithms are

work efficient, meaning that the total number of operations per-

formed is the same to within a constant factor as that of the best

serial algorithm. That constant factor, which we call the work ef-

ficiency, can be important in practice, but few if any papers actu-

ally measure work efficiency. In this paper, we present a parallel

BFS algorithm, called PBFS, whose performance scales linearly

with the number of processors and for which the work efficiency is

nearly 1, as measured on benchmark graphs.

SERIAL-BFS(V,E,v0)

1 for each vertex u ∈V −{v0}
2 u.dist = ∞

3 v0.dist = 0

4 Q = {v0}
5 while Q 6= /0

6 u = DEQUEUE(Q)
7 for each v ∈V such that (u,v) ∈ E

8 if v.dist = = ∞

9 v.dist = u.dist +1

10 ENQUEUE(Q,v)

Figure 1: A standard serial breadth-first search algorithm operating on a
graph G with source vertex v0 ∈ V (G). The algorithm employs a FIFO
queue Q as an auxiliary data structure to compute for each v ∈ V(G) its
distance v.dist from v0 .

Given a graph G with vertex set V = V (G) and edge set E =
E(G), the BFS problem is to compute for each vertex v ∈ V the

distance v.dist of v from a distinguished source vertex v0 ∈V . We

measure distance as the minimum number of edges on a path from

v0 to v in G. For simplicity in the statement of results, we shall as-

sume that G is connected and undirected, although the algorithms

we shall explore apply equally as well to unconnected graphs, di-

graphs, and multigraphs.

Figure 1 gives a variant of the classical serial algorithm (see,

for example, [10, Section 22.2]) for computing BFS, which uses a

FIFO queue as an auxiliary data structure. The FIFO can be imple-

mented as a simple array with two pointers to the head and tail of

the items in the queue. Enqueueing an item consists of increment-

ing the tail pointer and storing the item into the array at the pointer

location. Dequeueing consists of removing the item referenced by

the head pointer and incrementing the head pointer. Since these two

operations take only Θ(1) time, the running time of SERIAL-BFS

is Θ(V + E). Moreover, the constants hidden by the asymptotic

notation are small, due to the extreme simplicity of the FIFO oper-

ations.

Although efficient, the FIFO queue Q is a major hindrance to

parallelization of BFS. Parallelizing BFS while leaving the FIFO

queue intact yields minimal parallelism for sparse graphs — those

for which |E| ≈ |V |. The reason is that if each ENQUEUE operation

must be serialized, the span1 of the computation — the longest

serial chain of executed instructions in the computation — must

have length Ω(V ). Thus, a work-efficient algorithm — one that

uses no more work than a comparable serial algorithm — can have

1Sometimes called critical-path length or computational depth.



 0

 1

 2

 3

 4

 5

 6

 7

 8

 0  1  2  3  4  5  6  7  8

S
pe

ed
up

Processors

Characteristic Performance of PBFS

Serial BFS
PBFS

PBFS + intensity

Figure 2: The characteristic performance of PBFS for a large graph show-
ing speedup curves for serial BFS and for PBFS. In addition, the figure
shows the curve for a variant of PBFS where the computational intensity
has been artificially enhanced and the speedup normalized.

parallelism — the ratio of work to span — at most O((V +E)/V ) =
O(1) if |E| = O(V ).

Replacing the FIFO queue with another data structure in order

to parallelize BFS may compromise work efficiency, however, be-

cause FIFO’s are so simple and fast. We have devised a multiset

data structure called a bag, however, which supports insertion es-

sentially as fast as a FIFO, even when constant factors are consid-

ered. In addition, bags can be split and unioned efficiently.

We have implemented a parallel BFS algorithm in Cilk++ [20,

24], called PBFS, which employs bags instead of a FIFO. The

bags are incorporated into the program using a Cilk++ “hyperob-

ject” feature called a “reducer” [16]. Our Cilk++ implementation of

PBFS runs as fast on a single processor as a good serial implemen-

tation of BFS. For a variety of benchmark graphs whose diameters

are significantly smaller than the number of vertices — a common

occurrence in practice — PBFS demonstrates linear speedup with

the number of processing cores, at least until it encounters archi-

tectural limits on memory bandwidth.

Figure 2 shows the typical speedup obtained for PBFS on a large

benchmark graph, in this case, for a sparse matrix arising from the

study of electrical power flow [34]. This graph has |V |= 2,063,494

vertices, |E| = 12,771,361 edges, and a diameter of D = 31. The

code was run on an Intel Core i7 (Nahalem) machine with eight

2.53GHz processing cores, 12GB of RAM, and an 8MB cache per

core. As can be seen from the figure, although PBFS scales well

initially, it attains a speedup of only about 5 on 8 cores. By arti-

ficially increasing the computational intensity — the ratio of the

number of CPU operations to the number of memory operations

— the figure shows that the leveling off is due to the architectural

limitations of memory bandwidth, rather than to the inherent paral-

lelism in the algorithm.

PBFS is a nondeterministic program for two reasons. First, be-

cause the program employs a bag reducer which operates in non-

constant time, the asymptotic amount of work can vary from run

to run depending upon how Cilk++’s work-stealing scheduler load-

balances the computation. In addition, for efficient implementation,

PBFS contains a benign race condition, which also can cause ad-

ditional work to be generated nondeterministically. Our theoretical

analysis of PBFS bounds the additional work due to the bag re-

ducer when the race condition is resolved using mutual-exclusion

locks. Theoretically, on a graph G with vertex set V = V (G), edge

set E = E(G), diameter D, and bounded out-degree, this “locking”

version of PBFS performs BFS in O((V + E)/P + D lg3(V/D))
time on P processors and exhibits effective parallelism Ω((V +
E)/D lg3(V/D)), which is considerable when D ≪ V , even if the

graph is sparse. Our method of analysis is general and can be ap-

plied to other programs that employ reducers. We leave it as an

open question how to analyze the extra work when the race condi-

tion is left unresolved.

The remainder of this paper is organized as follows. Section 2

provides background on the dag model of multithreading. Section 3

describes the basic PBFS algorithm, and Section 4 describes the

implementation of the bag data structure. Section 5 gives a formal

model for reducer behavior, Section 6 develops a theory for analyz-

ing programs that use reducers, and Section 7 employs this theory

to analyze the performance of PBFS. Section 8 presents our em-

pirical studies. Finally, Section 9 offers some generalizations and

concluding remarks.

2. BACKGROUND ON DYNAMIC

MULTITHREADING
This section overviews the key attributes of dynamic multi-

threading. The PBFS software is implemented in Cilk++ [16,

20, 24], which is a linguistic extension to C++ [31], but most of

the vagaries of C++ are unnecessary for understanding the issues.

Thus, this section describes Cilk-like pseudocode, as is exempli-

fied in [10, Ch. 27], which should be more straightforward than real

code for the reader to understand and which can be translated easily

to Cilk++. We explain how a multithreaded program execution can

be modeled theoretically using the framework of Feng and Leiser-

son [15] (as opposed to the similar framework in [10, Ch. 27]), and

overview assumptions about the runtime environment. We define

deterministic and nondeterministic computations and describe how

reducer hyperobjects fit into the theoretical framework.

Multithreaded pseudocode

The linguistic model for multithreaded pseudocode in [10, Ch. 27]

follows MIT Cilk [17,32] and Cilk++ [20,24]. It augments ordinary

serial pseudocode with three keywords — spawn, sync, and paral-

lel— of which spawn and sync are the more basic. Parallel work is

created when the keyword spawn precedes the invocation of a func-

tion. The semantics of spawning differ from a C or C++ function

call only in that the parent may continue to execute in parallel with

the child, instead of waiting for the child to complete, as is normally

done for a function call. A function cannot safely use the values re-

turned by its children until it executes a sync statement. Together,

spawn and sync allow programs containing fork-join parallelism

to be expressed succinctly. The scheduler in the runtime system

takes the responsibility of scheduling the spawned functions on the

individual processor cores of the multicore computer and synchro-

nizing their returns according to the fork-join logic provided by the

spawn and sync keywords.

Loops can be parallelized by preceding an ordinary for with the

keyword parallel, which indicates that all iterations of the loop

may operate in parallel. Parallel loops do not require additional

runtime support, but can be implemented by parallel divide-and-

conquer recursion using spawn and sync.

A key property of this linguistic model is that a multithreaded

program admits a serial execution. Simply eliding the keywords

spawn, sync, and parallel produces a serial program, called the

serialization, which implements the semantics of the multithreaded

program. The serialization has the property that spawned children



Figure 3: A directed acyclic graph representation of a multithreaded ex-
ecution. Each edge represents an instruction. Triangular nodes represent
spawns, and rectangular nodes represent syncs. The partial order given by
the dag represents the ordering constraints among instructions during pro-
gram execution.

are simply called, and they complete their execution before the par-

ent resumes, as with an ordinary function call.

Cilk++ provides a novel linguistic construct, called reducer hy-

perobjects [16], which allow concurrent updates to a shared vari-

able or data structure to occur simultaneously without contention.

A reducer is defined in terms of a binary associative REDUCE oper-

ator, such as sum, list concatenation, logical AND, etc. Updates to

the hyperobject are accumulated in local views, which the Cilk++

runtime system combines automatically with REDUCE when sub-

computations join. As we shall see in Section 3, PBFS uses a re-

ducer called a “bag,” which implements an unordered set and sup-

ports fast unioning as its REDUCE operator.

Cilk++’s reducer mechanism supports this kind of decomposi-

tion of update sequences automatically without requiring the pro-

grammer to manually create the view x′. When a function spawns,

the spawned child inherits the parent’s view of the hyperobject. If

the child returns before the continuation executes, the child can

return the view and chain of updates can continue. If the continua-

tion begins executing before the child returns, however, it receives

a new view initialized to the identity for the associative REDUCE

operator. Sometime at or before the sync that joins the spawned

child with its parent, the two views are combined with REDUCE.

If REDUCE is indeed associative, the result is the same as if all the

updates had occurred serially. Indeed, if the program is run on one

processor, the entire computation updates only a single view with-

out ever invoking the REDUCE operator. The behavior is virtually

identically to a serial execution that uses an ordinary object instead

of a hyperobject.

We shall discuss precise semantics for reducers in Section 5.

The dag model

We shall adopt the dag model for multithreading similar to the one

introduced by Feng and Leiserson [15]. This model was designed

to model the execution of spawns and syncs. We shall extend it in

Section 5 to deal with reducers.

The dag model views the executed computation resulting from

the running of a multithreaded program (on a given input2) as a dag

(directed acyclic graph) A, where the edge set consists of strands

— sequences of serially executed instructions containing no par-

allel control — and the vertex set contains connective nodes. We

shall use A to denote both the dag and the set of strands in the dag.

Figure 3 illustrates such a dag, which is in some sense a parallel

2When we talk about program executions, we shall generally assume that
we mean “on a given input.”

program trace, in that it involves executed instructions, as opposed

to source instructions. A strand can be as small as a single instruc-

tion, or it can represent a longer computation. Generally, we dice a

chain of serially executed instructions into strands in a manner that

is convenient for the computation we are modeling. The length of a

strand is time it takes for a processor to execute all its instructions.

For simplicity, we shall assume that programs execute on an ideal

parallel computer, where each instruction takes unit time to exe-

cute, there is ample memory bandwidth, there are no cache effects,

etc.

Determinacy

We say that a dynamic multithreaded program is deterministic (on

a given input) if every memory location is updated with the same

sequence of values in every execution. Otherwise, the program

is nondeterministic. A deterministic program always behaves the

same, no matter how the program is scheduled. Two different mem-

ory locations may be updated in different orders, but each location

always sees the same sequence of updates. Whereas a nondetermin-

istic program may produce different dags, i.e., behave differently, a

deterministic program always produces the same dag.

A program execution contains a determinacy race3 [15] if two

parallel strands access the same memory location and at least one of

the strands updates it. A program with no determinacy races always

produces the same dag, no matter how the execution is scheduled.

A race-free dag contains no determinacy races.

Work and span

The dag model admits two natural measures of performance which

can be used to provide important bounds [6, 8, 13, 19] on perfor-

mance and speedup.

• The work of a dag A, denoted by Work(A), is the sum of the

lengths of all the strands in the dag. Assuming for simplicity

that it takes unit time to execute a strand, the work for the

example dag in Figure 3 is 26.

• The span4 of A, denoted by Span(A), is length of the longest

path in the dag. Assuming unit-time strands, the span of

the dag in Figure 3 is 9, which is realized by both the path

abgklmnoz and the path abghi jnoz.

The work/span model is outlined in tutorial fashion in [10, Ch. 27],

although that presentation uses nodes for strands and edges to indi-

cate dependencies between strands.

Suppose that a program produces a dag A in time TP when run

on P processors of an ideal computer. We have the following two

lower bounds on the execution time TP:

Tp ≥ Work(A)/P , (1)

TP ≥ Span(A) . (2)

Inequality (2), which is called the Work Law, holds in our simple

theoretical performance model, because each processor executes

at most 1 instruction per unit time, and hence P processors can

3Determinacy races have been given many different names in the litera-
ture. For example, they are sometimes called access anomalies [12], data
races [27], race conditions [21], or harmful shared-memory accesses [30].
Netzer and Miller [29] clarify different types of races and define a gen-
eral race or determinacy race to be a race that causes a supposedly deter-
ministic program to behave nondeterministically. (They also define a data
race or atomicity race to be a race in a nondeterministic program involving
nonatomic accesses to critical regions.) We prefer the more descriptive term
“determinacy race.” Emrath and Padua [14] call a deterministic program in-
ternally deterministic if the program execution on the given input exhibits
no determinacy race and externally deterministic if the program has deter-
minacy races but its output is deterministic because of the commutative and
associative operations performed on the shared locations.
4The literature also uses the terms depth [4] and critical-path length [5].



execute at most P instructions per unit time. Thus, with P pro-

cessors, to do all the work, it must take at least Work(A)/P time.

Inequality (2), called the Span Law, holds because no execution

that respects the partial order of the dag can execute faster than the

longest serial chain of instructions.

We define the speedup of a program as T1/TP — how much faster

the P-processor execution is than the serial execution. Since for

deterministic programs, all executions produce the same dag A, we

have that T1 = Work(A), and T∞ = Span(A) (assuming no overhead

for scheduling). Rewriting the Work Law, we obtain T/TP ≤ P,

which is to say that the speedup on P processors can be at most P.

If the application obtains speedup proportional to P, we say that the

application exhibits linear speedup. If it obtains speedup exactly

P (which is the best we can do in our model), we say that the ap-

plication exhibits perfect linear speedup. If the application obtains

speedup greater than P (which cannot happen in our model due to

the Work Law, but can happen in models that incorporate caching

and other processor effects), we say that the application exhibits

superlinear speedup.

The parallelism of the dag is defined as Work(A)/Span(A). For

a deterministic computation, the parallelism is therefore T1/T∞

and represents the maximum possible speedup on any number of

processors, which follows from the Span Law, because T1/TP ≤
T1/Span(A) = Work(A)/Span(A). For example, the parallelism of

the dag in Figure 3 is 26/9 ≈ 2.89, which means that there is little

point in executing it with more than 3 processors, since the addi-

tional processors will surely be starved for work.

Scheduling

A greedy scheduler [6, 8, 13, 19] schedules a computation without

ever leaving a processor idle if there is work that can be done. If

a program scheduled by a greedy scheduler produces a dag A, then

we have

TP ≤ Work(A)/P+Span(A) . (3)

This bound assumes an ideal computer and ignores overheads for

scheduling. For a deterministic computation, if the parallelism

exceeds the number P of processors by a sufficient margin, In-

equality (3) guarantees near-perfect linear speedup. Specifically,

if P ≪ Work(A)/Span(A), then Span(A)≪ Work(A)/P, and hence

Inequality (3) yields TP ≈ Work(A)/P, and the speedup is T1/TP ≈
P.

A randomized “work-stealing” scheduler [1, 7], such as is pro-

vided by Cilk++ and MIT Cilk, is a more practical scheduling al-

gorithm than greedy for multithreaded programs. Cilk++’s work-

stealing scheduler operates as follows. When the runtime system

starts up, it allocates as many operating-system threads, called

workers, as there are processors (although the programmer can

override this default decision). Each worker’s stack operates like

deque, or double-ended queue. When a subroutine is spawned,

the subroutine’s activation frame containing its local variables is

pushed onto the bottom of the deque. When it returns, the frame

is popped off the bottom. Thus, in the common case, Cilk++ op-

erates just like C++ and imposes little overhead. When a worker

runs out of work, however, it becomes a thief and “steals” the top

frame from another victim worker’s deque. In general, the worker

operates on the bottom of the deque, and thieves steal from the

top. This strategy has the great advantage that all communication

and synchronization is incurred only when a worker runs out of

work. If an application exhibits sufficient parallelism, stealing is

infrequent, and thus the cost of bookkeeping, communication, and

synchronization to effect a steal is negligible.

Consequently, work-stealing achieves good expected running

time based on the work and span. In particular, if A is the exe-

cuted dag on P processors, the expected execution time TP can be

bounded as

TP ≤ Work(A)/P+O(Span(A)) , (4)

where we omit the notation for expectation for simplicity. This

bound, which is proved in [7], includes scheduling overhead.

Notice that the only difference between Inequality (3) and In-

equality (4) is the O around the span. Thus, we can generally use

greedy scheduling to reason about computations scheduled by the

more-practical work-stealing scheduler. For example, for a deter-

ministic computation, if the parallelism exceeds the number P of

processors by a sufficient margin, Inequality (4) guarantees near-

perfect linear speedup, just like Inequality (3). The only difference

is that the “sufficient margin” must also overcome the constant hid-

den by the O.

For a nondeterministic computation, however, the work of a P-

processor execution may not readily be related to the serial running

time. Thus, obtaining bounds on speedup can be more challenging.

As we shall show in Section 6, however, PBFS provides a bound of

the form

TP ≤ Work(A1)/P +O(λ ·Span(A1)) , (5)

where A1 is the dag of a serial execution and λ is a function of the

input size. For nondeterministic computations satisfying Inequal-

ity (5), we can define the effective parallelism as Work(A1)/λ ·
Span(A1). Just as with parallelism for deterministic computations,

if the effective parallelism exceeds the number P of processors by

a sufficient margin, the P-processor execution is guarantee to attain

near-perfect linear speedup over the serial execution.

Another relevant measure is the number of steals that occur dur-

ing a computation. As is shown in [7], the expected number of

steals incurred for a dag A produced by a P-processor execution

is O(P · Span(A)). This bound is important, since the number of

REDUCE operations that are required to combine reducer views is

proportional to the number of steals.

3. THE PBFS ALGORITHM
PBFS uses layer synchronization [3, 35] to parallelize breadth-

first search of an input graph G. Let v0 ∈V (G) be the source vertex,

and define layer d to be the set Ld ⊂V (G) of vertices at distance d

from v0. Thus, we have L0 = {v0}. Each iteration processes layer

Ld by checking all the neighbors of vertices in Ld for those that

should be added to Ld+1.

PBFS implements layers using an unordered-set data structure,

called a “bag,” which provides the following operations:

• bag = BAG-CREATE(): Create a new empty bag.

• BAG-INSERT(bag,x): Insert element x into bag.

• BAG-UNION(bag1,bag2): Move all the elements from bag2

to bag1, and destroy bag2.

• bag2 = BAG-SPLIT(bag1): Remove half (to within some

constant amount GRAINSIZE of granularity) of the elements

from bag1, and put them into a new bag2.

As we shall see in Section 4, BAG-CREATE operates in O(1) time,

and BAG-INSERT operates in O(1) amortized time. Both BAG-

UNION and BAG-SPLIT operate in O(lgn) time on bags with n

elements.

Let us walk through the pseudocode for PBFS, which is shown in

Figure 4. For the moment, ignore the revert and reducer keywords

in lines 8 and 9.



PBFS(G,v0)

1 parallel for each vertex v ∈V (G)−{v0}
2 v.dist = ∞

3 v0.dist = 0

4 d = 0

5 L0 = BAG-CREATE()
6 BAG-INSERT(L0,v0)
7 while ¬BAG-IS-EMPTY(Ld)
8 Ld+1 = new reducer BAG-CREATE()
9 PROCESS-LAYER(revert Ld ,Ld+1,d)

10 d = d +1

PROCESS-LAYER(in-bag,out-bag,d)

11 if BAG-SIZE(in-bag) < GRAINSIZE

12 for each u ∈ in-bag

13 parallel for each v ∈ Adj[u]
14 if v.dist = = ∞

15 v.dist = d +1 // benign race

16 BAG-INSERT(out-bag,v)
17 return

18 new-bag = BAG-SPLIT(in-bag)
19 spawn PROCESS-LAYER(new-bag,out-bag,d)
20 PROCESS-LAYER(in-bag,out-bag,d)
21 sync

Figure 4: The PBFS algorithm operating on a graph G with source vertex
v0 ∈ V(G). PBFS uses the recursive parallel subroutine PROCESS-LAYER

to process each layer. It contains a benign race in line 15.

After initialization, PBFS begins the while loop in line 7 which

iteratively calls the auxiliary function PROCESS-LAYER to process

layer Ld for d = 0,1, . . . ,D, where D is the diameter of the input

graph G. To process a layer in-bag, PROCESS-LAYER uses parallel

divide-and-conquer, producing an the next layer out-bag. For the

recursive case, line 18 splits in-bag, removing half its elements and

placing them in new-bag. The two halves are processed recursively

in parallel in lines 19–20.

This recursive decomposition continues until in-bag has fewer

than GRAINSIZE elements, as tested for in line 11. Each vertex u

in in-bag is extracted in line 12, and line 13 examines each of its

edges (u,v) in parallel. If v has not yet been visited — v.dist = = ∞

— then line 15 sets v.dist = d + 1 and line 16 inserts v into the

level-d +1 bag.

This description skirts over two subtleties that require discus-

sion, both involving races.

First, the update of v.dist in line 15 creates a race, since two ver-

tices u and u′ may both be examining vertex v at the same time.

They both check whether v.dist is infinite in line 14, discover that

it is, and both proceed to update v.dist. Fortunately, this race is

benign, meaning that it does not affect the correctness of the algo-

rithm. Both u and u′ set v.dist to the same value, and hence no in-

consistency arises from both updating the location at the same time.

They both go on to insert v into the level-d +1 bag Ld+1 = out-bag

in line 16, but inserting multiple copies of v into Ld+1 does not af-

fect correctness, only performance for the extra work it will take

when processing layer d +1, because v will be encountered multi-

ple times. As we shall see in Section 8, the amount of extra work

is small, because the race is rarely actualized.

The other race occurs due to parallel insertions of vertices into

Ld+1 = out-bag in line 16. We employ the reducer functionality to

avoid this race by making Ld+1 a bag reducer, where BAG-UNION

15.1 set = FALSE

15.2 if TRY-LOCK(v)
15.3 if v.dist = = ∞

15.4 v.dist = d +1

15.5 set = TRUE

15.6 RELEASE-LOCK(v)
15.7 if set

15.8 BAG-INSERT(out-bag,v)

Figure 5: Modification to the PBFS algorithm to resolve the benign race.

is the associative operation required by the reducer mechanism.

The identity for BAG-UNION — an empty bag — is created by

BAG-CREATE. In the common case, line 16 simply inserts v into

the local view, which as we’ll see in Section 4, is as efficient as

pushing it onto a FIFO as is done in serial BFS.

Unfortunately, we are not able to analyze PBFS due to unstruc-

tured nondeterminism created by the benign race, but we can ana-

lyze a version where the race is resolved using a mutual-exclusion

lock. The locking version involves replacing lines 15 and 16 with

the code in Figure 5. In the code, the call TRY-LOCK(v) in line 15.2

attempts to acquire a lock on the vertex v. If it is successful, we

proceed to execute lines 15.3–15.6. Otherwise, we can abandon

the attempt, because we know that some other processor has suc-

ceeded, in which case it will set v.dist d +1 regardless. Thus, there

is no contention on v’s lock, because no processor ever waits for

another, and processing an edge (u,v) always takes constant time.

The apparently redundant lines 14 and 15.3 avoid the overhead of

lock acquisition in the case when v.dist has already been set.

4. THE BAG DATA STRUCTURE
This section describes the bag data structure for implementing a

dynamic unordered set. We first describe an auxiliary data structure

called a “pennant.” We then show how bags are implemented us-

ing pennants, and we provide algorithms for BAG-CREATE, BAG-

INSERT, BAG-UNION, and BAG-SPLIT. Finally, we discuss some

optimizations of this structure that PBFS employs.

Pennants

A pennant is a tree of 2k nodes, where k is a nonnegative integer.

Each node in this tree is an element that contains two pointers to

children. The root of the tree has only one child, which is a com-

plete binary tree of the remaining elements.

Two pennants A and B of size 2k can be combined to form a pen-

nant of size 2k+1 using the following PENNANT-UNION procedure,

which is illustrated in Figure 6.

PENNANT-UNION(A,B)

1 Modify the root of A so that its second child is the child of B.

2 Modify the root of B so that its only child is the root of A.

3 return the root of B as the root of the new pennant.

This operation executes O(1) time.

The function PENNANT-SPLIT performs the inverse operation of

PENNANT-UNION. We assume that the input pennant contains at

least 2 elements.



Figure 6: Two pennants, each of size 2k, can be unioned in constant time
to form a pennant of size 2k+1.

Figure 7: A bag with 23 = 0101112 elements.

PENNANT-SPLIT(A)

1 Set the root of a new pennant B to be the root of A.

2 Set the root of A to be the only child of B.

3 Set the only child of B to be the second child of A.

4 Remove the second child of A.

5 return the root of B.

Each of the pennants A and B now contain half the elements. Like

PENNANT-UNION, PENNANT-SPLIT operates in O(1) time.

Bags

A bag is a collection of different-sized pennants. PBFS represents

a bag S using a fixed-size array S[0 . . r], where 2r+1 exceeds the

maximum number of elements ever stored in a bag. Each entry S[k]
contains either a null pointer or a pointer to a pennant of size 2k.

Figure 7 illustrates a bag containing 23 elements. Implementing

BAG-CREATE simply allocates space for a fixed-size array of null

pointers, which takes Θ(r) time. This bound can in fact be im-

proved to O(1) by maintaining a pointer to the largest nonempty

index of the array.

The BAG-INSERT function employs an algorithm similar to that

of incrementing a binary counter. To implement BAG-INSERT,

we first package the given element as a pennant of size 1. We

then insert x using the following method for inserting a pennant

xk into bag.

BAG-INSERT(S,x)

1 k = 0

2 while S[k] 6= NULL

3 x = PENNANT-UNION(S[k],x)
4 S[k] = NULL

5 k ++
6 S[k] = x

The analysis of BAG-INSERT parallels the analysis for increment-

ing a binary counter [10, Ch. 17]. Since every PENNANT-UNION

operation takes constant time,BAG-INSERT takes O(1) amortized

time and O(lgn) worst-case time to insert into a bag of n elements.

The BAG-UNION function uses an algorithm similar to ripple-

carry addition of two binary counters. To implement BAG-UNION,

we first examine the process of unioning three pennants into two

pennants, which operates like a full adder. Given three pennants x,

y, and z, where each either has size 2k or is empty, we can merge

them to produce a pair of pennants (s,c), where s has size 2k or is

empty, and c has size 2k+1 or is empty. The following table details

the function FA(x,y,z) in which (s,c) is computed from (x,y,z),
where 0 means that the designated pennant is empty, and 1 means

that it has size 2k:

x y z s c

0 0 0 NULL NULL

1 0 0 x NULL

0 1 0 y NULL

0 0 1 z NULL

1 1 0 NULL PENNANT-UNION(x,y)
1 0 1 NULL PENNANT-UNION(x,z)
0 1 1 NULL PENNANT-UNION(y,z)
1 1 1 x PENNANT-UNION(y,z)

With this full-adder function in hand, BAG-UNION can be imple-

mented as follows:

BAG-UNION(S1,S2)

1 y = NULL // The “carry” bit.

2 for k = 0 to r

3 (S1[k],y) = FA(S1[k],S2[k],y)

Because every PENNANT-UNION operation takes constant time,

computing the value of FA(x,y,z) also takes constant time. To com-

pute all entries in the resulting bag takes Θ(r) time. This algorithm

can be improved slightly by keeping track of the sizes of bags and

iterating only up to the high-order “bit” of the binary representation

of the bag size.

The BAG-SPLIT function operates like an arithmetic right shift:

BAG-SPLIT(S1)

1 S2 = BAG-CREATE()
2 y = S1[0]
3 for k = 1 to r

4 if S1 6= NULL

5 S2[k−1] = PENNANT-SPLIT(S1[k])
6 S1[k−1] = S1[k]
7 S1[k] = NULL

8 if y 6= NULL

9 BAG-INSERT(S1,y)
10 return S2

Because PENNANT-SPLIT takes constant time, each loop itera-

tion in BAG-SPLIT takes constant time. Consequently, the asymp-

totic runtime of BAG-SPLIT is O(r).

Optimization

To improve the constant in the performance of BAG-INSERT, we

made some simple but important modifications to pennants and

bags which do not affect the asymptotic behavior of the algorithm.

First, in addition to its two pointers, every pennant node in the bag

stores a constant-size array of GRAINSIZE elements, all of which

are guaranteed to be valid, rather than just a single element. Our

PBFS software uses the value GRAINSIZE = 64. Second, in addi-

tion to the array of pointers to pennants, the bag itself maintains an

additional pennant node (of size GRAINSIZE), called the hopper,

which it fills gradually. The impact of these modifications on the

bag operations is as follows.

First, BAG-CREATE must allocate additional space for the hop-

per. This overhead is small and is done only once per bag.



Second, BAG-INSERT first attempts to insert the element into

the hopper. If the hopper is full, then it inserts the hopper into the

bag portion of the data structure and allocates a new hopper into

which it inserts the element. This optimization does not change

the asymptotic runtime analysis of BAG-INSERT, but the code runs

much faster. In the common case, BAG-INSERT simply inserts the

element into the hopper with code nearly identical to inserting an

element into a FIFO. Only once in every GRAINSIZE insert op-

erations does a BAG-INSERT trigger the insertion of the now-full

hopper into the bag portion of the data structure.

Third, when unioning two bags S1 and S2, BAG-UNION first

checks which bag has the less-full hopper. Assuming that it is S1,

the modified implementation copies the elements of S1’s hopper

into S2’s hopper until it is full or S1’s hopper runs out of elements.

If it runs out of elements in S1 to copy, BAG-UNION proceeds to

merge the two bags as usual and uses S2’s hopper as the hopper

for the resulting bag. If it fills S2’s hopper, however, line 1 of BAG-

UNION sets y to S2’s hopper, and S1’s hopper, now containing fewer

elements, forms the hopper for the resulting bag. Afterward, BAG-

UNION proceeds as usual.

Finally, rather than storing S1[0] into y in line 2 of BAG-SPLIT

for later insertion, BAG-SPLIT sets the hopper of S2 to be the pen-

nant node in S1[0] before proceeding as usual.

5. REDUCERS
This section defines reducer hyperobjects formally and intro-

duces an extension to the multithreaded dag model that incorpo-

rates them. We characterize the behavior of a reducer during an

execution in terms of a “reducer string,” which specifies the inher-

ent nondeterminism.

A reducer is defined in terms of an algebraic monoid: a triple

(T,⊗,e), where T is a set and ⊗ is an associative binary operation

over T with an identity e. From a programming perspective, the set

T is a base type that provides a member function REDUCE imple-

menting the binary operator ⊗ and a member function CREATE-

IDENTITY that constructs an identity element of type T . The base

type T also provides one or more UPDATE functions, which mod-

ify an object of type T . In the case of bags, the REDUCE function

is BAG-UNION, the CREATE-IDENTITY function is BAG-CREATE,

and the UPDATE function is BAG-INSERT. As a practical matter,

the REDUCE function need not actually be associative, although

in that case, the programmer typically has some idea of “logical”

associativity.

To specify the nondeterministic behavior encapsulated by reduc-

ers precisely, let us define the execution of a multithreaded program

in terms of its set A of executed strands. We assume that the func-

tions for a reducer hyperobject — REDUCE, CREATE-IDENTITY,

and UPDATE — execute only serial code. We model each invoca-

tion of one of these functions as a single strand which contains the

instructions of the function but no other instructions that might be

in series before or after. The other strands can be diced up arbitrar-

ily in any convenient manner.

During execution, the runtime system may from time to time

invoke CREATE-IDENTITY and REDUCE functions to maintain re-

ducer views. We call the CREATE-IDENTITY and REDUCE strands

so invoked init strands and reduce strands, both of which are call-

back strands. The other strands are user strands. From the pro-

grammer’s perspective, the callback strands are invoked invisibly

by the runtime system (if REDUCE is associative and there are no

determinacy races), and thus his or her understanding of the pro-

gram is based only on the user strands.

We define the user dag bA in the same manner that an ordinary

multithreaded dag is defined: spawns generate nodes with out-

degree 2, syncs create nodes with in-degree greater than 1, etc. We

define the walk of bA as the list of user strands encountered during a

depth-first search of the dag which visits spawned children before

continuations and backtracks at sync nodes until all the strands en-

tering the sync have been visited.

If the execution is race free and the REDUCE function associa-

tive, the final value of the reducer is the value that would be ob-

tained if the updates were performed in the serial order given by

the walk of bA. The program may have races and REDUCE may not

be truly associative, however, and thus characterizing the full spec-

trum of behaviors of the computation is somewhat more complex.

Recall that when a function spawns, the spawned child inher-

its the parent’s view of the reducer, but the continuation’s view is

chosen nondeterministically. On the one hand, it may receive a

fresh identity view, causing a later REDUCE to combine the views

sometime before the sync statement that matches the spawn. Al-

ternatively, it may appropriate an existing view that reflects prior

updates.

We can specify which of these alternatives occurs at each point in

the computation using a hyperstring, which consists of the strands

of bA in walk order into which the callback strands have been em-

bedded. The hyperstring distinguishes between two types of user

strand: update strands, which query or modify the state of the re-

ducer, and nonupdate strands, which do not. For the hyperstring to

be legal, the embedding must satisfy the following grammar with

starting nonterminal X :

Z → 〈update strand〉 | 〈nonupdate strand〉

Y → 〈nonupdate strand〉 | Y 〈nonupdate strand〉

Xi → 〈init strand〉 | Y 〈init strand〉

X → Z | X Z | (X ,Xi X) 〈reduce strand〉 .

In addition, the production X → (X ,Xi X) XR describes in reverse

polish notation the functional operation of a REDUCE strand.

The hyperstring describes precedence relations between the user

strands. Consider the parse tree for some hyperstring, and consider

the rule applied at each internal node in this parse tree. If this rule

matches Y 〈nonupdatestrand〉 or Y 〈initstrand〉, then all strands un-

der Y precede the nonupdate strand or the init strand, respectively.

Similarly, if the rule matches X Z, then all strands under X precede

the strand under Z. If the rule matches X → (X ,XI X) XR, let X1

represent the first generated X and X2 represent the second gener-

ated X . The strands under X1 must precede those under XR, and the

strands under XI must precede the strands under X2, which must

precede the strands under XR. The strands under X1 may occur in

parallel with those under XI or X2.

We assert that the Cilk++ work-stealing scheduler uses reducers

in a way that is consistent with their hyperstring semantics. The

proof of this is complicated, however, and is omitted from this draft.

A legal schedule Σ of a computation A and hyperstring H is a

list of all the instructions in all the strands of A such that

• the chain of instructions within any strand i ∈ A form a sub-

sequence of Σ;

• if i ∈ AU precedes j ∈ AU in AU , then all the instructions of i

precede all the instructions of j in Σ;

• if i ∈ A precedes j ∈ A according to H, then all the instruc-

tions of i precede all the instructions of j in Σ.

The semantics of a computation A are given by executing the

instructions in order from a legal schedule Σ of A with a legal hy-

perstring H.



6. ANALYSIS OF PROGRAMS WITH

NONCONSTANT-TIME REDUCERS
This section provides a framework for analyzing programs such

as PBFS that use reducers that execute in more than constant time.

We define a “performance dag” to model the scheduling costs of a

computation A using a work-stealing scheduler. We show that the

span of A can be bounded as Span(A) = O(τSpan(bA)), where τ is

the worst-case cost of any REDUCE or CREATE-IDENTITY, and bA

is the user dag for the computation. We show that the work of A

can be bounded as Work(A) ≤ Work(bA)+O(τ2PSpan(bA)).

The performance dag for a computation A with user dag bA is the

dag A which augments the user dag bA as follows:

• the edges consist of the strands of A;

• all the reduce strands that must execute before a given sync

are inserted in series immediately after the corresponding

sync node;

• each init strand is inserted immediately before the corre-

sponding update strand that caused the CREATE-IDENTITY

callback.

The following lemma shows that the running time of the compu-

tation can be bounded in terms of the work and span of the perfor-

mance dag.

LEMMA 1. Consider the execution of a computation A on a

parallel computer with P processors using a work-stealing sched-

uler. Then, the expected running time is Work(A)/P+O(Span(A)).
Moreover, the total work involved in joining strands is O(τP ·
Span(A)).

PROOF. The proof follows those of [7] and [16], with some

salient differences. As in [7], we use a delay-sequence argument,

but we base it on the performance dag. We also employ a lock-

ing protocol similar to that in [16], but we modify it so that it will

only hold locks for a constant amount of time, rather than for the

duration of a REDUCE operation.

In the normal delay-sequence argument, there is only a user dag.

This dag is augmented with “deque” edges, each running from a

continuation on the deque to the next in sequence from top to bot-

tom. These deque edges only increase the span of the dag by at

most a constant factor. The argument then considers a path in the

dag, and it defines an instruction in a strand as being critical if all

its predecessors in the augmented dag have been executed. The

key property of the work-stealing algorithm is that every critical

instruction sits at the top of some deque (or is being executed by

a worker). Thus, whenever a worker steals, it has a 1/P chance of

executing a critical instruction. After P steals, there is a constant

probability that the span of the dag corresponding to the computa-

tion that remains to be executed is reduced by 1. That suffices to

ensure that the expected number of steals is O(PWork(A)), and a

similar but slightly more complex bound holds with high probabil-

ity

This argument can be modified to work with performance dags

containing reducers that operate in nonconstant time. As instruc-

tions in the computation are executed, we can mark them off in the

performance dag. Since we have placed reduce strands after the

sync nodes before which they must actually execute, it can be the

case that some instructions in a reducer strand execute before all

of its predecessors complete. That is okay. The main property is

that if an instruction is critical, it has a 1/P of being executed, and

that P steals have a constant expectation of reducing the span of

the dag that remains to execute. The crucial observation is that if

an instruction in a reduce strand is critical, then it means that its

sync node has been reached, and thus a worker must be executing

the critical instruction, since reduces are performed eagerly when

nothing impedes their execution.

The second issue to deal with is the locking protocol used to

synchronize workers when they attempt to call REDUCE. The al-

gorithm in [16] uses an intricate protocol to avoid long waits on

locks, but it assumes that reducing takes only constant time.

To support arbitrary cost REDUCE functions, we modify the

locking protocol in [16] as follows.5 Let F be the so-called full

frame we are eliminating, and let F.p be the parent full frame of

F in the steal tree. Define the “right hypermap” for F to be F’s

RIGHT hypermap. Define the “parent hypermap” for F to be F.p’s

CHILDREN hypermap if F.p is the parent of F in the spawn tree, or

F.p’s RIGHT hypermap if F.p is the left sibling of F in the spawn

tree.

1. Acquire both abstract locks for F .

2. Examine F’s right hypermap R and parent hypermap P.

3. If all reducers in both R and P contain identity values, place

U into F.p in the place of P, and eliminate F .

4. Otherwise:

1. Extract the reducer views from the right and parent hy-

permaps.
2. Replace these reducers with identity reducers.
3. Release the abstract locks for F .
4. For all reducers x, U(x) = R(x)⊗U(x)⊗P(x).
5. Repeat this locking protocol.

We want to analyze the work required to perform all eliminations

using this locking protocol. Note that steps 2 through 4-3 all take at

most a constant amount of work, and therefore each abstract lock

is held for a constant amount of time. The abstract lock acquired in

step 1 is acquired in the fashion described in [16].

The analysis of the time spent waiting to acquire an abstract lock

in this locking protocol follows the analysis of the locking protocol

in [16]. The key issue in the proof is to show that the time for the

ith abstract lock acquisition by some worker w is independent of

the time for w’s jth lock acquisition for i < j. We prove this by

considering some other worker v which is also performing abstract

lock acquisitions. In particular, we consider the effect of v on the

delay of the ith and jth lock acquisitions.

After some simultaneous lock acquisition by w and v, if either w

or v succeed in eliminating their frame, then all future interaction

between their abstract lock acquisitions is independent of this lock

acquisition. Therefore, we need only consider the case where both

w and v fail to eliminate their frame.

First, we show that v delaying w’s jth lock acquisition is inde-

pendent of v delaying w’s ith lock acquisition. Suppose v delays w’s

ith lock acquisition. After w’s ith lock acquisition, v has succeeded

in acquiring and releasing its abstract locks, and all lock acquisi-

tions in the directed path from w’s lock acquisition to v’s have also

succeeded in acquiring and releasing their abstract locks. For v to

delay w’s jth lock acquisition, a new directed path of dependencies

from w to v must occur. Each edge in that path is oriented correctly

with a 1/2 probability per edge, regardless of the previous interfer-

ence event. Therefore, the event that v delays w a second time is

independent of the first event.

Next, we show that v delaying w’s jth lock acquisition is inde-

pendent of v failing to delay w’s ith lock acquisition. Suppose v

does not delay w’s ith lock acquisition. For v to delay w’s jth lock

acquisition, a chain of dependencies must form from a one of w’s

abstract lock to one of v’s abstract locks after w performs its ith lock

acquisition. Forming such a dependency chain requires every edge

5We regret that our nomenclature assumes the reader is familiar with [16].
The final version of the paper will contain a description that stands on its
own.



in the chain to be correctly oriented, which occurs with a 1/2 proba-

bility per edge regardless of the fact that v did not delay w’s ith lock

acquisition. Therefore, for all workers v 6= w, the probability that

v delays w’s jth lock acquisition is independent of whether or not

v delayed w’s ith lock acquisition. Consequently, each subsequent

lock acquisition by some worker is independent of all previous lock

acquisitions. Because every subsequent lock acquisition for some

worker is independent, the analysis of the time spent waiting for an

abstract lock follows that of [16], which produces the time bounds

stated in the lemma.

To bound the time spent joining strands, we first bound the num-

ber of acquisitions performed in this protocol. Since each steal cre-

ates a frame in the steal tree that must be eliminated, the number of

abstract lock acquisitions to obtain is at least as large as the number

of steals. In this locking protocol, the elimination of a frame may

force the parent and the child of that frame to repeat the locking

protocol. Therefore, each elimination increases the number of nec-

essary abstract lock acquires by at most 2. Thus, if M is the number

of successful steals, the number of elimination attempts that must

be performed is no more than 3M.

Finally, we bound the total work spent joining strands using this

protocol. Each elimination attempt requires O(1) time to acquire a

lock and perform the necessary operations while the lock is held.

Each failed elimination attempt triggers at most two REDUCE op-

erations, each of which takes τ in the worst case. Therefore, the

total expected work spent joining strands is O(τM). Using the

analysis of steals from [7], the total work spent joining strands is

O(τP ·Span(A)).

The following two lemmas bound the work and span of the per-

formance dag in terms of the span of the user dag.

LEMMA 2. Consider a computation A with user dag bA. The

span of A is O(τSpan(bA)).

PROOF. Each steal that occurs in the execution of A may force

one CREATE-IDENTITY, and by the proof of Lemma 1, each steal

may also force at most 4 REDUCE operations to execute in the per-

formance dag. Each spawn in bA provides an opportunity for a steal

to occur. Consequently, each spawn operation in A may increase

the size of the dag by O(τ) in the worst case.

Consider a critical path in the performance dag of A, and let bp be

the corresponding path in bA. Suppose k steals occur along bp. The

length of that corresponding path in the performance dag is at most

5kτ+ |bp| ≤ 5Span(bA)τ+ |bp| ≤ 6τSpan(bA)τ. Therefore, Span(A) =

O(τSpan(bA)).

LEMMA 3. Consider a computation A with user dag bA. The

work of A is at most Work(bA)+O(τ2PSpan(bA)).

PROOF. First, note that all computation modeled in the user dag

appears in the performance dag. Therefore, to bound the work of

A in terms of bA, we must add in the work performing REDUCE

and CREATE-IDENTITY performed due to steals. By Lemma 1,

the total work in joining stolen strands is O(τP · Span(A)). Sim-

ilarly, each steal may force a call to CREATE-IDENTITY, and by

the analysis of steals from [7] the total work spent performing

CREATE-IDENTITY operations due to steals is O(τP · Span(A)).

The total work of A is therefore at most Work(bA)+O(τPSpan(A)).

By Lemma 2, the total work of A is therefore at most Work(bA)+

O(τ2PSpan(bA)).

7. ANALYSIS OF PBFS

Using the results in Section 6, we can bound the expected run-

ning time of the locked version of PBFS. First we bound the work

and span of the user dag for PBFS. We then apply Lemmas 3 and 2

to bound the work and span of PBFS’s parallel execution, and fi-

nally we apply Lemma 1 to get the expected running time of PBFS.

LEMMA 4. Suppose PBFS is run on a connected input graph

G = (V,E). The total work in PBFS’s user dag is O(V +
E), and the total span of PBFS’s user dag is O(D lg(V/D) +
D lg(max-degree(V ))).

PROOF. In each layer, PBFS evaluates every vertex v in that

layer exactly once, and therefore PBFS checks every vertex u in

v’s adjacency list exactly once. In the locked version of PBFS,

each u is assigned its distance exactly once and added to the bag

for the next layer exactly once. Since this holds for all layers of G,

the total work for this portion of PBFS is O(V +E).
PBFS performs additional work to create a bag for each layer

and to repeatedly split the layer into GRAINSIZE pieces. If D is

the number of layers in G, then the total work PBFS spends in

calls to BAG-CREATE O(D lgV ). The analysis for the work PBFS

performs to subdivide a layer follows the analysis for building a

binary heap [10, Ch. 6]. Therefore, the total time PBFS spends in

calls to BAG-SPLIT is O(V ).
The total time PBFS spends executing BAG-INSERT depends on

the parallel execution of PBFS. Because a steal will reset the con-

tents of a bag for subsequent update operations, the maximum run-

ning time of BAG-INSERT depends on the steals that occur. Each

steal can only decrease the work of a subsequent BAG-INSERT, and

therefore the amortized running time of O(1) for each BAG-INSERT

still applies. Because BAG-INSERT is called once per vertex, PBFS

spends O(V ) work total executing BAG-INSERT. Therefore the to-

tal work of PBFS is O(V +E).
The sequence of splits performed in each layer cause the ver-

tices of the layer to be processed at the leaves of a balanced binary

tree of height O(lgVd), where Vd is the number of vertices in the

dth layer. Since the series of syncs PBFS performs form a mir-

ror of the split tree, the computation for dividing and the vertices

in a layer and combining the results has span O(lgVd). Each leaf

of this tree processes at most a constant number of vertices, and

looks at the outgoing edges of those vertices in a similar divide-

and-conquer fashion. This divide-and-conquer evaluation results in

a computation at each leaf with span O(lg(max-degree(V ))). Each

edge evaluated performs some constant-time work and may trig-

ger a call to BAG-INSERT, whose worst-case running time would

be O(lgVd+1). Consequently, the span of PBFS for processing the

dth layer is O(lgVd + lgVd+1 + lgmax-degree(V )). Summing this

quantity over all layers in G, we find that the maximum span for

PBFS is O(D lg(V/D)+D lg(max-degree(V ))).

THEOREM 5. Consider the parallel execution of PBFS on P

processors. The expected running time of PBFS is (V + E)/P +
O(D lg2(V/D)(lg(V/D) + lg(max-degree(V )))). Furthermore, if

max-degree(V ) is bounded, then the expected running time of

PBFS is (V +E)/P +O(D lg3(V/D)).

PROOF. To maximize the cost of all CREATE-IDENTITY and

REDUCE operations in PBFS, the worst-case cost of each of

these operations is O(lg(V/D)). By Lemma 2 the span of

PBFS is O(D lg(V/D)(lg(V/D) + lg(max-degree(V ))), and by

Lemma 3 the work of PBFS is V +E +O(DP lg2(V/D)(lg(V/D)+
lg(max-degree(V )))). By Lemma 1 the expected run-

ning time of PBFS is (V + E)/P + O(D lg2(V/D)(lg(V/D) +
lg(max-degree(V ))). If max-degree(V ) is bounded, then the ex-

pected running time of PBFS is (V +E)/P +O(D lg3(V/D)).



8. IMPLEMENTATION
We implemented both the PBFS algorithm and an optimized

FIFO-based serial BFS algorithm in Cilk++ and compared their

performance on a suite of benchmark graphs. In particular, we ex-

amined the performance of PBFS without locks.

As can be seen from Figure 8 in Appendix A, PBFS demon-

strates excellent performance characteristics on these benchmark

graphs. For many graphs PBFS run serially is nearly as fast or

faster than serial BFS. Furthermore, the additional work PBFS per-

formed due to its benign race is typically very small compared to

the size of the graph.6

9. CONCLUSION
To be written.
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APPENDIX

A. EXPERIMENTAL RESULTS
We chose several real-world graphs for testing these algorithms.

Kkt_power, Cage14, and Cage15 are from the University of Florida

sparse-matrix collection [11]. Grid3D200 is a 7-point finite differ-

ence mesh generated using the Matlab Mesh Partitioning and Graph

Separator Toolbox [18]. The RMat23 matrix [25], which models

scale-free graphs, is generated by using repeated Kronecker prod-

ucts [2]. Parameters A = 0.7, B = C = D = 0.1 for RMat23 were

chosen in order to generate skewed matrices.

B. WORKED EXAMPLES

Reducers

The basic idea of a reducer can be understood from the example of

a series of additive updates to a value x:

1 x = 10

2 x ++
3 x + = 3

4 x + = −2

5 x + = 6

6 x −−
7 x + = 4

8 x + = 3

9 x ++
10 x + = −9

When executed serially, the resulting value is x = 16. Alternatively,

the sequence could be executed as follows:

1 x = 10

2 x ++
3 x + = 3

4 x + = −2

5 x + = 6

x′ = 0

6 x′ −−
7 x′ + = 4

8 x′ + = 3

9 x′ ++
10 x′ + = −9

x + = x′

In this case, the computations for x and x′ can proceed in parallel

with an additional step to combine the results at the end. Of course,

the computation could be split anywhere along the way, and the

final result would be the same as long as x′ is initialized to 0, the

identity for +, which is an associative operator.

Hyperstrings

As an example, for the computation in Figure 3, a hyperstring de-

scribing the nondeterministic choices for an execution might be

(((abcde f , !ghi jklm)⊗no, !pqrstu)⊗, !vwxy)⊗ z

where “!” represents an init strand and “⊗” represents a reduce

strand. To interpret this string, suppose we have a particular re-

ducer object h. In this string, first the user strands abcde f form

a view h1 of the reducer, and then h1 is reduced into view h2 —

the view formed from a newly initialized reducer by ghi jklm — to

form view h3. Next, h3 is updated according to the update strands

in no to form h4, which is subsequently reduced into h5 — the

view formed from a newly initialized reducer by pqrstu — to get

view h6. Finally, h6 is reduced into h7 — the view formed from a

newly initialized reducer by vwxy — to get h8, which is updated by

z if z is an update strand.



Name

Spy Plot

|V | Work

SERIAL-BFS T1 PBFS T1 PBFS T4 Duplicates4

Description |E| Span

D Parallelism

Kkt_power 2.05M 602.5M

Optimal power flow, 12.76M 37.2M

nonlinear opt. 31 16.69 0.438 0.465 0.155 27

Grid3D200 8M 2,485.7M

3D 7-point 55.8M 166.5M

finite-diff mesh 598 14.93 1.486 1.550 0.560 557

RMat23 2.3M 11,821.4M

Real-world 77.9M 77.0M

graph model 8 153.61 1.226 1.181 0.425 4

Cage14 1.51M 782.9M

DNA electrophoresis 27.1M 26.6M

43 29.38 0.304 0.376 0.124 68

Cage15 5.15M 2,802.9M

DNA electrophoresis 99.2M 75.0M

50 37.35 1.256 1.494 0.486 86

Figure 8: Performance results for breadth-first search. The vertex and edge counts listed correspond to the number of vertices and edges evaluated by
SERIAL-BFS. The work and span are measured in instructions. All runtimes are measured in seconds. Duplicates4 refers to the average number of
duplicate vertices rounded to the nearest integer that PBFS evaluated when run on 4 cores.


