
MPI: Beyond the Basics
David McCaughan

HPC Analyst, SHARCNET
dbm@sharcnet.ca

MPI: Beyond the Basic D. McCaughan

Review: “The Basics”
l  MPI_Init()

l  MPI_Finalize()

l  MPI_Comm_rank()

l  MPI_Comm_size()

l  MPI_Send()

l  MPI_Recv()

MPI: Beyond the Basic D. McCaughan

Review: sending/receiving

int main(int argc, char *argv[])
{
 int rank;
 double pi = 3.14, val = 0.0;
 MPI_Status status;

 MPI_Init(&argc, &argv);
 MPI_Comm_rank(MPI_COMM_WORLD, &rank);

 if (rank == 0)
 MPI_Send(&pi, 1, MPI_DOUBLE, 1, 0, MPI_COMM_WORLD);
 else
 {
 MPI_Recv(&val, 1, MPI_DOUBLE, 0,
 0, MPI_COMM_WORLD, &status);
 printf(“Received: %f\n”, val);
 }

 MPI_Finalize();
}	

executed by all processes except 0	

executed by process 0	

executed by all processes	

MPI: Beyond the Basic D. McCaughan

Understanding parallelism:
Euclidian Inner Product

l  Compute a weighted
sum Sequential Algorithm:

	

given arrays a, b of size N	

	

s := 0
do i := 1,N
 s := s + (a[i] * b[i])
	

- run-time proportional to N	

€

s = aibi
i
∑

MPI: Beyond the Basic D. McCaughan

Thinking in Parallel
l  Assume N = 2x processors (x an integer)

P0	
 P1	
 P2	
 P3	
 P4	
 P5	
 P6	
 P7	

t0	

a0	
b0	
 a1	
b1	
 a2	
b2	
 a3	
b3	
 a4	
b4	
 a5	
b5	
 a6	
b6	
 a7	
b7	

*	
 *	
 *	
 *	
 *	
 *	
 *	
 *	

t1	

t2	

t3	

+	
 +	
 +	
 +	

+	
 +	

+	

result	

MPI: Beyond the Basic D. McCaughan

Parallel Inner Product Algorithm
l  All processors executing same algorithm

x := a[k] * b[k]

do t := (log2N-1), 0, -1
 if 2t <= k < 2t+1
 send x to Pk-2t
 else if k < 2t
 receive y from Pk+2t
 x := x + y

if k = 0
 output x
	

- run-time proportional to log2N	

MPI: Beyond the Basic D. McCaughan

Parallel Euclidian Inner Product
Implementation

...
 MPI_Init(&argc, &argv);
 MPI_Comm_rank(MPI_COMM_WORLD, &k);
 MPI_Comm_size(MPI_COMM_WORLD, &N);

 op1 = a[k] * b[k];
 v2_t = pow(2,loga(N,2)-1);

 while(v2_t > 0)
 {
 if ((k >= v2_t) && (k < (v2_t << 1)))
 MPI_Send(&op1, 1, MPI_DOUBLE, (k-v2_t), 0, MPI_COMM_WORLD);
 else if (k < v2_t)
 {
 MPI_Recv(&op2, 1, MPI_DOUBLE,
 (k+v2_t), 0, MPI_COMM_WORLD, &status);
 op1 = op1 + op2;
 }
 v2_t = v2+t >> 1;
 }	

MPI: Beyond the Basic D. McCaughan

Parallel Euclidian Inner Product
Implementation (cont.)

 if (k == 0)
 printf(“result = %f\n”, op1);

 MPI_Finalize();
...	

l  Note:
l  this example illustrates basic parallelism and communication well
l  not the best example of how MPI might really be used

l  parallelism here is quite fine-grained
l  alternatives?

MPI: Beyond the Basic D. McCaughan

Safe vs. Unsafe MPI
l  The MPI standard does not require buffering of data

communications
l  many MPI implementations do provide it however
l  should you assume that there is buffering available or not?

l  If there is no buffering
l  a process will block on MPI_Send until a MPI_Recv is called to allow

for delivery of the message
l  a process will block on MPI_Recv until a MPI_Send is executed

delivering the message

l  A safe MPI program is one that does not rely on a buffered
underlying implementation in order to function correctly

MPI: Beyond the Basic D. McCaughan

Safe vs Unsafe MPI (cont.)

if (rank == 0)
{
 MPI_Send(to 1);
 MPI_Recv(from 1);
}
else if (rank == 1)
{
 MPI_Recv(from 0);
 MPI_Send(to 0);
}

safe
sends are paired with
corresponding receives
between processes;
no assumptions made
about buffering	

deadlock
receives executed on
both processes before
matching send;
buffering irrelevant	

if (rank == 0)
{
 MPI_Recv(from 1);
 MPI_Send(to 1);
}
else if (rank == 1)
{
 MPI_Recv(from 0);
 MPI_Send(to 0);
}

if (rank == 0)
{
 MPI_Send(to 1);
 MPI_Recv(from 1);
}
else if (rank == 1)
{
 MPI_Send(to 0);
 MPI_Recv(from 0);
}

unsafe
may work if buffers are
larger than messages; if
unbuffered, or messages
are sufficiently large
this code will fail	

MPI: Beyond the Basic D. McCaughan

Ensuring a Program is Safe

l  Must work the same using MPI_Send and
MPI_Ssend
l  MPI_Ssend is synchronous mode send

l  Strategies for avoiding deadlock
l  pay attention to order of send/receive in

communication operations
l  use synchronous or buffered mode communication
l  use MPI_Sendrecv
l  use non-blocking communication

MPI: Beyond the Basic D. McCaughan

MPI_Sendrecv

int MPI_Sendrecv
(
 void *s_msg,
 int s_count,
 MPI_Datatype s_datatype,
 int dest,
 int s_tag,
 void *r_msg,
 int r_count,
 MPI_Datatype r_datatype,
 int source,
 int r_tag,
 MPI_Comm comm,
 MPI_Status *status
);

l  Combined send and
receive operation
l  allows MPI to deal with

order of calls to reduce
potential for deadlock

l  does not imply pairwise
send/receive

l  Can be satisfied by
regular sends/receives on
other processes
l  does not remove all

potential for deadlock

MPI: Beyond the Basic D. McCaughan

Example (sendrecv.c)

...
 if (rank == 0)
 {
 int in, out = 5;

 MPI_Sendrecv(&out, 1, MPI_INT, 1, 0,
 &in, 1, MPI_INT, 1, 0, MPI_COMM_WORLD, &status);

 printf("P0 Received: %d\n",in);
 }
 else
 {
 int in, out = 25;

 MPI_Recv(&in, 1, MPI_INT, 0, 0, MPI_COMM_WORLD, &status);
 MPI_Send(&out, 1, MPI_INT, 0, 0, MPI_COMM_WORLD);

 printf("P1 Received: %d\n", in);
 }
...	

MPI: Beyond the Basic D. McCaughan

Non-Blocking Communication

l  Standard MPI sends and receives don’t return until their
arguments can be safely modified by the calling process
l  sending: message envelope created, data sent/buffered
l  receiving: message received, data copied to provided buffer

l  If this activity can take place concurrently with
computation we aren’t fully utilizing available resources
l  assuming separate computing resource for communication

MPI: Beyond the Basic D. McCaughan

Non-Blocking Communication
(cont.)

l  Non-blocking communication avoids deadlock
and allows computation to be interleaved with
these activities
l  call to send/receive “posts” the operation
l  must subsequently explicitly complete the operation
l  NOTE: non-blocking send/recv can be matched by

standard recv/send

MPI: Beyond the Basic D. McCaughan

MPI_Isend
MPI_Irecv

int MPI_Isend
(
 void *message,
 int count,
 MPI_Datatype datatype,
 int dest,
 int tag,
 MPI_Comm comm,
 MPI_Request *request
);

•  Post non-blocking send

int MPI_Irecv
(
 void *message,
 int count,
 MPI_Datatype datatype,
 int source,
 int tag,
 MPI_Comm comm,
 MPI_Request *request
);

•  Post non-blocking receive

MPI: Beyond the Basic D. McCaughan

MPI_Wait

int MPI_Wait
(
 MPI_Request *request,
 MPI_Status *status
);

•  Complete non-blocking send/

receive

l  request
l  a handle for your operation

provided by the system
l  identifies the operation

when you subsequently
complete it

MPI: Beyond the Basic D. McCaughan

Non-blocking Communication
Example

...
 if (rank == 0)
 {
 MPI_Isend(&val1, 1, MPI_DOUBLE, 1, 0, MPI_COMM_WORLD, &req1);
 MPI_Irecv(&val2, 1, MPI_DOUBLE, 1, 0, MPI_COMM_WORLD, &req2);
 /* do some computational work here */
 MPI_Wait(&req1, &status);
 MPI_Wait(&req2, &status);
 val1 = tmp;
 }
 else
 {
 MPI_Irecv(&val2, 1, MPI_DOUBLE, 0, 0, MPI_COMM_WORLD, &req2);
 MPI_Isend(&val1, 1, MPI_DOUBLE, 0, 0, MPI_COMM_WORLD, &req1);
 /* do some computational work here */
 MPI_Wait(&req2, &status);
 MPI_Wait(&req1, &status);
 val1 = tmp;
 }
...

MPI: Beyond the Basic D. McCaughan

Communication Modes
l  Standard

l  buffering of receives is system dependent (this is the default)

l  Synchronous
l  processes will block on send until a corresponding receive has been

initiated (requires no buffering - otherwise identical to standard)

l  Buffered
l  user allocated buffer used for sends

l  Ready
l  sends are only valid once corresponding receive has been initiated

(may be faster on some systems - we will not look at this)

MPI: Beyond the Basic D. McCaughan

Communication Patterns

l  It is uncommon for communication between
processes to be completely arbitrary

l  Tends to follow specific patterns
l  one sends to all (broadcast)
l  all send to one (reduction)
l  all send to all (all broadcast/reduction)
l  subset sends to subset

l  modularized by data and/or task

MPI: Beyond the Basic D. McCaughan

Broadcasting
l  A process has a value that needs to be sent to all other

processes

l  Serial method:
l  run a loop that sends value to each other process in turn
l  N-1 iterations to send value to all other processes
l  number of iterations proportional to number of processes

l  O(n)

do i := 1, N-1

 send data from P0 to Pi

MPI: Beyond the Basic D. McCaughan

Serial Broadcast

t0	
 P0	
 P1	
 P2	
 P3	
 P4	
 P5	
 P6	
 P7	

t1	
 P0	
 P1	
 P2	
 P3	
 P4	
 P5	
 P6	
 P7	

t2	
 P0	
 P1	
 P2	
 P4	
 P5	
 P6	
 P7	
P3	

P0	
 P1	
 P2	
 P3	
t3	
 P4	
 P5	
 P6	
 P7	

P0	
 P1	
 P2	
 P3	
t4	
 P5	
 P6	
 P7	
P4	

P0	
 P1	
 P2	
 P3	
t5	
 P6	
 P7	
P4	
 P5	

P6	
P0	
 P1	
 P2	
 P3	
t6	
 P7	
P4	
 P5	

P7	
P0	
 P1	
 P2	
 P3	
t7	
 P4	
 P5	
 P6	

MPI: Beyond the Basic D. McCaughan

Parallel Broadcast
l  Broadcasting can take advantage of available parallelism

l  Consider:
l  step 1: P0 sends to P1
l  step 2: P0 sends to P2, P1 sends to P3
l  step 3: P0 → P4, P1 → P5, P2 → P6, P3 → P7 ...
l  note: there is no canonical order for communication

l  ⎡log2N⎤ steps
l  O(log2N)

l  Must consider issues of knowing sender/receiver in broadcast
implementation

MPI: Beyond the Basic D. McCaughan

Parallel Broadcast (cont.)

P4	
 P5	
 P6	
 P7	
P0	
 P1	
 P2	
 P3	
t3	

t0	
 P0	
 P1	
 P2	
 P3	
 P4	
 P5	
 P6	
 P7	

P1	
t1	
 P0	
 P2	
 P3	
 P4	
 P5	
 P6	
 P7	

P2	
 P3	
t2	
 P0	
 P1	
 P4	
 P5	
 P6	
 P7	

l  This is a common parallel technique called recursive doubling
l  progress toward completion of process doubled (or halved) at each step

by doubling (halving) number of processes involved at each step

MPI: Beyond the Basic D. McCaughan

Broadcast Implementation

...
 int step, v2_t, rank, size;
 double value = 0.0;

 MPI_Comm_rank(MPI_COMM_WORLD, &rank);
 MPI_Comm_size(MPI_COMM_SIZE, &size);
 ...
 for (step = 0; step < ceil(loga(size,2)); step++)
 {
 v2_t = pow(2,step);

 if ((rank < v2_t) && (v2_t + rank < size))
 MPI_Send(&value, 1, MPI_DOUBLE,
 (v2_t + rank), 0, MPI_COMM_WORLD);
 else if (rank < (v2_t << 1))
 MPI_Recv(&value, 1, MPI_DOUBLE,
 (rank - v2_t), 0, MPI_COMM_WORLD, &status);
 }
...

MPI: Beyond the Basic D. McCaughan

Tree-Based Communication

P0	
 P4	
 P2	
 P6	
 P1	
 P5	
 P3	
 P7	

t0	

t1	

t2	

t3	

P0	
 P1	

P0	

P0	
 P1	
P2	
 P3	

l  The pattern by which processes join the computation is tree-based
l  note: depth of balanced binary tree with N nodes is ⎡log2N⎫

l  Tree-based communication is very common when values are being
distributed or collected as it makes optimal use of communication resources

Adapted from Parallel Programming with MPI, Peter S. Pacheco, 1997.

MPI: Beyond the Basic D. McCaughan

Reduction

l  Partial results held by multiple processes need
to be combined and sent to a single process

l  Serial reduction (O(N) steps)

do i = N-2, 0, -1

resulti := combine(resulti, resulti+1)

MPI: Beyond the Basic D. McCaughan

Reduction (cont.)

l  Parallel reduction
l  there is no canonical order for communication

in parallel do (for each processor i)
do t := ceil(log2N)-1, 0, -1
if i < 2t AND k+2t < N
resulti := combine(resulti, resulti+2t)

final result on P0

MPI: Beyond the Basic D. McCaughan

Parallel Reduction
l  Parallel reduction is essentially the reverse of the tree-based

broadcast with added operations at each step to combine partial
results where necessary.
l  recall: parallel inner product --- result computed by reduction of partial

sums
l  inverted binary tree, depth = ⎡log2N⎤

l  O(log2N)

P0	
 P1	
 P2	
 P3	
 P4	
 P5	
 P6	
 P7	
t0	

P1	
 P2	
 P3	
t1	
 P0	
 P4	
 P5	
 P6	
 P7	

P1	
t2	
 P0	
 P4	
 P5	
 P6	
 P7	
P2	
 P3	

result	

t3	
 P0	
 P2	
 P3	
 P4	
 P5	
 P6	
 P7	
P1	

MPI: Beyond the Basic D. McCaughan

Common Reduction Operations
l  Simple arithmetic operations

l  sum, difference, product, quotient

l  Properties
l  maximum/minimum value, location of max/min value

l  Logical operations
l  AND, OR, XOR

l  Bitwise operations
l  AND, OR, XOR

l  Sorting*

MPI: Beyond the Basic D. McCaughan

Reduction Implementation
...
 int local, received;
 MPI_Comm_rank(MPI_COMM_WORLD, &k);
 MPI_Comm_size(MPI_COMM_WORLD, &N);

 for (v2_t = pow(2,ceil(loga(N,2)-1); v2_t > 0; v2_t >>= 1;
 {
 if ((k >= v2_t) && (k < (v2_t << 1)))
 MPI_Send(&local, 1, MPI_INT, (k-v2_t), 0, MPI_COMM_WORLD);
 else if ((k < v2_t) && (k + v2_t) < N)
 {
 MPI_Recv(&received, 1, MPI_INT,
 (k+v2_t), 0, MPI_COMM_WORLD, &status);
 /*
 * update “local” partial result based on whatever
 * operation is desired (e.g. max, sum, etc.)
 */
 local = operation(local,recieved);
 }
 }
...	

MPI: Beyond the Basic D. McCaughan

Reduction to All Processes

l  What happens if we want a reduced result on all
processes?

l  Option 1:
l  standard reduction followed by broadcast
l  can we do this more efficiently?

MPI: Beyond the Basic D. McCaughan

Reduction to All Processes
(cont.)

l  Option 2:
l  note that at each step in a reduction the processes

that send their values no longer contribute to
computation

l  introduce communication between both halves of the
subset of processors used at each step, e.g.
l  4 → 0, 5 → 1, 6 → 2, 7 → 3, while at the same time
l  0 → 4, 1 → 5, 2 → 6, 3 → 7
l  etc.

l  result ends up computed on all processes

l  This is a Butterfly reduction

MPI: Beyond the Basic D. McCaughan

Butterfly Reduction

P0	
 P1	
 P2	
 P3	
 P4	
 P5	
 P6	
 P7	
t0	

P4	
 P5	
 P6	
 P7	
P1	
 P2	
 P3	
t1	
 P0	

P1	
t2	
 P0	
 P4	
 P5	
 P6	
 P7	
P2	
 P3	

t3	
 P0	
 P1	
 P4	
 P5	
 P6	
 P7	
P2	
 P3	

P5	
 P6	
 P7	
P4	

P3	
P2	
 P7	
P6	
P5	
P4	

P1	
 P2	
 P3	
 P4	
 P5	
 P6	
 P7	

result	

MPI: Beyond the Basic D. McCaughan

A Word About Messages…
l  How does MPI distinguish messages from one another?

l  who it is from
l  who it is for
l  a user defined “label” used to mark messages
l  the group of processes in which communication is taking place
l  other information (attributes)

l  The message envelope contains at least these pieces of
information (possibly more depending on implementation)
l  sender rank
l  receiver rank
l  tag
l  communicator

MPI: Beyond the Basic D. McCaughan

P0	
 P1	
 P2	

P3	
 P4	
 P5	

P6	
 P7	
 P8	

Issues of Cluster Topology
l  If we are interested in efficiency, we would like to ensure that our

communication pattern is optimal given cluster topology
l  problems:

l  irregular communication patterns complicate programming
l  may not even be aware of the topology

l  e.g. broadcast in a toroid (all communications are 1 step)

t0	

t1	

t2	

Desirable pattern can be
mathematically irregular
t0 :
 0 → 1
t1 :
 0 → 6, 1 → 4
t2 :
 0 → 3, 1 → 2, 6 → 7, 4 → 5

MPI: Beyond the Basic D. McCaughan

Collective Communication
l  We think of sends and receives as distinct events even though they

are abstractly paired on sender/receiver

l  MPI provides a number of collective communication operations
l  all processes participate in an operation together
l  library implementations provide convenience over handling these details

manually, and an opportunity for efficiency where it is possible

l  Collective data movement
l  MPI_Bcast, MPI_Gather, MPI_Allgather, MPI_Scatter

l  Collective computation
l  MPI_Reduce, MPI_Allreduce, MPI_Barrier

MPI: Beyond the Basic D. McCaughan

MPI_Bcast

int MPI_Bcast
(
 void *buffer,
 int count,
 MPI_Datatype datatype,
 int source,
 MPI_Comm comm
);

l  Collective data movement
operation
l  abstracts mechanics of the

broadcast
l  improved portability
l  allows vendor or site to

optimize communication in
library function

l  buffer
l  input/output buffer (depending

on processes)
l  source

l  rank of sending process

MPI: Beyond the Basic D. McCaughan

MPI Broadcast Operation
l  All processes call MPI_Bcast

l  contents of buffer on process sender copied to buffer on all other
processes in communicator (point of synchronization)

source process

int a;
...
a = 5;
MPI_Bcast(&a, ...);	

process i

int a;
...
a = 5;
MPI_Bcast(&a, ...);	

process j

int a;
...
a = 5;
MPI_Bcast(&a, ...);	

MPI: Beyond the Basic D. McCaughan

Example (bcast.c)

...
 if (rank == 0)
 {
 nargs = argc-1;
 if (!(args = calloc(sizeof(int),nargs)))
 ...

 MPI_Bcast(&nargs, 1, MPI_INT, 0, MPI_COMM_WORLD);
 MPI_Bcast(args, nargs, MPI_INT, 0, MPI_COMM_WORLD);
 }
 else
 {
 MPI_Bcast(&nargs, 1, MPI_INT, 0, MPI_COMM_WORLD);

 if (!(args = calloc(sizeof(int),nargs)))
 ...

 MPI_Bcast(args, nargs, MPI_INT, 0, MPI_COMM_WORLD);	

 }
...

MPI: Beyond the Basic D. McCaughan

MPI_Gather

int MPI_Gather
(
 void *outbuf,
 int n_out,
 MPI_Datatype out_type,
 void *inbuf,
 int n_in,
 MPI_Datatype in_type,
 int dest,
 MPI_Comm comm
);

l  Collective data movement
operation
l  collects data subsets from all

processes; store them on one

l  dest and comm must be the
same on all processes in the
communicator
l  gathers data from all

processes

l  Storage occurs in rank order
and is contiguous

MPI: Beyond the Basic D. McCaughan

MPI_Scatter

int MPI_Scatter
(
 void *outbuf,
 int n_out,
 MPI_Datatype out_type,
 void *inbuf,
 int n_in,
 MPI_Datatype in_type,
 int source,
 MPI_Comm comm
);

l  Collective data movement
operation
l  segments contiguous data on

one process and sends each
segment to another process in
the communicator

l  dispersal is contiguous and in
rank order

l  source and comm must be the
same on all processes in the
communicator
l  scatters data to all processes

MPI: Beyond the Basic D. McCaughan

MPI_Allgather

int MPI_Allgather
(
 void *outbuf,
 int n_out,
 MPI_Datatype out_type,
 void *inbuf,
 int n_in,
 MPI_Datatype in_type,
 MPI_Comm comm
);

l  Collective data movement
operation
l  uses butterfly communication

to collect data segments from
all processes and store them
on all

l  storage occurs in rank order
and is contiguous

l  comm must be the same on all
processes in the communicator
l  gathers data from and to all

processes

MPI: Beyond the Basic D. McCaughan

MPI_Reduce

int MPI_Reduce
(
 void *operand,
 void *result,
 int count,
 MPI_Datatype datatype,
 MPI_Op operator,
 int dest,
 MPI_Comm comm
);

l  Collective computation operation
l  abstracts mechanics of reduction
l  all processes contribute data to be

used in a binary operation

l  operand
l  data on each process to be

reduced
l  operator

l  operation to be performed during
reduction

l  dest
l  rank of process to receive result

MPI: Beyond the Basic D. McCaughan

MPI Reduction Operations

l  MPI_Op
l  MPI predefines several common reduction operations
l  it is also possible to define your own

MPI_MAX MPI_LAND
MPI_MIN MPI_LOR
MPI_MAXLOC MPI_LXOR
MPI_MINLOC MPI_BAND
MPI_SUM MPI_BOR
MPI_PRODUCT MPI_BXOR

MPI: Beyond the Basic D. McCaughan

Example: Simplified
Euclidean Inner Product

...
 MPI_Init(&argc, &argv);
 MPI_Comm_rank(MPI_COMM_WORLD, &k);

 op1 = a[k] * b[k];
 v2_t = pow(2,ceil(loga(N,2)-1);

 /*
 * summation of all op values - result to process 0
 */
 MPI_Reduce(&op, &result, 1,
 MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);

 if (k == 0)
 printf(“result = %f\n”, result);
...	

MPI: Beyond the Basic D. McCaughan

MPI_Allreduce

int MPI_Allreduce
(
 void *operand,
 void *result,
 int count,
 MPI_Datatype datatype,
 MPI_Op operator,
 MPI_Comm comm
);

/* summation of all op values - result to all processes */

MPI_Allreduce(&op, &result, 1,
 MPI_DOUBLE, MPI_SUM, MPI_COMM_WORLD);	

l  Collective computation
operation
l  recall: butterfly reduction
l  no dest process --- result

stored on all processes

l  e.g. inner product with
result to all:

MPI: Beyond the Basic D. McCaughan

MPI_Barrier

int MPI_Barrier
(
 MPI_Comm comm
);

l  Collective operation
synchronizing all processes
l  ensures all processes have

reached the same point in
processing

l  All processes in communicator
block until every process calls
MPI_Barrier
l  this must be using sparingly and

only where appropriate
l  e.g. timing for task completion

l  Too often used as a programming
crutch to force synchronization
l  note that entire job becomes

slaved to these barrier points
l  time to barrier completion now

dictated by the slowest process
l  this is a design issue --- are you

using it appropriately?

MPI: Beyond the Basic D. McCaughan

Special Purpose Communication
l  While there are hundreds of functions we have not

considered, there are a few worth pointing out
l  MPI_Sendrecv_replace

l  use same buffer for a combined send/receive operation

l  MPI_Gatherv
l  gather variable sized data from all processes

l  MPI_Scatterv
l  distribute variable sized data to all processes

l  MPI_Allgatherv, MPI_Alltoall, MPI_Alltoallv,
MPI_Reduce_scatter

MPI: Beyond the Basic D. McCaughan

Single Buffer Send/Receive

int MPI_Sendrecv_replace
(
 void *mesg,
 int count,
 MPI_Datatype datatype,
 int dest,
 int s_tag,
 int source,
 int r_tag,
 MPI_Comm comm,
 MPI_Status *status
);

l  Generally, it is unsafe to use
the same buffer for both output
and input in the same function
call

l  mesg
l  data referenced by mesg is

first sent to dest, then data is
received from source into the
same buffer

l  note that the same amount and
type of data must be both sent
and received

MPI: Beyond the Basic D. McCaughan

Gather Variable Sized Data

int MPI_Gatherv
(
 void *outbuf,
 int n_out,
 MPI_Datatype outtype,
 void *inbuf,
 int n_in[],
 int offsets[],
 MPI_Datatype intype,
 int dest,
 MPI_Comm comm
);

l  MPI_Gather required the size
of the data on each process be
the same

l  n_in
l  n_in[i] contains number of

values to receive from process
i

l  offsets
l  offsets[i] contains offset

into inbuf at which to begin
storing values recieved from
process i

MPI: Beyond the Basic D. McCaughan

Scatter Variable Sized Data

int MPI_Scatterv
(
 void *outbuf,
 int n_out[],
 int offsets[],
 MPI_Datatype outtype,
 void *inbuf,
 int n_in,
 MPI_Datatype intype,
 int source,

 MPI_Comm comm
);

l  MPI_Scatter similarly required
distribution of data be uniform
in size

l  n_out
l  n_out[i] contains number of

values to send to process i

l  offsets
l  offsets[i] contains offset

into outbuf at which to begin
sending values to process i

MPI: Beyond the Basic D. McCaughan

Other Data Distribution Functions
l  MPI_Allgatherv

l  gather variable sized data to all processes

l  MPI_Alltoall / MPI_Alltoallv
l  each process sends a different set of data to all other processes
l  effect the same as a series of scatters by all processes

l  MPI_Reduce_scatter
l  perform a reduction operation with results scattered to all

processes

MPI: Beyond the Basic D. McCaughan

Programming Issues
l  Buffer dependencies

l  consider our “hello, world” example where all processes send to their
left while receiving from their right (this will apply to our next example as
well)

l  if the sends block, the receives will be staggered starting from the right
l  the one process that didn’t send receives, allowing the process to its right to

unblock and complete its send
l  this process can now initiate its receive allowing the process to its right to

unblock and complete its send, etc.
l  this virtually negates any benefit from parallel communication

l  SOLUTION:
l  pair sends and receives, operation specific to process
l  e.g. odd processes send, even processes receive

MPI: Beyond the Basic D. McCaughan

Example: Heat Flow
l  This example is adapted from one in High Performance Computing,

Kevin Dowd & Charles Severance, O’Reilly & Associates, 1998.

l  Heat flow is a classic problem in scalable parallel processing
l  in a single dimension:

l  a rod at a constant temperature
l  one end of the rod is exposed to a heat source
l  simulate the flow of heat from one end to the other and determine its steady-

state
l  in two dimensions:

l  a metal sheet at a constant temperature
l  heat source(s) placed beneath the sheet
l  simulate flow of heat out from heat sources

l  etc.

MPI: Beyond the Basic D. McCaughan

Example: Heat Flow (cont.)
l  In our example, we will consider the following set-up:

l  we wish to find the steady state of heat distribution in a flagpole
l  assume that over night the flagpole and the ground achieved a uniform

temperature of 0 degrees Celsius (we will also ignore any ambient air
effects)

l  first thing in the morning, the top of the flag pole is embedded in an
object which has a temperature of 37 degrees Celsius

ground (0o) heat source (37o)

flagpole
(initially a uniform 0o)

heat flow

MPI: Beyond the Basic D. McCaughan

Example: Heat Flow (cont.)
l  Problem set-up

l  note: data parallelism
l  we’ll treat the system in a discrete fashion

l  divide pole into discrete segments with uniform temperature throughout
§  fix temperatures of leftmost/rightmost cell to 0 and 37 respectively

l  divide time into discrete intervals at which to compute temperature
l  compute current temperature as mean of surrounding temperatures

fixed
(0o)

fixed
(37o)

0	
 0	
 0	
 0	
 0	
 0	
 0	
 0	
 0	
 0	
 0	
 0	
 37	

state at t0

...	
0	
 0	
 0	
 0	

MPI: Beyond the Basic D. McCaughan

Heat Flow Design
l  Design:

l  divide pole into N segments, each given to one of N processors
l  can divide it up more finely and give multiple segments to each

processor if desired

l  each processors computes update for its segment(s) at each time step:
l  Ts(t) = Ts-1(t-1) + Ts+1(t-1) / 2

l  to compute Ts a processor needs Ts-1 and Ts+1

l  have an extra segment at each end fixed to the desired temperature
§  T0 = 0, Tn+1 = 37 (remaining Ts, s = 1..N are the segments of the pole)

l  only process Ts computation for 0 < s <= n

MPI: Beyond the Basic D. McCaughan

Heat Flow Design (cont.)

l  Issues
l  consider the sequential procedure:

for (i = 1; i <= n; i++)

 segment[i]=(segment[i-1]+segment[i+1])/2;

l  note that segment[i-1] will actually be the temperature at the
next time step rather than this one (as segment[i] was
computed first)

MPI: Beyond the Basic D. McCaughan

Heat Flow Design (cont.)

l  Solution?
l  red-black arrays
l  alternate between arrays of segments using one as the source of

values from the previous time step while writing computed values
to the other

l  How do we account for this in our parallel program (or is
it even relevant)?

MPI: Beyond the Basic D. McCaughan

Heat Flow Design (cont.)

l  Issues
l  consider communication needs

l  only adjacent segments on different processors need to
communicate their values

l  note that there is communication flowing both ways
l  must have this value before computing the temperature at the

current time step for at least the adjacent segment

MPI: Beyond the Basic D. McCaughan

Heat Flow Design (cont.)

l  Solution?
l  have the array of segments in each process be two larger than

necessary (one on each end --- array runs 0..M+1)
l  receive the adjacent value we need into this location and local

loop on only values 1..M
l  is order of communication important?

l  adopt some convention, e.g. receive from left, send to right,
receive from right, send to left

l  is this safe? are there other options?

MPI: Beyond the Basic D. McCaughan

Heat Flow Implementation

0	
 0	
 0	
 0	
 0	

0	
 0	
 0	
0	
 0	

0	
 0	
 0	
0	
 0	

0	
 0	
 0	
 37	
0	

“Red” copy	

1) transfer edge temps	

0	
 0	
 0	
 0	
 0	

0	
 0	
 0	
0	
 0	

0	
 0	
 0	
0	
 0	

0	
 0	
 0	
 37	
0	

“Black” copy	

2) exchange red/black	

€

Ti =
Ti−1 + Ti+1

2

3) compute next
time step	
18.5	

MPI: Beyond the Basic D. McCaughan

Example (heatflow.c et al.)

l  Things to note:

l  order of sends/receives (what other options are
there?)

l  red/black arrays are references so swapping is fast
l  alternative is to explicitly code the two sequential iterations

one reading black->red, the next red->black
l  copying the array contents is a bad idea (why?)

MPI: Beyond the Basic D. McCaughan

Example (heatflow.c et al.)

l  Things to note (cont.):

l  data distribution
l  this method spreads segment count as evenly as possible
l  the alternative is to have the first N-1 processors have equal

sized segments, while the last processor handles whatever is
left over

§  this option is better if you are going to use gather/scatter

l  only minimal information is broadcast from P0
l  there is no need to broadcast the entire initial pole state here

(why?)

MPI: Beyond the Basic D. McCaughan

Food For Thought - 2-D Heat Flow
l  How would you model a 2-D heat flow problem

l  e.g. a uniform temperature metal plate with a heat source placed under
it in the middle (or multiple heat sources at different locations)

l  Same basic idea
l  block the data and set up communication patterns
l  at each iteration edge processors (around entire plate) communicate

with adjacent processors
l  for each time step compute temp at a given point as average of the 4 or

8 points surrounding it
l  same issues

l  What about 3-D heat flow?

MPI: Beyond the Basic D. McCaughan

Derived Data Types
l  Recall we always provide a datatype argument to MPI

functions
l  how can we define our own (derived) data types?
l  note that the built-in MPI data types are actually variables, not

types

l  MPI provides functions to create new instances of
MPI_Datatype variables for data types we define
ourselves
l  MPI_Datatype structures define the structure of data to be sent,

it does not encapsulate that data (see example)

MPI: Beyond the Basic D. McCaughan

Derived Data Types (cont.)
l  Building derived data types is relatively expensive

l  if we are going to bother with the overhead there must be some
expected benefit

l  we should be expecting to use a derived data type extensively to
warrant creating one

l  Derived types in MPI are internally represented as
sequences of (datatype, offset) pairs
l  datatype is a known data type
l  offset is the displacement in bytes from the start of the

message where the value is located
l  the sequence of data types is the type signature

MPI: Beyond the Basic D. McCaughan

Derived Data Types (cont.)

l  This is an important concept in understanding how we
can define our own derived types
l  e.g. an array of 5 doubles might have the following type

signature:
{(MPI_DOUBLE, 0), (MPI_DOUBLE, 8),
(MPI_DOUBLE, 16), (MPI_DOUBLE, 24),
(MPI_DOUBLE, 32) }

l  MPI allows us to define our own types by constructing type
signatures (internally) matching the definitions we provide

MPI: Beyond the Basic D. McCaughan

MPI Type Equivalence
l  Types are considered compatible if the complete

sequence of types (i.e. the type signature) in the derived
data type in the receiver matches the initial sequence of
types from the sender
l  i.e. sender’s type signature can be longer than the receivers as

long as the initial sequences matches
l  displacements are not considered in type matching

l  Example: compatibility.c
l  modification of indexed type example (to follow)
l  the main diagonal of a matrix is sent, and received into the

reverse diagonal of a matrix
l  can play a similar game with columns sent and received into

rows, etc.

MPI: Beyond the Basic D. McCaughan

Committing Data Types:
MPI_Type_commit

l  Before we can use a
derived data type we
must “commit” the
type to MPI
l  allows the library to

optimize representation
of the type for
communication (where
possible)

l  recall: type signature

int MPI_Type_commit
(
 MPI_Datatype *new
);

l  new
l  an initialized derived data

type to be committed

MPI: Beyond the Basic D. McCaughan

Contiguous Type:
MPI_Type_contiguous
int MPI_Type_contiguous
(
 int count,
 MPI_Datatype type,
 MPI_Datatype *new
);

l  Sending contiguous data
l  note that in C this is

typically unnecessary
l  arrays are allocated

contiguously anyway
l  type is provided for

portability

l  count
l  number of contiguous

elements in the derived
type

l  type
l  an existing data type

identifying the elements in
the derived type

l  new
l  a data type object to be

initialized by this call

MPI: Beyond the Basic D. McCaughan

Contiguous Type Example

...
 double vals[SIZE]; /* contiguous array of doubles */
 MPI_Datatype dbl_array;
 ...

 MPI_Type_contiguous(SIZE, MPI_DOUBLE, &dbl_array);
 MPI_Type_commit(&dbl_array);

 if (rank == 0)
 {
 /*
 * send 1 instance of the dbl_array type (vs. 10 of MPI_DOUBLE)
 */
 MPI_Send(vals,1,dbl_array,1,0,MPI_COMM_WORLD);
 }
 else
 {
 MPI_Recv(vals, 1, dbl_array, 0, 0, MPI_COMM_WORLD, &status);
 }
...

MPI: Beyond the Basic D. McCaughan

Vector Type:
MPI_Type_vector
int MPI_Type_vector
(
 int count,
 int length,
 int stride,
 MPI_Datatype type,
 MPI_Datatype *new
);

l  Sending non-adjacent data
stored in contiguous memory
with constant stride

l  length
l  number of entries in each

element (i.e. can be an array)

l  stride
l  number of elements of type

between elements of new

l  e.g. C stores matrices in row-
major order --- the values in a
column of the matrix are row-
length elements apart

MPI: Beyond the Basic D. McCaughan

Vector Type Example

...
 double vals[SIZE][SIZE]; /* contiguous array of doubles */
 MPI_Datatype dbl_column;
 ...
 MPI_Type_vector(SIZE, 1, SIZE, MPI_DOUBLE, &dbl_column);
 MPI_Type_commit(&dbl_column);

 if (rank == 0)
 {
 /* note we can send any column of a SIZExSIZE array of
 * doubles in this same way */
 MPI_Send(&vals[0][0],1,dbl_column,1,0,MPI_COMM_WORLD);
 }
 else
 {
 /* we'll receive the column sent into a different
 * column of the array in this process */
 MPI_Recv(&vals[0][3],1,dbl_column,0,0,MPI_COMM_WORLD, &status);
 }
...

MPI: Beyond the Basic D. McCaughan

Indexed Type:
MPI_Type_index
int MPI_Type_index
(
 int count,
 int lengths[],
 int offsets[],
 MPI_Datatype type,
 MPI_Datatype *new
);

l  Sending non-adjacent data
stored in contiguous memory
with variable stride

l  lengths
l  length[i] gives number of

elements in the ith entry of the
new type

l  offsets
l  offsets[i] gives number

elements of type offset from
the beginning of type for the ith
entry of the new type

l  e.g. main diagonal of a matrix
(since lengths can be variable
we can send sub-matrices this
way as well)

MPI: Beyond the Basic D. McCaughan

Indexed Type Example

...
 double vals[SIZE][SIZE]; /* contiguous array of doubles */
 MPI_Datatype dbl_diag; /* main diagonal doubles from 2-D array */
 int lengths[SIZE]; /* entry lengths */
 int offsets[SIZE]; /* entry offsets */
 ...

 for (i = 0; i < SIZE; i++)
 {
 lengths[i] = 1;
 offsets[i] = (SIZE+1) * i;
 }
 MPI_Type_indexed(SIZE, lengths, offsets, MPI_DOUBLE, &dbl_diag);
 MPI_Type_commit(&dbl_diag);

 if (rank == 0)
 MPI_Send(vals[0],1,dbl_diag,1,0,MPI_COMM_WORLD);
 else
 MPI_Recv(vals[0], 1, dbl_diag, 0, 0, MPI_COMM_WORLD, &status);
...

MPI: Beyond the Basic D. McCaughan

Structure Type:
MPI_Type_struct
int MPI_Type_struct
(
 int count,
 int lengths[],
 MPI_Aint offsets[],
 MPI_Datatype types[],
 MPI_Datatype *new
);

l  MPI allows us to combine
arbitrary types into a structure
type
l  i.e. create arbitrary type

signatures

l  offsets
l  offsets[i] gives offset from the

beginning of the type for the
ith component of the new type

l  note that these can be
completely arbitrarily located
in memory, all offsets are
simply relative to the
beginning of the type (i.e. the
buffer provided to send/recv)

l  note: MPI_Aint is a MPI
defined type for addresses
(allows for addresses too large
to represent with an integer)

MPI: Beyond the Basic D. McCaughan

Structure Type (cont.):
MPI_Address

l  Offset values are
expressed as addresses
rather than counts
l  consecutive values are not

necessarily the same type,
and may not occur
contiguously in storage
(structure types are
completely arbitrary)

l  in C we could just use the
address-of operator (&);
this function ensures
portability

int MPI_Address
(
 void *ref,
 MPI_Aint *address
);

l  ref

l  reference to storage
containing value

l  address
l  initialized with address of

provided reference upon
return

MPI: Beyond the Basic D. McCaughan

Structure Type Example

...
 int val1 = 0; double val2 = 0.0; char val3[STR_LEN];

 MPI_Datatype int_dbl_str; /* type containing int/double/string */
 int lengths[3]; /* entry lengths */
 MPI_Aint offsets[3]; /* entry offsets */
 MPI_Datatype types[3]; /* entry types */
 MPI_Aint base, off;
 ...

 lengths[0] = lengths[1] = 1;
 lengths[2] = STR_LEN;

 /* all addresses relative to val1 (&val1 is the “buffer” on send) */
 MPI_Address(&val1, &base);
 offsets[0] = 0;
 MPI_Address(&val2, &off);
 offsets[1] = off - base;
 MPI_Address(&val3, &off);
 offsets[2] = off - base;

MPI: Beyond the Basic D. McCaughan

Structure Type Example (cont.)

 types[0] = MPI_INT;
 types[1] = MPI_DOUBLE;
 types[2] = MPI_CHAR;

 MPI_Type_struct(3, lengths, offsets, types, &int_dbl_str);
 MPI_Type_commit(&int_dbl_str);

 if (rank == 0)
 {
 val1 = 5;
 val2 = 3.14;
 strcpy(val3,"hello");

 MPI_Send(&val1, 1, int_dbl_str, 1, 0, MPI_COMM_WORLD);
 }
 else
 {
 MPI_Recv(&val1, 1, int_dbl_str, 0, 0, MPI_COMM_WORLD, &status);
 }
...

MPI: Beyond the Basic D. McCaughan

Notes on Derived Types
l  Set-up is relatively expensive

l  only use when data being
transmitted forms a regular part of
communication

l  Reasonably efficient once set-up
is complete
l  permit more natural data

representation in code

l  CAUTION re: Structure types
l  offsets in structure types reflect

actual data layout in memory
l  only reference addresses that will

exist at the time of transmission

2000	

2004	

2008	

200C	

2010	

2014	

2018	

201C	

2020	

2024	

2028	

202C	

2030	

2034	

val1=5	

val2=3.14	

val3=2030	

hell	

o\0	

offsets[0] = 0	

offsets[1] = 12	

offsets[2] = 48	

MPI: Beyond the Basic D. McCaughan

Packing Data:
MPI_Pack

int MPI_Pack
(
 void *data,
 int count,
 MPI_Datatype datatype,
 void *buffer,
 int size,
 int *offset,
 MPI_Comm comm
);

l  Packing allows us to explicitly
store non-contiguous data in
contiguous memory locations

l  data
l  reference to data to be packed

l  buffer
l  buffer into which we are

packing the data

l  offset
l  offset into buffer where data

should be packed
l  when the function returns

offset has been changed to
refer to the first location in
buffer after the data that
was just packed

MPI: Beyond the Basic D. McCaughan

Unpacking Data :
MPI_Unpack

int MPI_Unpack
(
 void *buffer,
 int size,
 int *offset,
 void *data,
 int count,
 MPI_Datatype datatype,
 MPI_Comm comm
);

l  Unpacking data is exactly the
opposite process

l  buffer
l  buffer from which we are

unpacking the data

l  offset
l  references the starting

position of the data to be
unpacked within buffer

l  after return offset is
changed to reference the first
position in buffer after the
data that was just unpacked

l  data
l  reference to location into

which data is to be unpacked

MPI: Beyond the Basic D. McCaughan

Notes on Packing Data
l  The type of contiguous data sent in this manner is MPI_PACKED

l  This is completely explicit data packing/unpacking
l  there is no part of this where you define a type that can be reused; you

are simply jamming data into a contiguous representation for
transmission

l  There is significant ongoing overhead with packing data in this
manner
l  if it must be done repetitively you are probably better off with a

contiguous or structured derived type
l  if you are transmitting highly variable messages, it becomes an

empirical question whether you’ll see better performance from packing
data as compared to numerous individual sends

MPI: Beyond the Basic D. McCaughan

Packing Data Example

...
 int val1 = 0;
 double val2 = 0.0;
 char val3[STR_LEN];
 int offset = 0;
 char buf[BUF_SIZE];
 ...

 if (rank == 0)
 {
 val1 = 5; val2 = 3.14; strcpy(val3,"hello");

 /*
 * pack data to be sent into buffer
 */
 MPI_Pack(&val1,1,MPI_INT,buf,BUF_SIZE,&offset,MPI_COMM_WORLD);
 MPI_Pack(&val2, 1, MPI_DOUBLE,
 buf, BUF_SIZE, &offset, MPI_COMM_WORLD);
 MPI_Pack(&val3, STR_LEN, MPI_CHAR,
 buf, BUF_SIZE, &offset, MPI_COMM_WORLD)

MPI: Beyond the Basic D. McCaughan

Packing Data Example (cont.)

 /*
 * send the packed data buffer
 */
 MPI_Send(buf, BUF_SIZE, MPI_PACKED, 1, 0, MPI_COMM_WORLD);
 }
 else
 {
 MPI_Recv(buf,BUF_SIZE,MPI_PACKED,0,0,MPI_COMM_WORLD,&status);

 /*
 * unpack received data from packed data buffer
 */
 MPI_Unpack(buf, BUF_SIZE, &offset,
 &val1, 1, MPI_INT, MPI_COMM_WORLD);
 MPI_Unpack(buf, BUF_SIZE, &offset,
 &val2, 1, MPI_DOUBLE, MPI_COMM_WORLD);
 MPI_Unpack(buf, BUF_SIZE, &offset,
 &val3, STR_LEN, MPI_CHAR, MPI_COMM_WORLD);
...

MPI: Beyond the Basic D. McCaughan

Data Summary
l  If data to be sent is already stored in contiguous memory

l  use standard methods for transmission (or contiguous type
depending on language)

l  use vector derived type if values are not adjacent, but are
uniform in relative location

l  use indexed derived type if values are non adjacent and stride
between values not a constant

l  If data is not stored contiguously
l  use structure derived type if arbitrary storage locations are used

repeatedly
l  use pack/unpack only where communication needs are highly

non-uniform and there is measurable benefit from doing it

MPI: Beyond the Basic D. McCaughan

Where do you go from here?

l  Other communication options
l  buffered
l  non-blocking pipelines

l  Communicators

l  Topologies

l  MPI-2

l  one-sided communication

SHARCNET Summer School 2008

Exercise 1: safe MPI
1)  The phello.c file in ~dbm/public/exercises/intro is a copy of

the one used in the earlier example

2)  Modify this program so that each process i sends it's text string to process
(i + 1) % n, where n is the number of processes

l  before a process sends its message it should output what it is doing making
reference to the process ranks involved (e.g. "Process 1 sending to process 2")

l  similarly, after a process receives a message it should output what it did and
what the message was (e.g "Process 2 received 'Hello, world! from process 1'
from process 1").

l  note that the receiving process should be making use of the message it
received in the output

3)  Draw a diagram illustrating the order of events implied by your code

D. McCaughan MPI: Basics

SHARCNET Summer School 2008

Exercise 1: safe MPI (cont.)
l  Compile and submit this job to

l  2 processes
l  4 processes
l  8 processes

l  Answer the following questions:
l  is the order in which processes perform their send/receives significant?

l  what would happen if you reversed them?

l  what happens if you run this on a single processor?

l  are there any problems with the order of events in you code?

D. McCaughan MPI: Basics

SHARCNET Summer School 2008

Exercise 2: parallel
communication
1)  The parallel inner product code presented in these notes appears

in file piprod.c in ~dbm/pub/exercises/intro
l  you can compile with -DTRACE to activate the code that traces the

sends and receives to/from all processes if you’d like to see it
l  note that as written, all processes read two vectors from a file

provided as a command-line argument

2)  Modify this program to accommodate the following:
l  an arbitrary number of processors can be involved (not necessarily a

power of 2)
l  vectors can be of arbitrary size (assume vector size can be much

larger than the number of processors)

D. McCaughan MPI: Basics

SHARCNET Summer School 2008

Exercise 2: parallel
communication (cont.)
3) Note that it is not necessary to strictly do the recursive doubling

approach that we used for the example
l  think about how you are going to distribute the work and the data and

ensure that process 0 outputs the result

l  Answer the following questions:
l  how did you choose to parallelize the work and data?

l  what sort of speed-up would you expect from the approach you have
taken?

l  what would you have to take into account if you were going to
distribute the data from process 0 (rather than have all processes read
it)?

D. McCaughan MPI: Basics

SHARCNET Summer School 2008

Exercise 3: non-blocking
communication
1)  The file nonblocking.c in ~dbm/pub/exercises/communication

is code that implements both standard and non-blocking sends and
receives between two processes

l  use “-n” command-line option to enable use of non-blocking calls
l  note that as configured, several hundred messages of exactly 1MB are sent

between processes in this test, and no work is done between them

2)  Add some computational work in the work() function
l  this function is called once per send/receive between processes, but occurs

between the MPI_Isend/ MPI_Irecv and the MPI_Wait calls
l  there are several elements of the work you can adjust

l  size of messages (adjusts time spent in communication)
l  number of messages (amplifies any timing differences)
l  volume of work done (adjusts time spend in computation)

l  ensure processes run on different nodes when you submit these jobs (why?)

D. McCaughan MPI: Basics

SHARCNET Summer School 2008

Exercise 3: non-blocking
communication (cont.)
l  Answer the following questions:

l  if the interconnect does not have a communication co-processor, what is
your expectation of run time for the standard/non-blocking cases?

l  what sort of speed-up do you observe when the message size is small
vs. large? what about when the amount of computation is small vs.
large?

l  what problem characteristics would need to be present for you to take
advantage of non-blocking communication?

l  is it possible for non-blocking communication to eliminate issues of
communication overhead under certain circumstance? is this important?

D. McCaughan MPI: Basics

Summer School 2007

Exercise 4: 2-D Heatflow
1)  Using the one-dimensional heat flow implementation provided in ~dbm/

pub/exercises/heatflow as a guide to design issues, implement a
two-dimensional parallel version of the heat flow simulation (alternatively,
implement a parallel cellular automata such as Conway’s Game of Life).

2)  Note that there are options with respect to distributing the data
•  blocking it into sub-grids and assigning those to the running processes
•  break it up by groups of complete rows (or columns) and assign those to the

running processes

3)  Answer the following questions:
l  which of the provided options makes more sense to you outside of

implementing it in code?

l  which do you think is more effective in terms of a MPI parallel implementation?

