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Abstract—OpenMP has been very successful in exploiting structured parallelism in applications. With increasing application

complexity, there is a growing need for addressing irregular parallelism in the presence of complicated control structures. This is

evident in various efforts by the industry and research communities to provide a solution to this challenging problem. One of the

primary goals of OpenMP 3.0 was to define a standard dialect to express and to exploit unstructured parallelism efficiently. This paper

presents the design of the OpenMP tasking model by members of the OpenMP 3.0 tasking subcommittee which was formed for this

purpose. This paper summarizes the efforts of the subcommittee (spanning over two years) in designing, evaluating, and seamlessly

integrating the tasking model into the OpenMP specification. In this paper, we present the design goals and key features of the tasking

model, including a rich set of examples and an in-depth discussion of the rationale behind various design choices. We compare a

prototype implementation of the tasking model with existing models, and evaluate it on a wide range of applications. The comparison

shows that the OpenMP tasking model provides expressiveness, flexibility, and huge potential for performance and scalability.

Index Terms—Parallel programming, OpenMP, task parallelism, irregular parallelism.
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1 INTRODUCTION

IN the last few decades, OpenMP has emerged as the de
facto standard for shared-memory parallel programming.

OpenMP provides a simple and flexible interface for
developing portable and scalable parallel applications.
OpenMP grew in the 1990s out of the need to standardize
the different vendor specific directives related to parallelism.
It was structured around parallel loops and was meant to
handle dense numerical applications.

Modern applications are getting larger and more com-
plex, and this trend will continue in the future. Irregular
and dynamic structures, such as while loops and recursive
routines are widely used in applications today. The set of
features in the OpenMP 2.5 specification is ill equipped to
exploit the concurrency available in such applications.
Users now need a simple way to identify independent
units of work and not concern themselves with scheduling
these work units. This model is typically called “tasking”
and has been embodied in a number of projects, such as
Cilk [1]. Previous OpenMP-based extensions for tasking

(for example, workqueueing [2] and dynamic sections [3])
have demonstrated the feasibility of providing such support
in OpenMP.

With this in mind, a subcommittee of the OpenMP 3.0
language committee was formed in September 2005, with
the goal of defining a simple tasking dialect for expressing
irregular and unstructured parallelism. Representatives
from Intel, UPC, IBM, Sun, CASPUR, and PGI formed the
core of the subcommittee. Providing tasking support
became the single largest and most significant feature
targeted for the OpenMP 3.0 specification.

This paper presents the work of the OpenMP tasking
subcommittee spanning over two years. Section 2 discusses
the motivation behind our work and explores the limita-
tions of the current OpenMP standard and existing tasking
models. Section 3 describes the task model and presents the
paradigm shift in the OpenMP view from thread-centric to
task-centric. Section 4 discusses our primary goals, design
principles, and the rationale for several design choices. In
Section 5, we illustrate several examples that use the task
model to express parallelism. Section 6 presents an
evaluation of our model (using a prototype implementa-
tion) against existing tasking models. Section 7 explores
future research directions and extensions to the model.

2 MOTIVATION AND RELATED WORK

Many applications, ranging from document-based indexing
to adaptive mesh refinement, have a lot of potential
parallelism which is not regular in nature and which varies
with the data being processed. Irregular parallelism in these
applications is often expressed in the form of dynamically
generated units of work that can be executed asynchro-
nously. The OpenMP Specification Version 2.5, however,
does not provide a natural way to express this type of
irregular parallelism, since OpenMP was originally “some-
what tailored for large array-based applications” [4]. This is
evident in the two main mechanisms for distributing work
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among threads in OpenMP. In the loop construct, the
number of iterations is determined upon entry to the loop
and cannot be changed during its execution. In the sections
construct, the units of work (sections) are statically defined
at compile time.

Fig. 1 shows an example of dynamic linked list
traversal. First, a while loop is used to traverse a list
and store pointers to the list elements in an array called
list_item. Second, a for loop is used to iterate over
the elements stored in the list_item array and call
process() routine for each element. Since the iterations
of the for loop are independent, OpenMP is used to
parallelize the for loop, so that the iterations of the loop
are distributed among a team of threads and executed in
parallel.

A common operation like dynamic linked list traversal is
therefore not readily parallelizable in OpenMP. One
possible approach is to store pointers to the list elements
in an array, as shown in Fig. 1. Once all the pointers are
stored in the array, we can process the data in the array
using a parallel for loop. The parallel for directive
creates a team of threads and distributes the iterations of the
associated for loop among the threads in the team. The
threads execute their subsets of the iterations in parallel.

This approach of storing pointers to the list elements in
an array incurs the overhead of array construction, which is
not easy to parallelize.

Another approach is to use the single nowait

construct inside a parallel region, as shown in Fig. 2.
The parallel directive creates a team of threads. All the
threads in the team execute the while loop in parallel,
traversing all of the elements of the list. The single

directive is used to ensure that only one of the threads in the
team actually processes a given list element.

While elegant, this second approach is unintuitive and
inefficient because of the relatively high cost of the single
construct [5], and each thread needs to traverse the whole
list and determine for each element whether another thread
has already executed the work on that element.

The OpenMP Specification Version 2.5 also lacks the
facility to specify structured dependencies among different

units of work. The ordered construct imposes a sequential
ordering of execution. Other OpenMP synchronization
constructs, like barrier, synchronize a whole team of
threads, not work units. This is a serious limitation that
affects the coding of hierarchical algorithms such as tree
data structure traversal, multiblock grid solvers, adaptive
mesh refinement [6], and dense linear algebra [7], [8], [9], to
name a few. In principle, nested parallelism can be used to
address this issue, as shown in the example in Fig. 3. The
parallel directive in routine traverse() creates a team
of two threads. The sections directive is used to specify
that one of the threads should process the left subtree and
the other thread should process the right subtree. Each of
the threads will call traverse() recursively on its subtree,
creating nested parallel regions. This approach can be
costly, however, because of the overhead of parallel region
creation, the risk of oversubscribing system resources,
difficulties in load balancing, and different behaviors of
different implementations. All of these issues make the
nested parallelism approach impractical.

There have been several proposals for expressing
irregular parallelism in programming languages. We list a
few here.

Compositional C++ (CC++) [10] is an early extension of
C++ designed for the development of task-parallel object-
oriented programs. CC++ introduces the par block and the
parfor and spawn statements. The par block executes
each statement in the block in a separate task. The parfor
statement executes each iteration of the following for loop
in a separate task. The spawn statement executes an
arbitrary CC++ expression in a new thread.

The Cilk programming language [1] is an elegant,
simple, and effective extension of C for multithreading that
is based on dynamic generation of tasks. Cilk is instructive,
particularly because of the work-first principle and the work-
stealing technique adopted. However, Cilk lacks several
features, such as loop and sections constructs, that make
OpenMP very efficient for solving many computational
problems.

The Intel work-queuing model [2] is an attempt to add
dynamic task generation to OpenMP. This proprietary
extension to OpenMP allows the definition of tasks in the
lexical extent of a taskq construct. Hierarchical generation
of tasks can be accomplished by nesting taskq constructs.
Synchronization of tasks is controlled by means of implicit
barriers at the end of taskq constructs. The implementa-
tion, however, was shown to exhibit some performance
issues [5], [8].

The Nanos group at UPC proposed dynamic sections as an
extension to the OpenMP sections construct to allow
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Fig. 1. Parallel pointer chasing with the inspector-executor model.

Fig. 2. Parallel pointer chasing using single nowait.

Fig. 3. Parallel depth-first tree traversal.



dynamic generation of tasks [3]. Direct nesting of section
blocks is allowed, but hierarchical synchronization of tasks
can only be accomplished by nesting parallel regions. The
Nanos group also proposed the pred and succ constructs
to specify precedence relations among statically named
sections in OpenMP [11]. This is an extension that may
be explored as part of our future work.

Intel Threading Building Blocks (TBB) [12] is a C++
runtime library without special compiler support or
language extensions. It allows the user to program in terms
of tasks (represented as instances of a task class). The
runtime library takes full responsibility for scheduling the
tasks for locality and load balancing. TBB’s higher-level
loop templates (for example, parallel reduction) are built
upon the task scheduler and are responsible for dividing
work into tasks. TBB also provides concurrent container
classes that allow concurrent access of various containers
(for example, hash maps and queues) by either fine-grained
locking or lock-free algorithms.

The Task Parallel Library (TPL) developed by
Microsoft [13] supports parallel constructs like paral-

lel for by providing the Parallel.For method. TPL
also supports other constructs such as task and future.
A task is an action that can be executed concurrently with
other tasks. A future is a specialized task that returns a
result; the result is computed in a background thread
encapsulated by the future object, and the result is
buffered until it is retrieved.

Both TBB and TPL offer a task model similar to our
proposal. But our model follows the incremental paralleli-
zation and sequential consistency principles that are part of
the OpenMP philosophy (and of its success). As well, our
proposal is not targeted to a specific language but works for
all the different OpenMP base languages (C, C++ and
Fortran).

The need to support irregular forms of parallelism in
HPC is evident in the features being included in new
programming languages, notably X10 (asynchronous activ-
ities and futures using async and future) [14], Chapel
(the cobegin statement) [15], and Fortress (tuple expres-
sions) [16].

Moreover, previous works [17], [18], [19], [20] have
found that mixing data and task parallelism can improve
the performance of many applications, although integrating
both models can be quite challenging particularly in the
thread-centric model of OpenMP [21].

Our tasking proposal aims to make OpenMP more
suitable for expressing irregular parallelism and for
parallelizing units of work that are dynamically generated.
One observation is that, conceptually, OpenMP already has
tasks, and every part of an OpenMP program is part of one
task or another. Our proposal simply adds the ability to
create explicitly defined tasks to OpenMP.

3 TASK PROPOSAL

OpenMP version 2.5 is based on threads. The execution
model is based on the fork-join model of parallel execution
where all threads have access to a shared memory. The
parallel directive is used to create a team of threads.
Worksharing directives (such as for, sections, and

single) are used to distribute units of work among
threads in the team. Each unit of work is assigned to a
specific thread in the team and is executed from start to
finish by that same thread. A thread may not suspend the
execution of one unit of work to work on another.

OpenMP version 3.0 shifts the focus to tasks. A
parallel directive still starts a team of threads and
distributes and executes the work in the same fashion as in
2.5, but we say that the threads are each executing an
implicit task during the parallel region. Version 3.0 also
introduces the task directive, which allows the program-
mer to specify a unit of parallel work called an explicit task.
Explicit tasks are useful for expressing unstructured
parallelism and for defining dynamically generated units
of work, to be added to the work that will be done by the
team. A task will be executed by one of the threads in the
team, but different parts of a task may be executed by
different threads, if the programmer so specifies.

3.1 The task Construct

The syntax for the new task construct1 is illustrated in
Fig. 4. Whenever a thread encounters a task construct, a
new explicit task, i.e., a specific instance of executable code
and its data environment, is generated from the associated
structured block. An explicit task may be executed by any
thread in the current team, in parallel with other tasks, and
the execution can be immediate or deferred until later. The
task a thread is currently executing is called its current task.
Consistent with the established OpenMP terminology, all
code encountered during execution of a task is termed a
task region. Different encounters of the same task

construct give rise to different tasks, whose execution
corresponds to different task regions.

References within a task to a variable listed in the
shared clause refer to the variable with that name known
immediately prior to the task directive. New storage is
created for each private and firstprivate variable,
and all references to the original variable in the lexical
extent of the task construct are replaced by references to the
new storage. firstprivate variables are initialized with
the value of the original variables at the moment of task
generation, while private variables are not.

Data-sharing attributes of variables that are not listed in
clauses of a task construct, and are not predetermined
according to the usual OpenMP rules, are implicitly
determined as follows: If a task construct is lexically
enclosed in a parallel construct, variables that are shared
in all scopes enclosing the task construct remain shared in
the generated task. All other variables (even formal
arguments of routines enclosing an orphaned task con-
struct) are implicitly determined firstprivate. These
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1. Fortran syntax is not shown in this paper because of space limitations.

Fig. 4. Task definition.



default rules can be altered, specifying a default clause on
the construct.

Worksharing regions cannot be closely nested, without
an intervening parallel region. However, explicit tasks can
be generated in a worksharing region. Moreover, task

constructs can be lexically or dynamically nested, as
illustrated in Fig. 5. A task is a child of the task that
generated it. A child task region is not part of its generating
task region. Nesting of tasks gives a new opportunity to an
OpenMP programmer: sharing a variable that was private
in the generating task (or in one of its ancestors). In this
case, as the child task execution is concurrent with
generating task execution, it is the programmer’s responsi-
bility to add proper synchronization to avoid data races,
and to avoid allowing the shared variable to go out of
existence if the parent task terminates before its child, as
discussed later.

When an if clause is present on a task construct and the
value of the scalar-expression evaluates to false, the
encountering thread must suspend the current task region,
and immediately execute the encountered task. The
suspended task region will not be resumed until the
encountered task is complete. The if clause does not affect
descendant tasks. It gives opportunities to reduce genera-
tion overheads for too finely grained tasks, and allows users
to express conditional dependencies as in Fig. 5.

3.2 Task Synchronization

All explicit tasks generated within a parallel region, in
the code preceding an explicit or implicit barrier, are
guaranteed to be complete on exit from that barrier
region.

The taskwait construct can be used to synchronize the
execution of tasks on a finer-grained basis, as illustrated in
Fig. 6, where it enforces postorder traversal of the tree, and
at the same time avoids shared variables going out of scope
prematurely.

The taskwait construct suspends execution of the
current task until all children tasks of the current task,
generated since the beginning of the current task, are
complete. Only child tasks are waited for, not their
descendants.

Explicit or implicit barriers cannot be closely nested in
explicit tasks. Implicit tasks (i.e., the execution by each
thread in the team of the structured block associated with a
parallel construct) are slightly different from explicit
tasks in that they are allowed to execute closely nested
barrier regions. They are guaranteed to be complete on exit
from the implicit barrier at the end of the parallel region,

but continue execution across other implicit or explicit
barriers.

3.3 Task Execution

Once a thread in the current team starts execution of a task,
the two become tied together: the same thread will execute
the task region from beginning to end.

This does not imply that execution is continuous. A
thread may suspend execution of a task region at a task
scheduling point, to resume it at a later time. In tied tasks,
task scheduling points may only occur at task, taskwait,
explicit or implicit barrier constructs, and upon comple-
tion of the task. When a thread suspends the current task, it
may perform a task switch, i.e., resume execution of a task it
previously suspended, or start execution of a new task,
under the Task Scheduling Constraint: In order to start the
execution of a new tied task, the new task must be a descendant of

every suspended task tied to the same thread, unless the

encountered task scheduling point corresponds to a barrier region.

The rationale for this constraint is discussed in the
following section.

Most of the aforementioned restrictions are lifted for
untied tasks (indicated by the untied clause on the
task construct). Any thread in the team reaching a task
scheduling point may resume any suspended untied task,
or start any new untied task. Also, task scheduling points
may in principle occur at any point in an untied task
region.

Because parts of untied tasks may be executed by
different threads, OpenMP 3.0 lock ownership is associated
with tasks rather than threads.

4 DESIGN PRINCIPLES

Unlike the structured parallelism currently available in
OpenMP, the tasking model is capable of exploiting
irregular parallelism in the presence of complicated control
structures. One of our primary goals was to design a model
that is easy for a novice OpenMP user to use and one that
provides a smooth transition for seasoned OpenMP
programmers. We strived for the following as our main
design principles: simplicity of use, simplicity of specification,
and consistency with the rest of OpenMP, all without losing
the expressiveness of the model. In this section, we outline
some of the major decisions we faced and the rationale for
our choices, based on available options, the trade-offs and
our design goals.
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Fig. 5. Parallel, possibly preorder, tree traversal using tasks.

Fig. 6. Postorder tree traversal using tasks.



4.1 What Form Should the Tasking
Construct(s) Take?

We considered two possibilities:

1. A new worksharing construct pair. It seemed like a
natural extension of OpenMP to use a worksharing
construct analogous to sections to set up the data
environment for tasking and a task construct
analogous to section to define a task. Under this
scheme, tasks would be bound to the worksharing
construct. However, these constructs would inherit
all the restrictions applicable to worksharing con-
structs, such as a restriction against nesting them.
Because of the dynamic nature of tasks, we felt that
this would place unnecessary restrictions on the
applicability of tasks and interfere with the basic
goal of using tasks for irregular computations.

2. A new OpenMP construct. The other option was to
define a single task construct that could be placed
anywhere in the program and that would cause a
task to be generated each time a thread encounters it.
Tasks would not be bound to any specific OpenMP
constructs. This makes tasking a very powerful tool
and opens up new parallel application areas,
previously unavailable to the user due to language
limitations. Also, using a single tasking construct
significantly reduces the complexity of construct
nesting rules. The flexibility of this option seemed to
make it easier to merge into the rest of OpenMP, so
this was our choice.

4.2 Where Can Task Scheduling Points Be?

OpenMP has always been thread-centric. Threads provided
a very useful abstraction of processors, and people have
taken great advantage of this. OpenMP 3.0 provides another
abstraction with the move toward tasks, and sometimes
these abstractions conflict, so the OpenMP 3.0 committee
wrestled with the implications of this, to find the best
design to make tasking coexist in a natural way with legacy
OpenMP codes.

An early decision we made was not to mandate that
implementations execute a task from beginning to end. We
wanted to give implementations more flexibility. Task
scheduling points offer flexibility in scheduling the execution
of a tasking program. When a thread encounters a task
scheduling point, a decision can be made to suspend the
current task and schedule the thread on a different task.

For example, in the code from Fig. 7, the outer task
generates a large number of inner tasks. If the outer task
could not be preempted, then an implementation might
need to keep track of a large number of generated tasks,
which may not be practical. On the other hand, if a task
directive includes a task scheduling point, then when the
structures holding generated tasks fill up, it becomes

possible to suspend the generating task and allow the
thread to execute some of the generated tasks, until there is
room to generate tasks again and the original task is
resumed. This is the flexibility provided by task switching.

But task switching can lead to load imbalance. Suppose
for the code above that the same situation occurs—the
generating task is suspended and the thread begins
executing one of the generated tasks. If the tasks differ
greatly in runtime, then it is possible that the thread starts
executing a task that is extremely time consuming, and
meanwhile all other threads finish executing all the other
generated tasks. If the generating task is tied, then the other
threads will have to remain idle until the original thread
finishes its lengthy task and resumes generating tasks for
the other threads to execute.

A way to deal with the load imbalance is to make the
generating task untied. In this case, any thread may resume
the generating task, allowing the other threads to do useful
work even when the original generating thread gets stuck in
a lengthy task as described above.

A very important thing to notice is that the value of a
threadprivate variable,2 or thread-specific information like
the thread number, may change across a task scheduling
point. If the task is untied, then the resuming thread may be
different from the suspending thread; therefore, both the
thread numbers and the threadprivate variables used on
either side of the task scheduling point may differ. If the
task is tied, then the thread number would remain the same,
but the value of a threadprivate variable may change
because the thread may switch at the task scheduling point
to another task that modifies the threadprivate variable.

But, do people use thread-specific features in real
codes? Unfortunately, yes. Threadprivate storage, thread-
specific features, and thread-local storage provided by the
native threading package or the linker are all useful for
making library functions thread-safe. We wanted to make
it possible to continue using thread-specific information in
OpenMP 3.0, so we needed to provide a way to use that
thread-specific information predictably. For these reasons,
we decided to specify exactly where task scheduling
points will occur in tied tasks. This makes it predictable
where thread-specific information may change (task and
taskwait directives, implicit and explicit barriers).

For untied tasks, we wanted to give implementations as
much flexibility as possible. For an untied task region, task
scheduling points may occur anywhere in the region, and
the programmer cannot rely on two implementations
defining them at the same places. Therefore, the use of
threadprivate variables or anything dependent on thread ID
is strongly discouraged in an untied task.

4.3 How Do Locks and Critical Sections Relate to
Tasking?

OpenMP 2.5 provides mechanisms for mutual exclusion,
namely critical sections and OpenMP locks, used in many
codes and libraries. Moreover, many libraries and runtimes
also resort to non-OpenMP locks for performance or other
reasons in critical parts of the code. Because of task
switching, and the fundamentally asynchronous way in
which tasks can be scheduled, mutual exclusion among
threads can lead to unintended deadlocks.
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Fig. 7. Simple code generating a large amount of tasks.

2. A threadprivate variable is a global variable which is replicated in a
private storage area for each thread.



Consider the code in Fig. 8. Imagine that a thread
executing one of the outer tasks reaches the inner task
construct. At the associated task scheduling point, the thread
can legally switch to a different task. If the thread switches to
one of the other outer tasks, it will eventually reach the
critical section again, but this time will not be able to
enter (because it is already inside the critical as another
task!), and will wait there forever. All threads will eventually
have to wait at the critical and the code will hang.

It would be a natural choice to switch from thread-based
mutual exclusion to task-based mutual exclusion, and add
task scheduling points at the entrance of critical regions and
in OpenMP lock acquire routines. However, this would not
address the issue with non-OpenMP mutex mechanisms
employed by existing libraries. Moreover, we felt that the
risk of breaking subtle assumptions made in existing,
OpenMP parallelized libraries was too high. Eventually,
we adopted a split decision.

Since thecritical construct’s structured block makes its
usage lexically structured, we decided to leave thecritical
construct as a thread-based mutual exclusion mechanism,
and added the Task Scheduling Constraint described in
Section 3.3. The combination of these ensures that if a parallel
program with task directives disabled does not deadlock,
then enabling the task directives will not deadlock either.

Once again, untied tasks are treated more liberally: they
are not subject to scheduling restrictions of any sort. Since
task scheduling points can occur anywhere in an untied
task (even inside a critical region), the usage of critical
constructs in an untied task is discouraged.

On the other hand, usage of OpenMP locks is much less
structured than that of critical regions, and acquisition and
release of the same lock frequently takes place in separate
lexical contexts. We decided that once a lock is acquired, the
current task owns it, and the same task must release it
before task completion. Programmers should be very
careful about using locks in untied tasks.

An interesting byproduct of the change of lock owner-
ship from threads to tasks results from a gray area in the
previous OpenMP specs: when a thread executing in an
original parallel region encounters a parallel directive, its
thread number changes from whatever it was in its original
team to “0” in the new team—does this make it a “new”
thread in the new team? Or is it the same thread, just
renumbered? If you take the point of view that it is the same
thread, and combine that with the rule that the same thread
that acquired the lock must also release it, then it would
follow that the thread could acquire a lock outside the
parallel region and release it inside the parallel region.

The 3.0 spec clarifies this situation. A thread begins
executing a new implicit task in the new parallel region, so
it is not allowed to acquire a lock in the original parallel
region and release it in the new parallel region, since they
are different tasks and the task that acquires a lock must
also release it.

4.4 Should the Implementation Guarantee that Task
References to Stack Data Are Safe?

A task is likely to have references to the data on the stack
of the routine where the task construct appears. Since the
execution of a task is not required to be finished until the
next associated task barrier, it is possible that a given task
will not execute until after the stack of the routine where it
appears is already popped and the stack data overwritten,
destroying local data listed as shared by the task.

The committee’s original decision on this issue was to
require the implementation to guarantee stack safety by
inserting task barriers where required. We soon realized that
there are circumstances where it is impossible to determine at
compile time exactly when execution will leave a given
routine. This could be due to a complex branching structure in
the code, but worse would be the use of setjmp/longjmp,
C++ exceptions, or even vendor-specific routines that un-
wind the stack. When you add to this the problem of the
compiler understanding when a given pointer dereference is
referring to the stack (even through a pointer argument to the
routine), you find that in a significant number of cases the
implementation would conservatively be forced to insert a
task barrier immediately after many task constructs, un-
necessarily restricting the parallelism possible with tasks.

Our final decision was simply to state that it is the user’s
responsibility to insert task barriers when necessary to
ensure that variables are not deallocated before the task is
finished using them.

4.5 What Should Be the Defaults for the
Data-Sharing Attribute Clauses of Tasks?

OpenMP data-sharing attributes for variables can be
predetermined, implicitly determined or explicitly deter-
mined. Variables in a task that have predetermined sharing
attributes are not allowed in clauses (except for loop indices),
and explicitly determined variables do not need defaults, by
definition. However, determining data-sharing attributes for
implicitly determined variables requires defaults.

The sharing attributes of a variable are strongly linked to
the way in which it is used. If a variable is shared among a
thread team and a task must modify its value, then the
variable should be shared on the task construct and care
must be taken to make sure that fetches of the variable
outside the task wait for the value to be written. If the variable
is read-only in the task, then the safest thing would be to
make the variable firstprivate, to ensure that it is not
deallocated before its use. Since we decided not to guarantee
stack safety for tasks, we faced a hard choice. We could

1. make data primarily shared, analogous to using
shared in the rest of OpenMP, or

2. make data primarily firstprivate.

The first choice is consistent with existing OpenMP.
However, the danger of data going out of scope before
being used in a task is very high with this default. This
would put a heavy burden on the user to ensure that all
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Fig. 8. Simple code with a critical section and nested tasks.



the data remains allocated while it is used in the task.
Debugging can be a nightmare for things that are
sometimes deallocated prematurely. The biggest advan-
tage of the second choice is that it minimizes the “data-
deallocation” problem. The user only needs to worry
about maintaining allocation of variables that are ex-
plicitly shared. The downside to using firstprivate

as the default is that Fortran parameters and C++
reference parameters will, by default, be firstprivate

in tasks. This could lead to errors when a task writes into
reference parameters.

In the end, we decided to make all variables with
implicitly determined sharing attributes default to
firstprivate, with one exception: when a task con-
struct is lexically enclosed in a parallel construct,
variables that are shared in all nested scopes separating
the two constructs, are implicitly determined shared. While
not perfect, this choice gives programmers the most safety,
while not being overly complex, and not forcing users to
add long lists of variables in a shared clause.

5 EXAMPLES OF USE

In this section, we use some examples to illustrate how
tasks enable new parallelization strategies in OpenMP
programming. Most code excerpts are part of the bench-
marks that are later used in Section 6 to evaluate tasking
with the reference implementation. We also revisit the two
examples we used in Section 2.

In order to organize the presentation of the examples, we
divide them into three subgroups. First, we describe
situations showing how tasking allows one to express more
parallelism (or to exploit it more efficiently) than current
OpenMP worksharing constructs. Second, we describe
situations in which tasking replaces the use of nested
parallelism. Finally, we describe situations that impose a
great amount of effort by the programmer to parallelize
with OpenMP 2.5 (e.g., by programming their own tasks).

5.1 Worksharing versus Tasking

In this section, we illustrate some examples where the use
of the new OpenMP tasks allows the programmer to
express more parallelism (and thus obtain better perfor-
mance) than could be expressed with OpenMP 2.5 work-
sharing constructs.

Pointer chasing. One of the simplest cases that moti-
vated tasking in OpenMP was pointer chasing (or pointer
following). As shown in Figs. 1 and 2, the execution in
parallel of work units that are based on the traversal of a list

(of unknown size) of data items linked by pointers can be
done using worksharing constructs (for and single,
respectively). But, they require either transforming the list
into an array that is suitable for the traversal or all threads
to go through each of the elements and compete to execute
them. Both approaches are highly inefficient.

All these problems go away with the new task proposal.
The pointer chasing problem could be parallelized as
shown in Fig. 9, where the single construct ensures that
only one thread will traverse the list and encounter the
task directive.

The task construct gives more freedom for scheduling
(as described in the following paragraphs).

Dynamic work generation and load balancing. The for
worksharing construct is able to handle load imbalance
situations by using dynamic scheduling strategies. Tasking
is an alternative option to parallelize this kind of loop, as
shown in the code excerpt in Fig. 10. In this code, the if
statements that control the execution of functions fwd, bdiv,
and bmod for nonempty matrix blocks are the sources of
load imbalance. One could use an OpenMP for work-
sharing construct with dynamic scheduling for the loops
on lines 9, 14, and 21 and 23 (for the bmod phase one can
either parallelize the outer, line 21, or the inner loop, line 23,
with different load balance versus overhead trade-offs).
Using tasks, a single thread could create work for all those
nonempty matrix blocks, achieving both load balance and
low overhead in the generation and assignment of work.

It is interesting to note that, if the proposed extension
included mechanisms to express point-to-point dependen-
cies among tasks, it would be possible to express additional
parallelism that exists between tasks created in lines 11 and
16 and tasks created in line 25. Also, it would be possible to
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Fig. 9. Parallel pointer chasing using task.

Fig. 10. Main code of SparseLU with OpenMP tasks.



express the parallelism that exists across consecutive
iterations of the kk loop. Instead, the taskwait reduces
parallelism to ensure those dependences are not violated.

Combined worksharing and tasking. Current for and
sections worksharing constructs can be used to have
multiple task generators running in parallel. For example,
the code in Fig. 11 is processing, in parallel, elements from
multiple lists. This results in better load balancing when the
number of lists does not match the number of threads, or
when the lists have very different lengths.

Another example of combined use of worksharing
constructs and tasking is shown in Fig. 12. In this code
excerpt, using only worksharing constructs, the outermost
loop can be parallelized, but the loop is heavily unbalanced,
although this can be partially mitigated with dynamic
scheduling. Another problem is that the number of
iterations is too small to generate enough work when the
number of threads is large. Also, the loops of the different
passes (forward pass, reverse pass, diff, and tracepath) can
also be parallelized but this parallelization is much finer so
it has higher overhead.

OpenMP tasks can efficiently exploit the parallelism
available in the inner loop in conjunction with the
parallelism available in the outer loop, which uses a for

worksharing construct. This breaks iterations into smaller
pieces, thus increasing the amount of parallel work but at
lower cost than an inner-loop parallelization because they
can be executed immediately.

5.2 Nested Parallelism versus Tasking

In this section, we illustrate some examples where the use of
the new OpenMP tasks allows a programmer to express
parallelism that in OpenMP 2.5 would be expressed using
nested parallelism. As we have discussed in Section 2, the
versions using nested OpenMP, while simple to write,
usually do not perform well because of a variety of
problems (load imbalance, synchronization overheads, . . . ).

Handling recursive code structures. Another simple
case that motivated tasking in OpenMP was recursive work
generation, as shown in Fig. 3. Nested parallelism can be
used to allow recursive work generation but at the expense
of the overhead in creating a rigid tree structure of thread
teams and their associated (unnecessary) implicit barriers.
That code example could be rewritten as shown in Fig. 13.
In this figure, we use task to avoid the nested parallel

regions. Also, we can use a flag to make the postorder
processing optional. Notice that a task can create new tasks
inside the same team of threads.

Another example is shown in Fig. 14, in this case for
multisort (a variation of the ordinary mergesort). The
parallelization with tasks is straightforward and makes
use of a few task and taskwait directives.
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Fig. 11. Parallel pointer chasing on multiple lists using task.

Fig. 12. Main code of the pairwise alignment with tasks.

Fig. 13. Parallel depth-first tree traversal.

Fig. 14. Sort function using OpenMP tasks.



Handling data copying. Fig. 15 shows the excerpt of a
recursive branch and bound kernel. In this parallel version,
we hierarchically generate tasks for each branch of the
solution space. But this parallelization has one caveat: the
programmer needs to copy the partial solution up to
the moment to the new parallel branches (i.e., tasks). Due
to the nature of C arrays and pointers, the size of it becomes
unknown across function calls, and the data-sharing clauses
are unable to perform a copy on their own. To ensure that
the original state does not disappear before it is copied, a
task barrier is added at the end of the function. Other
possible solutions would be to copy the array into the
parent task stack and then capture its value or allocate it in
heap memory and free it at the end of the child task. In all
these solutions, the programmer must take special care.

5.3 Almost Impossible in OpenMP 2.5

In this section, we illustrate two situations where
OpenMP 2.5 would require from the programmer a high
effort in parallelizing the code. We show that tasks
naturally reduce the parallelization effort to a minimum.

Web server. We used tasks to parallelize a small web
server called Boa. In this application, there is a lot of
parallelism, as each client request to the server can be
processed in parallel with minimal synchronizations (only
update of log files and statistical counters). The unstruc-
tured nature of the requests makes it very difficult to
parallelize without using tasks.

On the other hand, obtaining a parallel version with
tasks requires just a handful of directives, as shown in

Fig. 16. Basically, each time a request is ready, a new task is

created for it.
The important performance metric for this application is

response time. In the proposed OpenMP tasking model,

threads can switch from the current task to a different one.

This task switching is needed to avoid starvation, and

prevent overload of internal runtime data structures when

the number of generated tasks overwhelms the number of

threads in the current team.
User interface (UI). We developed a small kernel that

simulates the behavior of UIs. In this application, the

objective of using parallelism is to obtain a lower response

time rather than higher performance (although, of course,

higher performance never hurts). Our UI has three possible

operations, which are common to most UIs: start some work

unit, list current ongoing work units and their status, and

cancel an existing work unit.
The work units map directly into tasks (as can be seen in

Fig. 17). The thread executing the single construct will

keep executing it indefinitely. To be able to communicate
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Fig. 15. Floorplan kernel with OpenMP tasks.

Fig. 16. Boa webserver main loop with OpenMP tasks.

Fig. 17. Simplified code for a UI with OpenMP tasks.



between the interface and the work units, the programmer
needs to add new data structures. We found it difficult to
free these structures from within the task because it could
easily lead to race conditions (e.g., free the structure while
listing current work units). We decided to just mark them to
be freed by the main thread when it knows that no tasks are
using the data structure. In practice, this might not always
be possible and complex synchronizations may be needed.

6 EVALUATION

6.1 The Prototype Implementation

In order to test the proposal in terms of expressiveness and
performance, we have developed our own implementation
of the proposed tasking model [22]. We developed the
prototype on top of a research OpenMP compiler (source-to-
source restructuring tool) and runtime infrastructure [23].

The runtime infrastructure is an implementation of a user-
level thread package based on the nano-threads program-
ming model introduced first by Polychronopoulos [24]. The
implementation uses execution units, called nano-threads
that are managed through different execution queues
(usually one global queue for all threads and one local queue
for each thread used by the application). Then, a nano-thread
on the global queue can be executed by any thread but a
nano-thread in a local queue can only be executed by the
related thread.

The nano-thread layer is implemented on top of POSIX
Threads (also know as pthreads). We decided to use pthreads
to ensure that they will be portable across a wide range of
systems.

This layered implementation can have a slight impact on
efficiency. However, by using user-level threads, the
runtime can manage the scheduling to decide when a
nano-thread is executed and on which processor. Further-
more, the need to support thread switching for the new tasks
requires this level of flexibility.

The library offers different services (fork/join, synchro-
nize, dependence control, environment queries, . . . ) that can
provide the worksharing and structured parallelism ex-
pressed by the OpenMP 2.5 standard. We added several
services to the library to give support to the task scheme. The
most important change in the library was the offering of a
new scope of execution that allows the execution of
independent units of work that can be deferred, but still
bound to the thread team (the concept of task, see Section 2).

When the library finds a task directive, it can execute it
immediately or create a work unit that will be queued and
managed through the runtime scheduler, according to
internal parameters: maximum depth level in task hierarchy,
maximum number of tasks, or maximum number of tasks by
thread. This new feature is provided by adding a new set of
queues: team queues. Team queues are bound to a team of
threads (members of a parallel region). Then, any nano-
thread on a team queue can be executed by any member of
the related team. The scheduler algorithm is modified in
order to look for new work in the local, team, and global
queues, respectively.

Once the task is first executed by a thread, and if the task
has task scheduling points, we can expect two different
behaviors. First, the task is bound to that thread (so, it can
only be executed by that thread), and second, the task is not

attached to any thread and can be executed by any other
thread of the team. The library offers the possibility to move
a task from the team queues to the local queues. This ability
covers the requirements of the untied clause of the task

construct, which allows a task suspended by one thread to
be resumed by a different one.

The synchronization construct is provided through task

counters that keep track of the number of tasks that are

created in the current scope (i.e., the current task). Each task

data structure has a successor field that points to the counter

the task must decrement.

6.2 Evaluation Methodology

We have already shown the flexibility of the new tasking

proposal, but what about its performance? To determine

this, we have evaluated the performance of the runtime

prototype with several applications against other existing

options (nested OpenMP, Intel’s task queues, and Cilk).
The applications used in this evaluation are the

following:

. Strassen. Strassen’s algorithm [25] for multiplication
of large dense matrices uses hierarchical decomposi-
tion of a matrix. We used a 1,280 � 1,280 matrix for
our experiments.

. N Queens. This program, which uses a back-
tracking search algorithm, computes all solutions
of the n-queens problem, whose objective is to find
a placement for n queens on an n� n chessboard
such that none of the queens attacks any other. In
our experiments, we used three chessboard sizes:
12 � 12, 13 � 13, and 14 � 14.

. FFT. FFT computes the 1D Fast Fourier Transform of
a vector of n complex values using the Cooley-
Tukey algorithm [26]. We used a vector with
33,554,432 complex numbers.

. Multisort. Multisort is a variation of the ordinary
mergesort, which uses a parallel divide-and-conquer
mergesort and a serial quicksort when the array is
too small. In our experiments, we were sorting
random arrays of three different sizes: of 16,777,216,
33,554,432, and 50,331,648 integer numbers.

. Alignment. This application aligns all protein se-
quences from an input file against every other
sequence and computes the best scorings for each
pair by means of a full dynamic programming
algorithm. In our experiments, we used 100 sequences
as input for the algorithm.

. Floorplan. The Floorplan kernel computes the opti-
mal floorplan distribution of a number of cells. The
algorithm is a recursive branch and bound algo-
rithm. The number of cells to distribute in our
experiments was 20. This application cannot be
parallelized with task queues nor Cilk because we
use a worksharing loop with nested tasks.

. SparseLU. The SparseLU kernel computes an LU
matrix factorization. The matrix is organized in
blocks that may not be allocated. Due to the
sparseness of the matrix, a lot of imbalance exists.
In our experiments, the matrix had 50 blocks each of
100 � 100 floats.
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We decided the input size of each application so the
tasks would not have a very fine granularity (i.e., tasks of
under 10 �s of execution time). We show the results with
different input sizes for two of them: N Queens and
Multisort. Other applications have similar results but, for
space considerations, are not shown here.

For each application, we have tried the following
three OpenMP versions: 1) a single level of parallelism
(labeled as OpenMP worksharing), 2) multiple levels of
parallelism (labeled as OpenMP nested), and 3) OpenMP
tasks. We also compare how the new tasks perform
relative to other tasking models like Intel’s task
queues [2] and Cilk [1]. So, when possible, we have
also evaluated those versions.

We evaluated all the benchmarks on an SGI Altix 4700
with 128 processors, although they were run on a CPU set
comprising a subset of the machine to avoid interference
with other running applications.

We compiled the codes with task queues and nested
parallelism with Intel’s icc compiler version 9.1 at the
default optimization level. The versions using tasks uses
our OpenMP source-to-source compiler and runtime pro-
totype implementation, using icc as the backend compiler.
For the Cilk versions, we use the Cilk compiler version 5.4.3
(which uses gcc as a backend).

The speedup of all versions is computed, using as a
baseline the serial version of each kernel. In order to
increase the fairness of our comparison, we used the serial
version compiled with gcc for the Cilk evaluation and the

serial version compiled with Intel’s icc for the evaluation of
the remaining versions. That is because Cilk uses gcc as a
backend and the level of code optimization that gcc
produces in some cases is inferior to icc and we are more
interested in the scalability of the different models than in
absolute performance, taking into account that our proto-
type is far from fully optimized.

6.3 Results

Fig. 18 shows the speedups achieved for the FFT kernel
using OpenMP nested parallelism, our OpenMP task
proposal, Intel’s task queues, and Cilk. The version that
uses OpenMP nested parallelism flattens out very quickly
while the OpenMP version using tasks competes closely
with the task queues and Cilk versions.

Figs. 19, 20, and 21 show the speedup results for the
multisort kernel with different input sizes. We can see that
all the different versions have problems in scaling because,
in this benchmark, there is a lot of memory movement that
impacts its scalability. Overall, all the different models
obtain a similar performance.

Figs. 22, 23, and 24 show the speedups obtained for
the N Queens kernel, with different input sizes, for all
different models (OpenMP nested, OpenMP tasks, task
queues, and Cilk). We can see that nested OpenMP
version does not scale well but the version with the new
tasks scales up very well, obtaining slightly better
speedups than the task queues and Cilk versions. We
can also observe that as we increase the granularity of the
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Fig. 18. FFT kernel speedups (32 millions of complex numbers).

Fig. 19. Multisort speedups (16 millions of integers).

Fig. 20. Multisort speedups (32 millions of integers).

Fig. 21. Multisort speedups (48 millions of integers).



tasks (by increasing the board size), we obtain an increase
in performance with all models, something that did not
happen in the multisort kernel. This is because granular-
ity is the dominant factor in N Queens whereas that is
not the case for multisort.

We have evaluated two versions of the Strassen kernel
(see Fig. 25): one with the new OpenMP tasks and one with
task queues. The task queues version performs better than
the OpenMP tasks version, particularly with 16 CPUs or
more. We can see also that the speedup curve for the
OpenMP tasks version seems to flatten after 16 CPUs which
is not unexpected as the runtime has not gone through the
proper tuning to scale up to a large number of processors.

Fig. 26 shows the speedups for Floorplan. Here, we see
again the same pattern as in FFT. The OpenMP nested
version does not scale at all while the version with tasks
scales as well as the task-queue version. We can see again
that the speedup starts to flatten as we scale to larger
number of CPUs.

In Fig. 27, we show the speedups for the SparseLU
kernel. We evaluated five versions: with one level of
parallelism (OpenMP workshare), with two levels of
parallelism (OpenMP nested), with the new OpenMP tasks,
with task queues, and with Cilk. The OpenMP tasks version
performs much better than the rest. The only close one is the
task-queue version. The versions using only workshares
(OpenMP workshare and OpenMP nested) actually de-
crease in performance with larger CPU counts. The Cilk
version does not scale at all because it has granularity

problems (as the block size was increased, we started to see
some speedup).

Fig. 28 shows the alignment application speedups. We
have evaluated a single-level OpenMP version, another
with nested parallelism, and a third one that has task
parallelism nested into a regular OpenMP workshare
(labeled “OpenMP tasks”). This third kind of parallelization
cannot be done easily using either task queues or Cilk. The
results show that the regular OpenMP versions scale quite
well up to 16 processors then they start to flatten. But the
version that uses tasks continues scaling up to 32 processors.
The reason behind this is that the tasks nested inside the
workshare are executed immediately while the number of
processors is small but are generated when the number of
processors increases, allowing more work to be shared (i.e.,
increasing the amount of available parallelism).

Overall, the OpenMP task versions perform equally well
or better than other versions in most applications (FFT,
N Queens, Floorplan, SparseLU, and alignment) and, while
there seems some issues regarding scalability (Strassen and
Floorplan) and locality exploitation (multisort), taking into
account that the prototype implementation has not been
well tuned, the results show that the new model will allow
codes to obtain at least the performance of other models and
is even more flexible.

7 CONCLUSION

We have presented the work of the OpenMP 3.0 tasking
subcommittee: A proposal to integrate task parallelism into
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Fig. 22. N Queens speedups (12 � 12 board size).

Fig. 23. N Queens speedups (13 � 13 board size).

Fig. 24. N Queens speedups (14 � 14 board size).

Fig. 25. Strassen speedups (1,280 � 1,280 matrix).



the OpenMP specification. This proposal allows program-
mers to parallelize program structures like while loops
and recursive functions more easily and efficiently. We
have shown that, in fact, these structures are easy to
parallelize with the new proposal.

The process of defining the proposal has not been
without difficult decisions, as we tried to achieve conflicting
goals: simplicity of use, simplicity of specification, and con-
sistency with the rest of OpenMP. Our discussions identified
trade-offs between the goals, and our decisions reflected
our best judgments of the relative merits of each. We also
described how some parts of the current specification had
to change to accommodate our proposal.

We have also presented a reference implementation that
allows us to evaluate the samples we have discussed in this
paper. The comparisons of these results show that expres-
siveness is not incompatible with performance and the
OpenMP tasks implementation can achieve very promising
speedups when compared to other established models.

Overall, OpenMP tasks provide a balanced, flexible,
and very expressive dialect for expressing unstructured
parallelism in OpenMP programs.

8 FUTURE WORK

So far, we have presented a proposal to seamlessly integrate
task parallelism into the current OpenMP standard. The
proposal covers the basic aspects of task parallelism, but
other areas are not covered by the current proposal and
may be the subject of future work.

One such possible extension is a reduction operation
performed by multiple tasks. Another is specification of
dependencies between tasks, or point-to-point synchroniza-
tions among tasks. These extensions may be particularly
important when dealing with applications that can be
expressed through a task graph or that use pipelines.
Another possible extension to the language would be to
enhance the semantics of the data capturing clauses so it
would be easier to capture objects through pointers (as in
the Floorplan example).

The OpenMP task proposal allows a lot of freedom for
the runtime library to schedule tasks. Several simple
strategies for scheduling tasks exist but it is not clear
which will be better for the different target applications
as these strategies have been developed in the context
of recursive applications. Furthermore, more complex
scheduling strategies can be developed that take into
account characteristics of the application that can be found
either at compile time or runtime. Another option would be
developing language changes that allow the programmer to
have greater control about the scheduling of tasks so they
can implement complex schedules. This can be useful for
applications that need schedules that are not easily
implementable by the runtime environment (e.g., shortest
job time, round-robin) [8]. One such language change that is
quite simple is defining a taskyield directive that allows
the programmer to insert switching points in specific places
of the code. This would help, for example, the Boa
Webserver and UI from Section 5.3 as it could be used to
decrease the response time of the generated tasks [27].

Another exploration path from this proposal is the
redefinition of different aspects of the OpenMP specifica-
tion. For example, redefining worksharing loops in terms of
tasks would allow us to define the behavior of worksharing
loops for unknown iteration spaces easily or to allow the
nesting of worksharing constructs. But this redefinition is
not without problems. It is not clear how different aspects of
the thread-centric nature of OpenMP (e.g., threadprivate
and schedule) can be redefined in terms of tasks (if they can
be at all).
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Fig. 26. Floorplan speedups (20 cells).

Fig. 27. SparseLU speedups (50 100 � 100 blocks).

Fig. 28. Alignment speedups (100 sequences).
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“Support for OpenMP Tasks in Nanos v4,” Proc. Conf. Center for
Advanced Studies on Collaborative Research (CASCON ’07), Oct. 2007.

[23] J. Balart, A. Duran, M. Gonzàlez, X. Martorell, E. Ayguadé,
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