
Reducing Branch Divergence in GPU Programs

Tianyi David Han Tarek S. Abdelrahman

The Edward S. Rogers Sr. Department of Electrical and Computer Engineering
University of Toronto

Toronto, Ontario M5S 3G4, Canada
{han, tsa}@eecg.toronto.edu

ABSTRACT

Branch divergence has a significant impact on the perfor-
mance of GPU programs. We propose two novel software-
based optimizations, called iteration delaying and branch

distribution that aim to reduce branch divergence. Itera-
tion delaying targets a divergent branch enclosed by a loop
within a kernel. It improves performance by executing loop
iterations that take the same branch direction and delay-
ing those that take the other direction until later iterations.
Branch distribution reduces the length of divergent code
by factoring out structurally similar code from the branch
paths. We conduct a preliminary evaluation of the two op-
timizations using both synthetic benchmarks and a highly-
optimized real-world application. Our evaluation shows that
they improve the performance of the synthetic benchmarks
by as much as 30% and 80% respectively, and that of the
real-world application by 12% and 16% respectively.

Categories and Subject Descriptors

D.3.4 [Programming Languages]: Processors—Optimiza-

tion

General Terms

Algorithms, Performance, Experimentation, Measurement

Keywords

Branch divergence, GPGPU, Data parallel programming

1. INTRODUCTION
General-Purpose Graphics Processing Units (GPGPUs)

have become increasingly popular in High-Performance Com-
puting (HPC). However, programmers must carefully tune
their applications for the GPU architecture in order to best
utilize their massive computing power. Not surprisingly,
there has been a large number of optimizations, both man-
ual and automatic, that aim to improve the performance of
GPU programs. The majority of these optimizations target
the GPU memory hierarchy, utilizing the on-chip software-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GPGPU-4 Mar 05-05 2011, Newport Beach, CA USA
Copyright 2011 ACM 978-1-4503-0569-3/11/03 ...$10.00.

managed cache and adjusting the pattern of accesses to the
off-chip device memory [1, 5–7,14–18].

In contrast, there has been less work on optimizations that
target another fundamental aspect of GPU performance,
namely its Single Instruction Multiple Data (SIMD) exe-
cution model. While this model enables simpler control
hardware, it imposes heavy performance penalties on ker-
nels with control flow. In such kernels, SIMD threads di-

verge, i.e., follow different paths of execution. The hard-
ware makes all these paths execute sequentially, even though
each thread executes only one of the paths. We envision
this branch divergence issue to become more important as
the GPGPU community continues to push the boundary of
“GPU-friendly” applications. Present techniques for han-
dling branch divergence either demand hardware support or
require host-GPU interaction, which incurs overhead.

We present two novel software-based optimizations for re-
ducing branch divergence in GPU programs: iteration delay-

ing and branch distribution. Iteration delaying improves the
utilization of execution units in the presence of a divergent
branch within a loop, by executing only one branch path
in each iteration and delaying the threads that follow the
other path until later iterations. Branch distribution aims
to reduce the divergent portion of a branch by factoring out
structurally similar code from the branch paths.

We conduct a preliminary evaluation of the benefit of our
proposed optimizations, before embarking on their imple-
mentation in a compiler. We use two synthetic benchmarks
(one for each optimization) and one highly-optimized real-
world application called Monte Carlo simulation for Multi-
Layered media (MCML) [9]. We parameterize the synthetic
benchmarks to explore the impact of various kernel charac-
teristics on the benefit of these optimizations. Results on
a Fermi GPU show that iteration delaying and branch dis-
tribution improve the performance of the synthetic bench-
marks by up to 30% and 80%, respectively. Further, the
optimizations improve the overall performance of the highly-
optimized MCML by 12% and 16%, respectively.

The remainder of the paper is organized as follows. Sec-
tion 2 provides background on NVIDIA Fermi GPUs and
on branch divergence. Section 3 describes the two optimiza-
tions we propose. Section 4 presents evaluation methodology
and results. Section 5 discusses related work, and Section 6
gives directions for future work.

2. BACKGROUND
This section briefly describes the CUDA programming

model and the architecture of NVIDIA GPUs [13]. In par-
ticular, we describe the SIMD execution model and how di-
vergent branches are executed.

2.1 CUDA
The Compute Unified Device Architecture (CUDA) pro-

vides a C-extended programming model that allows the pro-
grammer to writes the host (CPU) code and the device
(GPU) code in a single source program [12]. The device
code, or a kernel, is similar to a C function, except that it is
executed many times, once by each GPU thread. Launching
a kernel for GPU execution involves calling the kernel func-
tion in the host code, along with a specification of the space
of GPU threads that execute it, called a grid. A grid contains
multiple thread blocks, organized in a two-dimensional space.
Each thread block contains multiple threads, organized in a
three-dimensional space. To allow different threads to access
different data and follow different control-flow paths, each
thread is given a unique identifier, accessible within the ker-
nel function through the built-in vector variables blockIdx

and threadIdx. Threads within a thread block can barrier-
synchronize using the __syncthreads primitive. Synchro-
nization across different thread blocks is generally not sup-
ported. A kernel can access multiple GPU memories during
execution, including 1) off-chip global, constant and texture

memory that are shared by all GPU threads and the host,
and 2) on-chip shared memory that is shared among threads
within a thread block. While the read-only constant and
texture memory are cached on-chip by hardware, the shared
memory is a software-managed cache for the global memory.

2.2 GPU architecture
An NVIDIA GPU consists of a number of streaming mul-

tiprocessors (SMs). Each SM contains a number of CUDA

cores, which receive instructions from a single issue unit1,
and execute them in a SIMD fashion. Each core is essen-
tially a fused multiply-add (FMA) floating-point arithmetic
unit. Each SM also has a number of special functional units
(SFUs) for executing transcendental functions.

The GPU executes a kernel by scheduling thread blocks
onto the SMs. Once a thread block is assigned to a SM,
it must be executed in its entirety by the SM. Each active
thread block is split into groups of 32 threads called warps,
each of which is executed on the SM in a SIMD fashion. This
means that all threads within a warp must execute the same
instruction at any given time. In the presence of a data-
dependent branch that causes different threads in the same
warp to follow different paths (also known as branch diver-

gence), the warp serially executes each branch path taken,
disabling threads that are not on that path. The threads
reconverge after all divergent paths are completed [8]. To
allow such execution, each CUDA core supports predication,
by conditionally executing an instruction based on a per-
thread predicate. Further, the hardware exposes predicated
instructions to the ISA, and the CUDA compiler can trans-
form a small branch directly into predicated instructions to
avoid the overhead of handling divergence and reconvergence
in hardware. However, this transformation is disabled for
large branches because predicated instructions are always

executed, even when the branch is not divergent. It is im-
portant to note that the above discussion about divergence
only applies to the threads within a warp; different warps
can be scheduled independently.

1In the case of Fermi, 32 CUDA cores in a SM are divided
into two groups, each having a dedicated instruction issue
unit.

2.3 Impact of branch divergence
Branch divergence can hurt performance due to lower uti-

lization of the execution units, which cannot be compensated
for through increased levels of parallelism. To illustrate its
impact, Figure 1 shows three common scenarios of kernel
code that exhibit such divergence.

tid = threadIdx.x;
if (a[tid] > 0) {

++x;
}

(a) if statement.

tid = threadIdx.x;
if (a[tid] > 0) {

++x;
} else {

--x;
}

(b) if-then-else statement.

n = a[threadIdx.x];
for (i = 0; i < n; ++i) {

// work
}

(c) Loop with variable trip-count
Figure 1: Common scenarios of branch divergence.

In the first scenario (Figure 1a), if any thread executes
++x, all threads in the same warp must go through ++x,
regardless of whether they actually execute it. In the average
case, where half of the warp threads evaluate the branch
condition to true, the utilization of the execution units is
only 50%. The second scenario (Figure 1b) can be viewed
as a sequential composition of two if statements of the first
scenario: each thread in a warp must go through both branch
paths sequentially, even though it just executes one of them.
Assuming both branch paths are of equal size, this leads to
only 50% utilization of the execution units as well. In the
last scenario (Figure 1c), the number of iterations of loop i

each thread goes through is the max iteration count for all
threads within the warp. The performance impact depends
on the size of the loop body and the variance of the loop
trip counts, i.e., the n’s.

3. THE OPTIMIZATIONS
We present two optimizations that aim to reduce the per-

formance penalty caused by branch divergence. We refer to
them as iteration delaying and branch distribution.

3.1 Iteration delaying
Consider a kernel where each GPU thread in a warp exe-

cutes a loop that contains a potentially divergent if-then-
else branch similar to that in Figure 1b. The branch condi-
tion is often data dependent and the branch direction cannot
be determined at compile-time. Iteration delaying is a run-
time optimization technique that targets this scenario. The
main idea is that, in each loop iteration, instead of all warp
threads going through both paths of the branch, they all
take one of the paths. Those that should take the other
path simply do nothing, delaying their computations to a
subsequent iteration, where potentially more (or even all)
threads are taking their path, resulting in higher utilization
of execution units.

To illustrate the benefit of iteration delaying, consider
three threads in a warp, each executing three iterations of
a loop that contains a divergent branch. Assume that each
of the two paths of the branch has 100 FMA instructions.
Figure 2a and 2b show the execution of these threads before

and after iteration delaying respectively. Each loop iteration
is represented as a tuple, where the first component is the
iteration number and the second component is the branch
direction (T for taken and N for not-taken). Comparing the
two executions, we see that iteration delaying allows itera-
tion 2 and 4 to be executed concurrently (same for iteration
7, 5 and 6), which saves 200 FMA instructions. In general,
iteration delaying results in more loop iterations, each hav-
ing less dynamic instructions.

Thread 1 Thread 2 Thread 3 Instr. Count
(1,T) - (3,T) 100

- (2,N) - 100
- (5,T) (6,T) 100

(4,N) - - 100
(7,T) - - 100

- (8,N) (9,N) 100
Total 600

(a) Original execution.

Chosen Instr.
Thread 1 Thread 2 Thread 3 Br. Dir. Count

(1,T) - (3,T) T 100
(4,N) (2,N) - N 100
(7,T) (5,T) (6,T) T 100

- (8,N) (9,N) N 100
Total 400

(b) Iteration delaying with majority-vote strategy.

Chosen Instr.
Thread 1 Thread 2 Thread 3 Br. Dir. Count

- (2,N) - N 100
(1,T) (5,T) (3,T) T 100
(4,N) (8,N) - N 100
(7,T) - (6,T) T 100

- - (9,N) N 100
Total 500

(c) Iteration delaying with minority-vote in the first iter-
ation.
Figure 2: Example of the benefit of iteration delaying.

A critical aspect of iteration delaying is the decision on
which branch path to take in each iteration. In the example
above, if the threads take the not-taken (N) path in the first
iteration, the execution is at best something like that shown
in Figure 2c and takes 100 more instructions.

We propose two strategies to make this decision. The first
is majority-vote. In each iteration, all threads in a warp
communicate with each other to determine the number of
threads that take each path, and then choose the direction
that at least half of the threads (i.e., 16) take. The rationale
behind this strategy is to utilize at least half of the execu-
tion units. However, the majority-vote strategy does have a
drawback: it may starve threads that follow a “cold” path,
i.e., one taken less frequently. In order to allow these threads
to execute, iteration delaying can be disabled altogether at
some point, e.g., when at least one thread has finished all
iterations, and all threads continue as normal after that. Al-
though correctness is preserved this way, performance may
still suffer because there are very few threads (that lag be-
hind) executing toward the end of the loop. Figure 3 shows
such a case, where the not-taken branch (N) is only taken

Thread 1 Thread 2 Thread 3 Instr. Count
(1,T) (2,N) (3,T) 100 + 100
(4,T) (5,T) (6,T) 100
(7,T) (8,T) (9,T) 100

Total 400

Figure 3: An extreme case where iteration delaying with
majority-vote results in more dynamic FMA instructions.

by Thread 2 in its first iteration. The majority-vote strategy
delays Thread 2 until both Thread 1 and Thread 3 finish,
resulting in 600 FMA instructions, and thus, lost benefit.

The second decision strategy is round-robin, in which the
branching decision for the i’th iteration is the opposite of
that for the (i − 1)’th iteration. Since the decision does not
depend on the actual path(s) the threads want to take in
an iteration, it can result in an idle iteration if no thread
actually takes this direction. Thus, the direction is reverted
in this special case. Although this strategy may not be as
aggressive in saving instructions as majority-vote at the be-
ginning, it does not starve threads and therefore can be ap-
plied for the entire loop with higher utilization rate toward
the end of the loop. In the example above (Figure 2a), both
strategies give identical execution.

3.1.1 Implementation

The main challenge of implementing iteration delaying
is reaching a consensus among the warp threads on which
path of the branch to take in each loop iteration. The new
instructions provided by Fermi GPUs allow the two deci-
sion strategies described above to be implemented very ef-
ficiently. Consider a general kernel template and the code
after applying iteration delaying with majority-vote, shown
in Figure 4 and Figure 5a respectively. The __ballot in-
struction collects branch conditions for the 32 warp threads
into a 32-bit integer. The __popc instruction counts the
number of bit 1’s in a 32-bit integer. The variable thresh in
line 10 is a threshold that determines what“majority”is, and
it is a parameter of the majority-vote strategy. Due to space
limitation, the code that prevents starvation is omitted.

1 for (int i = 0; i < N_ITERATIONS; ++i) {
2 int cond = ... // compute branch cond.
3 if (cond) {
4 // code segment 1
5 } else {
6 // code segment 2
7 }
8 // non -branch code
9 }

Figure 4: Code pattern that iteration delaying targets.

The round-robin strategy is even simpler to implement,
as cond_for_all just needs to be inverted. To make the
strategy more flexible, we invert cond_for_all periodically,
as shown in Figure 5b. After num_zeros iterations that
take the else path, the variable is inverted for num_ones

iterations that take the if path. The ratio of num_zeros

to the sum of num_zeros and num_ones (i.e., period) de-
fines the duty cycle– or simply the cycle–of the round-robin
strategy. The __any instruction returns true iff at least one
thread’s condition is true. The __all instruction returns
true iff all threads’ conditions are true. Both warp-vote in-
structions have been supported since the second-generation

GPUs. The conditional selection between __any and __all

is always convergent, so only one warp-vote instruction is
executed per thread. It is worthwhile to note that idle itera-
tion removal may not improve performance, because it saves
the loop-housekeeping instructions from idle iterations but
adds instruction overhead to all iterations.

1 int not_delayed = 1;
2 int cond;
3 for (int i = 0; i < N_ITERATIONS;) {
4 if (not_delayed) {
5 cond = ... // compute branch cond.
6 }
7

8 // Make a convergent branch decision.
9 int cond_for_all =

10 (__popc(__ballot(cond)) >= thresh);
11 // Should I do work in this iteration?
12 not_delayed = (cond_for_all == cond);
13

14 if (not_delayed) {
15 if (cond_for_all) {
16 // code segment 1
17 } else {
18 // code segment 2
19 }
20 // non -branch code
21

22 ++i;
23 }
24 }

(a) Majority-vote strategy.

// branch direction period: 0,0,0,1
// 1 means the IF branch path
// 0 means the ELSE branch path
int num_zeros = 3, num_ones = 1;
int period = num_zeros + num_ones;
int counter = -1;
...
// update the direction
if (++ counter == period) counter = 0;
cond_for_all = (counter >= num_zeros);
// remove idle iteration
cond_for_all = cond_for_all ?

__any(cond) : __all(cond);

(b) Round-robin strategy.

Figure 5: Code after iteration delaying.

3.1.2 Discussion

In general, iteration delaying targets a top-level branch
within a kernel loop that does not have barriers. The branch
is not limited to the if-then-else we described; it can be
a switch or an if statement. Further, there is no addi-
tional restrictions on the parent loop except the barrier-free
requirement. In particular, the loop does not have to be
parallelizable since iteration delaying preserves the order of
iterations in each thread.

There are four aspects of a kernel that affect the bene-
fit of iteration delaying. The first is the size of the branch
code (in both paths) relative to the fixed instruction over-
head introduced by iteration delaying. The second aspect
is the size of the branch code relative to the other code in
the loop body (e.g., line 8 in Figure 4). Delaying the execu-
tion by one iteration foregoes the entire loop body, reducing
the number of threads executing the non-branch part of the
loop. Therefore, as the relative size of the branch code de-

creases, iteration delaying is expected to be less beneficial.
The third aspect is the branching pattern, i.e., how often
one path is taken over the other, and how often the branch
direction changes per thread. The parameters and effective-
ness of the strategy to decide the branch direction in each
iteration highly depends on this aspect. For example, the
threshold for majority-vote does not have to be half of the
warp size; it may be made to depend on the “hotness” of
the paths. Further, iteration delaying favors fast-changing
branch directions which requires fewer number of iteration
delays before reaching a convergent iteration. In fact, one
of the best branching patterns for iteration delaying is that
the branch direction (per thread) alternates over iterations.
The last aspect that determines the benefit of iteration de-
laying is the memory access behavior of the instructions in
the branch paths. Iteration delaying may destroy coalesced
memory accesses in the original code. However, it is unlikely
to achieve memory coalescing in divergent code anyways.

3.2 Branch distribution
Iteration delaying relies on a per-thread loop that sur-

rounds the target branch. To reduce the divergence of a
multi-path branch on its own, we propose branch distribu-

tion, which “factors out” code from the branch paths that
are structurally the same, so that the total number of dy-
namic instructions is reduced. Branch distribution is similar
to code hoisting [11], but is more aggressive.

Consider the code fragment shown in Figure 6a. Code
hoisting leaves it untransformed since there is no common
sub-expression in both branch paths. However, the struc-
tures of the two branches are almost identical, and we can
produce the less divergent code shown in Figure 6b. Thus,
this optimization “distributes” the branch condition evalua-
tion over the two branch bodies, which results in one or more
smaller branch blocks interleaved with blocks of straight-line
code, reducing the impact of divergence.

if (c > 0) {
x = x * a1 + b1;
y = y * a1 + b1;

} else {
x = x * a2 + b2;
y = y * a2 + b2;

}

(a) Original code.

if (c > 0) {
a = a1;
b = b1;

} else {
a = a2;
b = b2;

}
x = x * a + b;
y = y * a + b;

(b) Optimized code.
Figure 6: An example that illustrates branch distribution.

However, branch distribution does not always improve
performance, for three reasons. The first is that, it intro-
duces instruction overhead, including extra branch instruc-
tions and those in the prologue of the example above that
produce a and b. Therefore, branch distribution is only
beneficial if the code factored out is large enough that the
resulting benefit of convergence compensates for the over-
head. In fact, the benefit of this optimization increases
with the size of the code factored out relative to that of
the code left to be divergent. The second reason is that,
branch distribution may increase register usage, particularly
when the code factored-out uses many inputs and produces
many outputs, and may therefore reduce the level of paral-
lelism. Consider the following extreme example: the kernel
(for each thread) computes

P

10

i=0
(x + i)2 in one branch path

and
P

10

i=0
(x − i)2 in the other, both in loop-unrolled forms.

Branch distribution would introduce a prologue that com-
putes 10 intermediate variables yi(i = 0..9) that are equal to
x+ i or x− i based on the branch condition. These variables
are then squared and summed in a common piece of code.
Clearly, this code requires at least 10 registers to hold the
yi’s, but the register usage for the original code can be as
few as 3. The third and final reason is that, branch distribu-
tion may reduce Instruction-Level Parallelism (ILP) in each
thread by breaking large basic blocks into smaller ones.

4. EXPERIMENTAL EVALUATION
We conduct a preliminary evaluation of the two optimiza-

tions we propose. Our goals are two-folds. First, we would
like to determine the extent of the performance benefit the
optimizations can bring. Second, we would like to assess
their impact on a real-world application (MCML). In this
section, we first describe the benchmarks and the hardware
platform we use and then discuss the results.

4.1 Benchmarks

4.1.1 SYN-ITDELAY

SYN-ITDELAY is a synthetic benchmark for evaluating
iteration delaying. It has the same code structure as shown
in Figure 4. The benchmark models an unpredictable branch-
ing pattern by randomly generating the branch condition
based on the algorithm used in MCML. This random num-
ber generator compiles into 19 PTX instructions using CUDA
3.0 targeting GTX480. Each thread uses a unique seed.

Each of the two branch paths consists of N pairs of FMA
instructions, where N is a parameter. All FMA instructions
involve only one floating-point variable, and are dependent
back-to-back. Each instruction pair has the following form:

val = val * MULT1 + ADD1;

val = val * MULT2 + ADD2;

where MULT1, ADD1, MULT2 and ADD2 are constants such that
the two instructions as a whole do not change val. We
use this code for two reasons. First, it allows us to vary the
size of the branch paths without introducing extra variables.
Second, it allows us to correlate performance result with in-
struction count accurately. This is because 1) it prevents
the NVCC compiler (with the -O3 flag) from doing any op-
timization in the branch paths, and 2) it ensures that the
execution never produces any denormalized numbers, which
may affect instruction latency depending on how the ALU
hardware is optimized for these corner cases.

This benchmark is run with enough warps (32 on GTX
480) so that the ALU pipelines are always filled. This filters
out any performance impact due to changes in ILP.

4.1.2 SYN-BRDIS

SYN-BRDIS is a synthetic benchmark for evaluating branch
distribution. The code before and after the optimization is
shown in Figure 7. code_seg_1 and code_seg_2 form the
prologue of the loop that remains divergent, while code_seg_3
and code_seg_4 form the divergent epilogue. The branch
condition is constructed in a way that guarantees divergence
in every iteration. code_factored_out represents the code
factored out by branch distribution. Each of code_seg_1

and code_seg_2 is a sequence of 20 FMA instructions that
are dependent back-to-back. They start with one input val
and produce M outputs (vin’s), where M is a parameter in

the range [1, 20]. This is achieved by having 20−M instruc-
tions that self-update val like SYN-ITDELAY and M in-
structions that produce vin’s in order, such that vin_(i+1)
= vin_i * vin_i + vin_i. Similarly, each of code_seg_3 and
code_seg_4 is also a sequence of 20 FMA instructions that
are dependent back-to-back. They take M inputs (vout’s)
and produce a single output val. code_factored_out takes
M inputs and produces M outputs by simply self-updating
each vin_i 2N times like SYN-ITDELAY and storing the
result in vout_i.

1 for (int i = 0; i < N_ITERATIONS; ++i) {
2 val = ... // random number generation
3 if ((threadIdx.x + i) & 1) {
4 code_segment_1(val ,
5 vin_1 , vin_2 , ..., vin_M);
6 code_factored_out(
7 vin_1 , vin_2 , ..., vin_M ,
8 vout_1 , vout_2 , ..., vout_M);
9 code_segment_3(val ,

10 vout_1 , vout_2 , ..., vout_M);
11 } else {
12 code_segment_2(val ,
13 vin_1 , vin_2 , ..., vin_M);
14 code_factored_out(
15 vin_1 , vin_2 , ..., vin_M ,
16 vout_1 , vout_2 , ..., vout_M);
17 code_segment_4(val ,
18 vout_1 , vout_2 , ..., vout_M);
19 }
20 }
21 result[threadIdx.x] = val;

(a) Original code.

1 for (int i = 0; i < N_ITERATIONS; ++i) {
2 val = ... // random number generation
3 if ((threadIdx.x + i) & 1)
4 code_segment_1(val ,
5 vin_1 , vin_2 , ..., vin_M);
6 else
7 code_segment_2(val ,
8 vin_1 , vin_2 , ..., vin_M);
9

10 code_factored_out(
11 vin_1 , vin_2 , ..., vin_M ,
12 vout_1 , vout_2 , ..., vout_M);
13

14 if ((threadIdx.x + i) & 1)
15 code_segment_3(val ,
16 vout_1 , vout_2 , ..., vout_M);
17 else
18 code_segment_4(val ,
19 vout_1 , vout_2 , ..., vout_M);
20 }
21 result[threadIdx.x] = val;

(b) Optimized code.
Figure 7: Synthetic benchmark for branch distribution.

The two parameters, M and N , allow us to control the
number of inputs/outputs of the code factored out (M), and
the size of the code factored out relative to that of the di-
vergent code (one path), i.e., 2 ∗N ∗M/2 ∗ 20 = N ∗M/20.

4.1.3 MCML

The Monte Carlo simulation for Multi-Layered media
(MCML) is a real-world medical application that models
the scattering and absorption of photons in the tissue. It
has been accelerated on a GTX280 [9]. We use a highly-

optimized version of this code as our base to evaluate the
two optimizations we propose. This highly-optimized ver-
sion includes aggressive memory optimizations that bring
the GPU code speedup to two orders of magnitude over the
(unoptimized) CPU version.

MCML has one kernel, shown Figure 8, where each thread
is assigned a number of photons to simulate. Iteration de-
laying is applied to the main branch at line 4. Its if and
else paths have around 200 and 170 PTX instructions re-
spectively. In contrast, branch distribution targets a branch
within the if path (line 5 and 6), which is shown in Fig-
ure 9. The code is split into two cases based on the moving
direction of the photon in the z-direction. The two paths,
each having about 80 PTX instructions, are almost identi-
cal except line 5 vs. 22, line 7 vs. 23, line 11 vs. 27, and
line 12 vs. 28. Branch distribution merges the two paths
into one, and leave the following code divergent: 1) a new
layer definition that is photon_layer+1 or photon_layer-1

depending on the branch direction, and 2) a new variable
passed as the last argument to RFresnel that is photon_uz

or -photon_uz. Lines 11 and 27 become convergent once the
new layer variable is introduced. The conditions at lines 12
and 28 are combined using disjunction.

1 Initialize the photon
2 while (true) {
3 Move the photon in its current direction
4 if (it hits a tissue layer boundary) {
5 Decide if photon transmits through
6 or reflects
7 Update the photon direction
8 } else {
9 Drop photon weight to

10 the current tissue location
11 }
12 if (photon weight is close to zero) {
13 // this photon is considered dead
14 if (more photons to process)
15 Init the next photon to be processed
16 else
17 exit
18 }
19 }

Figure 8: Pseudo-code for the MCML kernel.

4.2 Results and discussion
The hardware platform we used is an Intel Core 2 Quad

9440 CPU with an NVIDIA Geforce GTX 480 GPU and
4GB of main memory. We used the CUDA 3.0 toolkit, run-
ning on Ubuntu 8.04.

4.2.1 Iteration delaying

We first evaluate the performance benefit of iteration de-
laying as a function of the size of the branch code relative to
the non-branch code. We evaluate each of the three strate-
gies that determines the convergent branch direction in each
iteration: majority-vote, round-robin and round-robin with
idle iteration removal. The speedup results are shown in
Figure 10 for randomized branch directions, as described
above. For majority-vote, thresh is set to 16 and for round-
robin, the cycle (as defined in Section 3.1.1) is set to 50%.
The horizontal axis is the branch ratio r, defined as the
ratio of the size of each branch path to that of the non-
branch code. We vary r from 1 to 50. For all strategies, the
speedup starts below 1.0 (due to the instruction overhead)

1 // photon_uz: photon ’s direction in Z-axis
2 if (photon_uz > 0) {
3 // IOR: index of refraction
4 ni = IOR of current layer (photon_layer)
5 nt = IOR of next layer (photon_layer +1)
6 // Fresnel computation
7 r = RFresnel(ni, nt, photon_uz)
8

9 if (rand() > r) {
10 // transmit
11 ++ photon_layer;
12 if (photon_layer > max_layer)
13 Kill the photon
14 else
15 Update direction (photon_[ux,uy,uz])
16 } else {
17 // reflect
18 photon_uz = -photon_uz;
19 }
20 } else {
21 ni = IOR of current layer (photon_layer)
22 nt = IOR of prev. layer (photon_layer -1)
23 r = RFresnel(ni, nt, -photon_uz)
24

25 if (rand() > r) {
26 // transmit
27 --photon_layer;
28 if (photon_layer < 0)
29 Kill the photon
30 else
31 Update direction (photon_[ux,uy,uz])
32 } else {
33 // reflect
34 photon_uz = -photon_uz;
35 }
36 }

Figure 9: The branch in the MCML kernel to which branch
distribution is applied.

and increases as r increases. The best speedup achieved by
majority-vote is around 1.18x, noticeably lower than 1.30x
achieved by round-robin and its variant. We attribute this
to the scheme that stops iteration delaying at some point to
prevent majority-vote from starving threads (Section 3.1).
A detailed look at the execution shows that only 67% of
real iterations have completed when the stopping condition
occurs. Therefore, around 1/3 of the iteration space is still
executed divergently. In contrast, the round-robin strate-
gies do not starve threads and can be applied to the end of
the loop iterations. Further, idle iteration removal results
in lower performance for round-robin when the branch ra-
tio is small. This is expected because the extra warp-vote
instruction for every loop iteration, which compiles into at
least 5 PTX instructions, only removes idle iterations that
occur occasionally.

We also evaluate the performance benefit of iteration de-
laying as a function of branch behavior. The results is
shown in Figure 11 for a branch ratio r of 8, which is rep-
resentative of our MCML application discussed below. For
majority-vote, thresh is 16; for both round-robin strategies,
the cycle is 50%. The horizontal axis is the branch frequency

f , defined as the fraction of time the branch is taken, and
it is varied between 0% and 100%. The figure shows that
while majority-vote is not sensitive to the branch frequency,
round-robin favors frequent branch direction changes, as ex-
pected. Also, the end-points (f = 0%, 100%) of the curve
for majority-vote strategy reveal the impact of the instruc-

tion overhead introduced by the optimization, because the
branch is convergent in these cases. The 10% slowdown is
expected since each branch path has 160 FMA instructions
and the overhead is about 15 instructions.

Finally, we evaluate the performance impact of the param-
eters of the decision strategies: thresh for majority-vote and
the cycle for round-robin. We vary thresh between 1 and
32 and we vary the cycle between 10% and 90%, as shown in
Table 1. The branch ratio is 8 and the branch frequency is
10%. The results show that for all strategies, variance exists
and thus, the choice of these parameters is important.

Figure 10: Performance impact of iteration delaying as a
function of the branch ratio r.

Figure 11: Performance impact of iteration delaying as a
function of the branch frequency f .

Majority Vote Round-robin
Threshold Speedup Cycle Speedup

1 0.89 90% 1.05
8 1.15 70% 1.04
16 1.11 50% 0.91
24 0.95 30% 0.92
32 0.73 10% 0.55

Table 1: Performance impact of decision parameters.

Iteration delaying improves the performance of MCML by
up to 1.12x. This is achieved with a round-robin strategy
with a cycle of 75%. The branch ratio for MCML is 8.
Thus, the achieved speedup of the application is consistent
with those achieved by the synthetic benchmark, as shown
in Figure 11.

4.2.2 Branch distribution

We study the performance impact of branch distribution
using SYN-BRDIS, varying: the size of the code factored

out relative to the size of one path of the divergent code
(i.e., R = N ∗ M/20) and the number of inputs (and out-
puts) needed by the factored-out code (i.e. M). The re-
sult is shown in Figure 12. Out experiments indicate that
the performance is not sensitive to M , thus the plot is not
shown. In addition to the measured speedup, the figure also
plots the theoretical speedup with respect to R, which is a
ratio of (approximate) instruction counts before and after
applying branch distribution, i.e., 2(1 + R)/(2 + R). We
attribute the 10% difference between the measured and the-
oretical speedup to the non-branch code per iteration: the
19 PTX instructions that initializes val using the MWC
random number generator.

Figure 12: Performance impact of branch distribution as a
function of the relative size of the code factored out.

We evaluate the performance impact of branch divergence
on MCML. We find that it greatly depends on the frequency
of the first-level branch path at line 5 and 6 of Figure 8 is
executed. We construct three program inputs, i.e. a 7-layer
skin model with different per-layer properties, so that this
branch path is executed 4%, 30% and 70% of the time re-
spectively2. The speedup brought by branch distribution
in these three cases are 5.6%, 2.9% and 16.1% respectively.
The benefit varies non-linearly with the“hotness”of the par-
ent branch. This is expected because the target branch (i.e.,
line 2 of Figure 9) contains further branches inside, and the
input change may cause drastic change of the photon move-
ment behavior (e.g., more likely to reflect than to transmit)
and the dynamic instructions executed in the target branch
paths.

Finally, we isolate the impact of branch distribution on
the target branch in MCML. We extract the code in Fig-
ure 9 into a separate kernel, and perform a fixed number of
simulation steps. We obtain a speedup of 1.32x. By inspect-
ing the PTX code, we find that the ratio R is around 2. The
result of SYN-BRDIS tells us that the speedup is roughly
around 1.4x, which is aligned with the actual result.

5. RELATEDWORK
Loop collapsing is a standard compiler transformation that

can reduce divergence in the case shown in Figure 1c. It is in-
corporated into a GPU compiler framework by Lee et al. [6].
However, they apply loop collapsing only to a very specific
pattern of irregular loop nests that is commonly used in
sparse matrix-vector multiplication. In contrast, the opti-

2These numbers do not represent the amount of execution
time spent in this path.

mizations we proposed are more generic and target other
types of branch divergence.

Code factoring techniques, such as hoisting, sinking and
procedural abstraction, have been developed to reduce code
size in embedded systems [3]. Equivalent instruction se-
quences are identified through isomorphism in the corre-
sponding control/data flow graphs, and factored out into
functions through register renaming. Branch distribution is
similar to these techniques, but with a different goal: reduc-
ing branch divergence. This requires us to explore different
trade-offs when applying this optimization.

Dynamic Warp Formation (DWF) [4] is a hardware mech-
anism to improve the efficiency of SIMD branch execution
on GPUs. Every cycle the thread scheduler reforms warps
from the active threads by grouping those that are execut-
ing the same path (e.g., with the same next PC value) into
the same warp. Apart from the additional hardware that
does thread regrouping, DWF requires the register file to be
augmented to allow each thread to access other threads’ reg-
isters, in order to reduce the overhead of context migration.
In contrast, our optimizations require no hardware support
beyond what is available on GPUs today.

Zhang et al. [19] perform runtime data re-mapping across
multiple warps, which can be inefficient and requires host-
GPU communication. They also place restrictions on the
pattern in which threads may read their inputs. In contrast,
our optimizations target threads within a warp, need no data
re-mapping, place no restrictions on data access patters and
are amenable to compiler implementation.

There is also work that aims to improve performance in
the presence of branch divergence by increasing parallelism
during divergent execution. Meng et al. [10] propose a hard-
ware mechanism, called Dynamic Warp Subdivision (DWS),
that splits a warp into sub-warps at divergent branches and
that can be scheduled independently and executed in an
interleaved fashion. Carrillo et al. [2] propose a code trans-
formation, called branch splitting, in which a parallelizable
loop that encloses a multi-path branch is split into multiple
loops, each containing one branch path. In this way, the sin-
gle kernel that executes the original loop is split into smaller
ones, each of which has potentially lower register usage and
may be executed with higher level of parallelism. This work
is orthogonal to the optimizations we propose.

6. CONCLUSIONS AND FUTUREWORK
In this paper we presented two novel optimizations that

aim to reduce branch divergence: iteration delaying and
branch distribution. Both optimizations can be applied di-
rectly in software targeting NVIDIA Fermi-based GPUs.
Our preliminary evaluation shows that the two optimiza-
tions can improve the performance of both synthetic bench-
marks and a real-world application. Thus, we are encour-
aged to pursue compiler automation of the optimizations.

There are several directions for future work. One direction
is to explore the selection of the parameters of the optimiza-
tions, for example to adapt to the branching patterns of an
application. A second direction is to assess the combined
effect of our optimizations with dynamic warp formation.

7. REFERENCES

[1] M. Baskaran, J. Ramanujam, and P. Sadayappan.
Automatic C-to-CUDA Code Generation for Affine

Programs. In Compiler Construction, pages 244–263,
2010.

[2] S. Carrillo, J. Siegel, and X. Li. A control-structure
splitting optimization for GPGPU. In Proc. of

Computing frontiers, pages 147–150, 2009.

[3] S. K. Debray and et al. Compiler techniques for code
compaction. ACM Trans. Program. Lang. Syst.,
22:378–415, March 2000.

[4] W. Fung and et al. Dynamic warp formation: Efficient
MIMD control flow on SIMD graphics hardware. ACM

Trans.Archit.Code Optim., 6(2):1–37, 2009.

[5] B. Jang and et al. Exploiting memory access patterns
to improve memory performance in data-parallel
architectures. IEEE Trans. on Parallel and Distributed

Systems, 22(1):105 –118, Jan. 2011.

[6] S. Lee, S.-J. Min, and R. Eigenmann. OpenMP to
GPGPU: a compiler framework for automatic
translation and optimization. In Proc. of PPoPP,
pages 101–110, 2009.

[7] A. Leung and et al. A mapping path for
multi-GPGPU accelerated computers from a portable
high level programming abstraction. In Proc. of

GPGPU, pages 51–61, 2010.

[8] E. Lindholm and et al. NVIDIA Tesla: A Unified
Graphics and Computing Architecture. IEEE Micro,
28(2):39–55, 2008.

[9] W. C. Y. Lo and et al. GPU-accelerated Monte Carlo
simulation for photodynamic therapy treatment
planning. In Proc. of ECBO, 2009.

[10] J. Meng, D. Tarjan, and K. Skadron. Dynamic warp
subdivision for integrated branch and memory
divergence tolerance. In Proc. of ISCA, pages 235–246,
2010.

[11] S. S. Muchnick. Advanced compiler design and

implementation. Morgan Kaufmann, 1997.

[12] NVIDIA. NVIDIA CUDA Compute Unified Device
Architecture Programming Guide v3.0, Mar. 2010.

[13] NVIDIA. NVIDIA GF100: World’s Fastest GPU
Delivering Great Gaming Performance with True
Geometric Realism, Aug. 2010.

[14] S. Ryoo and et al. Program optimization carving for
GPU computing. J.Parallel Distrib.Comput.,
68(10):1389–1401, 2008.

[15] I.-J. Sung, J. A. Stratton, and W.-M. W. Hwu. Data
layout transformation exploiting memory-level
parallelism in structured grid many-core applications.
In Proc. of PACT, pages 513–522, 2010.

[16] S.-Z. Ueng and et al. CUDA-Lite: Reducing GPU
programming complexity. In Proc. of LCPC, pages
1–15, 2008.

[17] M. Wolfe. Implementing the PGI Accelerator model.
In Proc. of GPGPU, pages 43–50, 2010.

[18] Y. Yang and et al. A GPGPU compiler for memory
optimization and parallelism management. In Proc. of

PLDI, pages 86–97, 2010.

[19] E. Zhang and et al. Streamlining GPU applications on
the fly: thread divergence elimination through runtime
thread-data remapping. In Proc. of Supercomputing,
pages 115–126, 2010.

