
Scheduling Multithreaded Computations by Work
Stealing

ROBERT D. BLUMOFE

The University of Texas at Austin, Austin, Texas

AND

CHARLES E. LEISERSON

MIT Laboratory for Computer Science, Cambridge, Massachusetts

Abstract. This paper studies the problem of efficiently scheduling fully strict (i.e., well-structured)
multithreaded computations on parallel computers. A popular and practical method of scheduling
this kind of dynamic MIMD-style computation is “work stealing,” in which processors needing work
steal computational threads from other processors. In this paper, we give the first provably good
work-stealing scheduler for multithreaded computations with dependencies.

Specifically, our analysis shows that the expected time to execute a fully strict computation on P
processors using our work-stealing scheduler is T1/P 1 O(T`), where T1 is the minimum serial
execution time of the multithreaded computation and T` is the minimum execution time with an
infinite number of processors. Moreover, the space required by the execution is at most S1P, where
S1 is the minimum serial space requirement. We also show that the expected total communication of
the algorithm is at most O(PT`(1 1 nd)Smax), where Smax is the size of the largest activation record
of any thread and nd is the maximum number of times that any thread synchronizes with its parent.
This communication bound justifies the folk wisdom that work-stealing schedulers are more
communication efficient than their work-sharing counterparts. All three of these bounds are
existentially optimal to within a constant factor.

Categories and Subject Descriptors: D.4.1 [Process Management]: Threads—Thread scheduling

General Terms: Algorithms, Performance, Theory

This research was supported in part by the Advanced Research Projects Agency under Contract
N00014-94-1-0985. This research was done while Robert D. Blumofe was at the MIT Laboratory for
Computer Science and was supported in part by an ARPA High-Performance Computing Graduate
Fellowship.
An earlier version of this paper appeared in the Proceedings of the 35th Annual Symposium on
Foundations of Computer Science (November 20 –22). IEEE Computer Society Press, Los Alamitos,
Calif., 1994, pp. 356 –368.
Authors’ addresses: R. D. Blumofe, Department of Computer Sciences, Taylor Hall 2.124, The
University of Texas at Austin, Austin, TX 78712; C. E. Leiserson, 545 Technology Square,
Cambridge, MA 02139.
Permission to make digital / hard copy of part or all of this work for personal or classroom use is
granted without fee provided that the copies are not made or distributed for profit or commercial
advantage, the copyright notice, the title of the publication, and its date appear, and notice is given
that copying is by permission of the Association for Computing Machinery (ACM), Inc. To copy
otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission
and / or a fee.
© 1999 ACM 0004-5411/99/0900-0720 $05.00

Journal of the ACM, Vol. 46, No. 5, September 1999, pp. 720 –748.

Additional Key Words and Phrases: Critical-path length, Multithreading, Multiprocessor, Random-
ized algorithm, Thread scheduling, Work stealing

1. Introduction

For efficient execution of a dynamically growing “multithreaded” computation
on a MIMD-style parallel computer, a scheduling algorithm must ensure that
enough threads are active concurrently to keep the processors busy. Simulta-
neously, it should ensure that the number of concurrently active threads remains
within reasonable limits so that memory requirements are not unduly large.
Moreover, the scheduler should also try to maintain related threads on the same
processor, if possible, so that communication between them can be minimized.
Needless to say, achieving all these goals simultaneously can be difficult.

Two scheduling paradigms have arisen to address the problem of scheduling
multithreaded computations: work sharing and work stealing. In work sharing,
whenever a processor generates new threads, the scheduler attempts to migrate
some of them to other processors in hopes of distributing the work to underuti-
lized processors. In work stealing, however, underutilized processors take the
initiative: they attempt to “steal” threads from other processors. Intuitively, the
migration of threads occurs less frequently with work stealing than with work
sharing, since when all processors have work to do, no threads are migrated by a
work-stealing scheduler, but threads are always migrated by a work-sharing
scheduler.

The work-stealing idea dates back at least as far as Burton and Sleep’s [1981]
research on parallel execution of functional programs and Halstead’s [1984]
implementation of Multilisp. These authors point out the heuristic benefits of
work stealing with regards to space and communication. Since then, many
researchers have implemented variants on this strategy.1 Rudolph et al. [1991]
analyzed a randomized work-stealing strategy for load balancing independent
jobs on a parallel computer, and Karp and Zhang [1993] analyzed a randomized
work-stealing strategy for parallel backtrack search. Zhang and Ortynski [1994]
have obtained good bounds on the communication requirements of this algo-
rithm.

In this paper, we present and analyze a work-stealing algorithm for scheduling
“fully strict” (well-structured) multithreaded computations. This class of compu-
tations encompasses both backtrack search computations [Karp and Zhang 1993;
Zhang and Ortynski 1994] and divide-and-conquer computations [Wu and Kung
1991], as well as dataflow computations [Arvind et al. 1989] in which threads may
stall due to a data dependency. We analyze our algorithms in a stringent
atomic-access model similar to the atomic message-passing model of Liu et al.
[1993] in which concurrent accesses to the same data structure are serially
queued by an adversary.

Our main contribution is a randomized work-stealing scheduling algorithm for
fully strict multithreaded computations which is provably efficient in terms of
time, space, and communication. We prove that the expected time to execute a
fully strict computation on P processors using our work-stealing scheduler is

1 See, for example, Blumofe and Lisiecki [1997], Feldmann et al. [1993], Finkel and Manber [1987],
Halbherr et al. [1994], Kuszmaul [1994], Mohr et al. [1991], and Vandevoorde and Roberts [1988].

721Scheduling Multithreaded Computations by Work Stealing

T1/P 1 O(T`), where T1 is the minimum serial execution time of the
multithreaded computation and T` is the minimum execution time with an
infinite number of processors. In addition, the space required by the execution is
at most S1P, where S1 is the minimum serial space requirement. These bounds
are better than previous bounds for work-sharing schedulers [Blumofe and
Leiserson 1998], and the work-stealing scheduler is much simpler and eminently
practical. Part of this improvement is due to our focusing on fully strict
computations, as compared to the (general) strict computations studied in
Blumofe and Leiserson [1998]. We also prove that the expected total communi-
cation of the execution is at most O(PT`(1 1 nd)Smax), where Smax is the size of
the largest activation record of any thread and nd is the maximum number of
times that any thread synchronizes with its parent. This bound is existentially
tight to within a constant factor, meeting the lower bound of Wu and Kung
[1991] for communication in parallel divide-and-conquer. In contrast, work-
sharing schedulers have nearly worst-case behavior for communication. Thus, our
results bolster the folk wisdom that work stealing is superior to work sharing.

Others have studied and continue to study the problem of efficiently managing
the space requirements of parallel computations. Culler and Arvind [1988] and
Ruggiero and Sargeant [1987] give heuristics for limiting the space required by
dataflow programs. Burton [1988] shows how to limit space in certain parallel
computations without causing deadlock. More recently, Burton [1996] has devel-
oped and analyzed a scheduling algorithm with provably good time and space
bounds. Blelloch et al. [1995; 1997] have also recently developed and analyzed
scheduling algorithms with provably good time and space bounds. It is not yet
clear whether any of these algorithms are as practical as work stealing.

The remainder of this paper is organized as follows: In Section 2, we review
the graph-theoretic model of multithreaded computations introduced in Blumofe
and Leiserson [1998], which provides a theoretical basis for analyzing schedulers.
Section 3 gives a simple scheduling algorithm which uses a central queue. This
“busy-leaves” algorithm forms the basis for our randomized work-stealing algo-
rithm, which we present in Section 4. In Section 5, we introduce the atomic-
access model that we use to analyze execution time and communication costs for
the work-stealing algorithm, and we present and analyze a combinatorial “balls
and bins” game that we use to derive a bound on the contention that arises in
random work stealing. We then use this bound along with a delay-sequence
argument [Ranade 1987] in Section 6 to analyze the execution time and
communication cost of the work-stealing algorithm. To conclude, in Section 7, we
briefly discuss how the theoretical ideas in this paper have been applied to the
Cilk programming language and runtime system [Blumofe et al. 1996c; Frigo et
al. 1998], as well as make some concluding remarks.

2. A Model of Multithreaded Computation

This section reprises the graph-theoretic model of multithreaded computation
introduced in Blumofe and Leiserson [1998]. We also define what it means for
computations to be “fully strict.” We conclude with a statement of the greedy-
scheduling theorem, which is an adaptation of theorems by Brent [1974] and
Graham [1966; 1969] on dag scheduling.

722 R. D. BLUMOFE AND C. E. LEISERSON

A multithreaded computation is composed of a set of threads, each of which is
a sequential ordering of unit-time instructions. The instructions are connected by
dependency edges, which provide a partial ordering on which instructions must
execute before which other instructions. In Figure 1, for example, each shaded
block is a thread with circles representing instructions and the horizontal edges,
called continue edges, representing the sequential ordering. Thread G5 of this
example contains 3 instructions: v10, v11, and v12. The instructions of a thread
must execute in this sequential order from the first (leftmost) instruction to the
last (rightmost) instruction. In order to execute a thread, we allocate for it a
chunk of memory, called an activation frame, that the instructions of the thread
can use to store the values on which they compute.

A P-processor execution schedule for a multithreaded computation determines
which processors of a P-processor parallel computer execute which instructions
at each step. An execution schedule depends on the particular multithreaded
computation and the number P of processors. In any given step of an execution
schedule, each processor executes at most one instruction.

During the course of its execution, a thread may create, or spawn, other
threads. Spawning a thread is like a subroutine call, except that the spawning
thread can operate concurrently with the spawned thread. We consider spawned
threads to be children of the thread that did the spawning, and a thread may
spawn as many children as it desires. In this way, threads are organized into a
spawn tree as indicated in Figure 1 by the downward-pointing, shaded depen-
dency edges, called spawn edges, that connect threads to their spawned children.
The spawn tree is the parallel analog of a call tree. In our example computation,
the spawn tree’s root thread G1 has two children, G2 and G6, and thread G2 has
three children, G3, G4, and G5. Threads G3, G4, G5, and G6, which have no children,
are leaf threads.

Each spawn edge goes from a specific instruction—the instruction that actually
does the spawn operation—in the parent thread to the first instruction of the
child thread. An execution schedule must obey this edge in that no processor may
execute an instruction in a spawned child thread until after the spawning
instruction in the parent thread has been executed. In our example computation
(Figure 1), due to the spawn edge (v6, v7), instruction v7 cannot be executed
until after the spawning instruction v6. Consistent with our unit-time model of
instructions, a single instruction may spawn at most one child. When the
spawning instruction executes, it allocates an activation frame for the new child

FIG. 1. A multithreaded computation. This computation contains 23 instructions v1, v2, . . . , v23

and 6 threads G1, G2, . . . , G6.

723Scheduling Multithreaded Computations by Work Stealing

thread. Once a thread has been spawned and its frame has been allocated, we say
the thread is alive or living. When the last instruction of a thread executes, it
deallocates its frame and the thread dies.

An execution schedule generally respects other dependencies besides those
represented by continue and spawn edges. Consider an instruction that produces
a data value to be consumed by another instruction. Such a producer/consumer
relationship precludes the consuming instruction from executing until after the
producing instruction. To enforce such orderings, other dependency edges, called
join edges, may be required, as shown in Figure 1 by the curved edges. If the
execution of a thread arrives at a consuming instruction before the producing
instruction has executed, execution of the consuming thread cannot continue—
the thread stalls. Once the producing instruction executes, the join dependency is
resolved, which enables the consuming thread to resume its execution—the thread
becomes ready. A multithreaded computation does not model the means by
which join dependencies get resolved or by which unresolved join dependencies
get detected. In implementation, resolution and detection can be accomplished
using mechanisms such as join counters [Blumofe et al. 1996c], futures [Halstead
1984], or I-structures [Arvind et al. 1989].

We make two technical assumptions regarding join edges. We first assume that
each instruction has at most a constant number of join edges incident on it. This
assumption is consistent with our unit-time model of instructions. The second
assumption is that no join edges enter the instruction immediately following a
spawn. This assumption means that when a parent thread spawns a child thread,
the parent cannot immediately stall. It continues to be ready to execute for at
least one more instruction.

An execution schedule must obey the constraints given by the spawn, continue,
and join edges of the computation. These dependency edges form a directed
graph of instructions, and no processor may execute an instruction until after all
of the instruction’s predecessors in this graph have been executed. So that
execution schedules exist, this graph must be acyclic. That is, it must be a
directed acyclic graph, or dag. At any given step of an execution schedule, an
instruction is ready if all of its predecessors in the dag have been executed.

We make the simplifying assumption that a parent thread remains alive until
all its children die, and thus, a thread does not deallocate its activation frame
until all its children’s frames have been deallocated. Although this assumption is
not absolutely necessary, it gives the execution a natural structure, and it will
simplify our analyses of space utilization. In accounting for space utilization, we
also assume that the frames hold all the values used by the computation; there is
no global storage available to the computation outside the frames (or if such
storage is available, then we do not account for it). Therefore, the space used at
a given time in executing a computation is the total size of all frames used by all
living threads at that time, and the total space used in executing a computation is
the maximum such value over the course of the execution.

To summarize, a multithreaded computation can be viewed as a dag of
instructions connected by dependency edges. The instructions are connected by
continue edges into threads, and the threads form a spawn tree with the spawn
edges. When a thread is spawned, an activation frame is allocated and this frame
remains allocated as long as the thread remains alive. A living thread may be
either ready or stalled due to an unresolved dependency.

724 R. D. BLUMOFE AND C. E. LEISERSON

A given multithreaded program when run on a given input can sometimes
generate more than one multithreaded computation. In that case, we say the
program is nondeterministic. If the same multithreaded computation is generated
by the program on the input no matter how the computation is scheduled, then
the program is deterministic. In this paper, we shall analyze multithreaded
computations, not multithreaded programs. Specifically, we shall not worry about
how the multithreaded computation is generated. Instead, we shall study its
properties in an a posteriori fashion.

Because multithreaded computations with arbitrary dependencies can be
impossible to schedule efficiently [Blumofe and Leiserson 1998], we study
subclasses of general multithreaded computations in which the kinds of synchro-
nizations that can occur are restricted. A strict multithreaded computation is one
in which all join edges from a thread go to an ancestor of the thread in the
activation tree. In a strict computation, the only edge into a subtree (emanating
from outside the subtree) is the spawn edge that spawns the subtree’s root
thread. For example, the computation of Figure 1 is strict, and the only edge into
the subtree rooted at G2 is the spawn edge (v2, v3). Thus, strictness means that a
thread cannot be invoked before all of its arguments are available, although the
arguments can be garnered in parallel. A fully strict computation is one in which
all join edges from a thread go to the thread’s parent. A fully strict computation
is, in a sense, a “well-structured” computation, in that all join edges from a
subtree (of the spawn tree) emanate from the subtree’s root. The example
computation of Figure 1 is fully strict. Any multithreaded computation that can
be executed in a depth-first manner on a single processor can be made either
strict or fully strict by altering the dependency structure, possibly affecting the
achievable parallelism, but not affecting the semantics of the computation
[Blumofe 1995].

We quantify and bound the execution time of a computation on a P-processor
parallel computer in terms of the computation’s “work” and “critical-path
length.” We define the work of the computation to be the total number of
instructions and the critical-path length to be the length of a longest directed path
in the dag. Our example computation (Figure 1) has work 23 and critical-path
length 10. For a given computation, let T(-) denote the time to execute the
computation using P-processor execution schedule -, and let

TP 5 min
-

T~-!

denote the minimum execution time with P processors—the minimum being
taken over all P-processor execution schedules for the computation. Then T1 is
the work of the computation, since a 1-processor computer can only execute one
instruction at each step, and T` is the critical-path length, since even with
arbitrarily many processors, each instruction on a path must execute serially.
Notice that we must have TP $ T1/P, because P processors can execute only P
instructions per time step, and of course, we must have TP $ T`.

Early work on dag scheduling by Brent [1974] and Graham [1966; 1969] shows
that there exist P-processor execution schedules - with T(-) # T1/P 1 T`. As
the sum of two lower bounds, this upper bound is universally optimal to within a
factor of 2. The following theorem, proved in Blumofe and Leiserson [1998] and
Eager et al. [1989], extends these results minimally to show that this upper bound

725Scheduling Multithreaded Computations by Work Stealing

on TP can be obtained by greedy schedules: those in which at each step of the
execution, if at least P instructions are ready, then P instructions execute, and if
fewer than P instructions are ready, then all execute.

THEOREM 1. THE GREEDY-SCHEDULING THEOREM. For any multithreaded
computation with work T1 and critical-path length T`, and for any number P of
processors, any greedy P-processor execution schedule - achieves T(-) # T1/P 1
T`.

Generally, we are interested in schedules that achieve linear speedup, that is
T(-) 5 O(T1/P). For a greedy schedule, linear speedup occurs when the
parallelism, which we define to be T1/T`, satisfies T1/T` 5 V(P).

To quantify the space used by a given execution schedule of a computation, we
define the stack depth of a thread to be the sum of the sizes of the activation
frames of all its ancestors, including itself. The stack depth of a multithreaded
computation is the maximum stack depth of any of its threads. We shall denote
by S1 the minimum amount of space possible for any 1-processor execution of a
multithreaded computation, which is equal to the stack depth of the computa-
tion. Let S(-) denote the space used by a P-processor execution schedule - of a
multithreaded computation. We shall be interested in those execution schedules
that exhibit at most linear expansion of space, that is, S(-) 5 O(S1P), which is
existentially optimal to within a constant factor [Blumofe and Leiserson 1998].

3. The Busy-Leaves Property

Once a thread G has been spawned in a strict computation, a single processor can
complete the execution of the entire subcomputation rooted at G even if no other
progress is made on other parts of the computation. In other words, from the
time the thread G is spawned until the time G dies, there is always at least one
thread from the subcomputation rooted at G that is ready. In particular, no leaf
thread in a strict multithreaded computation can stall. As we shall see, this
property allows an execution schedule to keep the leaves “busy.” By combining
this “busy-leaves” property with the greedy property, we derive execution
schedules that simultaneously exhibit linear speedup and linear expansion of
space.

In this section, we show that for any number P of processors and any strict
multithreaded computation with work T1, critical-path length T`, and stack
depth S1, there exists a P-processor execution schedule - that achieves time
T(-) # T1/P 1 T` and space S(-) # S1P simultaneously. We give a simple
online P-processor parallel algorithm—the Busy-Leaves Algorithm—to compute
such a schedule. This simple algorithm will form the basis for the randomized
work-stealing algorithm presented in Section 4.

The Busy-Leaves Algorithm operates online in the following sense: Before the
tth step, the algorithm has computed and executed the first t 2 1 steps of the
execution schedule. At the tth step, the algorithm uses only information from the
portion of the computation revealed so far in the execution to compute and
execute the tth step of the schedule. In particular, it does not use any informa-
tion from instructions not yet executed or threads not yet spawned.

The Busy-Leaves Algorithm maintains all living threads in a single thread pool
which is uniformly available to all P processors. When spawns occur, new threads

726 R. D. BLUMOFE AND C. E. LEISERSON

are added to this global pool, and when a processor needs work, it removes a
ready thread from the pool. Although we describe the algorithm as a P-processor
parallel algorithm, we shall not analyze it as such. Specifically, in computing the
tth step of the schedule, we allow each processor to add threads to the thread
pool and delete threads from it. Thus, we ignore the effects of processors
contending for access to the pool. In fact, we shall only analyze properties of the
schedule itself and ignore the cost incurred by the algorithm in computing the
schedule. (Scheduling overheads will be analyzed for the randomized work-
stealing algorithm, however.)

The Busy-Leaves Algorithm operates as follows: The algorithm begins with the
root thread in the global thread pool and all processors idle. At the beginning of
each step, each processor either is idle or has a thread to work on. Those
processors that are idle begin the step by attempting to remove any ready thread
from the pool. If there are sufficiently many ready threads in the pool to satisfy
all of the idle processors, then every idle processor gets a ready thread to work
on. Otherwise, some processors remain idle. Then, each processor that has a
thread to work on executes the next instruction from that thread. In general,
once a processor has a thread, call it Ga, to work on, it executes an instruction
from Ga at each step until the thread either spawns, stalls, or dies, in which case,
it performs according to the following rules.

(1) Spawns. If the thread Ga spawns a child Gb, then the processor finishes the
current step by returning Ga to the thread pool. The processor begins the
next step working on Gb.

(2) Stalls. If the thread Ga stalls, then the processor finishes the current step by
returning Ga to the thread pool. The processor begins the next step idle.

(3) Dies. If the thread Ga dies, then the processor finishes the current step by
checking to see if Ga’s parent thread Gb currently has any living children. If
Gb has no live children and no other processor is working on Gb, then the
processor takes Gb from the pool and begins the next step working on Gb.
Otherwise, the processor begins the next step idle.

Figure 2 illustrates these three rules in a 2-processor execution schedule
computed by the Busy-Leaves Algorithm on the computation of Figure 1. Rule
(1): At step 2, processor p1 working on thread G1 executes v2 which spawns the
child G2, so p1 places G1 back in the pool (to be picked up at the beginning of the
next step by the idle p2) and begins the next step working on G2. Rule (2): At
step 8, processor p2 working on thread G1 executes v21 and G1 stalls, so p2 returns
G1 to the pool and begins the next step idle (and remains idle since the thread
pool contains no ready threads). Rule (3): At step 13, processor p1 working on G2
executes v15 and G2 dies, so p1 retrieves the parent G1 from the pool and begins
the next step working on G1.

Besides being greedy, for any strict computation, the schedule computed by the
Busy-Leaves Algorithm maintains the busy-leaves property: at every time step
during the execution, every leaf in the “spawn subtree” has a processor working
on it. We define the spawn subtree at any time step t to be the portion of the
spawn tree consisting of just those threads that are alive at step t. To restate the
busy-leaves property, at every time step, every living thread that has no living
descendants has a processor working on it. We shall now prove this fact and show

727Scheduling Multithreaded Computations by Work Stealing

that it implies linear expansion of space. It is worth noting that not every
multithreaded computation has a schedule that maintains the busy-leaves prop-
erty, but every strict multithreaded computation does. We begin by showing that
any schedule that maintains the busy-leaves property exhibits linear expansion of
space.

LEMMA 2. For any multithreaded computation with stack depth S1, any P-
processor execution schedule - that maintains the busy-leaves property uses space
bounded by S(-) # S1P.

PROOF. The busy-leaves property implies that at all time steps t, the spawn
subtree has at most P leaves. For each such leaf, the space used by it and all of its
ancestors is at most S1, and therefore, the space in use at any time step t is at
most S1P. e

For schedules that maintain the busy-leaves property, the upper bound S1P is
conservative. By charging S1 space for each busy leaf, we may be overcharging.
For some computations, by knowing that the schedule preserves the busy-leaves
property, we can appeal directly to the fact that the spawn subtree never has
more than P leaves to obtain tight bounds on space usage [Blumofe et al. 1996a].

We finish this section by showing that for strict computations, the Busy-Leaves
Algorithm computes a schedule that is both greedy and maintains the busy-leaves
property.

THEOREM 3. For any number P of processors and any strict multithreaded
computation with work T1, critical-path length T`, and stack depth S1, the Busy-
Leaves Algorithm computes a P-processor execution schedule - whose execution
time satisfies T(-) # T1/P 1 T` and whose space satisfies S(-) # S1P.

PROOF. The time bound follows directly from the greedy-scheduling theorem
(Theorem 1), since the Busy-Leaves Algorithm computes a greedy schedule. The
space bound follows from Lemma 2 if we can show that the Busy-Leaves

FIG. 2. A 2-processor execution schedule computed by the Busy-Leaves Algorithm for the compu-
tation of Figure 1. This schedule lists the living threads in the global thread pool at each step just
after each idle processor has removed a ready thread. It also lists the ready thread being worked on
and the instruction executed by each of the 2 processors, p1 and p2, at each step. Living threads that
are ready are listed in bold. The other living threads are stalled.

728 R. D. BLUMOFE AND C. E. LEISERSON

Algorithm maintains the busy-leaves property. We prove this fact by induction on
the number of steps. At the first step of the algorithm, the spawn subtree
contains just the root thread that is a leaf, and some processor is working on it.
We must show that all of the algorithm rules preserve the busy-leaves property.
When a processor has a thread Ga to work on, it executes instructions from that
thread until it either spawns, stalls, or dies. Rule (1): If Ga spawns a child Gb,
then Ga is not a leaf (even if it was before) and Gb is a leaf. In this case, the
processor works on Gb, so the new leaf is busy. Rule (2): If Ga stalls, then Ga

cannot be a leaf since in a strict computation, the unresolved dependency must
come from a descendant. Rule (3): If Ga dies, then its parent thread Gb may turn
into a leaf. In this case, the processor works on Gb unless some other processor
already is, so the new leaf is guaranteed to be busy. e

We now know that every strict multithreaded computation has an efficient
execution schedule, and we know how to find it. But these facts take us only so
far. Execution schedules must be computed efficiently online, and though the
Busy-Leaves Algorithm does compute efficient execution schedules and does
operate online, it surely does not do so efficiently, except possibly in the case of
small-scale symmetric multiprocessors. This lack of scalability is a consequence
of employing a single centralized thread pool at which all processors must
contend for access. In the next section, we present a distributed online schedul-
ing algorithm, and in the following sections, we prove that it is both efficient and
scalable.

4. A Randomized Work-Stealing Algorithm

In this section, we present an online, randomized work-stealing algorithm for
scheduling multithreaded computations on a parallel computer. Also, we present
an important structural lemma that is used at the end of this section to show that
for fully strict computations, this algorithm causes at most a linear expansion of
space. This lemma reappears in Section 6 to show that, for fully strict computa-
tions, this algorithm achieves linear speedup and generates existentially optimal
amounts of communication.

In the Work-Stealing Algorithm, the centralized thread pool of the Busy-Leaves
Algorithm is distributed across the processors. Specifically, each processor
maintains a ready deque data structure of threads. The ready deque has two ends:
a top and a bottom. Threads can be inserted on the bottom and removed from
either end. A processor treats its ready deque like a call stack, pushing and
popping from the bottom. Threads that are migrated to other processors are
removed from the top.

In general, a processor obtains work by removing the thread at the bottom of
its ready deque. It starts working on the thread, call it Ga, and continues
executing Ga’s instructions until Ga spawns, stalls, dies, or enables a stalled
thread, in which case, it performs according to the following rules:

(1) Spawns. If the thread Ga spawns a child Gb, then Ga is placed on the bottom
of the ready deque, and the processor commences work on Gb.

(2) Stalls. If the thread Ga stalls, its processor checks the ready deque. If the
deque contains any threads, then the processor removes and begins work on
the bottommost thread. If the ready deque is empty, however, the processor

729Scheduling Multithreaded Computations by Work Stealing

begins work stealing: it steals the topmost thread from the ready deque of a
randomly chosen processor and begins work on it. (This work-stealing
strategy is elaborated below.)

(3) Dies. If the thread Ga dies, then the processor follows rule (2) as in the case
of Ga stalling.

(4) Enables. If the thread Ga enables a stalled thread Gb, the now-ready thread
Gb is placed on the bottom of the ready deque of Ga’s processor.

A thread can simultaneously enable a stalled thread and stall or die, in which
case we first perform rule (4) for enabling and then rule (2) for stalling or rule
(3) for dying. Except for rule (4) for the case when a thread enables a stalled
thread, these rules are analogous to the rules of the Busy-Leaves Algorithm, and
as we shall see, rule (4) is needed to ensure that the algorithm maintains
important structural properties, including the busy-leaves property.

The Work-Stealing Algorithm begins with all ready deques empty. The root
thread of the multithreaded computation is placed in the ready deque of one
processor, while the other processors start work stealing.

When a processor begins work stealing, it operates as follows. The processor
becomes a thief and attempts to steal work from a victim processor chosen
uniformly at random. The thief queries the ready deque of the victim, and if it is
nonempty, the thief removes and begins work on the top thread. If the victim’s
ready deque is empty, however, the thief tries again, picking another victim at
random.

We now state and prove an important lemma on the structure of threads in the
ready deque of any processor during the execution of a fully strict computation.
This lemma is used later in this section to analyze execution space and in Section
6 to analyze execution time and communication. Figure 3 illustrates the lemma.

LEMMA 4. In the execution of any fully strict multithreaded computation by the
Work-Stealing Algorithm, consider any processor p and any given time step at which
p is working on a thread. Let G0 be the thread that p is working on, let k be the
number of threads in p’s ready deque, and let G1, G2, . . . , Gk denote the threads in
p’s ready deque ordered from bottom to top, so that G1 is the bottommost and Gk is
the topmost. If we have k . 0, then the threads in p’s ready deque satisfy the
following properties:

FIG. 3. The structure of a processor’s ready deque. The black instruction in each thread indicates
the thread’s currently ready instruction. Only thread Gk may have been worked on since it last
spawned a child. The dashed edges are the “deque edges” introduced in Section 6.

730 R. D. BLUMOFE AND C. E. LEISERSON

(1) For i 5 1, 2, . . . , k, thread G i is the parent of G i21.
(2) If we have k . 1, then for i 5 1, 2, . . . , k 2 1, thread G i has not been

worked on since it spawned G i21.

PROOF. The proof is a straightforward induction on execution time. Execu-
tion begins with the root thread in some processor’s ready deque and all other
ready deques empty, so the lemma vacuously holds at the outset. Now, consider
any step of the algorithm at which processor p executes an instruction from
thread G0. Let G1, G2, . . . , Gk denote the k threads in p’s ready deque before the
step, and suppose that either k 5 0 or both properties hold. Let G90 denote the
thread (if any) being worked on by p after the step, and let G91, G92, . . . , G9k9

denote the k9 threads in p’s ready deque after the step. We now look at the rules
of the algorithm and show that they all preserve the lemma. That is, either k9 5
0 or both properties hold after the step.

Rule (1): If G0 spawns a child, then p pushes G0 onto the bottom of the ready
deque and commences work on the child. Thus, G90 is the child, we have k9 5
k 1 1 . 0, and for j 5 1, 2, . . . , k9, we have G9j 5 G j21. See Figure 4. Now,
we can check both properties. Property (1): If k9 . 1, then for j 5 2, 3, . . . , k9,
thread G9j is the parent of G9j21, since before the spawn we have k . 0, which
means that for i 5 1, 2, . . . , k, thread G i is the parent of G i21. Moreover, G91 is
obviously the parent of G90. Property (2): If k9 . 2, then for j 5 2, 3, . . . , k9 2
1, thread G9j has not been worked on since it spawned G9j21, because before the
spawn we have k . 1, which means that for i 5 1, 2, . . . , k 2 1, thread G i has
not been worked on since it spawned G i21. Finally, thread G91 has not been
worked on since it spawned G90, because the spawn only just occurred.

Rules (2) and (3): If G0 stalls or dies, then we have two cases to consider. If
k 5 0, the ready deque is empty, so the processor commences work stealing, and
when the processor steals and begins work on a thread, we have k9 5 0. If k .
0, the ready deque is not empty, so the processor pops the bottommost thread off
the deque and commences work on it. Thus, we have G90 5 G1 (the popped
thread) and k9 5 k 2 1, and for j 5 1, 2, . . . , k9, we have G9j 5 G j11. See
Figure 5. Now, if k9 . 0, we can check both properties. Property (1): For j 5 1,
2, . . . , k9, thread G9j is the parent of G9j21, since for i 5 1, 2, . . . , k, thread G i

is the parent of G i21. Property (2): If k9 . 1, then for j 5 1, 2, . . . , k9 2 1,
thread G9j has not been worked on since it spawned G9j21, because before the stall

FIG. 4. The ready deque of a processor before and after the thread G0 that it is working on spawns
a child. (Note that the threads G0 and G90 are not actually in the deque; they are the threads being
worked on before and after the spawn.)

731Scheduling Multithreaded Computations by Work Stealing

or death we have k . 2, which means that for i 5 2, 3, . . . , k 2 1, thread G i

has not been worked on since it spawned G i21.
Rule (4): If G0 enables a stalled thread, then due to the fully strict condition,

that previously stalled thread must be G0’s parent. First, we observe that we must
have k 5 0. If we have k . 0, then the processor’s ready deque is not empty,
and this parent thread must be bottommost in the ready deque. Thus, this parent
thread is ready and Rule (4) does not apply. With k 5 0, the ready deque is
empty and the processor places the parent thread on the bottom of the ready
deque. We have G90 5 G0 and k9 5 k 1 1 5 1 with G91 denoting the newly
enabled parent. We only have to check the first property. Property (1): Thread G91
is obviously the parent of G90.

If some other processor steals a thread from processor p, then we must have
k . 0, and after the steal we have k9 5 k 2 1. If k9 . 0 holds, then both
properties are clearly preserved. All other actions by processor p—such as work
stealing or executing an instruction that does not invoke any of the above
rules— clearly preserve the lemma. e

Before moving on, it is worth pointing out how it may happen that thread Gk

has been worked on since it spawned Gk21, since Property (2) excludes Gk. This
situation arises when Gk is stolen from processor p and then stalls on its new
processor. Later, Gk is reenabled by Gk21 and brought back to processor p’s
ready deque. The key observation is that when Gk is reenabled, processor
p’s ready deque is empty and p is working on Gk21. The other threads Gk22,
Gk23, . . . , G0 shown in Figure 3 were spawned after Gk was reenabled.

We conclude this section by bounding the space used by the Work-Stealing
Algorithm executing a fully strict computation.

THEOREM 5. For any fully strict multithreaded computation with stack depth S1,
the Work-Stealing Algorithm run on a computer with P processors uses at most S1P
space.

PROOF. Like the Busy-Leaves Algorithm, the Work-Stealing Algorithm main-
tains the busy-leaves property: at every time step of the execution, every leaf in
the current spawn subtree has a processor working on it. If we can establish this
fact, then Lemma 2 completes the proof.

That the Work-Stealing Algorithm maintains the busy-leaves property is a
simple consequence of Lemma 4. At every time step, every leaf in the current
spawn subtree must be ready and therefore must either have a processor working

FIG. 5. The ready deque of a processor before and after the thread G0 that it is working on dies.
(Note that the threads G0 and G90 are not actually in the deque; they are the threads being worked on
before and after the death.)

732 R. D. BLUMOFE AND C. E. LEISERSON

on it or be in the ready deque of some processor. But Lemma 4 guarantees that
no leaf thread sits in a processor’s ready deque while the processor works on
some other thread. e

With the space bound in hand, we now turn attention to analyzing the time and
communication bounds for the Work-Stealing Algorithm. Before we can proceed
with this analysis, however, we must take care to define a model for coping with
the contention that may arise when multiple thief processors simultaneously
attempt to steal from the same victim.

5. Atomic Accesses and the Recycling Game

This section presents the “atomic-access” model that we use to analyze conten-
tion during the execution of a multithreaded computation by the Work-Stealing
Algorithm. We introduce a combinatorial “balls and bins” game, which we use to
bound the total amount of delay incurred by random, asynchronous accesses in
this model. We shall use the results of this section in Section 6, where we analyze
the Work-Stealing Algorithm.

The atomic-access model is the machine model we use to analyze the Work-
Stealing Algorithm. We assume that the machine is an asynchronous parallel
computer with P processors, and its memory can be either distributed or shared.
Our analysis assumes that concurrent accesses to the same data structure are
serially queued by an adversary, as in the atomic message-passing model of Liu et
al. [1993]. This assumption is more stringent than that in the model of Karp and
Zhang [1993]. They assume that if concurrent steal requests are made to a deque,
in one time step, one request is satisfied and all the others are denied. In the
atomic-access model, we also assume that one request is satisfied, but the others
are queued by an adversary, rather than being denied. Moreover, from the
collection of waiting requests for a given deque, the adversary may choose which
is serviced and which continue to wait. The only constraint on the adversary is
that if there is at least one request for a deque, then the adversary may not
choose that none be serviced.

The main result of this section is to show that if requests are made randomly
by P processors to P deques with each processor allowed at most one outstanding
request, then the total amount of time that the processors spend waiting for their
requests to be satisfied is likely to be proportional to the total number M of
requests, no matter which processors make the requests and no matter how the
requests are distributed over time. In order to prove this result, we introduce a
“balls and bins” game that models the effects of queueing by the adversary.

The (P, M)-recycling game is a combinatorial game played by the adversary, in
which balls are tossed at random into bins. The parameter P is the number of
balls in the game, which is equal to the number of bins. The parameter M is the
total number of ball tosses executed by the adversary. Initially, all P balls are in a
reservoir separate from the P bins. At each step of the game, the adversary
executes the following two operations in sequence:

(1) The adversary chooses some of the balls in the reservoir (possibly all and
possibly none), and then for each of these balls, the adversary removes it
from the reservoir, selects one of the P bins uniformly and independently at
random, and tosses the ball into it.

733Scheduling Multithreaded Computations by Work Stealing

(2) The adversary inspects each of the P bins in turn, and for each bin that
contains at least one ball, the adversary removes any one of the balls in the
bin and returns it to the reservoir.

The adversary is permitted to make a total of M ball tosses. The game ends when
M ball tosses have been made and all balls have been removed from the bins and
placed back in the reservoir.

The recycling game models the servicing of steal requests by the Work-Stealing
Algorithm. We can view each ball and each bin as being owned by a distinct
processor. If a ball is in the reservoir, it means that the ball’s owner is not making
a steal request. If a ball is in a bin, it means that the ball’s owner has made a steal
request to the deque of the bin’s owner, but that the request has not yet been
satisfied. When a ball is removed from a bin and returned to the reservoir, it
means that the request has been serviced.

After each step t of the game, there are some number nt of balls left in the
bins, which correspond to steal requests that have not been satisfied. We shall be
interested in the total delay D 5 (t51

T nt, where T is the total number of steps in
the game. The goal of the adversary is to make the total delay as large as
possible. The next lemma shows that despite the choices that the adversary
makes about which balls to toss into bins and which to return to the reservoir, the
total delay is unlikely to be large.

LEMMA 6. For any e . 0, with probability at least 1 2 e, the total delay in the
(P, M)-recycling game is O(M 1 P lg P 1 P lg(1/e)).2 The expected total delay is at
most M. In other words, the total delay incurred by M random requests made by P
processors in the atomic-access model is O(M 1 P lg P 1 P lg(1/e)) with probability
at least 1 2 e, and the expected total delay is at most M.

PROOF. We first make the observation that the strategy by which the adver-
sary chooses a ball from each bin is immaterial, and thus, we can assume that
balls are queued in their bins in a first-in-first-out (FIFO) order. The adversary
removes balls from the front of the queue, and when the adversary tosses a ball,
it is placed on the back of the queue. If several balls are tossed into the same bin
at the same step, they can be placed on the back of the queue in any order. The
reason that assuming a FIFO discipline for queueing balls in a bin does not affect
the total delay is that the number of balls in a given bin at a given step is the
same no matter which ball is removed, and where balls are tossed has nothing to
do with which ball is tossed.

For any given ball and any given step, the step either finishes with the ball in a
bin or in the reservoir. Define the delay of ball r to be the random variable dr

denoting the total number of steps that finish with ball r in a bin. Then, we have

D 5 O
r51

P

d r . (1)

2 Greg Plaxton of the University of Texas, Austin has improved this bound to O(M) for the case when
1/e is at most polynomial in M and P [Plaxton 1994].

734 R. D. BLUMOFE AND C. E. LEISERSON

Define the ith cycle of a ball to be those steps in which the ball remains in a bin
from the ith time it is tossed until it is returned to the reservoir. Define also the
ith delay of a ball to be the number of steps in its ith cycle.

We shall analyze the total delay by focusing, without loss of generality, on the
delay d 5 d1 of ball 1. If we let m denote the number of times that ball 1 is tossed
by the adversary, and for i 5 1, 2, . . . , m, let di be the random variable
denoting the ith delay of ball 1, then we have d 5 (i51

m di.
We say that the ith cycle of ball 1 is delayed by another ball r if the ith toss of

ball 1 places it in some bin k and ball r is removed from bin k during the ith cycle
of ball 1. Since the adversary follows the FIFO rule, it follows that the ith cycle
of ball 1 can be delayed by another ball r either once or not at all. Consequently,
we can decompose each random variable di into a sum di 5 xi2 1 xi3 1 . . . 1
xim of indicator random variables, where

xir 5 H 1 if the ith cycle of ball 1 is delayed by ball r;
0 otherwise.

Thus, we have

d 5 O
i51

m

O
r52

P

xir . (2)

We now prove an important property of these indicator random variables.
Consider any set S of pairs (i, r), each of which corresponds to the event that the
ith cycle of ball 1 is delayed by ball r. For any such set S, we claim that

Pr$ `
(i , r)[S

~ xir 5 1!% # P2 uS u. (3)

The crux of proving the claim is to show that

PrH xir 5 1 u `
(i9 , r9)[S9

~ xi9r9 5 1!J #
1

P
, (4)

where S9 5 S 2 {(i, r)}, whence the claim (3) follows from Bayes’s Theorem.
We can derive Inequality (4) from a careful analysis of dependencies. Because

the adversary follows the FIFO rule, we have that xir 5 1 only if, when the
adversary executes the ith toss of ball 1, it falls into whatever bin contains ball r,
if any. A priori, this event happens with probability either 1/P or 0, and hence,
with probability at most 1/P. Conditioning on any collection of events relating
which balls delay this or other cycles of ball 1 cannot increase this probability, as
we now argue in two cases. In the first case, the indicator random variables xi9r9,
where i9 Þ i, tell whether other cycles of ball 1 are delayed. This information
tells nothing about where the ith toss of ball 1 goes. Therefore, these random
variables are independent of xir, and thus, the probability 1/P upper bound is not
affected. In the second case, the indicator random variables xir9 tell whether the
ith toss of ball 1 goes to the bin containing ball r9, but this information tells us
nothing about whether it goes to the bin containing ball r, because the indicator
random variables tell us nothing to relate where ball r and ball r9 are located.

735Scheduling Multithreaded Computations by Work Stealing

Moreover, no “collusion” among the indicator random variables provides any
more information, and thus Inequality (4) holds.

Equation (2) shows that the delay d encountered by ball 1 throughout all of its
cycles can be expresses as a sum of m(P 2 1) indicator random variables. In
order for d to equal or exceed a given value D, there must be some set containing
D of these indicator random variables, each of which must be 1. For any specific
such set, Inequality (3) says that the probability is at most P2D that all random
variables in the set are 1. Since there are (D

m(P21)) # (emP/D)D such sets, where
e is the base of the natural logarithm, we have

Pr$d $ D% # S emP

D
D D

P2D

5 S em

D
D D

#
e

P
,

whenever D $ max{2em, lg P 1 lg(1/e)}.
Although our analysis was performed for ball 1, it applies to any other ball as

well. Consequently, for any given ball r which is tossed mr times, the probability
that its delay dr exceeds max{2emr, lg P 1 lg(1/e)} is at most e/P. By Boole’s
inequality and Eq. (1), it follows that with probability at least 1 2 e, the total
delay D is at most

D # O
r51

P

maxH 2emr , lg P 1 lgS 1

e
D J

5 QSM 1 P lg P 1 P lgS 1

e
D D ,

since M 5 (r51
P mr.

The upper bound E[D] # M can be obtained as follows: Recall that each d r is
the sum of (P 2 1)mr indicator random variables, each of which has expectation
at most 1/P. Therefore, by linearity of expectation, E[d r] # mr. Using Eq. (1)
and again using linearity of expectation, we obtain E[D] # M. e

With this bound on the total delay incurred by M random requests now in
hand, we turn back to the Work-Stealing Algorithm.

6. Analysis of the Work-Stealing Algorithm

In this section, we analyze the time and communication cost of executing a fully
strict multithreaded computation with the Work-Stealing Algorithm. For any
fully strict computation with work T1 and critical-path length T`, we show that
the expected running time with P processors, including scheduling overhead, is
T1/P 1 O(T`). Moreover, for any e . 0, the execution time on P processors is
T1/P 1 O(T` 1 lg P 1 lg(1/e)), with probability at least 1 2 e. We also show

736 R. D. BLUMOFE AND C. E. LEISERSON

that the expected total communication during the execution of a fully strict
computation is O(PT`(1 1 nd)Smax), where nd is the maximum number of join
edges from a thread to its parent and Smax is the largest size of any activation
frame.

Unlike in the Busy-Leaves Algorithm, the “ready pool” in the Work-Stealing
Algorithm is distributed, and so there is no contention at a centralized data
structure. Nevertheless, it is still possible for contention to arise when several
thieves happen to descend on the same victim simultaneously. In this case, as we
have indicated in the previous section, we make the conservative assumption that
an adversary serially queues the work-stealing requests. We further assume that
it takes unit time for a processor to respond to a work-stealing request. This
assumption can be relaxed without materially affecting the results so that a
work-stealing response takes any constant amount of time.

To analyze the running time of the Work-Stealing Algorithm executing a fully
strict multithreaded computation with work T1 and critical-path length T` on a
computer with P processors, we use an accounting argument. At each step of the
algorithm, we collect P dollars, one from each processor. At each step, each
processor places its dollar in one of three buckets according to its actions at that
step. If the processor executes an instruction at the step, then it places its dollar
into the WORK bucket. If the processor initiates a steal attempt at the step, then
it places its dollar into the STEAL bucket. And, if the processor merely waits for a
queued steal request at the step, then it places its dollar into the WAIT bucket.
We shall derive the running-time bound by bounding the number of dollars in
each bucket at the end of the execution, summing these three bounds, and then
dividing by P.

We first bound the total number of dollars in the WORK bucket.

LEMMA 7. The execution of a fully strict multithreaded computation with work
T1 by the Work-Stealing Algorithm on a computer with P processors terminates with
exactly T1 dollars in the WORK bucket.

PROOF. A processor places a dollar in the WORK bucket only when it executes
an instruction. Thus, since there are T1 instructions in the computation, the
execution ends with exactly T1 dollars in the WORK bucket. e

Bounding the total dollars in the STEAL bucket requires a significantly more
involved “delay-sequence” argument. We first introduce the notion of a “round”
of work-steal attempts, and we must also define an augmented dag that we then
use to define “critical” instructions. The idea is as follows: If, during the course
of the execution, a large number of steals are attempted, then we can identify a
sequence of instructions—the delay sequence—in the augmented dag such that
each of these steal attempts was initiated while some instruction from the
sequence was critical. We then show that a critical instruction is unlikely to
remain critical across a modest number of steal attempts. We can then conclude
that such a delay sequence is unlikely to occur, and therefore, an execution is
unlikely to suffer a large number of steal attempts.

A round of steal attempts is a set of at least 3P but fewer than 4P consecutive
steal attempts such that if a steal attempt that is initiated at time step t occurs in
a particular round, then all other steal attempts initiated at time step t are also in
the same round. We can partition all of the steal attempts that occur during an

737Scheduling Multithreaded Computations by Work Stealing

execution into rounds as follows: The first round contains all steal attempts
initiated at time steps 1, 2, . . . , t1, where t1 is the earliest time such that at least
3P steal attempts were initiated at or before t1. We say that the first round starts
at time step 1 and ends at time step t1. In general, if the ith round ends at time
step t i, then the (i 1 1)st round begins at time step t i 1 1 and ends at the
earliest time step t i11 . t i 1 1 such that at least 3P steal attempts were initiated
at time steps between t i 1 1 and t i11, inclusive. These steal attempts belong to
round i 1 1. By definition, each round contains at least 3P consecutive steal
attempts. Moreover, since at most P 2 1 steal attempts can be initiated in a
single time step, each round contains fewer than 4P 2 1 steal attempts, and each
round takes at least four steps.

The sequence of instructions that make up the delay sequence is defined with
respect to an augmented dag obtained by modifying the original dag slightly. Let
G denote the original dag, that is, the dag consisting of the computation’s
instructions as vertices and its continue, spawn, and join edges as edges. The
augmented dag G9 is the original dag G together with some new edges, as
follows. For every set of instructions u, v, and w such that (u, v) is a spawn edge
and (u, w) is a continue edge, the deque edge (w, v) is placed in G9. These
deque edges are shown dashed in Figure 3. In Section 2, we made the technical
assumption that instruction w has no incoming join edges, and so G9 is a dag. If
T` is the length of a longest path in G, then the longest path in G9 has length at
most 2T`. It is worth pointing out that G9 is only an analytical tool. The deque
edges have no effect on the scheduling and execution of the computation by the
Work-Stealing Algorithm.

The deque edges are the key to defining critical instructions. At any time step
during the execution, we say that an unexecuted instruction v is critical if every
instruction that precedes v (either directly or indirectly) in G9 has been executed,
that is, if for every instruction w such that there is a directed path from w to v in
G9, instruction w has been executed. A critical instruction must be ready, since
G9 contains every edge of G, but a ready instruction may or may not be critical.
Intuitively, the structural properties of a ready deque enumerated in Lemma 4
guarantee that if a thread is deep in a ready deque, then its current instruction
cannot be critical, because the predecessor of the thread’s current instruction
across the deque edge has not yet been executed.

We now formalize our definition of a delay sequence.

Definition 8. A delay sequence is a 3-tuple (U, R, P) satisfying the following
conditions:

—U 5 (u1, u2, . . . , uL) is a maximal directed path in G9. Specifically, for i 5
1, 2, . . . , L 2 1, the edge (ui, ui11) belongs to G9, instruction u1 has no
incoming edges in G9 (instruction u1 must be the first instruction of the root
thread), and instruction uL has no outgoing edges in G9 (instruction uL must
be the last instruction of the root thread).

—R is a positive integer number of steal-attempt rounds.
—P 5 (p1, p91, p2, p92, . . . , pL, p9L) is a partition of R (that is, R 5 (i51

L

(p i 1 p9i)), such that p9i [{0, 1} for each i 5 1, 2, . . . , L.

The partition P induces a partition of a sequence of R rounds as follows. The
first piece of the partition corresponds to the first p1 rounds. The second piece

738 R. D. BLUMOFE AND C. E. LEISERSON

corresponds to the next p91 consecutive rounds after the first p1 rounds. The third
piece corresponds to the next p2 consecutive rounds after the first (p1 1 p91)
rounds, and so on. We are interested primarily in the pieces corresponding to the
p i, not the p9i, and so we define the ith group of rounds to be the p i consecutive
rounds starting after the rith round, where ri 5 (j51

i21 (p j 1 p9j). Because P is a
partition of R and p9i [{0, 1}, for i 5 1, 2, . . . , L, we have

O
i51

L

p i $ R 2 L. (5)

We say that a given round of steal attempts occurs while instruction v is critical
if all of the steal attempts that comprise the round are initiated at time steps
when v is critical. In other words, v must be critical throughout the entire round.
A delay sequence (U, R, P) is said to occur during an execution if for each i 5
1, 2, . . . , L, all p i rounds in the ith group occur while instruction ui is critical.
In other words, ui must be critical throughout all p i rounds.

The following lemma states that if at least R rounds take place during an
execution, then some delay sequence (U, R, P) must occur. In particular, if we
look at any execution in which at least R rounds occur, then we can identify a
path U 5 (u1, u2, . . . , uL) in the dag G9 and a partition P 5 (p1, p91, p2,
p92, . . . , pL, p9L) of the first R rounds, such that for each i 5 1, 2, . . . , L, all
of the p i rounds in the ith group occur while ui is critical. Each p9i indicates
whether ui is critical at the beginning of a round but gets executed before the
round ends. Such a round cannot be part of any group, because no instruction is
critical throughout.

LEMMA 9. Consider the execution of a fully strict multithreaded computation
with critical-path length T` by the Work-Stealing Algorithm on a computer with P
processors. If at least 4PR steal attempts occur during the execution, then some delay
sequence (U, R, P) must occur.

PROOF. For a given execution in which at least 4PR steal attempts take place,
we construct a delay sequence (U, R, P) and show that it occurs. With at least
4PR steal attempts, there must be at least R rounds. We construct the delay
sequence by first identifying a set of instructions on a directed path in G9 such
that for every time step during the execution, one of these instructions is critical.
Then, we partition the first R rounds according to when each round occurs
relative to when each instruction on the path is critical.

To construct the path U, we work backwards from the last instruction of the
root thread, which we denote by v1. Let vl1

denote a (not necessarily immediate)
predecessor instruction of v1 in G9 with the latest execution time. Let (vl1

, . . . ,
v2, v1) denote a directed path from vl1

to v1 in G9. We extend this path back to
the first instruction of the root thread by iterating this construction as follows: At
the ith iteration we have an instruction vli

and a directed path in G9 from vli
to

v1. We let vli11
denote a predecessor of vli

in G9 with the latest execution time,
and let (vli11

, . . . , vli11, vli
) denote a directed path from vli11

to vli
in G9. We

finish iterating the construction when we get to an iteration k in which vlk
is the

first instruction of the root thread. Our desired sequence is then U 5 (u1, u2,

739Scheduling Multithreaded Computations by Work Stealing

. . . , uL), where L 5 lk and ui 5 vL2i11 for i 5 1, 2, . . . , L. One can verify
that at every time step of the execution, one of the vli

is critical.
Now, to construct the partition P 5 (p1, p91, p2, p92, . . . , pL, p9L), we

partition the sequence of the first R rounds according to when each round
occurs. We would like our partition to be such that for each round (among the
first R rounds), we have the property that if the round occurs while some
instruction ui is critical, then the round belongs to the ith group. Start with p1,
and let p1 equal the number of rounds that occur while u1 is critical. All of these
rounds are consecutive at the beginning of the sequence, so these rounds
comprise the 1st group—that is, they are the p1 consecutive rounds starting after
the r1 5 0 first rounds. Next, if the round that immediately follows those first p1
rounds begins after u1 has been executed, then we set p91 5 0, and we go on to
p2. Otherwise, that round begins while u1 is critical and ends after u1 is executed
(for otherwise, it would be part of the first group), so we set p91 5 1, and we go
on to p2. For p2, we let p2 equal the number of rounds that occur while u2 is
critical. Note that all of these rounds are consecutive beginning after the first
r2 5 p1 1 p91 rounds, so these rounds comprise the 2nd group. We continue in
this fashion, letting each p i be the number of rounds that occur while ui is
critical and letting each p9i be the number of rounds that begin while ui is critical
but do not end until after ui is executed. As an example, we may have a round
that begins while ui is critical and then ends while ui12 is critical, and in this
case, we set p9i 5 1 and p9i11 5 0. In this example, the (i 1 1)st group is empty,
so we also set p i11 5 0.

We conclude the proof by verifying that the (U, R, P) as just constructed is a
delay sequence and that it occurs. By construction, U is a maximal path in G9.
Now considering P, we observe that each round among the first R rounds is
counted exactly once in either a p i or a p9i, so P is indeed a partition of R.
Moreover, for i 5 1, 2, . . . , L, at most one round can begin while the
instruction ui is critical and end after ui is executed, so we have p9i [{0, 1}.
Thus, (U, R, P) is a delay sequence. Finally, we observe that, by construction,
for i 5 1, 2, . . . , L, the p i rounds that comprise the ith group all occur while
the instruction ui is critical. Therefore, the delay sequence (U, R, P) occurs. e

We now establish that a critical instruction is unlikely to remain critical across
a modest number of rounds. Specifically, we first show that a critical instruction
must be the ready instruction of a thread that is near the top of its processor’s
ready deque. We then use this fact to show that after O(1) rounds, a critical
instruction is very likely to be executed.

LEMMA 10. At every time step during the execution of a fully strict multithreaded
computation by the Work-Stealing Algorithm, each critical instruction is the ready
instruction of a thread that has at most 1 thread above it in its processor’s ready
deque.

PROOF. Consider any time step, and let u0 be the critical instruction of a
thread G0. Since u0 is critical, G0 is ready. Hence, for some processor p, either G0
is in p’s ready deque or G0 is being worked on by p. If G0 has more than 1 thread
above it in p’s ready deque, then Lemma 4 guarantees that each of the at least 2
threads above G0 in p’s ready deque is an ancestor of G0. Let G1, G2, . . . , Gk

740 R. D. BLUMOFE AND C. E. LEISERSON

denote G0’s ancestor threads, where G1 is the parent of G0 and Gk is the root
thread. Further, for i 5 1, 2, . . . , k, let ui denote the instruction of thread G i

that spawned thread G i21, and let wi denote ui’s successor instruction in thread
G i. Because of the deque edges, each instruction wi is a predecessor of u0 in G9,
and consequently, since u0 is critical, each instruction wi has been executed.
Moreover, because each wi is the successor of the spawn instruction ui in thread
G i, each thread G i for i 5 1, 2, . . . , k has been worked on since the time step at
which it spawned thread G i21. But Lemma 4 guarantees that only the topmost
thread in p’s ready deque can have this property. Thus, G1 is the only thread that
can possibly be above G0 in p’s ready deque. e

LEMMA 11. Consider the execution of any fully strict multithreaded computation
by the Work-Stealing Algorithm on a parallel computer with P $ 2 processors. For
any instruction v and any number r $ 2 of steal-attempt rounds, the probability that
any particular set of r rounds occur while the instruction v is critical is at most the
probability that only 0 or 1 of the steal attempts initiated in the first r 2 1 of these
rounds choose v’s processor, which is at most e22r13.

PROOF. Let ta denote the first time step at which instruction v is critical, and
let p denote the processor in whose ready deque v’s thread resides at time step
ta. Consider any particular set of r rounds, and suppose that they all occur while
instruction v is critical. Now, consider the steal attempts that comprise the first
r 2 1 of these rounds, of which there must be at least 3P(r 2 1). Let tb denote
the time step just after the time step at which the last of these steal attempts is
initiated. Note that because the last round, like every round, must take at least
two (in fact, four) steps, the time step tb must occur before the time step at which
instruction v is executed.

We shall first show that of these 3P(r 2 1) steal attempts initiated while
instruction v is critical and at least 2 time steps before v is executed, at most 1 of
them can choose processor p as its target, for otherwise, v would be executed at
or before tb. Recall from Lemma 10 that instruction v is the ready instruction of
a thread G, which has at most 1 thread above it in p’s ready deque as long as v is
critical.

If G has no threads above it, then another thread cannot be placed above it
until after instruction v is executed, since only by processor p executing
instructions from G can another thread be placed above it in its ready deque.
Consequently, if a steal attempt targeting processor p is initiated at some time
step t $ ta, we are guaranteed that instruction v is executed at a time step no
later than t, either by thread G being stolen and executed or by p executing the
thread itself.

Now, suppose G has one thread G9 above it in p’s ready deque. In this case, if
a steal attempt targeting processor p is initiated at time step t $ ta, then thread
G9 gets stolen from p’s ready deque no later than time step t. Suppose further
that another steal attempt targeting processor p is initiated at time step t9, where
ta # t # t9 , tb. Then, we know that a second steal will be serviced by p at or
before time step t9 1 1. If this second steal gets thread G, then instruction v
must get executed at or before time step t9 1 1 # tb, which is impossible, since

741Scheduling Multithreaded Computations by Work Stealing

v is executed after time step tb. Consequently, this second steal must get thread
G9—the same thread that the first steal got. But this scenario can only occur if in
the intervening time period, thread G9 stalls and is subsequently reenabled by the
execution of some instruction from thread G, in which case instruction v must be
executed before time step t9 1 1 # tb, which is once again impossible.

Thus, we must have 3P(r 2 1) steal attempts, each initiated at a time step t
such that ta # t , tb, and at most 1 of which targets processor p. The probability
that either 0 or 1 of 3P(r 2 1) steal attempts chooses processor p is

S 1 2
1

PD
3P(r21)

1 3P~r 2 1!S 1

PD S 1 2
1

PD
3P(r21)21

5S 1 1 3~r 2 1!
P

P 2 1D S 1 2
1

PD
3P(r21)

#~6r 2 5!S 1 2
1

PD
3P(r21)

~6r 2 5!e23(r21)

#e22r13

for r $ 2. e

We now complete the delay-sequence argument and bound the total dollars in
the STEAL bucket.

LEMMA 12. Consider the execution of any fully strict multithreaded computation
with critical-path length T` by the Work-Stealing Algorithm on a parallel computer
with P processors. For any e . 0, with probability at least 1 2 e, at most O(P(T` 1
lg(1/e))) work-steal attempts occur. The expected number of steal attempts is
O(PT`). In other words, with probability at least 1 2 e, the execution terminates with
at most O(P(T` 1 lg(1/e))) dollars in the STEAL bucket, and the expected number of
dollars in this bucket is O(PT`).

PROOF. From Lemma 9, we know that if at least 4PR steal attempts occur,
then some delay sequence (U, R, P) must occur. Consider a particular delay
sequence (U, R, P) having U 5 (u1, u2, . . . , uL) and P 5 (p1, p91, p2,
p92, . . . , pL, p9L), with L # 2T`. We shall compute the probability that (U, R,
P) occurs.

Such a sequence occurs if for i 5 1, 2, . . . , L, each instruction ui is critical
throughout all p i rounds in the ith group. From Lemma 11, we know that the
probability of the p i rounds in the ith group all occurring while a given
instruction ui is critical is at most the probability that only 0 or 1 of the steal
attempts initiated in the first p i 2 1 of these rounds choose v’s processor, which
is at most e22p i13, provided p i $ 2. (For those values of i with p i , 2, we shall
use 1 as an upper bound on this probability.) Moreover, since the targets of the
work-steal attempts in the p i rounds of the ith group are chosen independently
from the targets chosen in other rounds, we can bound the probability of the

742 R. D. BLUMOFE AND C. E. LEISERSON

particular delay sequence (U, R, P) occurring as follows:

Pr$~U, R, P! occurs%

5 P
1#i#L

Pr$the p i rounds of the ith group occur while ui is critical%

P
1#i#L
p i$2

e22p i13

#expF 22S O
1#i#L
p i$2

p iD 1 3LG
5expF 22S O

1#i#L

p i 2 O
1#i#L
p i,2

p iD 1 3LG
#e22((R2L)2L)13L

5e22 R17L,

where the second-to-last line follows from Inequality (5).
To bound the probability of some delay sequence (U, R, P) occurring, we

need to count the number of such delay sequences and multiply by the
probability that a particular such sequence occurs. The directed path U in the
modified dag G9 starts at the first instruction of the root thread and ends at the
last instruction of the root thread. If the original dag has degree d, then G9 has
degree at most d 1 1. Consistent with our unit-time assumption for instructions,
we assume that the degree d is a constant. Since the length of a longest path in
G9 is at most 2T`, there are at most (d 1 1)2T` ways of choosing the path U 5
(u1, u2, . . . , uL). There are at most (R

2L1R) # (R
4T`1R) ways to choose P, since

P partitions R into 2L pieces. As we have just shown, a given delay sequence has
at most an e22 R17L # e22 R114T` chance of occurring. Multiplying these three
factors together bounds the probability that any delay sequence (U, R, P)
occurs by

~d 1 1!2T`S 4T` 1 R
R D e22 R114T`, (6)

which is at most e for R 5 cT` lg d 1 lg(1/e), where c is a sufficiently large
constant. Thus, the probability that at least 4PR 5 Q(P(T` lg d 1 lg(1/e))) 5
Q(P(T` 1 lg(1/e))) steal attempts occur is at most e. The expectation bound
follows, because the tail of the distribution decreases exponentially. e

With bounds on the number of dollars in the WORK and STEAL buckets, we
now state the theorem that bounds the total execution time for a fully strict
multithreaded computation by the Work-Stealing Algorithm, and we complete
the proof by bounding the number of dollars in the WAIT bucket.

THEOREM 13. Consider the execution of any fully strict multithreaded computa-
tion with work T1 and critical-path length T` by the Work-Stealing Algorithm on a
parallel computer with P processors. The expected running time, including schedul-

743Scheduling Multithreaded Computations by Work Stealing

ing overhead, is T1/P 1 O(T`). Moreover, for any e . 0, with probability at least
1 2 e, the execution time on P processors is T1/P 1 O(T` 1 lg P 1 lg(1/e)).3

PROOF. Lemmas 7 and 12 bound the dollars in the WORK and STEAL buckets,
so we now must bound the dollars in the WAIT bucket. This bound is given by
Lemma 6 which bounds the total delay—that is, the total dollars in the WAIT

bucket—as a function of the number M of steal attempts—that is, the total
dollars in the STEAL bucket. This lemma says that for any e . 0, with probability
at least 1 2 e, the number of dollars in the WAIT bucket is at most a constant
times the number of dollars in the STEAL bucket plus O(P lg P 1 P lg(1/e)), and
the expected number of dollars in the WAIT bucket is at most the number in the
STEAL bucket.

We now add up the dollars in the three buckets and divide by P to complete
this proof. e

The next theorem bounds the total amount of communication that a mul-
tithreaded computation executed by the Work-Stealing Algorithm performs in a
distributed model. The analysis makes the assumption that at most a constant
number of bytes need be communicated along a join edge to resolve the
dependency.

THEOREM 14. Consider the execution of any fully strict multithreaded computa-
tion with critical-path length T` by the Work-Stealing Algorithm on a parallel
computer with P processors. Then, the total number of bytes communicated has
expectation O(PT`(1 1 nd)Smax) where nd is the maximum number of join edges
from a thread to its parent and Smax is the size in bytes of the largest activation frame
in the computation. Moreover, for any e . 0, the probability is at least 1 2 e that the
total communication incurred is O(P(T` 1 lg(1/e))(1 1 nd)Smax).

PROOF. We prove the bound for the expectation. The high-probability bound
is analogous. By our bucketing argument, the expected number of steal attempts
is at most O(PT`). When a thread is stolen, the communication incurred is at
most Smax. Communication also occurs whenever a join edge enters a parent
thread from one of its children and the parent has been stolen, but since each
join edge accounts for at most a constant number of bytes, the communication
incurred is at most O(nd) per steal. Finally, we can have communication when a
child thread enables its parent and puts the parent into the child’s processor’s
ready deque. This event can happen at most nd times for each time the parent is
stolen, so the communication incurred is at most ndSmax per steal. Thus, the
expected total communication cost is O(PT`(1 1 nd)Smax). e

The communication bounds in this theorem are existentially tight, in that there
exist fully strict computations that require V(PT`(1 1 nd)Smax) total communi-
cation for any execution schedule that achieves linear speedup. This result
follows directly from a theorem of Wu and Kung [1991], who showed that
divide-and-conquer computations—a special case of fully strict computations
with nd 5 1—require this much communication.

3 With Plaxton’s bound (C. G. Plaxton, private communication, 1984) for Lemma 6, this bound
becomes T1/P 1 O(T`), whenever 1/e is at most polynomial in M and P.

744 R. D. BLUMOFE AND C. E. LEISERSON

In the case, when we have nd 5 O(1) and the algorithm achieves linear
expected speedup—that is, when P 5 O(T1/T`)—the total communication is at
most O(T1Smax). Moreover, if P ,, T1/T`, the total communication is much less
than T1Smax, which confirms the folk wisdom that work-stealing algorithms
require much less communication than the possibly Q(T1Smax) communication of
work-sharing algorithms.

7. Conclusion

How practical are the methods analyzed in this paper? We have been actively
engaged in building a C-based language called Cilk (pronounced “silk”) for
programming multithreaded computations.4 Cilk is derived from the PCM
“Parallel Continuation Machine” system [Halbherr et al. 1994], which was itself
partly inspired by the research reported here. The Cilk runtime system employs
the Work-Stealing Algorithm described in this paper. Because Cilk employs a
provably efficient scheduling algorithm, Cilk delivers guaranteed performance to
user applications. Specifically, we have found empirically that the P-processor
performance of an application written in the Cilk language can be predicted
accurately using the model T1/P 1 T`.

The Cilk system currently runs on contemporary shared-memory multiproces-
sors, such as the Sun Enterprise, the Silicon Graphics Origin, the Intel Quad
Pentium, and the DEC Alphaserver. (Earlier versions of Cilk ran on the
Thinking Machines CM-5 MPP, the Intel Paragon MPP, and the IBM SP-2.) To
date, applications written in Cilk include protein folding [Pande et al. 1994],
graphic rendering [Stark 1998], backtrack search, and the ,Socrates chess
program [Joerg and Kuszmaul 1994], which won second prize in the 1995 ICCA
World Computer Chess Championship running on a 1824-node Paragon at
Sandia National Laboratories. Our more recent chess program, Cilkchess, won
the 1996 Dutch Open Computer Chess Tournament. A team programming in
Cilk won First Prize (undefeated) in the ICFP’98 Programming Contest spon-
sored by the International Conference on Functional Programming.

As part of our research, we have implemented a prototype runtime system for
Cilk on networks of workstations. This runtime system, called Cilk-NOW [Blu-
mofe 1995; Blumofe and Lisiecki 1997; Lisiecki 1996], supports adaptive paral-
lelism, where processors in a workstation environment can join a user’s compu-
tation if they would be otherwise idle and yet be available immediately to leave
the computation when needed again by their owners. Cilk-NOW also supports
transparent fault tolerance, meaning that the user’s computation can proceed
even in the face of processors crashing, and yet the programmer writes the code
in a completely fault-oblivious fashion. A more recent distributed implementa-
tion for clusters of SMP’s is described in Randall [1998].

We have also investigated other topics related to Cilk, including distributed
shared memory and debugging tools.5 Up-to-date information, papers, and

4 See, for example, Blumofe [1995], Blumofe et al. [1996], Frigo et al. [1998], Joerg [1996], and
Randall [1998].
5 For examples of distributed shared memory, see Blumofe et al. [1996a; 1996b], Frigo [1998], and
Frigo and Luchangco [1998]. For examples of debugging tools, see Cheng [1998], Cheng et al. [1998],
Feng and Leiserson [1997], and Stark [1998].

745Scheduling Multithreaded Computations by Work Stealing

software releases can be found on the World Wide Web at

http://supertech.lcs.mit.edu/cilk.

For the case of shared-memory multiprocessors, we have recently generalized
the time bound (but not the space or communication bounds) along two
dimensions [Arora et al. 1998]. First, we have shown that for arbitrary (not
necessarily fully strict or even strict) multithreaded computations, the expected
execution time is O(T1/P 1 T`). This bound is based on a new structural lemma
and an amortized analysis using a potential function. Second, we have developed
a nonblocking implementation of the work-stealing algorithm, and we have
analyzed its execution time for a multiprogrammed environment in which the
computation executes on a set of processors that grows and shrinks over time.
This growing and shrinking is controlled by an adversary. In case the adversary
chooses not to grow or shrink the set of processors, the bound specializes to
match our previous bound. The nonblocking work stealer has been implemented
in the Hood user-level threads library [Blumofe and Papadopoulos 1998; Papado-
poulos 1998]. Up-to-date information, papers, and software releases can be
found on the World Wide Web at

http://www.cs.utexas.edu/users/hood.

ACKNOWLEDGMENTS. Thanks to Bruce Maggs of Carnegie-Mellon, who outlined
the strategy in Section 6 for using a delay-sequence argument to prove the time
bounds on the Work-Stealing Algorithm, which improved our previous bounds.
Thanks to Greg Plaxton of University of Texas, Austin for technical comments
on our probabilistic analyses. Thanks to the anonymous referees, Yanjun Zhang
of Southern Methodist University, and Warren Burton of Simon Fraser Univer-
sity for comments that improved the clarity of our paper. Thanks also to Arvind,
Michael Halbherr, Chris Joerg, Bradley Kuszmaul, Keith Randall, and Yuli Zhou
of MIT for helpful discussions.

REFERENCES

ARORA, N. S., BLUMOFE, R. D., AND PLAXTON, C. G. 1998. Thread scheduling for multipro-
grammed multiprocessors. In Proceedings of the 10th Annual ACM Symposium on Parallel Algo-
rithms and Architectures (SPAA’98) (Puerto Vallarta, Mexico, June 28 –July 2). ACM, New York,
pp. 119 –129.

ARVIND, NIKHIL, R. S., AND PINGALI, K. K. 1989. I-structures: Data structures for parallel
computing. ACM Trans. Program. Lang. Syst. 11, 4 (Oct.), 598 – 632.

BLELLOCH, G. E., GIBBONS, P. B., AND MATIAS, Y. 1995. Provably efficient scheduling for
languages with fine-grained parallelism. In Proceedings of the 7th Annual ACM Symposium on
Parallel Algorithms and Architectures (SPAA’95) (Santa Barbara, Calif., July 17–19). ACM, New
York, pp. 1–12.

BLELLOCH, G. E., GIBBONS, P. B., MATIAS, Y., AND NARLIKAR, G. J. 1997. Space-efficient
scheduling of parallelism with synchronization variables. In Proceedings of the 9th Annual ACM
Symposium on Parallel Algorithms and Architectures (SPAA’97) (Newport, R.I., June 22–25). ACM,
New York, pp. 12–23.

BLUMOFE, R. D. 1995. Executing multithreaded programs efficiently. Ph.D. thesis, Department of
Electrical Engineering and Computer Science, Massachusetts Institute of Technology. Also avail-
able as MIT Laboratory for Computer Science Technical Report MIT/LCS/TR-677.

BLUMOFE, R. D., FRIGO, M., JOERG, C. F., LEISERSON, C. E., AND RANDALL, K. H. 1996a. An
analysis of dag-consistent distributed shared-memory algorithms. In Proceedings of the 8th Annual
ACM Symposium on Parallel Algorithms and Architectures (SPAA’96) (Padua, Italy, June 24 –26).
ACM, New York, pp. 297–308.

746 R. D. BLUMOFE AND C. E. LEISERSON

BLUMOFE, R. D., FRIGO, M., JOERG, C. F., LEISERSON, C. E., AND RANDALL, K. H. 1996b.
Dag-consistent distributed shared memory. In Proceedings of the 10th International Parallel Process-
ing Symposium (IPPS) (Honolulu, Hawaii, April). IEEE Computer Society Press, Los Alamitos,
Calif., pp. 132–141.

BLUMOFE, R. D., JOERG, C. F., KUSZMAUL, B. C., LEISERSON, C. E., RANDALL, K. H., AND ZHOU, Y.
1996c. Cilk: An efficient multithreaded runtime system. J. Paral. Dist. Comput. 37, 1 (Aug.),
55– 69.

BLUMOFE, R. D., AND LEISERSON, C. E. 1998. Space-efficient scheduling of multithreaded compu-
tations. SIAM J. Comput. 27, 1 (Feb.), 202–229.

BLUMOFE, R. D., AND LISIECKI, P. A. 1997. Adaptive and reliable parallel computing on networks
of workstations. In Proceedings of the USENIX 1997 Annual Technical Conference on UNIX and
Advanced Computing Systems (Anaheim, Calif., Jan.). USENIX Associates, Berkeley, Calif., pp.
133–147.

BLUMOFE, R. D., AND PAPADOPOULOS, D. 1998. The performance of work stealing in multipro-
grammed environments. Tech. Rep. TR-98-13 (May). Dept. Computer Sciences, The University of
Texas at Austin, Austin, Tex.

BRENT, R. P. 1974. The parallel evaluation of general arithmetic expressions. J. ACM 21, 2 (Apr.),
201–206.

BURTON, F. W. 1988. Storage management in virtual tree machines. IEEE Trans. Comput. 37, 3
(Mar.), 321–328.

BURTON, F. W. 1996. Guaranteeing good memory bounds for parallel programs. IEEE Trans.
Softw. Eng. 22, 10 (Oct.), 762–773.

BURTON, F. W., AND SLEEP, M. R. 1981. Executing functional programs on a virtual tree of
processors. In Proceedings of the 1981 Conference on Functional Programming Languages and
Computer Architecture (Portsmouth, N.H., Oct.). ACM, New York, N.Y., pp. 187–194.

CHENG, G.-I. 1998. Algorithms for data-race detection in multithreaded programs. Master’s thesis,
Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technol-
ogy.

CHENG, G.-I., FENG, M., LEISERSON, C. E., RANDALL, K. H., AND STARK, A. F. 1998. Detecting
data races in Cilk programs that use locks. In Proceedings of the 10th ACM Symposium on Parallel
Algorithms and Architectures (SPAA’98) (Puerto Vallarta, Mexico, June 28 –July 2). ACM, New
York, pp. 298 –309.

CULLER, D. E., AND ARVIND. 1988. Resource requirements of dataflow programs. In Proceedings of
the 15th Annual International Symposium on Computer Architecture (ISCA) (Honolulu, Hawaii,
May). IEEE Computer Society Press, Los Alamitos, Calif., pp. 141–150. Also available as MIT
Laboratory for Computer Science, Computation Structures Group Memo 280.

EAGER, D. L., ZAHORJAN, J., AND LAZOWSKA, E. D. 1989. Speedup versus efficiency in parallel
systems. IEEE Trans. Comput. 38, 3 (Mar.), 408 – 423.

FELDMANN, R., MYSLIWIETZ, P., AND MONIEN, B. 1993. Game tree search on a massively parallel
system. Adv. Comput. Chess 7, 203–219.

FENG, M., AND LEISERSON, C. E. 1997. Efficient detection of determinacy races in Cilk programs.
In Proceedings of the 9th Annual ACM Symposium on Parallel Algorithms and Architectures
(SPAA’97) (Newport, R.I., June 22–25). ACM, New York, pp. 1–11.

FINKEL, R., AND MANBER, U. 1987. DIB—A distributed implementation of backtracking. ACM
Trans. Program. Lang. Syst. 9, 2 (Apr.), 235–256.

FRIGO, M. 1998. The weakest reasonable memory model. Master’s thesis, Dept. Electrical Engi-
neering and Computer Science, Massachusetts Institute of Technology, Cambridge, Mass.

FRIGO, M., LEISERSON, C. E., AND RANDALL, K. H. 1998. The implementation of the Cilk-5
multithreaded language. In Proceedings of the 1998 ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI’98) (Montreal, Canada, June 17–19). ACM, New
York.

FRIGO, M., AND LUCHANGCO, V. 1998. Computation-centric memory models. In Proceedings of the
10th Annual ACM Symposium on Parallel Algorithms and Architectures (SPAA’98) (Puerto Vallarta,
Mexico, June 28 –July 2). ACM, New York, pp. 240 –249.

GRAHAM, R. L. 1966. Bounds for certain multiprocessing anomalies. Bell Syst. Tech. J. 45,
1563–1581.

GRAHAM, R. L. 1969. Bounds on multiprocessing timing anomalies. SIAM J. Appl. Math. 17, 2
(Mar.), 416 – 429.

747Scheduling Multithreaded Computations by Work Stealing

HALBHERR, M., ZHOU, Y., AND JOERG, C. F. 1994. MIMD-style parallel programming with
continuation-passing threads. In Proceedings of the 2nd International Workshop on Massive Parallel-
ism: Hardware, Software, and Applications (Capri, Italy, Sept.). World Scientific, Singapore. (Also
available as MIT Laboratory for Computer Science Computation Structures, Group Memo 355,
March 1994. MIT, Cambridge, Mass.

HALSTEAD, R. H., JR. 1984. Implementation of Multilisp: Lisp on a multiprocessor. In Conference
Record of the 1984 ACM Symposium on LISP and Functional Programming (Austin, Tex., Aug.)
ACM, New York, pp. 9 –17.

JOERG, C. F. 1996. The Cilk System for Parallel Multithreaded Computing. Ph.D. dissertation.
Dept. Electrical Engineering and Computer Science, Massachusetts Institute of Technology,
Cambridge, Mass.

JOERG, C., AND KUSZMAUL, B. C. 1994. Massively parallel chess. In Proceedings of the 3rd DIMACS
Parallel Implementation Challenge (Rutgers University, New Jersey, Oct. 1994).

KARP, R. M., AND ZHANG, Y. 1993. Randomized parallel algorithms for backtrack search and
branch-and-bound computation. J. ACM 40, 3 (July), 765–789.

KUSZMAUL, B. C. 1994. Synchronized MIMD computing. Ph.D. thesis, Dept. Electrical Engineer-
ing and Computer Science, Massachusetts Institute of Technology, Cambridge, Mass. Also
available as MIT Laboratory for Computer Science Technical Report MIT/LCS/TR-645.

LISIECKI, P. 1996. Macroscheduling in the Cilk network of workstations environment. Master’s
thesis, Dept. Electrical Engineering and Computer Science, Massachusetts Institute of Technology,
Cambridge, Mass.

LIU, P., AIELLO, W., AND BHATT, S. 1993. An atomic model for message-passing. In Proceedings of
the 5th Annual ACM Symposium on Parallel Algorithms and Architectures (SPAA’93) (Velen,
Germany, June 30 –July 2). ACM, New York, pp. 154 –163.

MOHR, E., KRANZ, D. A., AND HALSTEAD, R. H., JR. 1991. Lazy task creation: A technique for
increasing the granularity of parallel programs. IEEE Trans. Parall. Dist. Syst. 2, 3 (July), 264 –280.

PANDE, V. S., JOERG, C. F., GROSBERG, A. Y., AND TANAKA, T. 1994. Enumerations of the
Hamiltonian walks on a cubic sublattice. J. Phys. A 27.

PAPADOPOULOS, D. P. 1998. Hood: A user-level thread library for multiprogramming multiproces-
sors. Master’s thesis, Dept. Computer Sciences, The University of Texas at Austin, Austin, Tex.

RANADE, A. 1987. How to emulate shared memory. In Proceedings of the 28th Annual Symposium
on Foundations of Computer Science (FOCS) (Los Angeles, Calif., Oct.). IEEE Computer Society
Press, Los Alamitos, Calif., pp. 185–194.

RANDALL, K. H. 1998. Cilk: Efficient multithreaded computing. Ph.D. dissertation. Dept. Electri-
cal Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Mass.

RUDOLPH, L., SLIVKIN-ALLALOUF, M., AND UPFAL, E. 1991. A simple load balancing scheme for
task allocation in parallel machines. In Proceedings of the 3rd Annual ACM Symposium on Parallel
Algorithms and Architectures (SPAA’91) (Hilton Head, S.C., July 21–24). ACM, New York, pp.
237–245.

RUGGIERO, C. A., AND SARGEANT, J. 1987. Control of parallelism in the Manchester dataflow
machine. In Functional Programming Languages and Computer Architecture, Number 274 in Lecture
Notes in Computer Science. Springer-Verlag, New York, pp. 1–15.

STARK, A. F. 1998. Debugging multithreaded programs that incorporate user-level locking. Mas-
ter’s thesis, Department of Electrical Engineering and Computer Science, Massachusetts Institute
of Technology, Cambridge, Mass.

VANDEVOORDE, M. T., AND ROBERTS, E. S. 1988. WorkCrews: An abstraction for controlling
parallelism. International Journal of Parallel Programming 17, 4 (Aug.), 347–366.

WU, I.-C., AND KUNG, H. T. 1991. Communication complexity for parallel divide-and-conquer. In
Proceedings of the 32nd Annual Symposium on Foundations of Computer Science (FOCS) (San Juan,
Puerto Rico, Oct. 1991). IEEE Computer Society Press, Los Alamitos, Calif., pp. 151–162.

ZHANG, Y., AND ORTYNSKI, A. 1994. The efficiency of randomized parallel backtrack search. In
Proceedings of the 6th IEEE Symposium on Parallel and Distributed Processing (Dallas, Texas, Oct.
1994). IEEE Computer Society Press, Los Alamitos, Calif.

RECEIVED SEPTEMBER 1997; REVISED JANUARY 1999; ACCEPTED MARCH 1999

Journal of the ACM, Vol. 46, No. 5, September 1999.

748 R. D. BLUMOFE AND C. E. LEISERSON

