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Abstract

We present a user-level thread scheduler for shared-memorymultiprocessors, and we analyze its
performance under multiprogramming. We model multiprogramming with two scheduling levels: our
scheduler runs at user-level and schedules threads onto a fixed collection of processes, while below,
the operating system kernel schedules processes onto a fixedcollection of processors. We consider the
kernel to be an adversary, and our goal is to schedule threadsonto processes such that we make efficient
use of whatever processor resources are provided by the kernel.

Our thread scheduler is a non-blocking implementation of the work-stealing algorithm. For any mul-
tithreaded computation with work� � and critical-path length�� , and for any number� of processes,
our scheduler executes the computation in expected time� �� ���	 
 �� � ��	 �, where�	 is the av-
erage number of processors allocated to the computation by the kernel. This time bound is optimal to
within a constant factor, and achieves linear speedup whenever � is small relative to the parallelism
� ���� .

1 Introduction

Operating systems for shared-memory multiprocessors support multiprogrammed workloads in which a mix
of serial and parallel applications may execute concurrently. For example, on a multiprocessor workstation,
a parallel design verifier may execute concurrently with other serial and parallel applications, such as the
design tool’s user interface, compilers, editors, and web clients. For parallel applications, operating systems
provide system calls for the creation and synchronization of multiple threads, and they provide high-level
multithreaded programming support with parallelizing compilers and threads libraries. In addition, pro-
gramming languages, such as Cilk [7, 21] and Java [3], support multithreading with linguistic abstractions.
A major factor in the performance of such multithreaded parallel applications is the operation of the thread
scheduler.

Prior work on thread scheduling [4, 5, 8, 13, 14] has dealt exclusively with non-multiprogrammed en-
vironments in which a multithreaded computation executes on � dedicated processors. Such scheduling
algorithms dynamically map threads onto the processors with the goal of achieving� -fold speedup. Though
such algorithms will work in some multiprogrammed environments, in particular those that employ static
space partitioning [15, 30] or coscheduling [18, 30, 33], they do not work in the multiprogrammed environ-
ments being supported by modern shared-memory multiprocessors and operating systems [9, 15, 17, 23].
The problem lies in the assumption that a fixed collection of processors are fully available to perform a given
computation.
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0150 from the U.S. Air Force Research Laboratory. In addition, Greg Plaxton is supported by the National Science Foundation
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Figure 1 : An example computation dag. This dag has�� nodes� � � �� � � � � � � �� and � threads indicated by the
shading.

In a multiprogrammed environment, a parallel computation runs on a collection of processors that grows
and shrinks over time. Initially the computation may be the only one running, and it may use all� proces-
sors. A moment later, someone may launch another computation, possibly a serial computation, that runs
on some processor. In this case, the parallel computation gives up one processor and continues running on
the remaining� � � processors. Later, if the serial computation terminates orwaits for I/O, the parallel
computation can resume its use of all processors. In general, other serial and parallel computations may use
processors in a time-varying manner that is beyond our control. Thus, we assume that an adversary controls
the set of processors on which a parallel computation runs.

Specifically, rather than mapping threads to processors, our thread scheduler maps threads to a fixed
collection of� processes, and an adversary maps processes to processors. Throughout this paper, we use
the word “process” to denote a kernel-level thread (also called a light-weight process), and we reserve the
word “thread” to denote a user-level thread. We model a multiprogrammed environment with two levels of
scheduling. A user-level scheduler — our scheduler — maps threads to processes, and below this level, the
kernel — an adversary — maps processes to processors. In thisenvironment, we cannot expect to achieve
� -fold speedups, because the kernel may run our computation on fewer than� processors. Rather, we let
�� denote the time-average number of processors on which the kernel executes our computation, and we
strive to achieve a�� -fold speedup.

As with much previous work, we model a multithreaded computation as a directed acyclic graph, or
dag. An example is shown in Figure 1. Each node in the dag represents a single instruction, and the edges
represent ordering constraints. The nodes of a thread are linked by edges that form a chain corresponding
to the dynamic instruction execution order of the thread. The example in Figure 1 has two threads indicated
by the shaded regions. When an instruction in one thread spawns a new child thread, then the dag has an
edge from the “spawning” node in the parent thread to the firstnode in the new child thread. The edge	
� � 
 �

is such an edge. Likewise, whenever threads synchronize such that an instruction in one thread
cannot be executed until after some instruction in another thread, then the dag contains an edge from the
node representing the latter instruction to the node representing the former instruction. For example, edge	
� � 
 �� �

represents the joining of the two threads, and edge
	
� � 
� �

represents a synchronization that could
arise from the use of semaphores [16] — node


�
represents the� (wait) operation, and node


�
represents

the� (signal) operation on a semaphore whose initial value is�.
We make two assumptions related to the structure of the dag. First, we assume that each node has

out-degree at most�. This assumption is consistent with our convention that a node represents a single
instruction. Second, we assume that the dag has exactly oneroot nodewith in-degree� and onefinal node
with out-degree�. The root node is the first node of theroot thread.

We characterize the computation with two measures: work andcritical-path length. Thework � �
of the

computation is the number of nodes in the dag, and thecritical-path length �� is the length of a longest
(directed) path in the dag. The ratio� ���� is called theparallelism. The example computation of Figure 1
has work� � � ��, critical-path length�� � �

, and parallelism� ���� � ����.
We present a non-blocking implementation of the work-stealing algorithm [8], and we analyze the per-
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formance of this non-blocking work stealer in multiprogrammed environments. In this implementation, all
concurrent data structures are non-blocking [26, 27] so that if the kernel preempts a process, it does not
hinder other processes, for example by holding locks. Moreover, this implementation makes use of “yield”
system calls that constrain the kernel adversary in a mannerthat models the behavior ofyield system
calls found in current multiprocessor operating systems. When a process callsyield, it informs the kernel
that it wishes to yield the processor on which it is running toanother process. Our results demonstrate the
surprising power ofyield as a scheduling primitive. In particular, we show that for any multithreaded
computation with work� �

and critical-path length�� , the non-blocking work stealer runs in expected time� 	� � ��� � �� � ��� �
. This bound is optimal to within a constant factor and achieves linear speedup —

that is, execution time
� 	� � ��� �

— whenever� � � 	� � ��� �
. We also show that for any� � �, with

probability at least� � �, the execution time is
� 	� � ��� �

	�� � ��
	��� ��� ��� �

.
This result improves on previous results [8] in two ways. First, we consider arbitrary multithreaded

computations as opposed to the special case of “fully strict” computations. Second, we consider multi-
programmed environments as opposed to dedicated environments. A multiprogrammed environment is a
generalization of a dedicated environment, because we can view a dedicated environment as a multipro-
grammed environment in which the kernel executes the computation on� dedicated processors. Moreover,
note that in this case, we have�� � � , and our bound for multiprogrammed environments specializes to
match the

� 	� ��� � �� �
bound established earlier for fully strict computations executing in dedicated

environments.
Our non-blocking work stealer has been implemented in a prototypeC++ threads library calledHood

[10], and numerous performance studies have been conducted[9, 10]. These studies show that application
performance conforms to the

� 	� � ��� � �� � ��� �
bound and that the constant hidden in the big-Oh

notation is small, roughly 1. Moreover, these studies show that non-blocking data structures and the use of
yields are essential in practice. If any of these implementation mechanisms are omitted, then performance
degrades dramatically for�� � � .

The remainder of this paper is organized as follows. In Section 2, we formalize our model of multipro-
grammed environments. We also prove a lower bound implying that the performance of the non-blocking
work stealer is optimal to within a constant factor. We present the non-blocking work stealer in Section 3,
and we prove an important structural lemma that is needed forthe analysis. In Section 4 we establish optimal
upper bounds on the performance of the work stealer under various assumptions with respect to the kernel.
In Section 5, we consider related work. In Section 6 we offer some concluding remarks.

2 Multiprogramming

We model a multiprogrammed environment with a kernel that behaves as an adversary. Whereas a user-level
scheduler maps threads onto a fixed collection of� processes, the kernel maps processes onto processors.
In this section, we define execution schedules, and we prove upper and lower bounds on the length of
execution schedules. These bounds are straightforward andare included primarily to give the reader a better
understanding of the model of computation and the central issues that we intend to address. The lower
bound demonstrates the optimality of the

� 	� � ��� � �� � ��� �
upper bound that we will establish for our

non-blocking work stealer.
The kernel operates in discretesteps, numbered from 1, as follows. At each step�, the kernel chooses

any subset of the� processes, and then these chosen processes are allowed to execute a single instruction.
We let� 	 denote the number of chosen processes, and we say that these� 	 processes arescheduledat step�.
The kernel may choose to schedule any number of processes between� and� , so� 
 � 	 
 � . We can view
the kernel as producing akernel schedulethat maps each positive integer to a subset of the processes.That
is, a kernel schedule maps each step� to the set of processes that are scheduled at step�, and� 	 is the size of
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(a) Kernel schedule. (b) Execution schedule.

Figure 2 : An example kernel schedule and an example execution schedule with � � � processes.(a) The first ��
steps of a kernel schedule. Each row represents a time step, and each column represents a process. A check mark
in row � and column� indicates that the process	
 is scheduled at step�. (b) An execution schedule for the kernel
schedule in (a) and the computation dag in Figure 1. The execution schedule shows the activity of each process at each
step for which it is scheduled. Each entry is either a node� � in case the process executes node� � or “I” in case the
process does not execute a node.

that set. The first�� steps of an example kernel schedule for� � �
processes are shown in Figure 2(a). (In

general, kernel schedules are infinite.) Theprocessor average�� over� steps is defined as

�� � �
�

�
	� � � 	 � (1)

In the kernel schedule of Figure 2(a), the processor averageover �� steps is�� � ����� � �.
Though our analysis is based on this step-by-step, synchronous execution model, our work stealer is

asynchronous and does not depend on synchrony for correctness. The synchronous model admits the pos-
sibility that at a step�, two or more processes may execute instructions that reference a common memory
location. We assume that the effect of step� is equivalent to some serial execution of the� 	 instructions ex-
ecuted by the� 	 scheduled processes, where the order of execution is determined in some arbitrary manner
by the kernel.

Given a kernel schedule and a computation dag, anexecution schedulespecifies, for each step�, the
particular subset of at most� 	 ready nodes to be executed by the� 	 scheduled processes at step�. We
define thelength of an execution schedule to be the number of steps in the schedule. Figure 2(b) shows an
example execution schedule for the kernel schedule in Figure 2(a) and the dag in Figure 1. This schedule
has length��. An execution schedule observes the dependencies represented by the dag. That is, every
node is executed, and for every edge

	� � � �
, node

�
is executed at a step prior to the step at which node

�
is

executed.
The following theorem shows that� ���� and�� � ��� are both lower bounds on the length of any

execution schedule. The lower bound of� ���� holds regardless of the kernel schedule, while the lower
bound of��� ��� holds only for some kernel schedules. That is, there exist kernel schedules such that
any execution schedule has length at least�� � ��� . Moreover, there exist such kernel schedules with��
ranging from� down to values arbitrarily close to�. These lower bounds imply corresponding lower bounds
on the performance of any user-level scheduler.

4



Theorem 1 Consider any multithreaded computation with work� �
and critical-path length�� , and any

number� of processes. Then for any kernel schedule, every executionschedule has length at least� ���� ,
where�� is the processor average over the length of the schedule. In addition, for any number� �� of
the form�� � � 	�

� �� �
where

�
is a nonnegative integer, there exists a kernel schedule such that every

execution schedule has length at least�� � ��� , where�� is the processor average over the length of the
schedule and is in the range�� �� � 
 �� 
 � �� .

Proof: The processor average over the length� of the schedule is defined by Equation (1), so we have

� � �
��

�
	� � � 	 � (2)

For both lower bounds, we bound� by bounding� 
	� � � 	. The lower bound of� ���� is immediate from

the lower bound�
	� � � 	 � � �

, which follows from the fact that any execution schedule is required to
execute all of the nodes in the multithreaded computation. For the lower bound of�� � ��� , we prove the
lower bound� 

	� � � 	 � �� � .
We construct a kernel schedule that forces every execution schedule to satisfy this bound as follows.

Let
�

be as defined in the statement of the lemma. The kernel schedule sets� 	
� � for � 
 � 


�
, sets

� 	
� � for

�
� � 
 � 


�
� �� , and sets� 	

� �� �� � for
�
� �� � �. Any execution schedule has length

� � �
� �� , so we have the lower bound�

	� � � 	 � �� � . It remains only to show that�� is in the desired
range. The processor average for the first

�
� �� steps is�� � � 	�

� �� � � � �� . For all subsequent steps
� �

�
� �� , we have� 	

� �� �� �. Thus,�� falls within the desired range.

In the off-line user-level scheduling problem, we are givena kernel schedule and a computation dag,
and the goal is to compute an execution schedule with the minimum possible length. Though the related
decision problem is NP-complete [37], a factor-of-� approximation algorithm is quite easy. In particular,
for some kernel schedules, any level-by-level (Brent [12])execution schedule or any “greedy” execution
schedule is within a factor of� of optimal. In addition, though we shall not prove it, for anykernel schedule,
some greedy execution schedule is optimal. We say that an execution schedule isgreedyif at each step�
the number of ready nodes executed is equal to the minimum of� 	 and the number of ready nodes. The
execution schedule in Figure 2(b) is greedy. The following theorem about greedy execution schedules also
holds for level-by-level execution schedules, with only trivial changes to the proof.

Theorem 2 (Greedy Schedules) Consider any multithreaded computation with work� �
and critical-

path length�� , any number� of processes, and any kernel schedule. Any greedy executionschedule has
length at most� ���� � �� 	� � ����� , where�� is the processor average over the length of the schedule.

Proof: Consider any greedy execution schedule, and let� denote its length. As in the proof of Theorem 1,
we bound� by bounding� 

	� � � 	. For each step�
� �� � � � � � , we collect� 	 tokens, one from each process

that is scheduled at step�, and then we bound the total number of tokens collected. Moreover, we collect the
tokens in two buckets: awork bucketand anidle bucket. Consider a step� and a process that is scheduled
at step�. If the process executes a node of the computation, then it puts its token into the work bucket, and
otherwise we say that the process is idle and it puts its tokeninto the idle bucket. After the last step, the
work bucket contains exactly� �

tokens — one token for each node of the computation. It remains only to
prove that the idle bucket contains at most�� 	� � �� tokens.

Consider a step during which some process places a token in the idle bucket. We refer to such a step
as anidle step. For example, the greedy execution schedule of Figure 2(b) has� idle steps. At an idle step
we have an idle process and since the schedule is greedy, it follows that every ready node is executed at an
idle step. This observation leads to two further observations. First, at every step there is at least one ready
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node, so of the� 	 processes scheduled at an idle step�, at most� 	 � � 
 � � � could be idle. Second, for
each step�, let � 	 denote the sub-dag of the computation consisting of just those nodes that have not yet
been executed after step�. If step � is an idle step, then every node with in-degree� in � 	�

�
gets executed

at step�, so a longest path in� 	 is one node shorter than a longest path in� 	�
�
. Since the longest path in

�
�

has length�� , there can be at most�� idle steps. Putting these two observations together, we conclude
that after the last step, the idle bucket contains at most�� 	� � �� tokens.

The concern of this paper is on-line user-level scheduling,and an on-line user-level scheduler cannot
always produce greedy execution schedules. In the on-line user-level scheduling problem, at each step�, we
know the kernel schedule only up through step�, and we know of only those nodes in the dag that are ready
or have previously been executed. Moreover, in analyzing the performance of on-line user-level schedulers,
we need to account for scheduling overheads. Nevertheless,even though it is an on-line scheduler, and
even accounting for all of its overhead, the non-blocking work stealer satisfies the same bound, to within a
constant factor, as was shown in Theorem 2 for greedy execution schedules.

3 Non-blocking work stealing

In this section we describe our non-blocking implementation of the work-stealing algorithm. We first review
the work-stealing algorithm [8], and then we describe our non-blocking implementation, which involves the
use of a yield system call and a non-blocking implementationof the concurrent data structures. We conclude
this section with an important “structural lemma” that is used in our analysis.

3.1 The work-stealing algorithm

In the work-stealing algorithm, each process maintains itsown pool of ready threads from which it obtains
work. A node in the computation dag isreadyif all of its ancestors have been executed, and correspondingly,
a thread is ready if it contains a ready node. Note that because all of the nodes in a thread are totally
ordered, a thread can have at most one ready node at a time. A ready thread’s ready node represents the
next instruction to be executed by that thread, as determined by the current value of that thread’s program
counter. Each pool of ready threads is maintained as a double-ended queue, ordeque, which has a bottom
and a top. A deque contains only ready threads. If the deque ofa process becomes empty, that process
becomes a thief and steals a thread from the deque of a victim process chosen at random.

To obtain work, a process pops the ready thread from the bottom of its deque and commences executing
that thread, starting with that thread’s ready node and continuing in sequence, as determined by the control
flow of the code being executed by that thread. We refer to the thread that a process is executing as the
process’sassigned thread. The process continues to execute nodes in its assigned thread until that thread
invokes a synchronization action (typically via a call intothe threads library). The synchronization actions
fall into the following four categories, and they are handled as follows.

� Die: When the process executes its assigned thread’s last node, that thread dies. In this case, the
process gets a new assigned thread by popping one off the bottom of its deque.

� Block: If the process reaches a node in its assigned thread that is not ready, then that thread blocks.
For example, consider a process that is executing the root thread of Figure 1. If the process executes
 � and then goes to execute


�
before node


�
has been executed, then the root thread blocks. In this

case, as in the case of the thread dying, the process gets a newassigned thread by popping one off the
bottom of its deque.

� Enable: If the process executes a node in its assigned thread that causes another thread — a thread
that previously was blocked — to be ready, then, of the two ready threads (the assigned thread and
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the newly ready thread), the process pushes one onto the bottom of its deque and continues executing
the other. That other thread becomes the process’s assignedthread. For example, if the root thread
of Figure 1 is blocked at


�
, waiting for


�
to be executed, then when a process that is executing

the child thread finally executes

�

, the root thread becomes ready and the process performs one of
the following two actions. Either it pushes the root thread on the bottom of its deque and continues
executing the child thread at


 �
, or it pushes the child thread on the bottom of its deque and starts

executing the root thread at

�

. The bounds proven in this paper hold for either choice.

� Spawn: If the process executes a node in its assigned thread that spawns a child thread, then, as in
the enabling case, of the two ready threads (in this case, theassigned thread and its newly spawned
child), the process pushes one onto the bottom of its deque and continues executing the other. That
other thread becomes the process’s assigned thread. For example, when a process that is executing
the root thread of Figure 1 executes


�
, the process performs one of the following two actions. Either

it pushes the child thread on the bottom of its deque and continues executing the root thread at

 �, or

it pushes the root thread on the bottom of its deque and startsexecuting the child thread at



. The
bounds proven in this paper hold for either choice. The latter choice is often used [21, 22, 31], because
it follows the natural depth-first single-processor execution order.

It is possible that a thread may enable another thread and diesimultaneously. An example is the join between
the root thread and the child thread in Figure 1. If the root thread is blocked at


��
, then when a process

executes

�

in the child, the child enables the root and dies simultaneously. In this case, the root thread
becomes the process’s new assigned thread, and the process commences executing the root thread at


��
.

Effectively, the process performs the action for enabling followed by the action for dying.
When a process goes to get an assigned thread by popping one off the bottom of its deque, if it finds that

its deque is empty, then the process becomes athief. It picks avictim process at random (using a uniform
distribution) and attempts to steal a thread from the victimby popping a thread off the top of the victim’s
deque. The steal attempt will fail if the victim’s deque is empty. In addition, the steal attempt may fail due
to contention when multiple thieves attempt to steal from the same victim simultaneously. The next two
sections cover this issue in detail. If the steal attempt fails, then the thief picks another victim process and
tries again. The thief repeatedly attempts to steal from randomly chosen victims until it succeeds, at which
point the thief “reforms” (i.e., ceases to be a thief). The stolen thread becomes the process’s new assigned
thread, and the process commences executing its new assigned thread, as described above.

In our non-blocking implementation of the work-stealing algorithm, each process performs a yield sys-
tem call between every pair of consecutive steal attempts. We describe the semantics of the yield system call
later in Section 4.4. These system calls are not needed for correctness, but as we shall see in Section 4.4, the
yields are sometimes needed in order to prevent the kernel from starving a process.

Execution begins with all deques empty and the root thread assigned to one process. This one process
begins by executing its assigned thread, starting with the root node. All other processes begin as thieves.
Execution ends when some process executes the final node, which sets a global flag, thereby terminating the
scheduling loop.

For our analysis, we ignore threads. We treat the deques as ifthey contain ready nodes instead of ready
threads, and we treat the scheduler as if it operates on nodesinstead of threads. In particular, we replace
each ready thread in a deque with its currently ready node. Inaddition, if a process has an assigned thread,
then we define the process’sassigned nodeto be the currently ready node of its assigned thread.

The scheduler operates as shown in Figure 3. The root node is assigned to one process, and all other
processes start with no assigned node (lines 1 through 3). These other processes will become thieves. Each
process executes the scheduling loop, which terminates when some process executes the final node and sets
a global flag (line 4). At each iteration of the scheduling loop, each process performs as follows.
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// Assign root node to process zero.
1 assignedNode � NIL
2 if self � processZero
3 assignedNode � rootNode

// Run scheduling loop.
4 while computationDone � FALSE

// Execute assigned node.
5 if assignedNode

�� NIL
6 (numChildren, child1, child2) � execute (assignedNode)

7 if numChildren � 0 // Terminate or block.
8 assignedNode � self.popBottom()
9 else if numChildren � 1 // No synchronization.
10 assignedNode � child1
11 else // Enable or spawn.
12 self.pushBottom (child1)
13 assignedNode � child2

// Make steal attempt.
14 else
15 yield() // Yield processor.
16 victim � randomProcess() // Pick victim.
17 assignedNode � victim.popTop() // Attempt steal.

Figure 3 : The non-blocking work stealer. All� processes execute this scheduling loop. Each process is represented
by aProcess data structure, stored in shared memory, that contains the deque of the process, and each process has a
private variableself that refers to itsProcess structure. Initially, all deques are empty and thecomputation-
Done flag, which is stored in shared memory, isFALSE. The root node is assigned to an arbitrary process, designated
processZero, prior to entering the main scheduling loop. The schedulingloop terminates when a process executes
the final node and sets thecomputationDone flag.
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If the process has an assigned node, then it executes that assigned node (lines 5 and 6). The execution
of the assigned node will enable — that is, make ready — 0, 1, or2 child nodes. Specifically, it will enable
0 children in case the assigned thread dies or blocks; it willenable 1 child in case the assigned thread
performs no synchronization, merely advancing to the next node; and it will enable 2 children in case the
assigned thread enables another, previously blocked, thread or spawns a child thread. If the execution of
the assigned node enables 0 children, then the process pops the ready node off the bottom of its deque, and
this node becomes the process’s new assigned node (lines 7 and 8). If the process’s deque is empty, then
the pop invocation returnsNIL, so the process does not get a new assigned node and becomes a thief. If
the execution of the assigned node enables 1 child, then thischild becomes the process’s new assigned node
(lines 9 and 10). If the the execution of the assigned node enables 2 children, then the process pushes one
of the children onto the bottom of its deque, and the other child becomes the process’s new assigned node
(lines 11 through 13).

If a process has no assigned node, then its deque is empty, so it becomes a thief. The thief picks a victim
at random and attempts to pop a node off the top of the victim’sdeque, making that node its new assigned
node (lines 16 and 17). If the steal attempt is unsuccessful,then the pop invocation returnsNIL, so the
thief does not get an assigned node and continues to be a thief. If the steal attempt is successful, then the
pop invocation returns a node, so the thief gets an assigned node and reforms. Between consecutive steal
attempts, the thief callsyield (line 15).

3.2 Specification of the deque methods

In this section we develop a specification for the deque object, discussed informally above. The deque
supports three methods:pushBottom,popBottom, andpopTop. A pushTopmethod is not supported,
because it is not needed by the work-stealing algorithm. A deque implementation is defined to beconstant-
time if and only if each of the three methods terminates within a constant number of instructions. Below
we define the “ideal” semantics of these methods. Any constant-time deque implementation meeting the
ideal semantics is wait-free [27]. Unfortunately, we are not aware of any constant-time wait-free deque
implementation. For this reason, we go on to define a “relaxed” semantics for the deque methods. Any
constant-time deque implementation meeting the relaxed semantics is non-blocking [26, 27] and is sufficient
for us to prove our performance bounds.

We now define the ideal deque semantics. To do so, we first definewhether a given set of invocations
of the deque methods meets the ideal semantics. We view an invocation of a deque method as a 4-tuple
specifying: (i) the name of the deque method invoked (i.e.,pushBottom, popBottom, orpopTop), (ii)
the initiation time, (iii) the completion time, and (iv) theargument (for the case ofpushBottom) or the
return value (forpopBottom andpopTop). A set of invocations meets the ideal semantics if and only
if there exists alinearization timefor each invocation such that: (i) the linearization time lies between the
initiation time and the completion time, (ii) no two linearization times coincide, and (iii) the return values
are consistent with a serial execution of the method invocations in the order given by the linearization times.
A deque implementation meets the ideal semantics if and onlyif for any execution, the associated set of
invocations meets the ideal semantics. We remark that a deque implementation meets the ideal semantics if
and only if each of the three deque methods islinearizable, as defined in [25].

It is convenient to define a set of invocations to begood if and only if no twopushBottom or pop-
Bottom invocations are concurrent. Note that any set of invocations associated with some execution of the
work-stealing algorithm is good since the (unique) owner ofeach deque is the only process to ever perform
either apushBottom orpopBottom on that deque. Thus, for present purposes, it is sufficient todesign a
constant-time wait-free deque implementation that meets the ideal semantics on any good set of invocations.
Unfortunately, we do not know how to do this. On the positive side, we are able to establish optimal per-
formance bounds for the work-stealing algorithm even if thedeque implementation satisfies only a relaxed
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version of the ideal semantics.
In the relaxed semantics, we allow apopTop invocation to returnNIL if at some point during the

invocation, either the deque is empty (this is the usual condition for returningNIL) or the topmost item is
removed from the deque by another process. In the next section we provide a constant-time non-blocking
deque implementation that meets the relaxed semantics on any good set of invocations. We do not consider
our implementation to be wait-free, because we do not view every popTop invocation that returnsNIL
as having successfully completed. Specifically, we consider a popTop invocation that returnsNIL to be
successful if and only if the deque is empty at some point during the invocation. Note that a successful
popTop invocation is linearizable.

3.3 The deque implementation

The deques support concurrent method invocations, and we implement the deques using non-blocking syn-
chronization. Such an implementation requires the use of a universal primitive such as compare-and-swap
or load-linked/store-conditional [27]. Almost all modernmicroprocessors have such instructions. In our
deque implementation we employ a compare-and-swap instruction, but this instruction can be replaced with
a load-linked/store-conditional pair in a straightforward manner [32].

The compare-and-swap instructioncas operates as follows. It takes three operands: a registeraddr
that holds an address and two other registers,old andnew, holding arbitrary values. The instructioncas
(addr, old, new) compares the value stored in memory locationaddr with old, and if they are
equal, the value stored in memory locationaddr is swapped withnew. In this case, we say thecas
succeeds. Otherwise, it loads the value stored in memory locationaddr into new, without modifying the
memory locationaddr. In this case, we say thecas fails. This whole operation — comparing and then
either swapping or loading — is performed atomically with respect to all other memory operations. We can
detect whether thecas fails or succeeds by comparingold with new after thecas. If they are equal, then
thecas succeeded; otherwise, it failed.

In order to implement a deque of nodes (or threads) in a non-blocking manner usingcas, we employ
an array of nodes (or pointers to threads), and we store the indices of the top and bottom entries in the
variablestop andbot respectively, as shown in Figure 4. An additional variabletag is required for
correct operation, as described below. Thetag andtop variables are implemented as fields of a structure
age, and this structure is assumed to fit within a single word, which we define as the maximum number of
bits that can be transfered to and from memory atomically with load, store, andcas instructions. The
age structure fits easily within either a 32-bit or a 64-bit word size.

The tag field is needed to address the following potential problem. Suppose that a thief process is
preempted after executing line 5 but before executing line 8of popTop. Subsequent operations may empty
the deque and then build it up again so that the top index points to the same location. When the thief
process resumes and executes line 8, thecas will succeed because the top index has been restored to its
previous value. But the node that the thief obtained at line 5is no longer the correct node. The tag field
eliminates this problem, because every time the top index isreset (line 11 ofpopBottom), the tag is
changed. This changing of the tag will cause the thief’scas to fail. For simplicity, in Figure 5 we show
the tag being manipulated as a counter, with a new tag being selected by incrementing the old tag (line 12
of popBottom). Such a tag might wrap around, so in practice, we implement the tag by adapting the
“bounded tags” algorithm [32].

We claim that the deque implementation presented above meets the relaxed semantics on any good
set of invocations. Even though each of the deque methods is loop-free and consists of a relatively small
number of instructions, proving this claim is not entirely trivial since we need to account for every possible
interleaving of the executions of the owner and thieves. Ourcurrent proof of correctness is somewhat
lengthy as it reduces the problem to establishing the correctness of a rather large number of sequential
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deq

 bot

 age

Deque

top
tag

Figure 4 : A Deque object contains an arraydeq of ready nodes, a variablebot that is the index below the bottom
node, and a variableage that contains two fields:top, the index of the top node, andtag, a “uniquifier” needed to
ensure correct operation. The variableage fits in a single word of memory that can be operated on with atomic load,
store, andcas instructions.

void pushBottom (Node node)
1 load localBot � bot
2 store node � deq[localBot]
3 localBot � localBot 
 1
4 store localBot � bot

Node popTop()
1 load oldAge � age
2 load localBot � bot
3 if localBot � oldAge.top
4 return NIL
5 load node � deq[oldAge.top]
6 newAge � oldAge
7 newAge.top � newAge.top 
 1
8 cas (age, oldAge, newAge)
9 if oldAge � newAge

10 return node
11 return NIL

Node popBottom()
1 load localBot � bot
2 if localBot � 0
3 return NIL
4 localBot � localBot � 1
5 store localBot � bot
6 load node � deq[localBot]
7 load oldAge � age
8 if localBot � oldAge.top
9 return node
10 store 0 � bot
11 newAge.top � 0
12 newAge.tag � oldAge.tag 
 1
13 if localBot � oldAge.top
14 cas (age, oldAge, newAge)
15 if oldAge � newAge
16 return node
17 store newAge � age
18 return NIL

Figure 5 : The threeDequemethods. EachDeque object resides in shared memory along with its instance variables
age, bot, anddeq; the remaining variables in this code are private (registers). Theload, store, andcas instruc-
tions operate atomically. On a multiprocessor that does notsupport sequential consistency, extra memory operation
ordering instructions may be needed.
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program fragments. Because program verification is not the primary focus of the present article, the proof
of correctness is omitted. The reader interested in programverification is referred to [11] for a detailed
presentation of the correctness proof.

The fact that our deque implementation meets the relaxed semantics on any good set of invocations
greatly simplifies the performance analysis of the work-stealing algorithm. For example, by ensuring the
linearizability of all owner invocations and all thief invocations that do not returnNIL, this fact allows us
to view such invocations as atomic. Under this view, the precise state of the deque at any given point in the
execution has a clear definition in terms of the usual serial semantics of the deque methodspushBottom,
popBottom, andpopTop. (Here we rely on the observation that a thief invocation returningNIL does
not change the state of the shared memory, and hence does not change the state of the deque.)

3.4 A structural lemma

In this section we establish a key lemma that is used in the performance analysis of our work-stealing
scheduler. Before stating the lemma, we provide a number of technical definitions.

To state the structural lemma, in addition to linearizing the deque method invocations as described in the
previous section, we also need to linearize the assigned-node executions. If the execution of the assigned
node enables 0 children, then we view the execution and subsequent updating of the assigned node as
occurring atomically at the linearization point of the ensuing popBottom invocation. If the execution of
the assigned node enables 1 child, then we view the executionand updating of the assigned node as occurring
atomically at the time the assigned node is executed. If the execution of the assigned node enables 2 children,
then we view the execution and updating of the assigned node as occurring atomically at the linearization
point of the ensuingpushBottom invocation. In each of the above cases, the choice of linearization point
is justified by the following simple observation: the execution of any local instruction (i.e., an instruction
that does not involve the shared memory) by some process commutes with the execution of any instruction
by another process.

If the execution of node
�

enables node
�
, then we call the edge

	� � � �
anenabling edge, and we call�

thedesignated parentof
�
. Note that every node except the root node has exactly one designated parent,

so the subgraph of the dag consisting of only enabling edges forms a rooted tree that we call theenabling
tree. Note that each execution of the computation may have a different enabling tree. If� 	� �

is the depth of
a node

�
in the enabling tree, then itsweight is defined as� 	� � � �� � � 	� �

. The root of the dag, which
is also the root of the enabling tree, has weight�� . Our analysis of Section 4 employs a potential function
based on the node weights.

As illustrated in Figure 6, the structural lemma states thatfor any deque, at all times during the execution
of the work-stealing algorithm, the designated parents of the nodes in the deque lie on some root-to-leaf path
in the enabling tree. Moreover, the ordering of these designated parents along this path corresponds to the
top-to-bottom ordering of the nodes in the deque. As a corollary, we observe that the weights of the nodes
in the deque are strictly decreasing from top to bottom.

Lemma 3 (Structural Lemma) Let
�

be the number of nodes in a given deque at some time in the (lin-
earized) execution of the work-stealing algorithm, and let

� � � � � � � �� denote those nodes ordered from the
bottom of the deque to the top. Let

��
denote the assigned node if there is one. In addition, for�

� � � � � � � �,
let

�
	 denote the designated parent of

�
	. Then for �

� �� � � � � �, node
�
	 is an ancestor of

�
	�

�
in the

enabling tree. Moreover, though we may have
� � � ��

, for �
� � � � � � � � � �, we have

�
	 �� �

	�
�

— that is,
the ancestor relationship is proper.

Proof: Fix a particular deque. The deque state and assigned node change only when either the owner
executes its assigned node or a thief performs a successful steal. We prove the claim by induction on the
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Figure 6 : The structure of the nodes in the deque of some process. Node�� is the assigned node. Nodes� �, �� ,
and�� are the nodes in the deque ordered from bottom to top. For� � � � �� � � �, node� � is the designated parent of
node� �. Then nodes��, � � , � �, and�� lie (in that order) on a root-to-leaf path in the enabling tree. As indicated in
the statement of Lemma 3, the� �’s are all distinct except it is possible that�� � � �.
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Figure 7 : The deque of a processor before and after the execution of the assigned node�� enables 0 children.

number of assigned-node executions and steals since the deque was last empty. In the base case, if the deque
is empty, then the claim holds vacuously. We now assume that the claim holds before a given assigned-node
execution or successful steal, and we will show that it holdsafter. Specifically, before the assigned-node
execution or successful steal, let

��
denote the assigned node; let

�
denote the number of nodes in the deque;

let
� � � � � � � �� denote the nodes in the deque ordered from bottom to top; and for �

� � � � � � � �, let
�
	 denote

the designated parent of
�
	. We assume that either

� � �, or for �
� �� � � � � �, node

�
	 is an ancestor of�

	�
�

in the enabling tree, with the ancestor relationship being proper, except possibly for the case�
� �.

After the assigned-node execution or successful steal, let
� �� denote the assigned node; let

� � denote the
number of nodes in the deque; let

� �� � � � � � � �� denote the nodes in the deque ordered from bottom to top;
and for �

� � � � � � � � �, let
� �	 denote the designated parent of

� �	. We now show that either
� � � �, or for

�
� �� � � � � � �, node

� �	 is an ancestor of
� �	�� in the enabling tree, with the ancestor relationship being proper,

except possibly for the case�
� �.

Consider the execution of the assigned node
��

by the owner.
If the execution of

��
enables 0 children, then the owner pops the bottommost node off its deque and

makes that node its new assigned node. If
� � �, then the deque is empty; the owner does not get a new
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Figure 8 : The deque of a processor before and after the execution of the assigned node�� enables 1 child�.

assigned node; and
� � � �. If

�
� �, then the bottommost node

��
is popped and becomes the new assigned

node, and
� � � � � �. If

� � �, then
� � � �. Otherwise, the result is as illustrated in Figure 7. We now

rename the nodes as follows. For�
� � � � � � � � �, we set

� �	 � �
	�

�
and

� �	 � �
	�

�
. We now observe that for

�
� �� � � � � � �, node

� �	 is a proper ancestor of
� �	�� in the enabling tree.

If the execution of
��

enables 1 child


, then, as illustrated in Figure 8,



becomes the new assigned

node; the designated parent of



is
��

; and
� � � �

. If
� � �, then

� � � �. Otherwise, we can rename the
nodes as follows. We set

� �� � 

; we set

� �� � ��
; and for �

� �� � � � � � �, we set
� �	 � �

	 and
� �	 � �

	 . We
now observe that for�

� �� � � � � � �, node
� �	 is a proper ancestor of

� �	�� in the enabling tree. That
� �� is a

proper ancestor of
� �� in the enabling tree follows from the fact that

	�� � �� �
is an enabling edge.

In the most interesting case, the execution of the assigned node
��

enables 2 children



and � , with

being pushed onto the bottom of the deque and� becoming the new assigned node, as illustrated in

Figure 9. In this case,
	�� � 
 �

and
	�� �

�
�

are both enabling edges, and
� � � �

� �. We now rename the
nodes as follows. We set

� �� �
� ; we set

� �� � ��
; we set

� �� � 

; we set

� �� � ��
; and for �

� � � � � � � � �,
we set

� �	 � �
	�

�
and

� �	 � �
	�

�
. We now observe that

� �� � � �� , and for�
� � � � � � � � �, node

� �	 is a proper
ancestor of

� �	�� in the enabling tree. That
� �� is a proper ancestor of

� �� in the enabling tree follows from
the fact that

	� � � �� �
is an enabling edge.

Finally, we consider a successful steal by a thief. In this case, the thief pops the topmost node
��

off
the deque, so

� � � � � �. If
� � �, then

� � � �. Otherwise, we can rename the nodes as follows. For
�
� � � � � � � � �, we set

� �	 � �
	 and

� �	 � �
	. We now observe that for�

� �� � � � � � �, node
� �	 is an ancestor of� �	�� in the enabling tree, with the ancestor relationship being proper, except possibly for the case�

� �.

Corollary 4 If
�� � � � � � � � � �� are as defined in the statement of Lemma 3, then we have� 	�� �


 � 	� � �
�

� � � � � 	��
�
� �

� � 	�� �
.

4 Analysis of the work stealer

In this section we establish optimal bounds on the running time of the non-blocking work stealer under
various assumptions about the kernel. It should be emphasized that the work stealer performs correctly for
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Figure 9 : The deque of a processor before and after the execution of the assigned node�� enables 2 children� and� .

any kernel. We consider various restrictions on kernel behavior in order to demonstrate environments in
which the running time of the work stealer is optimal.

The following definitions will prove to be useful in our analysis. An instruction in the sequence executed
by some process� is amilestoneif and only if one of the following two conditions holds: (i) execution of
a node by process� occurs at that instruction, or (ii) apopTop invocation completes. From the scheduling
loop of Figure 3, we observe that a given process may execute at most some constant number of instructions
between successive milestones. Throughout this section, we let� denote a sufficiently large constant such
that in any sequence of� consecutive instructions executed by a process, at least one is a milestone.

The remainder of this section is organized as follows. Section 4.1 reduces the analysis to bounding the
number of “throws”. Section 4.2 defines a potential functionthat is central to all of our upper-bound argu-
ments. Sections 4.3 and 4.4 present our upper bounds for dedicated and multiprogrammed environments.

4.1 Throws

In this section we show that the execution time of our work stealer is
� 	� � ��� � �

��� �
, where� is the

number of “throws”, that is, steal attempts satisfying a technical condition stated below. This goal cannot
be achieved without restricting the kernel, so in addition to proving this bound on execution time, we shall
state and justify certain kernel restrictions.

One fundamental obstacle prevents us from proving the desired performance bound within the (unre-
stricted) multiprogramming model of Section 2. The problemis that the kernel may bias the random steal
attempts towards the empty deques. In particular, considerthe steal attempts initiated within some fixed
interval of steps. The adversary can bias these steal attempts towards the empty deques by delaying those
steal attempts that choose nonempty deques as victims so that they occur after the end of the interval.

To address this issue, we restrict the kernel to schedule inrounds rather than steps. A process that is
scheduled in a particular round executes between�� and

�
� instructions during the round, where� is the

constant defined at the beginning of Section 4. The precise number of instructions that a process executes
during a round is determined by the kernel in an arbitrary manner. We assume that the process executes
these�� to

�
� instructions in serial order, but we allow the instruction streams of different processes to

be interleaved arbitrarily, as determined by the kernel. Weclaim that our requirement that processes be
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scheduled in rounds of�� to
�
� instructions is a reasonable one. Because of the overhead associated with

context-switching, practical kernels tend to assign processes to processors for some nontrivial scheduling
quantum. In fact, a typical scheduling quantum is orders of magnitude higher than the modest value of�
needed to achieve our performance bounds.

We identify the completion of a steal attempt with the completion of itspopTop invocation (line 17 of
the scheduling loop), and we define a steal attempt by a process � to be athrow if it completes at� ’s second
milestone in a round. Thus a process performs at most one throw in any round. Such a throw completes
in the round in which the identity of the associated random victim is determined. This property is useful
because it ensures that the random victim distribution cannot be biased by the kernel. The following lemma
bounds the execution time in terms of the number of throws.

Lemma 5 Consider any multithreaded computation with work� �
being executed by the non-blocking work

stealer. Then the execution time is at most
� 	� � ��� � �

��� �
, where� denotes the number of throws.

Proof: As in the proof of Theorem 2, we bound the execution time by using Equation (2) and bounding
� 
	� � � 	. At each round, we collect a token from each scheduled process. We will show that the total

number of tokens collected is at most� �
� � . Since each round consists of at most

�
� steps, this bound on

the number of tokens implies the desired time bound.
When a process� is scheduled in a round, it executes at least two milestones,and the process places its

token in one of two buckets, as determined by the second milestone. There are two types of milestones. If� ’s second milestone marks the occurrence of a node execution, then� places its token in thework bucket.
Clearly there are at most� �

tokens in the work bucket. The second type of milestone marksthe completion
of a steal attempt, and if� ’s second milestone is of this type, then� places its token in thesteal bucket. In
this case, we observe that the steal attempt is a throw, so there are exactly� tokens in the steal bucket.

4.2 The potential function

As argued in the previous section, it remains only to analyzethe number of throws. We perform this analysis
using an amortization argument based on a potential function that decreases as the algorithm progresses. Our
high-level strategy is to divide the execution into phases and show that in each phase the potential decreases
by at least a constant fraction with constant probability.

We define the potential function in terms of node weights. Recall that each node
�

has a weight� 	� � �
�� � � 	� �

, where� 	� �
is the depth of node

�
in the enabling tree. At any given round�, we define the

potential by assigning potential to each ready node. Let� 	 denote the set of ready nodes at the beginning of
round �. A ready node is either assigned to a process or it is in the deque of some process. For each ready
node

�
in � 	, we define the associated potential� 	 	� �

as

� 	 	� � � � ��� ����� if
�

is assigned;��� ���
otherwise.

Then the potential at round� is defined as �
	
� ���	
 � 	 	� � �

When execution begins, the only ready node is the root node, which has weight�� and is assigned to some
process, so we start with

�
� � ��� ��. When execution terminates, there are no ready nodes, so thefinal

potential is�.
Throughout the execution, the potential never increases. That is, for each round�, we have

�
	�

�



�
	.

The work stealer performs only two actions that may change the potential, and both of them decrease the
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potential. The first action that changes the potential is theremoval of a node
�

from a deque when
�

is assigned to a process (lines 8 and 17 of the scheduling loop). In this case, the potential decreases by� 	 	� � � � 	� � 	� � � ��� ��� � ��� ����� � 	��� �� 	 	� �
, which is positive. The second action that changes the

potential is the execution of an assigned node
�
. If the execution of

�
enables two children, then one child


is placed in the deque and the other� becomes the assigned node. Thus, the potential decreases by� 	 	� � � � 	� � 	
 � � � 	� � 	
�
�

� ��� �� ��� � ��� �� � � ��� �� ���
� ��� �� ��� � �� �� �� ���� � �� �� �� ������
� ��� �� ��� �

� � �� � �� �
� �� � 	 	� � �

which is positive. If the execution of
�

enables fewer than two children, then the potential decreases even
more. Thus, the execution of a node

�
at round� decreases the potential by at least

	��� �� 	 	� �
.

To facilitate the analysis, we partition the potential among the processes, and we separately consider the
processes whose deque is empty and the processes whose dequeis nonempty. At the beginning of round�,
for any process�, let � 	

	� � denote the set of ready nodes that are in� ’s deque along with the ready node, if
any, that is assigned to�. We say that each node

�
in � 	

	� � belongsto process�. Then the potential that we
associate with� is

�
	
	� � � ���	 
 �� � � 	 	� � �

In addition, let� 	 denote the set of processes whose deque is empty at the beginning of round�, and let� 	
denote the set of all other processes. We partition the potential

�
	 into two parts�

	
�

�
	
	� 	

�
�

�
	
	� 	

� �

where
�
	
	� 	

� � ���� 

�
	
	� � and

�
	
	� 	

� � ���	 
 � 	
	� � �

and we analyze the two parts separately.
We now wish to show that whenever� or more throws take place over a sequence of rounds, the potential

decreases by a constant fraction with constant probability. We prove this claim in two stages. First, we show
that

��

of the potential

�
	
	� 	

�
is sitting “exposed” at the top of the deques where it is accessible to steal

attempts. Second, we use a “balls and weighted bins” argument to show that��� of this exposed potential
is stolen with��
 probability. The potential

�
	
	� 	

�
is considered separately.

Lemma 6 (Top-Heavy Deques) Consider any round� and any process� in � 	. The topmost node
�

in� ’s deque contributes at least
��


of the potential associated with�. That is, we have� 	 	� � � 	��
 ��
	
	� �.

Proof: This lemma follows directly from the Structural Lemma (Lemma 3), and in particular from Corol-
lary 4. Suppose the topmost node

�
in � ’s deque is also the only node in� ’s deque, and in addition,

�
has

the same designated parent as the node� that is assigned to�. In this case, we have�
	
	� � � � 	 	� �

� � 	 	� �� ��� ���
�

��� �� ���
� ��� ���

�
��� �����

� 

� � 	 	� � �
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In all other cases,
�

contributes an even larger fraction of the potential associated with�.

Lemma 7 (Balls and Weighted Bins) Suppose that� balls are thrown independently and uniformly at
random into� bins, where for�

� �� � � � � � , bin � has a weight� 	. The total weight is� � � �
	� � � 	. For

each bin�, define the random variable� 	 as

� 	
� � � 	 if some ball lands in bin�;

� otherwise.

If � � � �
	� � � 	, then for any� in the range� � � � �, we have�� �� � �� � � � � �� 		� � � �� �

.

Proof: For each bin�, consider the random variable� 	 � � 	. It takes on the value� 	 when no ball lands
in bin �, and otherwise it is�. Thus, we have	 
� 	 � � 	 � � � 	

�
� � �

� ��

 � 	

�� �
It follows that

	 
� � � � 
 � ��
. From Markov’s Inequality we have that

�� �� � � �
	� � � �� � �

	 
� � � �	� � � �� �

Thus, we conclude�� �� � �� � � �� 		� � � �� �
.

We now show that whenever� or more throws occur, the potential decreases by a constant fraction of
�
	
	� 	

�
with constant probability.

Lemma 8 Consider any round� and any later round� such that at least� throws occur at rounds from�
(inclusive) to� (exclusive). Then we have

�� � 	 � ��
� �
 � 	

	� 	
��

� �
 �

Proof: We first use the Top-Heavy Deques Lemma to show that if a throw targets a process with a
nonempty deque as its victim, then the potential decreases by at least��� of the potential associated with
that victim process. We then consider the� throws as ball tosses, and we use the Balls and Weighted Bins
Lemma to show that with probability more than��
, the total potential decreases by��
 of the potential
associated with all processes with a nonempty deque.

Consider any process� in � 	, and let
�

denote the node at the top of� ’s deque at round�. From the
Top-Heavy Deques Lemma (Lemma 6), we have� 	 	� � � 	��
 ��

	
	� �. Now, consider any throw that occurs

at a round
� � �, and suppose this throw targets process� as the victim. We consider two cases. In the

first case, the throw is successful withpopTop returning a node. If the returned node is node
�
, then

after round
�
, node

�
has been assigned and possibly already executed. At the veryleast, node

�
has been

assigned, and the potential has decreased by at least
	��� �� 	 	� �

. If the returned node is not node
�
, then

node
�

has already been assigned and possibly already executed. Again, the potential has decreased by at
least

	��� �� 	 	� �
. In the other case, the throw is unsuccessful withpopTop returningNIL at either line 4

or line 11. IfpopTop returnsNIL, then at some time during round
�

either� ’s deque was empty or some
otherpopTop or popBottom returned a topmost node. Either way, by the end of round

�
, node

�
has

been assigned and possibly executed, so the potential has decreased by at least
	��� �� 	 	� �

. In all cases, the
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potential has decreased by at least
	��� �� 	 	� �

. Thus, if a thief targets process� as the victim at a round� � �, then the potential drops by at least
	��� �� 	 	� � � 	��� �	��
 �� 	

	� � � 	��� �
�
	
	� �.

We now consider all� processes and� throws that occur at or after round�. For each process� in� 	, if one or more of the� throws targets� as the victim, then the potential decreases by
	��� �

�
	
	� �. If

we think of each throw as a ball toss, then we have an instance of the Balls and Weighted Bins Lemma
(Lemma 7). For each process� in � 	, we assign it a weight� � � 	����

�
	
	� �, and for each other process� in � 	, we assign it a weight� � � �. The weights sum to� � 	����
�
	
	� 	

�
. Using � � ��� in

Lemma 7, we conclude that the potential decreases by at least�� � 	��
 �� 	 	� 	
�

with probability greater
than� � �� 		� � � �� �

� ��
.

4.3 Analysis for dedicated environments

In this section we analyze the performance of the non-blocking work stealer in dedicated environments. In
a dedicated (non-multiprogrammed) environment, all� processes are scheduled in each round, so we have
�� � � .

Theorem 9 Consider any multithreaded computation with work� �
and critical-path length�� being

executed by the non-blocking work stealer with� processes in a dedicated environment. The expected
execution time is

� 	� � �� � �� �
. Moreover, for any� � �, the execution time is

� 	� � �� � �� � ��
	��� ��

with probability at least� � �.

Proof: Lemma 5 bounds the execution time in terms of the number of throws. We shall prove that the ex-
pected number of throws is

� 	�� � �
, and that the number of throws is

� 		�� � ��
	��� ��� �

with probability
at least� � �.

We analyze the number of throws by breaking the execution into phasesof � 	� �
throws. We show that

with constant probability, a phase causes the potential to drop by a constant factor, and since we know that
the potential starts at

�
� � ��� �� and ends at zero, we can use this fact to analyze the number of phases.

The first phase begins at round�� � � and ends at the first round� �� such that at least� throws occur during
the interval of rounds


�� � � �� �. The second phase begins at round�� � � �� � �, and so on.
Consider a phase beginning at round�, and let� be the round at which the next phase begins. We will

show that we have�� ��� 

	��
 ��

	 � � ��
. Recall that the potential can be partitioned as

�
	
�

�
	
	� 	

�
�

�
	
	� 	

�
. Since the phase contains at least� throws, Lemma 8 implies that�� �� 	 � ��

� 	��
 �� 	 	� 	
�� �

��
. We need to show that the potential also drops by a constant fraction of

�
	
	� 	

�
. Consider a process� in� 	. If � does not have an assigned node, then

�
	
	� � � �. If � has an assigned node

�
, then

�
	
	� � � � 	 	� �

.
In this case, process� executes node

�
at round� and the potential drops by at least

	��� �� 	 	� �
. Summing

over each process� in � 	, we have

�
	 �

��
� 	��� �� 	 	� 	

�
. Thus, no matter how

�
	 is partitioned between

�
	
	� 	

�
and

�
	
	� 	

�
, we have�� �� 	 � ��

� 	��
 �� 	 � � ��
.
We shall say that a phase issuccessfulif it causes the potential to drop by at least a��
 fraction. A

phase is successful with probability at least��
. Since the potential starts at

�
� � ��� �� and ends at�

(and is always an integer), the number of successful phases is at most
	��� � �� ��� �� �

�
��� . The

expected number of phases needed to obtain
��� successful phases is at most

���� . Thus, the expected
number of phases is

� 	�� �
, and because each phase contains

� 	� �
throws, the expected number of throws

is
� 	�� � �

. We now turn to the high probability bound.
Suppose the execution takes� � ���� � � phases. Each phase succeeds with probability at least

�
� ��
, so the expected number of successes is at least�� � ��� �� �


. We now compute the probability
that the number� of successes is less than

��� . We use the Chernoff bound [2, Theorem A.13],

�� �� � �� � �� �
�� ���	


�

19



with � � � �

. Thus if we choose� � ���� � �� �� 	��� �, then we have

�� �� �
��� � �

�� �� ������	� 
���



�� �� �������
���� �� ���



�� �� �� ������

�
� �

Thus, the probability that the execution takes�

�� � �� �� 	��� � phases or more is less than�. We conclude

that the number of throws is
� 		�� � ��

	��� ��� �
with probability at least� � �.

4.4 Analysis for multiprogrammed environments

We now generalize the analysis of the previous section to bound the execution time of the non-blocking work
stealer in multiprogrammed environments. Recall that in a multiprogrammed environment, the kernel is an
adversary that may choose not to schedule some of the processes at some or all rounds. In particular, at each
round�, the kernel schedules� 	 processes of its choosing. We consider three different classes of adversaries,
with each class being more powerful than the previous, and weconsider increasingly powerful forms of the
yield system call. In all cases, we find that the expected execution time is

� 	� � ��� � ��� ��� �
.

We prove our upper bounds for multiprogrammed environmentsusing the results of Section 4.2 and the
same general approach as is used to prove Theorem 9. The only place in which the proof of Theorem 9
depends on the assumption of a dedicated environment is in the analysis of progress being made by those
processes in the set� 	. In particular, in proving Theorem 9, we considered a round� and any process� in � 	,
and we showed that at round�, the potential decreases by at least

	��� �� 	 	� �, because process� executes its
assigned node, if any. This conclusion is not valid in a multiprogrammed environment, because the kernel
may choose not to schedule process� at round�. For this reason, we need the yield system calls.

The use of yield system calls never constrains the kernel in its choice of the number� 	 of processes that
it schedules at a step�. Yield calls constrain the kernel only in its choice ofwhich� 	 processes it schedules.
We wish to avoid constraining the kernel in its choice of the number of processes that it schedules, because
doing so would admit trivial solutions. For example, if we could force the kernel to schedule only one
process, then all we have to do is make efficient use of one processor, and we need not worry about parallel
execution or speedup. In general, whenever processors are available and the kernel wishes to schedule our
processes on those processors, our user-level scheduler should be prepared to make efficient use of those
processors.

4.4.1 Benign adversary

A benignadversary is able to choose only the number� 	 of processes that are scheduled at each round�. It
cannot choose which processes are scheduled. The processesare chosen at random. With a benign adversary,
the yield system calls are not needed, so line 15 of the scheduling loop (Figure 3) can be removed.

Theorem 10 Consider any multithreaded computation with work� �
and critical-path length�� being

executed by the non-blocking work stealer with� processes in a multiprogrammed environment. In addition,
suppose the kernel is a benign adversary, and the yield system call does nothing. The expected execution time
is
� 	� � ��� � �� � ��� �

. Moreover, for any� � �, the execution time is
� 	� � ��� �

	�� � ��
	��� ��� ��� �

with probability at least� � �.
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Proof: As in the proof of Theorem 9, we bound the number of throws by showing that in each phase, the
potential decreases by a constant factor with constant probability. We consider a phase that begins at round�.
The potential is

�
	
�

�
	
	� 	

�
�

�
	
	� 	

�
. From Lemma 8, we know that the potential decreases by at least	��
 �� 	 	� 	

�
with probability more than��
. It remains to prove that with constant probability the potential

also decreases by a constant fraction of

�
	
	� 	

�
.

Consider a process� in � 	. If � is scheduled at some round during the phase, then the potential decreases
by at least

	��� �� 	 	� � as in Theorem 9. During the phase, at least� throws occur, so at least� processes
are scheduled, with some processes possibly being scheduled multiple times. These scheduled processes
are chosen at random, so we can treat them like random ball tosses and appeal to the Balls and Weighted
Bins Lemma (Lemma 7). In fact, this selection of processes atrandom does not correspond to independent
ball tosses, because a process cannot be scheduled more thanonce in a given round, which introduces
dependencies. But these dependencies only increases the probability that a bin receives a ball. (Here each
deque is a bin and a bin is said to receive a ball if and only if the associated process is scheduled.) We assign
each process� in � 	 a weight� � � 	��� �� 	 	� � and each process� in � 	 a weight� � � �. The total
weight is� � 	��� �� 	 	� 	

�
, so using� � ��� in Lemma 7, we conclude that the potential decreases by at

least�� � 	������ 	 	� 	
�

with probability greater than��
.
The event that the potential decreases by

	�����
�
	
	� 	

�
is independent of the event that the potential

decreases by
	��
 �� 	 	� 	

�
, because the random choices of which processes to schedule are independent of

the random choices of victims. Thus, both events occur with probability greater than����, and we conclude
that the potential decreases by at least

	��
 �� 	 with probability greater than����. The remainder of the
proof is the same as that of Theorem 9, but with different constants.

4.4.2 Oblivious adversary

An obliviousadversary is able to choose both the number� 	 of processes and which� 	 processes are sched-
uled at each round�, but is required to make these decisions in an off-line manner. Specifically, before the
execution begins the oblivious adversary commits itself toa complete kernel schedule.

To deal with an oblivious adversary, we employ a directed yield [1, 28] to a random process; we call
this operationyieldToRandom. If at round� process� callsyieldToRandom, then a random process
� is chosen and the kernel cannot schedule process� again until it has scheduled process�. More precisely,
the kernel cannot schedule process� at a round� � � unless there exists a round

�
, � 


�

 � , such that

process� is scheduled at round
�
. Of course, this requirement may be inconsistent with the kernel schedule.

Suppose process� is scheduled at rounds� and� , and process� is not scheduled at any round
� �

�
� � � � � � .

In this case, if� callsyieldToRandom at round�, then because� cannot be scheduled at round� as the
schedule calls for, we schedule process� instead. That is, we schedule process� in place of�. Observe
that this change in the schedule does not change the number ofprocesses scheduled at any round; it only
changes which processes are scheduled.

The non-blocking work stealer usesyieldToRandom. Specifically, line 15 of the scheduling loop
(Figure 3) isyieldToRandom().

Theorem 11 Consider any multithreaded computation with work� �
and critical-path length�� being

executed by the non-blocking work stealer with� processes in a multiprogrammed environment. In ad-
dition, suppose that the kernel is an oblivious adversary, and the yield system call isyieldToRandom.
The expected execution time is

� 	� � ��� � �� � ��� �
. Moreover, for any� � �, the execution time is� 	� � ��� �

	�� � ��
	��� ��� ��� �

with probability at least� � �.

Proof: As in the proof of Theorem 10, it remains to prove that in each phase, the potential decreases by a
constant fraction of

�
	
	� 	

�
with constant probability. Again, if� in � 	 is scheduled at a round during the
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phase, then the potential decreases by at least
	��� �� 	 	� �. Thus, if we can show that in each phase at least

� processes chosen at random are scheduled, then we can appealto the Balls and Weighted Bins Lemma.
Whereas previously we defined a phase to contain at least� throws, we now define a phase to contain at

least�� throws. With at least�� throws, at least� of these throws have the following property: The throw
was performed by a process� at a round� during the phase, and process� also performed another throw
at a round

�
� � , also during the phase. We say that such a throw isfollowed. Observe that in this case,

process� calledyieldToRandom at some round between rounds� and
�
. Since process� is scheduled

at round
�
, the victim process is scheduled at some round between� and

�
. Thus, for every throw that is

followed, there is a randomly chosen victim process that is scheduled during the phase.
Consider a phase that starts at round�, and partition the steal attempts into two sets,

�
and� , such that

every throw in
�

is followed, and each set contains at least� throws. Because the phase contains at least
�� throws and at least� of them are followed, such a partition is possible. Lemma 8 tells us that the throws
in � cause the potential to decrease by at least

	��
 �� 	 	� 	
�

with probability greater than��
. It remains to
prove that the throws in

�
cause the potential to decrease by a constant fraction of

�
	
	� 	

�
.

The throws in
�

give rise to at least� randomly chosen victim processes, each of which is scheduled
during the phase. Thus, we treat these� random choices as ball tosses, assigning each process� in � 	 a
weight� � � 	��� �� 	 	� �, and each other process� in � 	 a weight� � � �. We then appeal to the Balls and
Weighted Bins Lemma with� � ��� to conclude that the throws in

�
cause the potential to decrease by

at least�� � 	������ 	 	� 	
�

with probability greater than��
. Note that if the adversary is not oblivious,
then we cannot treat these randomly chosen victim processesas ball tosses, because the adversary can bias
the choices away from processes in� 	. In particular, upon seeing a throw by process� target a process in� 	 as the victim, an adaptive adversary may stop scheduling process�. In this case the throw will not be
followed, and hence, will not be in the set

�
. The oblivious adversary has no such power.

The victims targeted by throws in
�

are independent of the victims targeted by throws in� , so we
conclude that the potential decreases by at least

	��
 �� 	 with probability greater than����. The remainder
of the proof is the same as that of Theorem 9, but with different constants.

4.4.3 Adaptive adversary

An adaptiveadversary selects both the number� 	 of processes and which of the� 	 processes execute at
each round�, and it may do so in an on-line fashion. The adaptive adversary is constrained only by the
requirement to obey yield system calls.

To deal with an adaptive adversary, we employ a powerful yield that we callyieldToAll. If at round�
process� callsyieldToAll, then the kernel cannot schedule process� again until it has scheduled every
other process. More precisely, the kernel cannot schedule process� at a round� � �, unless for every other
process�, there exists a round

��
in the range� 


��

 � , such that process� is scheduled at round

��
. Note

thatyieldToAll does not constrain the adversary in its choice of the number of processes scheduled at
any round. It constrains the adversary only in its choice of which processes it schedules.

The non-blocking work stealer callsyieldToAll before each steal attempt. Specifically, line 15 of
the scheduling loop (Figure 3) isyieldToAll().

Theorem 12 Consider any multithreaded computation with work� �
and critical-path length�� being

executed by the non-blocking work stealer with� processes in a multiprogrammed environment. In addition,
suppose the kernel is an adaptive adversary, and the yield system call isyieldToAll. The expected
execution time is

� 	� � ��� � �� � ��� �
. Moreover, for any� � �, the execution time is

� 	� � ��� �
	�� �

��
	��� ��� ��� �

with probability at least� � �.

Proof: As in the proofs of Theorems 10 and 11, it remains to argue thatin each phase the potential de-
creases by a constant fraction of

�
	
	� 	

�
with constant probability. We define a phase to contain at least
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�� � � throws. Consider a phase beginning at round�. Some process� executed at least three throws during
the phase, so it calledyieldToAll at some round before the third throw. Since� is scheduled at some
round after its call toyieldToAll, every process is scheduled at least once during the phase. Thus, the
potential decreases by at least

	��� �� 	 	� 	
�
. The remainder of the proof is the same as that of Theorem 9.

5 Related work

Prior work on thread scheduling has not considered multiprogrammed environments, but in addition to
proving time bounds, some of this work has considered boundson other metrics of interest, such as space
and communication. For the restricted class of “fully strict” multithreaded computations, the work stealing
algorithm is efficient with respect to both space and communication [8]. Moreover, when coupled with
“dag-consistent” distributed shared memory, work stealing is also efficient with respect to page faults [6].
For these reasons, work stealing is practical and variants have been implemented in many systems [7, 19,
20, 24, 34, 38]. For general multithreaded computations, other scheduling algorithms have also been shown
to be simultaneously efficient with respect to time and space[4, 5, 13, 14]. Of particular interest here is
the idea of deriving parallel depth-first schedules from serial schedules [4, 5], which produces strong upper
bounds on time and space. The practical application and possible adaptation of this idea to multiprogrammed
environments is an open question.

Prior work that has considered multiprogrammed environments has focused on the kernel-level sched-
uler. With coscheduling (also called gang scheduling) [18,33], all of the processes belonging to a compu-
tation are scheduled simultaneously, thereby giving the computation the illusion of running on a dedicated
machine. Interestingly, it has recently been shown that in networks of workstations coscheduling can be
achieved with little or no modification to existing multiprocessor operating systems [17, 35]. Unfortunately,
for some job mixes, coscheduling is not appropriate. For example, a job mix consisting of one parallel
computation and one serial computation cannot be coscheduled efficiently. With process control [36], pro-
cessors are dynamically partitioned among the running computations so that each computation runs on a
set of processors that grows and shrinks over time, and each computation creates and kills processes so that
the number of processes matches the number of processors. Weare not aware of any commercial operating
system that supports process control.

6 Conclusion

Whereas traditional thread schedulers demonstrate poor performance in multiprogrammed environments [9,
15, 17, 23], the non-blocking work stealer executes with guaranteed high performance in such environments.
By implementing the work-stealing algorithm with non-blocking deques and judicious use of yield system
calls, the non-blocking work stealer executes any multithreaded computation with work� �

and critical-path
length�� , using any number� of processes, in expected time

� 	� ���� � �� � ��� �
, where�� is the

average number of processors on which the computation executes. Thus, it achieves linear speedup —
that is, execution time

� 	� � ��� �
— whenever the number of processes is small relative to the parallelism

� ���� of the computation. Moreover, this bound holds even when thenumber of processes exceeds the
number of processors and even when the computation runs on a set of processors that grows and shrinks over
time. We prove this result under the assumption that the kernel, which schedules processes on processors
and determines�� , is an adversary.

We have implemented the non-blocking work stealer in a prototype C++ threads library calledHood
[10]. For UNIX platforms, Hood is built on top of POSIX threads [29] that provide the abstraction of pro-
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cesses (known as “system-scope threads” or “bound threads”). For performance, the deque methods are
coded in assembly language. For the yields, Hood employs a combination of the UNIXpriocntl (prior-
ity control) andyield system calls to implement ayieldToAll. Using Hood, we have coded up several
applications, and we have run numerous experiments, the results of which attest to the practical applica-
tion of the non-blocking work stealer. These empirical results [9, 10] show that application performance
does conform to our analytical bound and that the constant hidden inside the big-Oh notation is small —
roughly �.
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