Extending the Hong-Kung Model to Memory
Hierarchies*

John E. Savage

Brown University,Providence, Rhode Island 02912

Abstract. The speed of CPUs is accelerating rapidly, outstripping that
of peripheral storage devices and making it increasingly difficult to keep
CPUs busy. Consequently multi-level memory hierarchies, scaled to sim-
ulate single-level memories, are increasing in importance. In this paper
we introduce the Memory Hierarchy Game, a multi-level pebble game
that simulates data movement in memory hierarchies in terms of which
we study space-time tradeoffs.

We provide a) a common generalization of the Hong-Kung and Paterson-
Hewitt pebble models to the Memory Hierarchy Game, b) a greatly sim-
plified proof of the Hong-Kung lower bound on I/O complexity that
makes their result readily accessible, ¢) straight-line algorithms for a
representative set of problems that are simultaneously optimal at each
level in the memory hierarchy in their use of space and 1/O and com-
putation time, and d) an extension the game to block transfers of data
between memories.

1 Introduction

In this paper we study tradeoffs between the number of storage locations (space)
at each level of a memory hierarchy and the number of data movements (I/0
time) between levels in the hierarchy. We develop upper and lower bounds on
I/0 time in terms of space. We model computations as pebblings of straight-line
programs according to the rules of the Memory Hierarchy Game (MHG),
a pebble game in which different kinds of pebbles represent storage locations
at different levels in a memory hierarchy. The MHG generalizes to L levels the
two-level game introduced by Hong and Kung [8]. Straight-line computations
are modeled by directed acyclic graphs (dags). Not only are many important
computational science algorithms described by dags, efficient prefetching in large
memory hierarchies may require that all large computations be straight-line.
The rules of the MHG assume that data migrate up and down the hierarchy.
Input data resides initially in the highest level memory (the Lth) and the values
of all output vertices reside there at the end of a computation. The location
of a datum in the jth memory is denoted by placing a level-j pebble on that
vertex. Movement up and down the hierarchy is modeled by either replacing a

* This work was supported in part by the Office of Naval Research under contract
N00014-91-J-4052, ARPA Order 8225 and by NSF under Grant MIP-902570.

pebble at one level with one at an adjacent level or by possibly adding such a
pebble. Level-1 pebbles model data storage in a register. A level-1 pebble can
be placed on a vertex (a computation step) that has no pebbles only if all
of its predecessors carry level-1 pebbles, thereby modeling the requirement that
a value of an operation can be computed by a CPU only if all of its operands
are present in registers. A level-/ I/O operation is the placement of a level-
({ = 1) pebble on a vertex carrying a level-/ pebble (an input from level-/) or
the placement of a level-/ pebble on a vertex carrying a level({ — 1) pebble (an
output to level-l). We allow an unlimited number of level-I pebbles.

We consider two variants of the MHG, the standard game in which highest
level pebbles be used on intermediate vertices of a dag G = (V, E) and the
I/0O-limited game in which highest level pebbles cannot be used this way.
The latter is appropriate when there is a large gap between the access times
of the highest and next-highest level memory units because in this case data-
independent prefetching is essential to avoid the large delays required by data-
dependent fetching. The two-level I/O-limited game is actually the Paterson-
Hewitt [11] red-pebble game while the two-level standard game is the Hong-
Kung red-blue pebble game. Thus, the MHG combines elements of both
games and generalizes them to multiple levels.

A pebble strategy is minimal if the number of highest level /O operations is
minimized after which the number of I/O operations is minimized at successively
lower levels and, finally, the number of computation steps is minimized. This
definition of minimality reflects the fact that the time to access data on memories
increases very rapidly with their level in the hierarchy.

We develop methods for deriving upper and lower bounds on performance
that are applied to a representative set of problems consisting of matrix multipli-
cation, the Fast Fourier Transform and permutation and merging networks. We
also generalize the model to block transfers. If the storage unit at level [holds p;
words, and the I/O time at level [, T;, is the number of times blocks of b; words
move between the storage units at levels [— 1 and [, then we establish a frame-
work in which to derive lower bounds on 7; in terms of b; and s;_1, the storage
capacity of all units up to and including the ({ — 1)st. Under weak conditions on
b; and for the problems under consideration, we show that our lower bounds on
T; can be achieved up to multiplicative constants for all levels simultaneously.

This approach is illustrated by the problem of multiplying matrices. We show
that using any variant of the classical algorithm to multiply two n x n matrices, T;
is proportional to ©(n3/(b; V5i—1)) when s;_y = O(n?). If t; is the time (relative
to that of the fastest memory) for a level-/ block T/O operation, a memory
hierarchy will behave as single flat memory if #; < b;,/5, -7 for 2 <1 < L.

Related Research Aggarwal and Vitter [3] examined a two-level memory in which
P B-item blocks can be transferred in each step, obtaining tight bounds for
sorting-related problems. They did not handle the I/O-limited case or multi-
ple levels. Aggarwal, Alpern, Chandra and Snir [1] introduced the hierarchical
memory model (HMM), which treats memory as a linear array with cost f(z)
to access location z in the array, and obtained tight bounds for a number of

problems and a number of cost functions. They don’t handle blocks, nor handle
the T/O-limited case or large discontinuities in the storage access time between
levels.

Aggarwal, Chandra and Snir [2] introduced the BT model, an extension of
the HMM model supporting block transfers in which the time to move a block
of size b ending at location z is f(z)+b. They establish tight bounds on compu-
tation time for problems including matrix transpose, FFT, and sorting using a
number of cost functions. They allow blocks to be arbitrarily large and problem
dependent but do not handle the T/O-limited case nor large discontinuities in
access time.

Alpern, Carter and Feig [4] introduced the uniform memory hierarchy (UMH)
which has uniform exponential values for memory capacity, block size, and the
time to move a block between levels. They allow I/O overlap between levels and
determine conditions under which matrix transposition, matrix multiplication
and Fourier transforms can and cannot be done efficiently.

Savage and Vitter [12] extend the one-level Paterson-Hewitt model [11] to
support parallel pebbling and the Hong-Kung model to support contiguous block
I/0O. Vitter and Shriver [16] examine block transfers in three parallel disk mem-
ory systems and present a randomized version of distribution sort that meets the
lower bounds for these models of computation. Nodine and Vitter [10] give an
optimal deterministic sorting algorithm for these memory models. The models
have the limitations described above.

2 The Memory Hierarchy Game

The Memory Hierarchy Game (MHG) formally defined below captures the es-
sential features of serial computers that use storage units organized into levels
and in which data moves between levels from the highest to the lowest level and
back. The highest level storage unit models an archival store with large access
time whereas the lowest level unit models a fast memory used by the CPU for
all its computations.

The L-level Memory Hierarchy Game (MHG) is played on dags with p; peb-
bles at level [, 1 <1 < L — 1, and an unlimited number of pebbles at level L. It
has resource vector p = (p1,p2,...,pr—1), where p; > 1 for 1 < j < L -1,

and uses s; = Eé’:ﬂ’j pebbles at level [or less. Its rules are given below.

R1. (Computation Step) A first-level pebble can be placed on or moved from a
predecessor to any vertex all of whose immediate predecessors carry first-
level pebbles.

R2. (Pebble Deletion) Except for level-L pebbles on output vertices, a pebble at
any level can be deleted from any vertex.

R3. (Initialization) A level-L pebble can be placed on an input vertex at any
time.

R4. (Input from Level-l) For 2 <1 < L — 1, a level-(! — 1) pebble can be placed
on any vertex carrying a level-/ pebble.

Standard Game

R5. (Output to Level-l) For 2 <! < L, a level-l pebble can be placed on any
vertex carrying a level-({ — 1) pebble.

I/O-limited Game

R5. (Output to Level-l/) For 2 <! < L — 1, a level-l pebble can be placed on any
vertex carrying a level-({ — 1) pebble.

R6. (I/O-limitation) Level-L pebbles can only be placed on input vertices and
output vertices carrying level-(L — 1) pebbles.

3 Computational Inequalities

In this section we derive generic lower bounds on the number of I/O and com-
putation steps required by a minimal pebbling of a dag G = (V, E) in the MHG.
We assume throughout that all vertices of a dag G = (V, E) are reachable from
input and output vertices.

Consider a pebbling P(p, G) of the dag G in the L-level MHG with resource
vector p. A minimal pebbling is one that successively minimizes the number of
level-I 1/O operations at decreasing levels starting at level L. The computation

time of a pebbling, TI(L)(E, (), is the minimal number of lowest level pebblings

in a minimal pebbling and the level-l I/O time, Tl(L)(E, (), is the minimal
number of level-{ 1/O operations, 2 <1 < L.

The following result shows that if the number of pebbles available at or below
a given level, is large enough, no I/O operations at the next level are necessary
except on input and output vertices.

Lemma 1. Let Sy be the minimum number of pebbles to pebble G = (V, E) in
the red-pebble game. If the number of pebbles at level k < L or less, si, exceeds
Smin + (k= 1), a minimal pebbling P(p, G) with resource vector p in the L-level
MHG does not perform I/0 operations at level k + 1 or higher except on inputs
and outputs.

Because every input must be read from level I and every output written to
level L, Tl(L) (p, G) is at least equal to the number of input and output vertices

of G for 2 << L. Also TI(L) is at least the number of non-input vertices |V*|
of G.

The following definition of the S-span of a graph abstracts ideas used by Hong
and Kung [8] and is used to derive lower bounds on the I/O time of minimal
pebblings of dags.

Definition2. Given a dag G = (V, E) the S-span of G, p(S,), is the number
of computation steps on G with the red-pebble game in a minimal pebbling
maximized over all initial placements of S red pebbles. The pebblings are done
assuming that pebbles are left on output vertices.

The following theorem generalizes the Hong-Kung [8] lower bound on I/0O
time for the two-level MHG and provides a new and much simpler proof. Aggar-
wal and Vitter [3] have given a simple proof of the Hong-Kung lower bound for
the FFT dag.

Theorem 3. Consider a minimal pebbling of the dag G = (V, E) in the stan-
dard MHG with resource vector p using s, = Ej<lpl pebbles at level | or less.

Let Tl(L)(E, G) be the number of 1/0 operations at level [, 2 < | < L, and let
TI(L)(}_), G) be the number of computations steps used in this pebbling. Then, the

following lower bound on Tl(L)(E, G), 2 <1 < L, must be satisfied whether the
MHG is 1/O-limited or not:

1T (0, G) [s1-11p(251-1, G) > T (p, G) > |V

Proof Sketch. Since fewer pebblings are done at each level for the standard game,
lower bounds are derived for this case. s;_1 is the number of pebbles at all levels
up to and including level [— 1. Let C' be a minimal pebbling of G. Divide C' into
consecutive sequential sub-pebblings {C1,Ca, ..., C} where each sub-pebbling
has s;_1 level-l I/O operations except possibly the last which has no more such
operations. Thus h = [Tl(L)(p, G)/si—1]-

We develop an upper bound @ to the number of computation steps in each
sub-pebbling. This number multiplied by the number A of sub-pebblings is an
upper bound to the total number of computation steps, TI(L)(p, G), performed

by the pebbling C. It follows that Qh > TI(L)(p, G).

The upper bound on @ is developed by adding s;—1 new level-({ — 1) pebbles
and showing that we may use these new pebbles to move all I/O operations at
level [or higher in a sub-pebbling C} to either the beginning or end of the sub-
pebbling without changing the number of computation steps or I/O operations
at level [— 1 or less. Thus, we move without changing them all computation
steps and I/O operations at level [— 1 or lower to a middle interval of C; in
between the higher-level I/O operations.

An upper bound to @ is obtained by observing that at the start of the
pebbling of the middle interval of C} there will be at most 2s;_; pebbles at
level [— 1 or less on G, at most s;_1 original pebbles plus a like number of new
pebbles. Any output vertex pebbled in this interval must have a level-(I — 1)
or lower pebble on it at the end of the interval since the pebbling is minimal.
Clearly, the number of computation steps on vertices pebbled in the middle
interval is largest when all 2s;_1 pebbles of levels I — 1 or less on G are treated
as level-1 pebbles. Tt follows that at most p(2s;_1, G) computation steps can be
done on G in C} since C} is part of a minimal pebbling. This completes the proof
of this theorem.

In the standard game each vertex of G is pebbled once in a computation
step. However, when the I/O limitation applies, some vertices may have to be
repebbled. The following theorem relates the number of moves in an L-level

game to the number in a two-level game and allows us to use prior results. The
proof is by simulation of an L-level MHG with a two-level MHG.

Theorem4. Let S = sp_1 = EL_II p;j. The following inequalities hold for 2 <
l < L —1 when the graph G is pebbled in the L-level MHG, whether 1/0 limited
or not, with resource vector p:

Here TI(Z)(S, G) and T2(2)(S, G) are the number of computation and I/0O opera-
tions, respectively, in the red-blue pebble game played on G with S red pebbles. If
MHG is played with the I/O-limitation, these two measures are computed under
the 1/O-limitation. |V*| is the number of non-input vertices of G.

4 Matrix Multiplication

Consider a matrix multiplication algorithm conforming to the classical algo-
rithm. All products of pairs of entries in the two matrices A and B are formed
and combined in independent binary addition trees. We develop tight upper and
lower bounds on the T/O and computation time for the standard MHG as well
as the I/O-limited MHG. Developing good upper bounds under the I/O limita-
tion is related to the challenging problem of deriving fast algorithms for matrix
multiplication.

Lemma5 [8]. The S-span of any graph G associated with the classical algo-
rithm to multiply two n X n matrices with the binary operations of addition and
multiplication of component values satisfies p(S,G) < 255%/2 for § < n?.

Theorem 6. Let G be any graph consistent with the classical algorithm to mul-
tiply twon xn matmces Let it be pebbled in the standard MHG with the resource
vector p. Let s; = Z ._,pj and let k be the largest integer such that sy < 3n?.
When py > 3 there is a pebbling of G such that the following bounds hold simul-
taneously:

=1
7 (p, G) = (/(\/—s))2<I<k+1
On?) k+2<I<L

Proof Sketch. We note that any graph G consistent with the classical matrix
multiplication algorithm has |V*| = @(n®) non-input vertices. The first lower
bound follows from the fact that we have to pebble @(n3) vertices with level-1
pebbles to pebble the graph. The second follows from Theorem 3 and Lemma 5.
The third lower bound follows from Theorem 4.

The pebbling strategy that simultaneously achieves these lower bounds up
to constant multiplicative factors uses the standard representation of a n x n

-— N—p -— N—p

AEEE BO0O0
— jgoog BOO0
NN BOO0

OO

ooon

Qooon

QOO0
|

HiEIEn BEO0O0

-—S—

C

Fig. 1. Pebbling schema for matrix multiplication.

as an n/m x n/m matrix of m X m matrices when m divides n, as suggested
by Figure 1. In turn the submatrices are themselves recursively decomposed
as submatrices where the matrix sizes are chosen to minimize the amount of
memory fragmentation. The innermost matrices are r; X r; and are contained
in 79 X ro matrices which are finally contained in ry X rp where the r; are set
as shown below and k is chosen to be the largest integer such that rZ < n?.
(Without loss of generality we assume that 7 = n, that is, we assume that A,

B and C' are 7 X r; matrices.)

|\/51/3] i=1

ricilV/(si —i+1)/(V3riz1)] i > 2

Our pebbling strategy is recursive. It is done using two sets of pebbles, a

r; =

reserve set containing one pebble per level except the first, and the remainder.
With the remaining pebbles, recursively pebble the product of two r; x r; sub-
matrices A1 and B; of A and B under the assumption that A; and B; have
pebbles at level j or lower on their entries initially. When pebbles at levels j or
lower are placed on inputs of A; and By, we exhaust pebbles at each level before
using pebbles at a lower level. Since s; > B)T'J2 + 7 — 1, this guarantees that if a
submatrix of A; or By does not have all its input vertices covered with pebbles
at level 7 — 1 or less, there will be low-level pebbles that can be moved to them
using the reserve pebbles without having to remove pebbles from other vertices.

We close this section with a lower bound for the I/O-limited version of
the game using a new lower bound [13] of the Grigoryev style [7] on the I/0O
time in the red-pebble game for matrix multiplication of the form TéZ)(S, G) >

n3/\/32(S + 1).

Theorem 7. Let G be any dag associated with matriz multiplication of n x n
matrices and let it be pebbled under the 1/O limitation. If S = s;_; < n,
then the time to pebble G at the lth level, Tl(L)(p, G), must satisfy the following
relation for 1 <[< L: B

71" (p,G) = 2(—=)

Al

5 The Fourier Transform

The discrete Fourier transform (DFT) on n inputs is defined by the matrix-
vector multiplication Az with a Vandermonde matrix. The fast Fourier transform
(FFT) graph is the well known fast implementation of the DFT. As suggested in
Figure 2, for 1 < j < d—1, the FFT graph F(49 on 2¢ inputs can be represented

as the composition of 2477 disjoint “top” FFT graphs on 2/ inputs {Ft(,;) |0 <
p < 2977 —1} with 2/ disjoint “bottom” FFT graphs on 2~/ inputs {F{, 7|0 <
m < 2 —1}, where the mth input vertex of Ft(gg) is the pth output vertex of
th:f‘n_j) for 0<m<2 —1land 0<p<2979 — 1.

Foi oY Rl R0 R Rl RO Rl

RS

o\V/
’V

X%
AN

>

o

(d) Fp 3D (d)

Fp,2 Fpa

Fig. 2. Decomposition of the FFT graph FO), Edges between shaded boxes identify
vertices common to two FFT subgraphs. The ordering of their endpoints defines a
matrix transposition.

The following bound on the S-span of the FFT dag is implicit in the work
of Hong and Kung [8] and explicit in the work of Aggarwal and Vitter [3].

Lemma 8. p(S, F()) on the 2%-input FFT graph F\9) satisfies p(S, F(9) <
25log S when S < n.

Theorem 9. Let the FFT graph on n = 2% inputs, F4, be pebbled in the stan-
dard MHG with resource vector p. Let s; = Z;:ﬂ’j and let k be the largest

integer such that s, < n. When p; > 3 there is a pebbling of F9) such that the
following relations are simultaneously satisfied:*

O(nlogn) =1
Tl(L)(Q,F(d)) =< O(nlogn/logs;_1)2<I<k+1
O(n) k+2<I<L

Proof. The lower bounds follow directly from elementary considerations and
Theorem 3 and Lemma 8. We exhibit a pebbling strategy giving upper bounds
matching these lower bounds for all 1 <! < L. Our pebbling strategy is based
on the decomposition of Figure 2.

If e divides d, decompose F(? into a collection of subgraphs F(¢) each of
which can be pebbled level by level with 2°41 level-1 pebbles without repebbling
any vertex. This observation is used in our hierarchical pebbling strategy.

The following non-decreasing sequence d = (dy,da,...,dr_1) of integers is
used to describe an efficient pebbling strategy for F(9. Let dy = 1 and dy =
[log(s1 — 1)| > 1 where s; = p1 > 3. Define m, and d, for 1 <r < L—1 by

_ llogmin(s, — 1,n)]
= |_ dr—l J

3 d, = m.d._4

Note that d, is divisible by d,_;1 and s, > 2% + 1 when s, < n + 1. From this
it follows that d, > (logmin(s, — 1, n))/4. The sizes of the sub-FFT graphs are
chosen so that a sufficient number of pebbles is available, including [— 1 reserve
pebbles, to pebble F(4) using s;_; pebbles at levels I — 1 or less.
Through induction it is possible to show that the number of level-l T/O
(r)

operations on F (), n, ', satisfies the following inequality

for 2 <! < r+ 1. In addition, each input vertex is pebbled once with pebbles at
each level.

Let k be the largest integer such that s, < n = 2% If s, # 29, it is possible
to extend the above argument. It follows that the total number of level-/ 1/0
operations, 2 <[< k + 1, is at most

2d 2d 4424
([d/di])2!~ % 2220 = [d/dy] =2 <
di_y di_y di_y
The desired conclusions follows from the observation above that d; > (log(s;—
1))/4 when s; — 1 < n.

We now state lower bounds on the number of I/O and computation steps
for DFTs realized by straight-line algorithms for the DFT. Corresponding upper
bounds are stated for FFT graphs. The lower bounds are larger than the lower
bounds of Theorem 9 when the total number of pebbles at all levels but the

2 All logarithms are to base 2.

highest, S, satisfies S < n/logn where n is the number of inputs to the DFT.
The lower bounds apply to any straight-line program for the DFT, not just linear
straight-line programs, as shown by Tompa [14], due to a new unpublished result

[13].

Theorem 10. Let FFT(n) be any dag associated with the DFT on n inputs
when realized by a linear straight-line program. Let F FT(n) be pebbled under the
I/0 limitation with resource vector p. Let s; = Ez»:lpj. If S = sp_1 < n, then
the time to pebble FFT(n) at the lth level, Tl(L) (p, FFT(n)), must satisfy the
following relation for 1 <1 < L:

77,2

T (p. FFT(n)) = 2()
Also, when n = 29, there is a pebbling of the FFT graph F(9) such that the

following relations hold simultanecously:

O(% +nlogs) [=1
T (p. F) = {0(§+ nES)9 <l <L

logsi_1

when S > 2logn.

6 Permutation and Merging Networks

Consider merging networks BS(? based on bitonic sorting networks [9, pp.
632] and permutation networks P based on three back-to-back FFT graphs
[17]. Replacing comparators in BS@ with two-input butterfly graphs produces
an FFT with edge directions reversed. It is immediate from the layered cross-
product representation of FFT graphs [6] that BS@ is isomorphic to the FFT
graph. Thus, the bounds for the FFT apply directly to BS(®.

It can be shown that lower bounds for the FFT apply to P(?) because P(%)
reduces to F(9) be eliminating edges and coalescing chains to single edges. Since
our pebbling strategy for the FFT graph in the standard MHG advances pebbles
level-by-level, using higher-level pebbles sparingly to achieve the lower bounds,
it follows that the pebbling strategy for the FFT graph is directly applicable to
this graph.

Theorem 11. Let P9 be pebbled in the standard L-level MHG with resource
vector p. Let sy = E§:1Pj and let k be the largest integer such that s; < n.
When py > 3 there is a pebbling of P\ such that the number of pebblings at

each of the L levels, {Tl(L) |1 <1 < L}, simultaneously satisfy the following
relations:

O(nlogn) =1
T (p, P9) = { O(nlogn/logsi_1) 2 <[<k+1
O(n) k+2<I1<L

When the I/O limitation applies and sz,_1 is too small, the /O and compu-
tation time to pebble the permutation and sorting networks can be much larger
than that to pebble the FFT graph. For example, Carlson and Tompa together
show the following result, which implies that P(?), which has three FFT graphs
back-to-back, requires at least as much I/O time:

Lemma1l2 [5,14,15]. Let G be the graph consisting of two back-to-back copies
of the FFT graph F9 on n = 2¢ inputs. Then the number of second-level I1/0
operations when the I1/O limitation applies in the red-pebble game when played
with S level-1 pebbles satisfies the following inequality:

1(8,G) > 2(n*/S? + (n*logn) /S)

7 Generalization to Block-1/0

Data is typically moved in blocks between memories in a hierarchy; data must
fetched from the same block in which it was stored. Our lower bounds can be
generalized to the block-1/O case by dividing the number of 1/O operations
by the size b; of blocks moving between levels | — 1 and /. This lower bound
can be achieved for matrix multiplication because data is always read from the
higher-level memory in the same way every time. For the FFT graph in the
standard MHG instead of pebbling FFT subgraphs on 2% inputs, we pebble b
FFT subgraphs on 297 /b, inputs (assuming that b; is a power of 2). This allows
all the data moving back and forth between memories in blocks to be used
and accommodates the transposition mentioned in the caption to Figure 2. This
provides an upper bound of O(nlogn/(bi—1log(si—1/bi—1))) on the T/O time at
level . Clearly, when b;_1 is much smaller than s;_1, say b_1 = O(\/H), the

upper and lower bounds match.

8 Conclusions

The Memory Hierarchy Game has been introduced and new lower bounds de-
veloped on the computation and I/O time needed at each level of a memory
hierarchy to compute functions from straight-line programs. We have studied
two variants of the game, one in which the highest level memory can be used
for intermediate results and another in which it cannot. We have demonstrated
the utility of this new game by showing that our lower bounds can be met by
pebbling strategies for matrix multiplication, the Fourier transform, as well as
merging and permutation networks.

Since it is very expensive to increase the speed of CPUs, parallel machines
are becoming increasingly more attractive. To fully exploit parallelism it will be
necessary to provide high-speed parallel memory hierarchy systems. We need a
much better understanding of parallel I/O systems if we are going to meet this
challenge.

References

[1] A. Aggarwal, B. Alpern, A. Chandra, and M. Snir, “A Model for Hierarchical
Memory,” Procs. 21st Annual ACM Symposium on Theory of Computing (May
15-17, 1989), 305-314.

[2] A. Aggarwal, A. Chandra, and M. Snir, “Hierarchical Memory with Block Trans-
fer,” Proc. 28th Annl. Symp. on Foundations of Computer Science (October
1087), 204-216.

[3] A. Aggarwal and J. S. Vitter, “The Input/Output Complexity of Sorting and
Related Problems,” Communications of the ACM 31 (September 1988), 1116-
1127.

[4] B. Alpern, L. Carter, and E. Feig, “Uniform Memory Hierarchies,” Proc. 31st
Annual Symposium on Foundations of Computer Science (October 22-24, 1990),
600-608.

[5] D. A. Carlson, “Time-Space Tradeoffs for Back-to-Back FFT Algorithms,” IEEE
Trans. Computing C-32 (1983), 585-589.

[6] S. Even and A. Litman, “Layered Cross Product - A Technique to Construct
Interconnection Networks,” Proc. 4th Ann. ACM Symp. on Parallel Algorithms
and Architectures (June 29 - July 1, 1992), 60-69.

[7] D. Y. Grigoryev, “An Application of Separability and Independence Notions
for Proving Lower Bounds of Circuit Complexity,” Notes of Scientific Seminars,

Steklov Math. Inst. 60 (1976), 35-48.

[8] J. -W. Hong and H. T. Kung, “I/O Complexity: The Red-Blue Pebble Game,”
Proc. 13th Ann. ACM Symp. on Theory of Computing (May 11-13, 1981), 326-
333.

[9] F. T. Leighton, in Introduction to Parallel Algorithms and Architectures, Morgan
Kaufmann Publishers, Inc., San Mateo, CA, 1992.

[10] M. H. Nodine and J. S. Vitter, “Large-Scale Sorting in Parallel Memories (Ex-
tended Abstract),” Procs. 3rd Annual ACM Symposium on Parallel Algorithms
and Architectures (July 21-24, 1991), 29-39.

[11] M. S. Paterson and C. E. Hewitt, “Comparative Schematology,” Proc. Proj. MAC
Conf. on Concurrent Systems and Parallel Computation (June 1970), 119-127.

[12] J. E. Savage and J. S. Vitter, “Parallelism in Space-Time Tradeoffs,” in Advances
in Computing Research, F. P. Preparata, ed., 1987, 117-146.

[13] J. E. Savage, A Generalization of Grigoryev’s Space-Time Tradeoff Method, Un-
published manuscript, March 1995.

[14] M. Tompa, “Time-Space Tradeoffs for Computing Functions, Using Connectivity
Properties of Their Circuits,” JCSS 20 (1980), 118-132.

[15] M. Tompa, “Corrigendum: Time-Space Tradeoffs for Computing Functions, Using
Connectivity Properties of Their Circuits,” JCSS 23 (1981), 106.

[16] J. S. Vitter and E. A. M. Shriver, “Optimal Disk I/O with Parallel Block Trans-
fer,” Procs. 22nd Annual ACM Symposium on Theory of Computing (May 1990),
159-169.

[17] C. L. Wu and T. Y. Feng, “The Universality of the Shuffle-Exchange Network,”
IEEE Trans. Computing C-30 (May 1981), 324-332.

This article was processed using the IXTpX macro package with LLNCS style

