Lecture 24 - MPI

ECE 459: Programming for Performance

Jon Eyolfson

University of Waterloo

March 9, 2012

What is MPI?

Messaging Passing Interface
A language-independent communation protocol for parallel
computers

= Run the same code on a number of nodes (different hardware
threads, servers)
= Explicit message passing

= Dominant model for high performance computing
(the de-facto standard)

Lecture 24 - MPI University of Waterloo

High Level MPI

= MPI is a type of SPMD (single process, multiple data)

= |dea: to have multiple instances of the same program all
working on different data

= The program could be running on the same, or cluster of
machines

= Allow simple communcation of data been processes

Lecture 24 - MPI University of Waterloo

MPI Functions

// Initialize MPI
int MPI_Init(int xargc, char *xargv)

// Determine number of processes within a communicator
int MPI_Comm_size(MPI_Comm comm, int *size)

// Determine processor rank within a communicator
int MPI_Comm_rank(MPI_Comm comm, int *rank)

// Exit MPl (must be called last by all processors)
int MPI_Finalize ()

// Send a message
int MPI_Send (void xbuf,int count, MPI_Datatype datatype,
int dest, int tag, MPI_Comm comm)

// Receive a message

int MPI_Recv (void #*buf,int count, MPI_Datatype datatype,
int source, int tag, MPI_Comm comm,
MPI_Status *status)

Lecture 24 - MPI University of Waterloo

MPI Function Notes

MPI_Datatype is just an enum, MPI_Comm is commonly
MPI_COMM_WORLD for the global communication channel

= dest/source are the “rank” of the process to send the

message to/receive the message from
= You may use MPI_ANY_SOURCE in MPI_Recv

= Both MPI_Send and MPI_Recv are blocking calls

= You can use man MPI_Send or man MPI_Recv for good
documentation

= The tag allows you to organize your messages, so you can
receive only a specific tag

Lecture 24 - MPI University of Waterloo

Example

Here's a common example:

= Have the “master” (rank 0) process create some strings and
send them to the worker processes

= The worker processes modify the string and send it back to
the master

Lecture 24 - MPI University of Waterloo

Example Code (1)

/*
"Hello World" MPI Test Program
*/
#include <mpi.h>
#include <stdio.h>
#include <string.h>

#define BUFSIZE 128
#define TAG 0

int main(int argc, char xargv[])
{

char idstr[32];

char buff[BUFSIZE];

int numprocs;

int myid;

int i;

MPI_Status stat;

Lecture 24 - MPI University of Waterloo

Example Code (2)

/+* all MPIl programs start with MPI_Init; all 'N’
* processes exist thereafter
*/

MPI_Init(&argc,&argv);

/* find out how big the SPMD world is x*/
MPI_Comm_size (MPI_COMM_WORLD,& numprocs);

/* and this processes ' rank is %/
MPI_Comm_rank (MPI_COMM_WORLD, & myid) ;

/* At this point, all programs are running equivalently ,
* the rank distinguishes the roles of the programs in
* the SPMD model, with rank 0 often used specially ...

*/

Lecture 24 - MPI University of Waterloo

Example Code (3)

if (myid = 0)

printf("%d: We have %d processors\n", myid, numprocs);
for(i=1;i<numprocs; i++)

sprintf(buff, "Hello %d! ", i);
MPI_Send (buff , BUFSIZE, MPI_CHAR, i, TAG,
MPI_COMM_WORLD) ;
}

for(i=1;i<numprocs; i++)

MPI_Recv(buff , BUFSIZE, MPI_CHAR, i, TAG,
MPI_COMM_WORLD, &stat);
printf("%d: %s\n", myid, buff);
}
}

Lecture 24 - MPI University of Waterloo

Example Code (4)

else
{

/* receive from rank 0: =/
MPI_Recv(buff , BUFSIZE, MPI_CHAR, 0, TAG,
MPI_COMM_WORLD, &stat);
sprintf(idstr, "Processor %d ", myid);

strncat (buff, idstr, BUFSIZE—1);
strncat (buff, "reporting for duty", BUFSIZE—1);
/+ send to rank 0: x/
MPI_Send (buff , BUFSIZE, MPI_CHAR, 0, TAG,
MPI_COMM_WORLD) ;
}

/* MPl Programs end with MPI Finalize; this is a weak
* synchronization point

*/
MPI_Finalize ();
return O;

Lecture 24 - MPI University of Waterloo

Compiling

// Wrappers for gcc (C/C++)
mpicc
mpicxx

// Compiler Flags
OMPI_MPICC_CFLAGS
OMPI_MPICXX_CXXFLAGS

// Linker Flags
OMPI_MPICC_LDFLAGS
OMPI_MPICXX_LDFLAGS

OpenMPI does not recommend you to set the flags yourself, to see
them try:

Show the flags necessary to compile MPI C applications
shell$ mpicc —showme: compile

Show the flags necessary to link MPI C applications
shell$ mpicc —showme: link

Lecture 24 - MPI University of Waterloo

Compiling and Running

mpirun —np <num_processors> <program>
mpiexec —np <num_processors> <program>

= Starts num_processors instances of the program using MPI

jon@riker examples master % mpicc hello_mpi.c
jon@riker examples master % mpirun —np 8 a.out
0: We have 8 processors

Hello 1! Processor
Hello 2! Processor
Hello 3! Processor
Hello 4! Processor
Hello 5! Processor
Hello 6! Processor
Hello 7! Processor

reporting for duty
reporting for duty
reporting for duty
reporting for duty
reporting for duty
reporting for duty
reporting for duty

[eNeNeoNoNeNeNe)
~NOoO b~ WN

= By default, MPI uses the lowest-latency resource available
(shared memory in this case)

Lecture 24 - MPI University of Waterloo

Other Things MPI Can Do

= We can use nodes on a network (by using a hostfile
= We can even use MPMD

= multiple processes, multiple data

% mpirun —np 2 a.out : —np 2 b.out

This launches a single parallel application

= All in the same MPI_COMM_WORLD
= Ranks 0 and 1 are instances of a.out

= Ranks 2 and 3 are instances of b.out

You could also use the —app flag with an appfile instead of typing
out everything

Lecture 24 - MPI University of Waterloo

Performance Considerations

= Your bottleneck for performance here is messages

= Keep the communication to a minimum

= The more machines, the slower the communication in general

Lecture 24 - MPI University of Waterloo

Summary

= MPI is a powerful tool for highly parallel computing across
multiple machines

= Programming is similar to a more powerful version of
fork/join

= |f you don't have a partner and would like one for Assignment
3, email me

= |f you don't want a partner, email me so it can be added to
the site

= If you have a partner, email me so it can be added to the site

Lecture 24 - MPI University of Waterloo

