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Abstract

We present and evaluate a cache oblivious algorithm for stencil computations, which arise
for example in finite-difference methods. Our algorithm applies to arbitrary stencils in n-
dimensional spaces. On an “ideal cache” of size Z, our algorithm saves a factor of Θ(Z1/n) cache
misses compared to a naive algorithm, and it exploits temporal locality optimally throughout
the entire memory hierarchy. We evaluate our algorithm in terms of the number of cache misses,
and demonstrate that the memory behavior agrees with our theoretical predictions. Our exper-
imental evaluation is based on a finite-difference solution of a heat diffusion problem, as well
as a Gauss-Seidel iteration and a 2-dimensional LBMHD program, both reformulated as cache
oblivious stencil computations.

1 Introduction

The goal of cache oblivious algorithms [14] is to use a memory hierarchy effectively without knowing
parameters such as the number of cache levels and the size of each cache. Well-designed cache
oblivious algorithm incur the minimum number of cache misses within each level of a memory
hierachy, and can deliver high performance across machines with different memory systems. Thus,
cache oblivious algorithms are portable in the sense that they can deliver high performance without
requiring machine-specific parameters to be tuned.

We have recently developed [15] a cache oblivious algorithm for stencil computations in n-
dimensional rectangular grids, for arbitrary n. At each time t, 0 ≤ t < T , a stencil computation

updates a grid point based on the values of the point and some neighboring points to produce the
value of the point at time t + 1. For sufficiently large spatial grids and time T , we proved [15] that
our algorithm incurs O(P/Z1/n) cache misses, where P is the total number of spacetime points
computed and Z is the cache size, assuming an “ideal cache” (fully associative, optimal or LRU
replacement policy) in which we ignore the effects of cache lines.

In this article, we recap our cache oblivious stencil algorithm, present specializations for n = 1
and n = 2 space dimensions in form of C functions, and conduct an empirical study of the memory
behavior. Specifically:
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1. We compare the number of cache misses of a cache oblivious heat equation solver with its
iterative counterpart on 1-, 2-, and 3-dimensional spatial grids, and on four different cache
configurations. We show that our theoretical predictions are reasonably accurate even though
real caches have limited associativity and large cache lines, and we discuss the behavior of
the cache oblivious programs for “small” problems to which the theory does not apply.

2. We show that the cache oblivious stencil algorithm applies to the Gauss-Seidel iteration, even
though Gauss-Seidel is not strictly a stencil computation because a point at time t+1 depends
upon some neighbors at time t + 1 (as opposed to t). Nevertheless, we show that the cache
oblivious Gauss-Seidel algorithm behaves like a 1-dimensional stencil, as predicted by our
theory.

3. To evaluate the end-to-end effect of cache oblivious algorithms on a more complex problem,
we show that a cache oblivious implementation of the LBMHD (Lattice Boltzmann Magneto-
Hydro-Dynamics) HPCS benchmark runs up to 4 times faster than a naive, iterative version
on a Power4+ system.

Originally proposed in theoretical investigations, cache oblivious algorithms are now practically
relevant as processor and memory speeds have diverged by orders of magnitude. In the past, cache
aware algorithms, in particular blocked algorithms, have dominated the design of high-performance
software, for example for linear algebra [3, 4, 6, 13, 16, 17]. Cache oblivious algorithms that incur the
theoretically minimum number of cache misses exist for matrix multiplication [1, 14], FFT [2, 14],
LU decomposition [9, 25], sorting [14, 11], and other problems [5, 7]. Toledo [25] experiments with
a cache oblivious LU decomposition algorithm, and concludes that the cache oblivious algorithm
is as good as any “cache aware” algorithm explicitly tuned to the memory hierarchy. Brodal and
others [11] experiment with a variant of the cache oblivious funnelsort algorithm [14], and show
that, for large problems, the cache oblivious algorithm is faster than an optimized implementation
of quicksort on contemporary machines.

Cache oblivious algorithms for special cases of stencil computations have been proposed before.
Bilardi and Preparata [8] discuss cache oblivious algorithms for the related problem of simulating
large parallel machines on smaller machines in a spacetime-efficient manner. Their algorithms apply
to 1-dimensional and 2-dimensional spaces and do not generalize to higher dimensions. In fact, the
authors declare the 3-dimensional case, and implicitly higher dimensional spaces, to be an open
problem. Prokop [23] gives a cache oblivious stencil algorithm for a 3-point stencil in 1-dimensional
space, and proves that the algorithm is optimal. His algorithm is restricted to square spacetime
regions, and it does not extend to higher dimensions.

The remainder of this article is organized as follows. In Section 2, we summarize our cache
oblivious stencil algorithm, and provide C programs for the 1-dimensional and 2-dimensional cases.
We use an initial-value heat-diffusion problem to analyze the number of cache misses of 1-, 2-,
and 3-dimensional stencil computations in Section 3. We present our cache oblivious Gauss-Seidel
algorithm in Section 4. In Section 5 we analyze the cache oblivious formulation of a larger LBMHD
program, and conclude in Section 6.

2 Cache Oblivious Stencil Algorithm

In this section, we summarize our cache oblivious stencil algorithm [15], and we present C code for
the 1- and 2-dimensional cases. The C code for the n-dimensional case with arbitrary n is listed in
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the Appendix.

void walk1(int t0, int t1, int x0, int ẋ0, int x1, int ẋ1)

{

int ∆t = t1 - t0;

if (∆t == 1) { /* base case */

int x;
for (x = x0; x < x1; ++x)

kernel(t0, x);
} else if (∆t > 1) { /* recursion */

if (2 * (x1 - x0) + (ẋ1 - ẋ0) * ∆t >= 4 * ds * ∆t) { /* space cut */

int xm = (2 * (x0 + x1) + (2 * ds + ẋ0 + ẋ1) * ∆t) / 4;
walk1(t0, t1, x0, ẋ0, xm, -ds);
walk1(t0, t1, xm, -ds, x1, ẋ1);

} else { /* time cut */

int s = ∆t / 2;
walk1(t0, t0 + s, x0, ẋ0, x1, ẋ1);

walk1(t0 + s, t1, x0 + ẋ0 * s, ẋ0, x1 + ẋ1 * s, ẋ1);

}

}

}

Figure 1: Procedure walk1 for traversing a 2-dimensional spacetime spanned by a 1-dimensional
spatial grid and time.

Procedure walk1 in Figure 1 invokes procedure kernel on all spacetime points (t, x) in a certain
region. Although we are ultimately interested in rectangular regions, procedure walk1 operates on
more general trapezoidal regions defined by the six integer parameters t0, t1, x0, ẋ0, x1, and
ẋ1. Specifically, walk1 visits all points (t, x) such that t0 ≤ t < t1 and x0 + ẋ0(t − t0) ≤ x <
x1 + ẋ1(t− t1). We define the trapezoid T (t0, t1, x0, ẋ0, x1, ẋ1) to be the set of integer pairs (t, x)
such that t0 ≤ t < t1 and x0 + ẋ0(t − t0) ≤ x < x1 + ẋ1(t − t0). (We use the Newtonian notation
ẋ = dx/dt to describe the slope of the sides of the trapezoid.) The height of the trapezoid is
∆t = t1 − t0, and we define the width to be the average of the lengths of the two parallel sides,
i.e. w = (x1−x0)+(ẋ1− ẋ0)∆t/2. The center of the trapezoid is point (t, x), where t = (t0 + t1)/2
and x = (x0 + x1)/2 + (ẋ0 + ẋ1)∆t/4, i.e. the average of the four corners.

Procedure walk1 obeys this invariant: It visits point (t + 1, x) after visiting points (t, x + k),
for all k such that −ds ≤ k ≤ ds. Integer parameter ds ≥ 0 is the stencil slope, and is set by the
user depending on the stencil shape. For example, in a 3-point stencil, spacetime point (t + 1, x)
depends upon (t, x − 1), (t, x), and (t, x + 1), in which case ds should be set to 1. For a 5-point
stencil where point (t + 1, x) also depends upon (t, x ± 2), ds should be set to 2.

Procedure walk1 decomposes a trapezoid recursively into smaller trapezoids. In the base case
t1 = t0 + 1, the trapezoid consists of a single row of spacetime points, which are traversed by
means of a for loop. In the recursive case, if the trapezoid is “sufficiently wide,” the procedure
cuts trapezoid T by means of a line of slope dx/dt = −ds (space cut) , chosen so that the two
sub-trapezoids T1 and T1 are approximately of equal width. Otherwise, the procedure cuts the
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time dimension into two approximately equal halves (time cut). Figure 2 illustrates these cuts.
The procedure traverses the two sub-trapezoids produced by the cuts in an order that respects the
stencil dependencies.
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Figure 2: Illustration of a space cut (left) and of a time cut (right). Procedure walk1 cuts the
trapezoid by means of lines through the trapezoid’s center—the average of the coordinates of the
four corners.

Procedure walk2 in Figure 3 extends walk1 to 2-dimensional stencils. This procedure traverses
3-dimensional spacetime trapezoids, specified by its ten arguments. The projections of such trape-
zoidal regions onto the (t, x) and (t, y) planes are trapezoids in the sense of procedure walk1. If
walk2 can perform a space cut on any space dimension, it does so, and otherwise it performs a
time cut. This strategy extends in a straightforward fashion to arbitrary dimensions, as described
in the Appendix.

In [15], we proved that our cache-oblivious stencil algorithm incurs O(P/Z1/n) cache misses
when traversing a (n+1)-dimensional trapezoidal spacetime region (n-dimensional space plus time)
of P points, where Z is the size of the cache, provided that the cache is “ideal” and the region is
sufficiently large. This number of cache misses matches the lower bound of Hong and Kung [18]
within a constant factor. Informally, our bound holds because the algorithm decomposes the region
into successively smaller regions. Once the surface of a region fits into cache, the algorithm traverses
the whole region incurring a number of cache misses proportional to the surface of the region. The
bound then follows from a surface vs. volume argument. We stress that the problem size for which
the surface of a region fits into cache is not encoded in the algorithm (which is therefore cache
oblivious), but it appears in the analysis only.

3 Heat Diffusion

We employ an initial-value, heat-diffusion problem to illustrate and validate the theory of cache
oblivious stencil computations empirically. Consider a simple form of the equation for 1-dimensional
heat diffusion, approximated with the finite-difference equation [24]:

u(t + 1, x) − u(t, x)

∆t
=

u(t, x + 1) − 2u(t, x) + u(t, x − 1)

(∆x)2
. (1)

Equation 1 describes the temperature u(t, x) at space coordinate x and time t of, for example,
an insulated rod with an initial temperature distribution at time t = 0. We are interested in
computing the values of u(t, x) for t = T , given some initial values u(0, x) for all x in the domain.
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void walk2(int t0, int t1, int x0, int ẋ0, int x1, int ẋ1,

int y0, int ẏ0, int y1, int ẏ1)

{

int ∆t = t1 - t0;

if (∆t == 1) { /* base case */

int x, y;
for (x = x0; x < x1; x++)

for (y = y0; y < y1; y++)
kernel(t0, x, y);

} else if (∆t > 1) { /* recursion */

if (2 * (x1 - x0) + (ẋ1 - ẋ0) * ∆t >= 4 * ds * ∆t) { /* x cut */

int xm = (2 * (x0 + x1) + (2 * ds + ẋ0 + ẋ1) * ∆t) / 4;
walk2(t0, t1, x0, ẋ0, xm, -ds, y0, ẏ0, y1, ẏ1);

walk2(t0, t1, xm, -ds, x1, ẋ1, y0, ẏ0, y1, ẏ1);

} else if (2 * (y1 - y0) + (ẏ1 - ẏ0) * ∆t >= 4 * ds * ∆t) { /* y cut */

int ym = (2 * (y0 + y1) + (2 * ds + ẏ0 + ẏ1) * ∆t) / 4;
walk2(t0, t1, x0, ẋ0, x1, ẋ1, y0, ẏ0, ym, -ds);
walk2(t0, t1, x0, ẋ0, x1, ẋ1, ym, -ds, y1, ẏ1);

} else { /* time cut */

int s = ∆t / 2;
walk2(t0, t0 + s, x0, ẋ0, x1, ẋ1, y0, ẏ0, y1, ẏ1);

walk2(t0 + s, t1, x0 + ẋ0 * s, ẋ0, x1 + ẋ1 * s, ẋ1,

y0 + ẏ0 * s, ẏ0, y1 + ẏ1 * s, ẏ1);

}

}

}

Figure 3: Function walk2 for traversing a 3-dimensional spacetime spanned by a 2-dimensional
spatial grid and time.

We assume uniform grid spacings ∆x = 1/(N − 1) and ∆t = 1/T . Let the ends of the insulated
rod be connected forming a ring, so that the resulting problem constitutes a periodic initial-value
problem. (Our cache oblivious algorithm can be applied to boundary-value problems as well.)

Figure 4 shows a simple C program for computing the finite difference approximation. The
kernel computation in function kernel consists of a 3-point stencil, as is clear from Equation 1.
During program execution, for each space coordinate x, we maintain only two spacetime points (t, x)
and (t + 1, x), stored in memory locations u[t mod 2][x] and u[(t + 1) mod 2][x], for some t that is
not necessarily the same for distinct values of x, and that varies as the computation proceeds. This
data organization corresponds to the standard programming practice of alternating between two
arrays for even and odd t. We say that the data are maintained in-place, because we reuse memory
locations by overwriting those values not needed for future computations. For large problem size N ,
the cache misses incurred by accesses to temperature array u dominate the total number of cache
misses.

We apply the kernel to all points of 2-dimensional spacetime 0 ≤ t < T, 0 ≤ x < N . The doubly
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double u[2][N];

void kernel(int t, int x)
{

u[(t+1)%2][x] = u[t%2][x] +

∆t/(∆x)2 * (u[t%2][(x+N-1)%N] - 2.0 * u[t%2][x] + u[t%2][(x+1)%N]);

}

void heat(void)

{

int t, x;
for (t = 0; t < T; t++)

for (x = 0; x < N; x++)
kernel(t, x);

}

Figure 4: C program for computing heat diffusion according to Equation 1.

nested loop in function heat implements the spacetime traversal in a simple yet inefficient manner
if problem size N is larger than cache size Z. Note that the number of cache misses incurred by this
program constitutes the worst case scenario: for N À Z, the two-fold nested loop visits P = TN
spacetime points, which causes Θ(TN) cache misses due to array u. As an alternative solution, we
present our cache oblivious version in Figure 5. Function coheat assigns the stencil slope ds = 1
associated with the 3-point stencil, and calls function walk1 to perform the spacetime traversal.
The new function kernel is called in the base case of walk1, as described in Section 2.

void kernel(int t, int x)
{

u[(t+1) % 2][x %N] = u[t % 2][x %N] +

∆t/(∆x)2 * (u[t % 2][(x+N-1) %N] - 2.0 * u[t % 2][x %N] + u[t % 2][(x+1) %N]);

}

void coheat(void)

{

ds = 1;
walk1(0, T, 0, 1, N, 1); /* ẋ0 = ẋ1 = 1 */

}

Figure 5: Cache oblivious program for computing heat diffusion, cf. Figure 4.

We evaluate the memory behavior of the heat equation solver by comparing load-miss counts of
the naive, iterative program with those of the cache oblivious version in Tables 1, 2, and 3. Load-
misses are the first-order effect of memory behavior and, therefore, reflect the primary difference
between the two programs. Note that store misses do not add any information to the analysis,
because, for stencil computations, the number of store misses is within a constant factor of the
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number of load misses. The numbers in Table 1 for 1-dimensional space (n = 1) stem from the
naive program shown in Figure 4 and from the cache oblivious program in Figure 5. Tables 2 and 3
show the load misses for higher dimensional problems with n = 2 and n = 3. All numbers are
generated by IBM’s full-system simulator Mambo [10], simulating one Power4 processor with four
different memory subsystem configurations, described in detail below. All programs were compiled
with gcc -O2 -m32, version 3.4.0, and run under Linux-2.6.7.

Each of the tables presents the load misses of four different cache configurations: (1) a 2-way
set-associative cache with a line size of 32 bytes, (2) a 4-way set-associative cache with 32 bytes per
line, (3) a 2-way set-associative cache with 128 bytes per line, and (4) a 4-way set-associative cache
with 128 bytes per line.1 For each of the four configurations, we vary the total cache size Z between
16 Kbytes and 4 Mbytes. We report the absolute number of load misses of the naive version, the
cache oblivious version, and the ratio of the two counts. The ratio is the factor by which the cache
oblivious version reduces the number of load misses compared to the naive version.

The load-miss data enable us to compare theory and practice of cache oblivious algorithms.
The theory is based on a fully associative “ideal cache”, it ignores the effects of line sizes, and it
assumes that the working set is too large to fit into cache. In contrast, we simulated realistic caches
with limited associativity and large line sizes, and both large as well as small problems. The data
in the three tables lead us to the following observations:

1. The number of cache misses of the iterative version is a stepwise constant function of cache
size Z. For increasing Z, the number of load misses drops once a number of rows, planes, or
the entire working set fit into the cache.

2. The number of load misses of the cache oblivious version is significantly smaller than those
of the naive version if the working set does not fit into cache. Furthermore, for increasing
cache size Z, the number of load misses Θ(P/Z1/n) decreases monotonically according to the
theory.

3. The benefit of increasing associativity from 2-way to 4-way is negligible for the smaller line
size of 32 bytes, yet noticeable for small caches with a large line size of 128 bytes.

4. Increasing the line size by a factor of 4 approaches the ideal reduction of the number of
load misses by a factor of 4 in the naive version. The benefit for the cache oblivious version
is less pronounced. This is not surprising, since the loop structure of the naive version
introduces the artificial property of spatial locality while the cache oblivious version exploits
the algorithmically fundamental property of temporal locality.

5. We only modeled one cache level in our simulations, but the results can also be interpreted
as L2 misses on systems where L2 is inclusive of L1, for example.

In the following, we discuss the discrepancies between the predicted and the observed number
of load misses. Our theory states that the number of load misses for n-dimensional heat diffusion
is O(P/Z1/n). This statement is the result of an asymptotic analysis, which assumes that N and T
are large compared to cache size Z. We now discuss how the theory breaks down when either N
or T are small.

1The last two configurations reflect the cache parameters of the Power4 and Power5 processors, respectively.
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Z
2-way, 32 bytes/line 4-way, 32 bytes/line 2-way, 128 bytes/line 4-way, 128 bytes/line

naive obliv ratio naive obliv ratio naive obliv ratio naive obliv ratio

16 K 15,001,050 105,239 142.5 15,001,050 93,083 161.2 3,751,039 108,425 34.6 3,751,039 24,085 155.7
32 K 15,001,050 51,388 291.9 15,001,050 45,798 327.5 3,751,039 50,632 74.1 3,751,039 11,626 322.6
64 K 15,001,050 16,356 917.2 15,001,050 16,389 915.3 3,751,039 4,140 906.0 3,751,039 4,160 901.7

128K 15,001,050 15,663 957.7 15,001,050 15,567 963.6 3,751,039 3,947 950.4 3,751,039 3,919 957.1
256K 15,001,050 15,559 964.1 15,001,050 15,559 964.1 3,751,039 3,917 957.6 3,751,039 3,917 957.6
512K 15,001,050 15,555 964.4 15,001,050 15,555 964.4 3,751,039 3,916 957.9 3,751,039 3,916 957.9

1 M 15,048 15,049 1.0 15,048 15,049 1.0 3,788 3,787 1.0 3,788 3,787 1.0
2 M 15,048 15,049 1.0 15,048 15,049 1.0 3,788 3,787 1.0 3,788 3,787 1.0
4 M 15,048 15,049 1.0 15,048 15,049 1.0 3,788 3,787 1.0 3,788 3,787 1.0

Table 1: Load misses of 1-dimensional heat diffusion for N = 60,000 and T = 1,000.

Small N In Table 1, the number of load misses of the naive version drops for cache sizes Z ≥
1 Mbyte to the asymptotic limit of the cache oblivious version, because the working set fits
into cache. In general, if the working set is smaller than the cache size, the number of load
misses of a stencil computation is the number of compulsory misses for both the naive and the
cache oblivious version. In the 1-dimensional problem, the number of load misses is Θ(N),
because N temperature values of array u dominate the working set, and occupy N · 8 bytes
of memory. Thus, for N = 60,000 and 32 bytes per line, we expect 15,000 load misses, and
for 128 bytes per line 3,750 load misses. These numbers agree well with those in Table 1.

Small T In Table 1, the ratio of load misses of the naive and the cache oblivious versions appears
to approach 1,000 as Z increases to 512 Kbytes. This limit coincides with the number of time
steps T = 1,000, and is quite easy to explain. In a spacetime region with height T < Θ(Z), we
can only reduce the number of cache misses by a factor of Θ(T ) rather than Θ(Z1/n), because
each value can be reused at most O(T ) times. Thus, the number of load misses of the cache
oblivious version becomes Θ(P/T ) for small T . We observe that limiting ratio T = 1,000
holds in all four cache configurations.

For 1-dimensional stencils, these two effects can be unified formally. If N is small, the number
of cache misses is Θ(N). If T is small, the number of cache misses is Θ(P/T ), which is also Θ(N)
because the number of spacetime points is P = TN . Therefore, we conclude that the number of
cache misses is

Θ

(

P

min(T, Z)

)

(2)

in the 1-dimensional case.
Figure 6 illustrates the cache behavior of the 1-dimensional heat diffusion problem. We plot the

load misses of the naive and cache oblivious version for a 4-way set associative cache with 32 bytes
per line (the second group of columns in Table 1). The plot clearly distinguishes two regions: (1)
region N, T À Z, where our theory predicts Θ(P/Z) load misses, and (2) region N, T . Z, where
Equation 2 prescribes Θ(P/T ) load misses.

Table 2 and Figure 7 present the number of load misses for the 2-dimensional heat diffusion
problem. Here, N is the rank of both space dimensions, resulting in P = TN 2 spacetime points.
The size of the working set is proportional to N 2 and does not even fit into the largest cache.
Furthermore, the number of time steps T = 100 is just large enough for the ratio to reach about
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Figure 6: Load misses of 1-dimensional heat diffusion for the naive and cache oblivious versions,
and fitted predictions.

Z
2-way, 32 bytes/line 4-way, 32 bytes/line 2-way, 128 bytes/line 4-way, 128 bytes/line

naive obliv ratio naive obliv ratio naive obliv ratio naive obliv ratio

16 K 75,200 8,135 9.2 75,200 7,491 10.0 18,950 5,436 3.5 18,950 3,026 6.3
32 K 25,288 4,990 5.1 25,210 4,863 5.2 6,499 2,911 2.2 6,445 1,782 3.6
64 K 25,150 3,283 7.7 25,025 3,381 7.4 6,361 1,066 6.0 6,256 1,068 5.9

128 K 25,101 2,870 8.7 25,025 2,324 10.8 6,312 863 7.3 6,256 677 9.2
256 K 25,076 1,572 16.0 25,025 1,666 15.0 6,287 442 14.2 6,256 469 13.3
512 K 25,025 1,066 23.5 25,025 1,120 22.3 6,256 284 22.0 6,256 299 20.9

1M 25,025 1,033 24.2 25,025 701 35.7 6,256 270 23.2 6,256 176 35.5
2M 25,025 680 36.8 25,025 696 35.9 6,256 170 36.6 6,256 174 35.8
4M 25,025 313 79.7 25,025 359 69.6 6,256 78 79.6 6,256 90 69.2

Table 2: Load misses of 2-dimensional heat diffusion for N = 1000 and T = 100. All miss counts
are expressed in thousands.

80 % of its upper bound at value 100. Theory predicts that the cache oblivious version has Θ(P/
√

Z)
load misses, and N and T are large enough that the theoretical assumptions are satisfied. The fitted
curve in Figure 7 shows that theory matches experiments quite well.

The load miss data of the naive version in Table 2 demonstrate the inefficient memory behavior
when compared to the cache oblivious version. The number of load misses remains flat for all cache
sizes, with the exception of the drop from Z = 16 Kbyte to Z = 32 Kbyte by a factor of three.
This drop can be explained by the fact that three rows of the domain fit into 32 Kbyte but not
into 16 Kbyte, and enable reuse of matrix rows from previous iterations. Finally, we note that the
qualitative behavior of both the naive and the cache oblivious versions is the same for all cache
configurations, respectively.

Table 3 and Figure 8 show the load misses for the 3-dimensional heat diffusion problem with
P = TN3 spacetime points, where N = T = 100. Figure 8 shows the fitted curve for the number
of load misses Θ(P/ 3

√
Z), as predicted by our theory for the cache oblivious version. As in the

2-dimensional case, N and T are large enough for the theory to be applicable, and the load miss
data approach the fitted curve asymptotically in Z.
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Figure 7: Load misses of 2-dimensional heat diffusion for the naive and cache oblivious versions,
and fitted predictions.

Z
2-way, 32 bytes/line 4-way, 32 bytes/line 2-way, 128 bytes/line 4-way, 128 byte/line

naive obliv ratio naive obliv ratio naive obliv ratio naive obliv ratio

16K 75,018 46,446 1.6 75,016 43,230 1.7 18,766 25,366 0.7 18,762 23,887 0.8
32K 75,016 28,829 2.6 75,016 29,352 2.6 18,762 16,293 1.2 18,762 16,418 1.1
64K 75,016 23,695 3.2 75,016 21,160 3.5 18,762 13,021 1.4 18,762 10,858 1.7

128K 75,016 16,167 4.6 75,016 16,507 4.5 18,762 7,552 2.5 18,762 7,697 2.4
256K 50,205 12,064 4.2 75,016 12,207 6.1 12,573 4,960 2.5 18,762 4,966 3.8
512K 25,270 9,567 2.6 25,253 9,399 2.7 6,319 3,662 1.7 6,313 3,471 1.8

1M 25,253 7,420 3.4 25,253 7,564 3.3 6,314 2,577 2.4 6,313 2,600 2.4
2M 25,253 6,321 4.0 25,253 5,601 4.5 6,313 2,177 2.9 6,313 1,839 3.4
4M 25,253 4,451 5.7 25,253 4,481 5.6 6,313 1,360 4.6 6,313 1,371 4.6

Table 3: Load misses of 3-dimensional heat diffusion for N = 100 and T = 100. All miss counts
are expressed in thousands.

We observe that the number of load misses of the naive version remains flat, except for the drop
from Z = 256 Kbytes to Z = 512 Kbytes. This drop is caused by an effect analogous to the one
that occurs in the 2-dimensional naive version. Here, in case of the 3-dimensional problem, three
planes of the domain fit into 512 Kbyte but not into 256 Kbyte, and enable a partial form of data
reuse.

4 Gauss-Seidel

In this section we study a cache oblivious algorithm of the Gauss-Seidel method [16] for banded
linear systems of equations Ax = b. Equation 3 defines the Gauss-Seidel iteration.2 The Gauss-
Seidel method is not usually regarded as a stencil computation. Nevertheless, it can be cast into
our cache oblivious stencil framework, and so can other iterative methods, including the successive

2Note the name clash between space coordinate x and vector x of unknowns in the standard notation Ax = b. We
attempt to mitigate potential confusion by virtue of context and lexical scoping.
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Figure 8: Load misses of 3-dimensional heat diffusion for the naive and cache oblivious versions,
and fitted predictions.

over-relaxation (SOR) method, that have the same structure of Gauss-Seidel.
This equation defines the stencil computation for element xi:

x
(k+1)
i =

1

aii



bi −
i−1
∑

j=0

aijx
(k+1)
j −

N−1
∑

j=i+1

aijx
(k)
j



 for
i = 0, 1, . . . , N − 1,
k = 0, 1, . . . .

(3)

Within each iteration k, the method updates all elements xi by looping over index i in the order

[0, 1, . . . , N − 1]. Due to this particular order, the computation of x
(k+1)
i can be organized in-place,

and references values x
(k+1)
j of the current iteration (k + 1) for 0 ≤ j < i, and values x

(k)
j for

i < j < N of the previous iteration k.
Equation 3 can be fine-tuned for banded systems. The lower bound of the first sum and the

upper bound of the second sum are adjusted to reflect the structure of matrix A with bandwidth Q.
Element xi at iteration (k + 1) depends on these neighboring values:

x
(k+1)
i = f

(

x
(k+1)
i−Q , . . . , x

(k+1)
i−2 , x

(k+1)
i−1 , x

(k)
i+1, x

(k)
i+2, . . . , x

(k)
i+Q

)

. (4)

By storing only non-zero subdiagonals of A, we can reduce the storage requirements to less than
(2Q + 1)N elements [16]. Band matrix A and the right-hand side b are read-only and, therefore,
do not generate any dependencies. Vector x, however, is updated in-place by overwriting value xi

of iteration k with the new value of iteration (k + 1).
Figure 9 shows a cache oblivious program for the Gauss-Seidel iteration. We run a fixed number

of 10 iterations, as may be desired when applying the method as a smoother of high-frequency

oscillations, for instance. We associate element x
(k)
i with spacetime point (t, x) by mapping index i

into the x-coordinate and iteration count k into the t-coordinate. Thus, element x
(k+1)
i is mapped

to point (t + 1, x), x
(k+1)
i−1 to (t + 1, x − 1), x

(k)
i+1 to (t, x + 1), etc. For bandwidth Q, the stencil is

an unsymmetric (2Q + 1)-point stencil which requires stencil slope ds = Q.
Table 4 compares the load miss counts of the naive Gauss-Seidel program [16] with the cache

oblivious version of Figure 9. For problem size N = 15,000 and bandwidth Q = 8, the working
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void kernel(int k, int i)
{

int j;

x[i] = 0.0;
for (j = MAX(0,i-Q); j < i; j++)

x[i] += A(i,j) * x[j];
for (j = i+1; j < MIN(i+Q+1,N); j++)

x[i] += A(i,j) * x[j];
x[i] = (b[i]-x[i]) / A(i,i);

}

void co_gauss_seidel(void)

{

ds = Q;

walk1(0, 10, 0, 0, N, 0);
}

Figure 9: Cache oblivious Gauss-Seidel iteration for band matrixes of order N and bandwidth Q,
running 10 iterations.

set fits into the caches of size Z = 4 M . By comparison with Table 1 we confirm that the Gauss-
Seidel program behaves like a 1-dimensional problem (n = 1). Furthermore, since the number of
iterations is 10, we find that the ratio of cache misses is limited by T = 10. Finally, we mention
that we have observed runtime improvements up to a factor of 4 on a Power4+ system due to cache
obliviousness.

5 Two-dimensional LBMHD

In this section, we show that a cache oblivious version of the 2-dimensional LBMHD (Lattice-
Boltzmann Magneto-Hydro-Dynamics) HPCS benchmark [20, 21] runs up to 4 times faster than the
naive version on a Power4+ system. Lattice Boltzmann methods [12, 19, 22] solve the Boltzmann
transport equation for modeling the distribution of particles in physical systems. The LBMHD
benchmark applies lattice Boltzmann methods to the evolution of a 2-dimensional conducting fluid.

We applied our cache oblivious stencil algorithm to the LBMHD benchmark. The original code
is written in FORTRAN, and its computational kernel consists of two separate routines: stream

(particle redistribution) and collision. We rewrote the program in C and merged functions
stream and collision into a single computational kernel that has the form of a 2-dimensional 13-
point stencil. In the process, we eliminated temporary arrays and the associated redundant data
copies that the original code used to communicate between the stream and collision routines.
Our kernel procedure comprises 309 floating point operations and 63 memory loads, and it is
numerically equivalent to the original one. We produced both a cache oblivious implementation,
using the 2-dimensional traversal procedure from Figure 3, and a naive, iterative version based on
a straightforward nested loop for traversing spacetime and the same unified kernel.
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Z
2-way, 32 byte/line 4-way, 32 bytes/line 2-way, 128 bytes/line 4-way, 128 bytes/line

naive obliv ratio naive obliv ratio naive obliv ratio naive obliv ratio

16 K 712,492 221,616 3.2 712,492 215,298 3.3 181,479 86,412 2.1 178,179 62,534 2.8
32 K 712,492 160,918 4.4 712,492 95,970 7.4 178,179 50,243 3.5 178,179 25,176 7.1
64 K 712,492 157,052 4.5 712,492 75,354 9.5 178,179 42,434 4.2 178,179 19,089 9.3

128 K 712,492 73,129 9.7 712,492 74,881 9.5 178,179 18,251 9.8 178,179 18,790 9.5
256 K 712,492 71,478 10.0 712,492 71,466 10.0 178,179 17,980 9.9 178,179 17,975 9.9
512 K 712,492 71,464 10.0 712,492 71,460 10.0 178,179 17,975 9.9 178,179 17,974 9.9

1 M 712,492 71,456 10.0 712,492 71,456 10.0 178,179 17,973 9.9 178,179 17,973 9.9
2 M 225,536 71,452 3.2 328,370 71,452 4.6 56,452 17,961 3.1 82,193 17,962 4.6
4 M 71,289 71,425 1.0 71,289 71,383 1.0 17,847 17,940 1.0 17,847 17,916 1.0

Table 4: Load misses of Gauss-Seidel with N = 15,000 and Q = 8.

Problem Size N 1024 2048 4096 8192

iterative Gflop/s 0.43 0.32 0.32 0.29

% peak 7.4 5.5 5.5 5.0

cache Gflop/s 1.1 1.2 1.3 1.2

oblivious % peak 19.7 20.7 22.4 20.7

Gflop/s ratio (obliv/iter) 2.6 3.7 4.0 4.2

Table 5: Performance of our iterative and cache-oblivious implementations of LBMHD on a
1.45 GHz Power4+ with 5.8 Gflop/s peak performance.

Table 5 reports the performance of both the cache oblivious and the iterative versions. We
produced these data on a 1.45 GHz Power4+ machine. Our kernel runs at about 1.55 Gflop/s
on small problem sizes that fit into the L1-cache. We observe in Table 5 that the performance
degradation of large problems is minimal for the cache oblivious implementation. Even though
our kernel has a different structure than the original code, the performance of our iterative version
is consistent with the results reported in [21] for the original LBMHD benchmark on a similar
machine, suggesting that the iterative implementation is limited by the memory performance of
the machine. We report observing speedups reaching factor 8 of our cache oblivious program versus
the original FORTRAN code on a Power4+ system.

Table 6 compares the number of load misses of the iterative LBMHD program with the cache
oblivious version. LBMHD has a memory footprint of 27 double precision numbers per spacetime
point. Consequently, for problem size N = 1, 024, we find that five rows of the problem domain
fit into a cache of size Z = 1 Mbyte. Thus, the number of load misses in the iterative version
drops steeply for cache sizes around Z = 1 Mbyte. More importantly, we observe that the number
of cache misses in the cache oblivious version decreases, as expected, proportionally to the square
root of the cache size, since LBMHD is a 2-dimensional problem. It is of course hard to correlate
the ratios of the number of load misses in Table 6 with the speedups reported in Table 5, given the
complexity of todays computer systems.
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Z
2-way, 32 bytes/line 4-way, 32 bytes/line 2-way, 128 bytes/line 4-way, 128 bytes/line

naive obliv ratio naive obliv ratio naive obliv ratio naive obliv ratio

16 K 1,233 774 1.6 1,194 682 1.8 544 462 1.2 448 349 1.3
32 K 1,205 578 2.1 1,193 521 2.3 469 257 1.8 443 213 2.1
64 K 1,193 400 3.0 1,193 390 3.1 443 155 2.9 443 151 2.9

128 K 1,193 331 3.6 1,193 284 4.2 443 124 3.6 443 102 4.3
256 K 1,193 297 4.0 1,193 231 5.2 443 109 4.1 443 80 5.5
512 K 1,155 265 4.3 1,189 206 5.8 443 95 4.7 443 70 6.3

1 M 609 226 2.7 627 176 3.6 305 78 3.9 372 59 6.4
2 M 367 186 2.0 354 130 2.7 97 63 1.5 89 42 2.1
4 M 357 100 3.6 354 106 3.4 91 32 2.9 89 33 2.7

Table 6: Load misses of LBMHD for N = 1024 and T = 50; all miss counts to be multiplied by
106.

6 Conclusions

We present an empirical analysis of the memory behavior of cache oblivious stencil computations.
To enable a meaningful performance evaluation, we focus our efforts on the number of load misses.
We use a heat diffusion problem and a Gauss-Seidel iteration to illustrate the formulation of cache
oblivious stencil computations based on our spacetime traversal routines. We conclude that the
theoretically predicted cache miss counts agree with our experiments. Furthermore, we interpret
those cache miss counts where the assumptions of the asymptotic theory do not hold, because
the problem size and number of time steps is too small. Our cache oblivious formulation of a
2-dimensional LBMHD program provides evidence for the practical value of cache oblivious algo-
rithms. The cache oblivious version is up to a factor of 4 faster than the iterative version, and runs
up to 8 times faster than the original program on a Power4+ system.

A Appendix: Multidimensional Spacetime Traversal

The walk procedure in Figure 10 computes n-dimensional stencils, where n > 0 is the number of

space dimensions (i.e., excluding time) [15]. The n-dimensional trapezoid T (t0, t1, x
(i)
0 , ẋ

(i)
0 , x

(i)
1 , ẋ

(i)
1 ),

where 0 ≤ i < n, is the set of integer tuples (t, x(0), x(1), . . . , x(n−1)) such that t0 ≤ t < t1 and

x
(i)
0 + ẋ

(i)
0 (t − t0) ≤ x(i) < x

(i)
1 + ẋ

(i)
1 (t − t0) for all 0 ≤ i < n. Informally, for each dimension i,

the projection of the multi-dimensional trapezoid onto the (t, x(i)) plane looks like a 1-dimensional
trapezoid. Consequently, we can apply the same recursive decomposition that we used in procedure
walk1 for the 1-dimensional case: if any dimension i permits a space cut in the (t, x(i)) plane, then
cut space in dimension i. Otherwise, if none of the space dimensions can be split, cut time in the
same fashion as in the 1-dimensional case.

Procedure walk encodes a multi-dimensional trapezoid by means of an array of tuples of type
C, the configuration tuple for one space dimension. Figure 10 hides the traversal of the n-
dimensional base case in procedure basecase. We leave it as a programming exercise to develop
this procedure, which visits all points of the rectangular parallelepiped at time step t0 in all space
dimensions by calling application specific procedure kernel; see the base cases in procedures walk1
and walk2.
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typedef struct { int x0, ẋ0, x1, ẋ1 } C;

void walk(int t0, int t1, C c[n])
{

int ∆t = t1 - t0;

if (∆t == 1) {

basecase(t0, c);

} else if (∆t > 1) {

C *p;

/* for all dimensions, try to cut space */

for (p = c; p < c + n; ++p) {

int x0 = p->x0, x1 = p->x1, ẋ0 = p->ẋ0, ẋ1 = p->ẋ1;

if (2 * (x1 - x0) + (ẋ1 - ẋ0) * ∆t >= 4 * ds * ∆t) {

/* cut space dimension *p */

C save = *p; /* save configuration *p */

int xm = (2 * (x0 + x1) + (2 * ds + ẋ0 + ẋ1) * ∆t) / 4;

*p = (C){ x0, ẋ0, xm, -ds }; walk(t0, t1, c);

*p = (C){ xm, -ds, x1, ẋ1 }; walk(t0, t1, c);

*p = save; /* restore configuration *p */

return;

}

}

{

/* because no space cut is possible, cut time */

int s = ∆t / 2;

C newc[n];
int i;

walk(t0, t0 + s, c);

for (i = 0; i < n; ++i) {

newc[i] = (C){ c[i].x0 + c[i].ẋ0 * s, c[i].ẋ0,

c[i].x1 + c[i].ẋ1 * s, c[i].ẋ1 };

}

walk(t0 + s, t1, newc);

}

}

}

Figure 10: A C99 implementation of the multi-dimensional walk procedure. The code assumes
that n is a compile-time constant. The base case and the definition of the slope ds are not shown.
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