KAAPI: A thread scheduling runtime system for data flow
computations on cluster of multi-processors

Thierry Gautier, Xavier Besseron, Laurent Pigeon
INRIA, projet MOAIS
LIG, Batiment ENSIMAG
51 avenue Jean-Kuntzmann
] _ ~ F-38330 Montbonnot St Martin, France] _
thierry.gautier@inrialpes.fr, xavier.oesseron@imag.fr, laurent.pigeon@imag.fr

ABSTRACT

The high availability of multiprocessor clusters for com-
puter science seems to be very attractive to the engineer
because, at a first level, such computers aggregate high per-
formances. Nevertheless, obtaining peak performances on
irregular applications such as computer algebra problems re-
mains a challenging problem. The delay to access memory is
non uniform and the irregularity of computations requires to
use scheduling algorithms in order to automatically balance
the workload among the processors.

This paper focuses on the runtime support implementa-
tion to exploit with great efficiency the computation re-
sources of a multiprocessor cluster. The originality of our
approach relies on the implementation of an efficient work-
stealing algorithm for a macro data flow computation based
on minor extension of POSIX thread interface.

Categories and Subject Descriptors

D.1.3 [Programming Techniques|: Concurrent Program-
ming—distributed programming, parallel programming

General Terms

Performance, Algorithms, Experimentation

Keywords

Work-stealing, dataflow, multi-core, multi-processor, cluster

1. INTRODUCTION

Multithreaded languages have been proposed as a gen-
eral approach to model dynamic, unstructured parallelism.
They include data parallel ones —e.g. NESL [4] —, data flow —
ID [9] -, macro dataflow — Athapascan [15] —, languages with
fork-join based constructs — Cilk [7] — or with additional syn-
chronization primitives —Jade [34], EARTH [19] —.

Efficient execution of a multithreaded computation on
a parallel computer relies on the schedule of the threads

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

PASCO’07, July 2728, 2007, London, Ontario, Canada.
Copyright 2007 ACM 978-1-59593-741-4/07/0007 ...$5.00.

15

among the processors. In the work-stealing scheduling [7],
each processor gets its own stack implemented by a deque
of frames. When a thread is created, a new frame is ini-
tialized and pushed at the bottom of the deque. When a
processor become idle, it tries to steal work from a victim
processor with a non-empty deque; then it takes the top-
most frame (the least recently pushed frame) and places it
in its own deque which is linked to the victim deque.

Such scheduling has been proven to be efficient for fully-
strict multithreaded computations [7, 12] while requiring a
bounded memory space with respect to a depth first sequen-
tial execution [8, 29].

In Cilk [7], the implementation is highly optimized and
follow the work first principle that aims at moving most of
the scheduling cost of from the work of the execution to the
rare case during work-stealing operations. Lock free algo-
rithm manages the access to the deque allowing to reach
good efficiency even for fine grain application. Cilk is one
of the best known system that allows developers to focus on
the algorithm rather than the hardware. Nevertheless, Cilk
targets are shared memory machines. Although a past ver-
sion of Cilk, called Cilk-NOW [6], was designed for network
of workstations, the current highly optimized Cilk cannot
runs on multiprocessor cluster. The underlaying DAG con-
sistency memory model remains challenging to implement
for large scale clusters.

Data flow based languages do not suffer from penalty due
to memory coherence protocol, mainly because data move-
ment between instructions are explicit in the model. Since
the 70s, data flow models have moved to multi-threaded
architecture where key points of original model have been
conserved in order to hide latency of (remote) memory ac-
cess.

The EARTH [19, 28] Threaded-C language exposes two
level of threads (standard threads and fiber threads) that
allows a fine control over the effective parallelism. Fibers
are executed using a data flow approach: a synchronization
unit detects and schedules fibers that have all their inputs
produced. In [37], the authors present a thread partitioning
and scheduling algorithm to statically gather instructions
into threads.

The paper focuses on the implementation of KAAPI [25],
a runtime support for scheduling irregular macro data flow
programs on a cluster of multi-processors using a work-
stealing algorithm [10, 17]. Section 2 presents the high level
and low level programming interfaces. We show how the in-
ternal data flow representation is built at runtime with low

overhead. Moreover, we explain our lazy evaluation of readi-
ness properties of the data flow graph following the work first
principle of Cilk. This is similar to hybrid data flow archi-
tecture which allows to group together tasks for a sequential
execution in order to reduce scheduling overhead. Neverthe-
less, KAAPI permits to reconsider at runtime group of tasks
in order to extract more parallelism. Section 3 deals with
the runtime system and the scheduling of KAAPI threads
on the processors. The work-stealing algorithm relies on an
extension of POSIX thread interface that allows work steal-
ing. Next, we present the execution of data flow graph as
an application of the general work-stealing algorithm when
threads are structured as lists of tasks. This section ends
with the presentation of the thread partitioning to distribute
work among processors prior to the execution. The interac-
tion with the communication sub-system to send messages
over the network concludes this section. Section 4 reports
experiments on multi-core / multi-processor architectures,
clusters and grids up to 1400 processors.

2. THE KAAPI PROGRAMMING MODEL

This section describes the high level instructions used to
express parallel execution as a dynamic data flow graph.
Our instructions extend the ones proposed in Cilk [14] in
order to take into account data dependencies. Following
Jade [34], parallel computation is modelled from three con-
cepts: tasks, shared objects and access specification. How-
ever, while Jade is restricted to iterative computations, here
nested recursive parallelism is considered to take benefit
from the work-stealing scheduling performances [8, 15, 17].

2.1 High level interface

The KAAPI interface is based on the Athapascan inter-
face described in [15, 16]. The programming model is based
on a global address space called global memory and allows
to describe data dependencies between tasks that access ob-
jects in the global memory. The language extends C++
with two keywords'. The shared keyword is a type qualifier
to declare objects in the global memory. The fork keyword
creates a new task that may be executed in concurrence
with other tasks. Figure 1 sketches the folk algorithm for
computing the n-th Fibonacci number in a recursive way.
A task is a function call: a function that should return no
value except through the global memory and its effective pa-
rameters. The function signature should specify the mode
of access (read, write or access) of the formal parameters in
the global memory. For instance the function sum of the fig-
ure 1 is specified to have read accesses (res1 and res2) and
to have write access (res). The effective parameters in the
global memory are passed by reference and other parameters
are passed by value.

This very high level interface is very simple and only con-
tains two keywords. There exists restrictions for passing ef-
fective parameter to formal parameter during task creation
in order to ensure non-blocking execution of tasks. The
reader should refer to [16] for a complete description of the
interface and these restrictions.

LCurrently this language extension uses C++ template def-
initions and specializations.

16

f include <athapascan-1>
void sum(shared_r int resl, shared_r int res2, shared_w int res)
{ res =resl+res2; }

void fibonacci(int n, shared_w int res)
{
if (n < 2)res=nmn;
else {
shared int resl;
shared int res2;
fork fibonacci(n-1, resl);
fork fibonacci(n-2, res2);
fork sum(resl, res2, res);

}
}

Figure 1: Fibonacci algorithm with Athapascan in-
terface. shared_w (resp. shared_r) means that the
parameter is written (resp. read).

2.2 Low level interface and internal data flow
graph representation

The KAAPI low level interface allows to build the macro
data flow graph between tasks during the execution of Atha-
pascan program. This interface defines several objects. A
closure object represents a function call with a state. An
access object represents the binding of an formal parameter
in the global memory. The state of a closure can be created,
running, stolen or terminated and represents the evolution
of the closure during the execution. The state of the access
object is one of the following: created, ready, destroyed. An
access is created when a task is forked.

Once it is created, a closure should be bound to each ef-
fective parameter of the call. Binding of parameter by value
makes copy. Binding of shared object in the global mem-
ory links together the last access to the object and the new
access. The link between accesses is called shared link and
represents the sequence of accesses on a same shared vari-
able. Figure 2 illustrates the internal data flow graph after
one execution of the task’s body fibonacci of the figure 1.
Let us note that creation of objects closure and access are
pushed in a stack in order to improve allocation performance
(O(1) allocation time). Moreover, a stack is associated to
each control flow, so that there is no contention on stack.
When a closure is being executed, an activation frame is first
pushed in the stack in order to restore the activation of the
caller’ stack environment after the execution. There is no
a priort limit on the stack size: it is managed as a linked
list of memory blocks of fixed size, except for some request.
The system guarantees that an allocation request in a stack
returns a contiguous block of memory, even at the expense
of allocation of a block size by the system that corresponds
to the request.

2.3 Semantic and natural execution order

The semantic is lexicographic: statements are lexicograph-
ically ordered by ’;’. The value read from a parameter with
shared_r access specification is the last written value ac-
cording to the lexicographic order. This order is called the
reference order.

This reference order is important for the execution: if only
one processor is available for execution, then the execution

Base stack Base stack

Frame fibo(n,r)

Frame fibo(n,r)

j Closure link

frame link

fibo(n-1,r1)

fibo(n-1,2)

activation j

sum(r,rl,12)

Frame fibo(n-1,r)

fibo(n-2.r1) shared links

fibo(n-3,2)
12: Read Access

.

activation

sum(rrL.r2) Frame fibo(n-1r)

fibo(n-2.r1)

Frame fibo(n-2,r)

fibo(n-3,11)

fibo(n-412) fibo(

I]

sum(r,rl.r2)

Top stack ——»

/_\/

(a) Activation frames

12: Read Access

Top stack

%

(b) Shared links

Figure 2: Data flow representation after one execu-
tion of a Fibonacci task.

of closures following this reference order is correct and does
not require to compute the state of the closure objects and
access objects of the data flow graph. This case corresponds
to the standard execution, when no processor is idle.

Next section deals with scheduling when a processor be-
comes idle.

3. THREAD SCHEDULING IN KAAPI

The execution of a KAAPI program on a cluster is done
by a dynamic set of processes, one per multi-processor, com-
municating through a network. Each process has several
threads of control to execute tasks. In KAAPI a thread rep-
resents a computation. A thread could be an active control
flow executing some computation or are inactive. At deploy-
ment step, one of the processes is designed to be the main
process which starts the thread that executes the main task.
This thread is called the main thread of the distributed ex-
ecution.

Next sections present the thread interface and the non-
preemptive scheduling algorithm by work stealing. Sec-
tion 3.3 shows connection from the KAAPI thread to data
flow computation.

3.1 Thread

Thread interface in KAAPT is a subset of POSIX threads [30]

except for the functionalities about the management of sig-
nal and cleanup routines. We assume that readers are fa-
miliar with POSIX Thread and its interface.

The interface for thread management is closed to the POSIX

threads: A thread may be created (kaapi_create), but not
joined; mutex (kaapi mutex_t) and condition (kaapi_cond-
ition_t) are the first class objects for thread synchroniza-
tion.

KAAPI extends the POSIX interface in two ways. An
extension of POSIX condition with additional integer value

17

state is proposed. It allows threads to wait until a specific
value is signaled: The thread is woken-up when the signaled
value of the condition is equal (kaapi_cond wait_equal) or
not equal (kaapi_cond wait_notequal) to the signaled value.
This functionality is closed to one of those Futex provides [13].

The second extension concerns two new thread attributes.
The first one is used to define functions called by the thread
scheduler to extract work when one of the processors is
idle, we named it the steal function attribute. The second
attribute allows to specify two functions used to serialize
thread through the network, it is named the serialization
attribute. Threads with serialization attribute may be mi-
grated? between processes (kaapi-thread migrate) on some
predefined points.

Figure 3 illustrates the creation of a KAAPI thread with
the use of thread attribute. The steal function attribute

/* function that returns thief_thread that contains theft work
* from the victim_thread. idle_cpu contains the set of idle
* processors that initiate the call. In case of success,
* function should return true.
*/
bool steal_function(
kaapi_t victim_thread,
kaapi_t* thief_thread,
kaapi_cpu_t idle_cpu,
void* user_arg

)L

/* create a thread that may export work */

kaapi_attr_t attr;

kaapi_attr_init(&attr);

kaapi_attr_setstealfunction(&attr, &steal_function, ptr_to_arg);
kaapi_create(&tid, &attr, start_routine, arg);

Figure 3: Example of using KAAPI extension to
create KAAPI thread with attribute to specify a
way to extract work from existing thread.

parameters are: The first parameter is the KAAPI thread
identifier on which the function is called; the second param-
eter is a pointer to a KAAPIT thread identifier used to return
a newly created thread that executes theft work; the third
parameter contains the identifier of the idle virtual processor
(also named kernel thread) that initiated the call. And the
last parameter is a pointer to a user defined data structure.
The return value is true if and only if a new thread has been
created.

Next section presents the thread scheduling algorithm based
on work-stealing.

3.2 Scheduling by work-stealing

The scheduling of KAAPI threads on the physical pro-
cessors is a two level thread scheduling. The KAAPI run-
time system schedules non-preemptively several user level
threads on a fixed number of virtual processors (also called
kernel threads). Virtual processors are scheduled by the ker-
nel on physical processors. The KAAPI threads model is
M : N, meaning that M user space threads are scheduled

2Note that the ability of defining this attribute, especially
to migrate thread processor state (registers) is not of the
responsibility of KAAPI.

onto N kernel threads [32]. This two thread scheduling lev-
els take advantage of fast user space context switch between
KAAPI threads while multi-processors are exploited with
kernel threads.

Each KAAPI user level thread runs to completion, i.e.in
a non-preemptive manner such as [19, 8, 15]. If a thread
executes a blocking instruction, such as locking an already
locked mutex or waiting for a condition variable, then it sus-
pends: The kernel thread (or the virtual processor) is said
idle and it switches to the scheduler thread. The scheduler
thread is responsible to assign thread to idle virtual proces-
sor. The algorithm is simple. First, it tries to find a sus-
pended thread ready for execution, like a standard thread
scheduler. In case of success, the elected thread resumes
its execution on the idle kernel thread. Else, the scheduler
thread chooses at random a thread and call, if specified, the
steal function attribute, as defined in previous section. If
the function returns true then the newly created thread is
scheduled on the kernel thread which becomes active.

On multi-cores / multi-processors, each core should has a
kernel thread for scheduling work: the work-stealing schedul-
ing algorithm is naturally distributed and the implementa-
tion has been carefully designed to avoid contention (for
instance due to mutex). It shows good speedup even at fine
grain (see section 4.1).

The scheduler thread is extended when group of processes
execute the application. In case of failure, the kernel thread
chooses at random a process and sends it request to steal
work from its threads. On reception, the process trigger
the request to try to steal work by calling the steal function
attribute to several victim threads that have a serialization
attribute. The reply message contains the output values, i.e.
return value and the newly created thread. To improve lo-
cality of the work-stealing decision, severals steal operations
on the local process are performed before emitting request
to remote processes.

This thread scheduling principle by work-stealing is the
kernel of implementation in [10], where the steal function
attribute could be specialized to the work that is theft.

If a KAAPI thread performs blocking I/O, the kernel
thread that executes it is also blocked [32]. In [2], kernel
scheduler activation is introduced to improve performance
of the user level application. The section 3.6 presents how
KAAPI deals with communication between processes us-
ing non-blocking, one-side, active message communications.
On Unix platform (mostly Linux and MacOSX), the imple-
mentation relies on user space context switch, either by us-
ing makecontext / setcontext/ getcontext/ swapcontext, or the
more available interface setjmp/ longjmp. Kernel threads
are implemented by the native thread library®.

3.3 Using KAAPI thread for data flow
computation

The high level API creates KAAPI threads that execute
tasks following the reference order (section 2.3). Created
threads have both the steal function attribute and the se-
rialization attribute enabled. The steal function attribute
is the most interesting function. It implements most of the
work first principle of KAAPT design.

The thread changes the closure state to execute from cre-
ated to running, pops it and executes it. This transition in

3For instance NPTL on recent Linux.

18

the closure state diagram (figure 5) is atomic with respect to
other transition, such as performed by the steal function call
(see below). It is implemented using a compare and swap
instruction. Moreover, it does not require the computation
of the readiness of the closure thank to the reference order
semantics. The overhead of executing a program with data
flow representation is mainly due closure and access object
creation cost.

If the transition failed due to the fact that initial state is
stolen (the closure has been theft), then the running thread
suspends its execution until the state of the closure becomes
terminated. Then the scheduler thread is activated. The
thread is suspended on our extension to POSIX condition
described in section 3.1, waiting for the condition to be value
terminated’. On resume, the thread continues its execution
following the reference order. When the closure completes,
a new one is poped from the local deque. If this deque
is empty, the thread terminates and the virtual processor
switches to the scheduler thread, as explained in previous
section. The steal function iterates through the bottom

Figure 5: State diagram of closures. The two transi-
tions from created state to running and stolen states
are sources of contention between a victim thread
executing its closures and a thief trying to steal it.

deque of the victim thread and tries to steal the first ready
to execute closure not marked rumning. For each closure,
the algorithm updates the state of all its accesses: If the
access is marked ready and the immediate successor is an
access with a concurrent mode of access to the global mem-
ory, then the successor is set to ready. If the mode of the
access is write, the access is set to ready. When all accesses
have been visited, and readiness propagated to successors,
the closure is ready when all its accesses are ready.

The steal function attribute is called by the scheduler
thread in case of inactivity. Once a ready victim closure
is detected, the steal function tries to change its state from
created to stolen (figure 5). If the transition is successful,
then a new KAAPI thread is created with same attribute
than the victim thread. The new thread contains an initial
frame with a copy of the closure, in the state created, and
a signalization closure with purpose is 1/ to transfer back
the output data to the victim closure and 2/ to signal the
completion of the victim closure, i.e. it moves its state from
stolen to terminated. Figure 4 illustrates the stacks of both
the victim thread and the thief thread after a successful at-
tempt to steal a closure. The signalization closure is built
with an exclusive access link after each access of the copied
closure.

By the way a thread is waiting for completion of closure,
the global computation is terminated when the main thread
finishes to execute all its closures. Thus, the global termi-
naison detection does not need a distributed algorithm such
as in [15]. It is implicit in our work-stealing implementation.

Base stack

Frame fibo(n,r)

fibo(n—1,r1)

12 : Read Access

777777777777777777777777 Send and Signal]

777777 n-l:int S\e‘b\ [r:Read Access |
rl : Write Access Frame fibo(n-2,s,r)

,,,,,, Jibo(n=2,r2) : stealed | fibo(n-3,5,r1)

,,,,,, LU o i
r2 : Write access o R ;1 7 ;’Viriite? /;(;cés; 77777777
sum(r,r1,r2) : non ready

Send

Base stack

fibo(n-2,s,12) : copy

12 : Write Access

fibo(n—4,s,r2)

12 : Write Access

Frame fibo(n-1,s,r)
fibo(n-2,s,r1)

rl : Write Access
fibo(n-3,s,r2)

12 : Write Access

sum(r,rl,r2)
r: Write Access —

12 : Read Access

Top stack

—

(a) Stack of the victim

sum(r,rl,r2)

12 : Read Access

Frame fibo(n-3,s,r)
fibo(n—4,s,r1)

rl : Write Access
fibo(n-5,s,12)

12 : Write Access

(/\/

(b) Stack of the thief

Figure 4: KAAPI Thread stacks after the steal operation. On the stack of the thief, the Send and Signal
closure declares a read mode of access to the shared variable of the victim closure Fibo(n — 2,s,7r2).

3.4 Performances of data flow computations
scheduled by work-stealing

In [15, 17] a detailed analysis of this work-stealing algo-
rithm is presented. We invite reader interested in the proof
of these results to consult these publications. Performances
on micro-benchmarks are presented in section 4.

3.5 Extension to thread partitioning

Work-stealing scheduling is efficient for multi-threaded
computations [12, 5, 17]. Nevertheless, for iterative applica-
tions in numerical computations, the natural way is to de-
scribe the computation using loops. Even if algorithms may
be rewritten using a recursive scheme to get benefit from
work-stealing performances, from the point of view of the
KAAPI runtime system it is natural to provide function-
alities to programmers that enable their natural iterative
description of the computations.

In KAAPI, we have designed a method to partition the
data flow graph representing the work executed by a thread.
Preliminary prototype has been partially published in [33].
The key point is to compute the schedule of tasks from the
data flow graph: For each task, it computes the site of execu-
tion; and for each site, the order in which tasks are executed.
The computation of a schedule is a plugin in KAAPI. Cur-
rently we have collected existing graph scheduling libraries,
such as DSC [39], ETF [21] as well as libraries that partition
data dependencies graphs (Metis [26] and Scotch [31]) which
are efficient to solve mesh based problems occurring in most
of scientific numerical simulations. These latter libraries are
used in KAAPI to compute the data mappingby partition-
ing the sub graph of data dependencies from the data flow
graph. Then, the site of execution of the tasks is deduced

from the access they made to data in the global memory
following an owner compute rule strategy [20].

Once the schedule is computed, the thread is partitioned
in k threads, that form a group, which are distributed among
the virtual processors on the processes. Communications
between threads are based on added tasks in each thread:
a task broadcast has a read access to data in the global
memory and, on execution, it sends the value to destination;
a task receive has a write access to data in the global memory
and is terminated upon reception of value. Moreover, this
enables to use the same work-stealing scheduling runtime
support for managing communication as for executing multi-
threaded computations.

Iterative computations reuse the group of threads by restor-
ing their initial states. Redistribution of data occurs be-
tween iteration and are managed using our active message
communication support.

3.6 Management of communication by
work-stealing strategy

Communication in KAAPI are based on the active mes-
sages [27]. Sending a message is a non blocking operation.
The sender process will be notified by a callback that data
that compose message have been effectively sent. Upon re-
ception, an user defined function is called by the KAAPI
runtime system to process the message.

Non blocking sending is important and allows to over-
lap efficiently communication delays by computation. More-
over, in KAAPI, messages generated by a KAAPI thread are
put in a private (local) queue. For each interface network
card, a POSIX thread called daemon, is in charge of send-
ing messages. The scheduling of sent messages is based on a

work-stealing algorithm: the daemon indefinitely steals mes-
sages from the queues of KAAPI threads and sends them.
Each steal operation tries to steal the largestt sequence of
messages. This permits to aggregate messages together and
decreases the transfer startup delay per message. Moreover,
this kind of work-stealing for communication allows to hide
network delay due to overloaded network: while the dae-
mon is blocked during a network utilization, the KAAPI
threads may continue to generate messages. Next time the
daemon steals bigger messages sequences, thus aggregating
more messages. Section 4.3 presents the capability of over-
lapping communication by computation.

4. EXPERIMENTS

We present here experimental results computed on the
french heterogeneous Grid5000 [18] platform. Most of the
current installed clusters are composed of dual-processors
AMD. The most recent of them are dual-core dual-processors
(AMD or Intel).

To deploy our software on the grid, we used the Tak-
Tuk [36] software. It allows us to replicate our environment
on all sites (files copies and program compilation) and it of-
fered us a parallel launcher of our application. This parallel
launcher takes a list of machines (the machines we reserved),
detects dead nodes, and deploy our KAAPI processes only
on good nodes. This feature has been really useful as, each
time we reserved hundreds of nodes, several of them were
dead.

4.1 Fibonacci computation

A first set of experiments of the folk recursive Fibonacci
number computation has been executed on a dual-core multi-
processors machine (16 cores, AMD Opteron, 2.2Ghz and
32GBytes of main memory). Three versions of the bench-
marks are compared: a pure C++, a version based on low
level KAAPI interface and a version based on top of Atha-

pascan API. We also compared two implementations of KAAPI.

In the timing results, we denote: 71 the time, correspond-
ing to the work of the parallel program, to execute the ver-
sion KAAPI or Athapascan of the benchmark on one pro-
cessor; Tp, the time on p processors; Ts the time of the pure
C++ sequential version of the benchmark.

fib(35) ; th = 2 fib(40) ; th = 2

p Ty % Tg%d Ty % T?d
(second) (second)

1 0.99 1 1 10.75 1 1

2 0.49 1.96 1.90 5.65 1.98 1.96

4 0.26 3.91 3.61 2.80 3.99 3.90

8 0.13 7.57 5.38 1.41 7.96 7.38

16 0.084 11.81 4.67 0.73 15.33 | 10.30

Figure 6: Speedup on Fibonacci computation. Com-
paraizon between new implementation and old im-
plementation of KAAPI thread scheduling.

For the pure C++ sequential version, the time per func-
tion call is about 2.5ns (nano second), independent of the
nth Fibonacci number to compute. Using low level inter-
face of KAAPI, the measured overhead than the pure C++
is about T1/Ts = 13.4, also constant with respect to the in-
put n. The time per task (creation and execution) is about

20

33.5ns. On top of Athapascan, the overhead is 71 /7Ts = 81.
This timing should be compared with Cilk related timing
in [14] where an overhead nearly 3.6 is reported for the same
benchmark. With KAAPI, more work is required to built
data flow graph than Cilk implementation to enqueue task.

The table 6 presents timings for two implementations of
KAAPI. Timings on two instances of Fibonacci are reported.
The old implementation [17, 10] corresponds to the current
stable version of KAAPI [25]. The new implementation is
the one described in this paper and will be included in the
new stable version of KAAPI.

Execution times on one processor for both implementa-
tions are equals. On the small instance, the sequential grain
is about 0.33us, the maximum observed speedup with re-
spect to parallel program on one processor is about 12 on
16 cores of the multi-processor: The new implementation
is about 2.5 times faster than the old implementation. On
the big instance, we observe a speed up of about 15.33 on
16 cores. The new implementation has a better scalability
over the old one as the number of processors increases and
the grain decreases. This is due to a finer implementation
to reduce contention on internal data structure.

4.2 N-queens

We report here experimental results computed during the
plugtest® international contest held in november 2006 at
Sophia Antipolis, France. Our parallel NQueens implemen-

Grid5000 Grid Load last hour

W L

43UTU30 TI0L 4 000088

Load/Procs

¥ r
!]

0k |
{ 1
1 1
) f

0140 0z: 00 0z: 20
O 1-min Load @ Hodes W CPus M Running Processes

Sophia CPU 1ast hour

43HILI0 L300/ 1001049

Percent

0z: 00
W vser CPU OO Hice cPu B System CPU [0 Idle <pu

0z 20

Sophia Network last hour

B.0 M %
ﬁ; 40m : %
o0 0erao e "
O W out
NQueens P T
21 1000 78s
22 1458 502.9s
23 1422 | 4434.9s

Figure 7: CPU /network loads and timing reports.

tation is based on the NQueens sequential code developped
by Takaken [35]. It achieved the best performances, honored
by a special prize® On instance 23 solved in T = 4434.9s, an
idle time of 22.72s was measured on the 1422 processors; this

4ht1:p ://www.etsi.org/plugtests/Upcoming/GRID2006/GRID2006.htm
®Final results are available on the ETSI url given above.

Overlapping communication/computation with 2 kBytes data

—— MPI
KAAPI Message Active
-~ KAAPI Data Flow
5 OmniORB

0.8
=z
E
<
s
£ o6
k]
2 o
<
g &
s 5
s -
2 o4 - [e
E e
= M

0.2 =

o
0 0.1 0.2 0.3 0.4 0.5

Grain (ms)

Mean time for an iteration (ms)

Overlapping communication/computation with 64 kBytes data

T
—— MPI

KAAPI Message Active
----%--- KAAPI Data Flow

3.5 a OmniORB

2 CopEeEee

p=N=r=ga)

*
e K

0.4
Grain (ms)

0.6 0.8 1

Figure 8: Measuring the overlapping capability of KAAPI. The upper graph reports timing for sending
2KBytes data with increasing local computation time. The lower graph is for sending 64KBytes data.

experimentally verifies our implementation efficiency with a
maximal relative error % = 0.63%. Figure 7 shows the
global grid load together with CPU and network load on one
of the clusters composing the grid (cluster from the sophia
site). These results have been obtained using Grid5000 mon-
itoring tools during the last hour of execution. Our compu-
tations start approximately at 01:50. Different instances of
nqueens problems are executed sequentially. The different
graphs show a very good use of CPU resources. At the end of
each execution work-stealing occurs, increasing briefly net-
work load while enabling to maintain efficient CPU usage.

4.3 Measuring overlapping capability

In this experiment, we compare several middleware (MPI /
MPICH, OmniORB, KAAPI Message Active, and Data Flow
Computation with KAAPI) to measure the overlapping ra-
tio on the following computation scheme on two processors
communicating through TCP. The process Py initiates the
communication of a message with size L to process P; us-
ing a non blocking send instruction; then Py computes for
a fixed delay and waits an acknowledgment from P; upon
reception of the message. The objectif is to measure the
computation time over the total time ration which indicates
how much the implementation is able to overlap communi-
cation delay (emission and reception) while computation is
processed. On Py, we have Tiotar = Tpost + Tcomp + Twait,
where each term represents the delays of the above described
operations.

MPI implementation in this experiment uses MPI_ISend
instruction to initiate the sending and posts the reception
with MPI_TRecv. After the computation, the program waits
the reception using MPI_Wait. OmniORB implementation
relies on one-way CORBA method for non blocking com-
munication. KAAPI Active Message implementation sim-
ply posts a message, performs computation and waits, using
condition variable, the active message for the acknowledg-
ment. The KAAPI data flow computation describes tasks
such that the computation and communication are same as
previous implementation. The data flow graph in the origi-
nal program and the scheduling produce an execution on Py
and P; such that:

e Py creates a task that produces data with the fixed L
size, performs computation, then creates a task that
wait for reading the acknowledgment data.

21

e P; creates a task that reads the data and writes an
acknowledgment data (read by the last task on P).

The scheduling time, based on the METIS graph parti-
tioning algorithm, for this instance is less than 10us due
to its relatively simplicity. Figure 8 reports timing for the
four implementations. Until a certain threshold in the grain
of the computation is reached, the total time is constant
for both experiments: the total time is mainly due to the
time to send message and receive acknowledgment. After
this threshold, the total time is linear with respect to the
computation which is on the critical path. The overlapping
ratio is v = T7;/Tiotal, where T, is the grain of computa-
tion at this threshold. The first result is that the progress
of communication in MPICH on top of TCP should imply
the participation of the application and that OmniORB non
blocking communication blocks the sender until the message
was sent. The second result is that our active message im-
plementation is efficient with respect to the concurrent pro-
gression of both communication and computation. More-
over, our thread partitioning scheme is able to take benefit
of this overlapping capability.

4.4 Work-stealing versus thread partitioning
scheduling on multi-processors

In this experience, we run a virtual simulation application
on top of Sofa [1] comparing several parallel implementa-
tions. The objective is to have short delays in computation
(around 30ms) in order to produce smooth image rate. The
first implementation is based on pure work-stealing schedul-
ing where a main thread generates few tasks that will them-
selves fork most of the computation.

Due to the short delay of the computation, the bottleneck
in the scheduling is the access to the main thread by idle
processors. Using thread partitioning technique, the first
level of computation starts while workload has already been
distributed. Figure 9 displays the speed up on a dual-core
8-processor machine (16 cores) for sequential computation
time of about 30ms. The iterative simulation is unrolled
either on 10 loops or 20 loops.

Unroll 10 loops —+—
Unroll 20 loops ~—---
Work-stealing ----

Speedup versus sequential execution

L L L L L L L
0 2 4 6 8 10 12 14 16
Number of kernel threads

Figure 9: Thread partitioning versus work-stealing
for Sofa application. Initial work distribution im-
proves the dynamic work-stealing algorithm with in-
creasing number of kernel threads.

5. CONCLUSIONS

Multithreaded computations may take benefit of the de-
scription of non strict data dependencies. In this paper we
present the KAAPI] approach to implement efficient multi-
threaded computations with data flow dependencies built at
runtime. It is based on a small extension of POSIX thread
interface and a basic work-stealing algorithm. Efficiency re-
lies on the work-stealing algorithm as well as an original
implementation directed by the work first principle that al-
lows to report the cost to compute the state of the data flow
graph on the critical path execution rather than on the work
of the program. Experimental results show the feasibility of
the approach. Work overhead is reasonably small and the
work-stealing algorithm permits to reach good efficiencies
for medium grain on both a multi-cores / multi-processors
architecture and a PCs cluster. Moreover it scales on (het-
erogeneous) grid architecture as reported by the NQueens
result.

Our thread partitioning approach, using graph schedul-
ing and partitioning algorithms, is dedicated for iterative
applications in numerical simulation. It is used for vari-
ous applications: dynamic molecular Tuktut, cloth simula-
tion Sappe [33] and Sofa [1]. Moreover, our past collabo-
ration in the LinBox library [11] is under active develop-
ment to produce several parallel algorithms, especially for
a large sparse matrix-vector product [38] over finite field
arithmetic. Thanks to the internal data flow representa-
tion, KAAPI maintains an abstract representation of the
application execution. This representation has been used to
develop original and efficient fault tolerance protocol with
work-stealing [22, 23] or for iterative application [3] with
application to adaptive computation [24].

Ongoing work is to target the KAAPI runtime on top an
high speed network and managing internal data structure
with affinity on the physical processors for NUMA architec-
tures.

Acknowledgments

The author gratefully acknowledge Rémi Revire and Samir
Jafar for useful discussions; Serge Guelton for participating
to the implementation of the NQueens challenge.

22

6. REFERENCES

[1] J. Allard, S. Cotin, F. Faure, P.-J. Bensoussan,

F. Poyer, C. Duriez, H. Delingette, and L. Grisoni.
Sofa? an open source framework for medical
simulation. In Medicine Meets Virtual Reality
(MMVR), 2007.

[2] T. E. Anderson, B. N. Bershad, E. D. Lazowska, and
H. M. Levy. Scheduler activations: effective kernel
support for the user-level management of parallelism.
In SOSP ’91: Proceedings of the thirteenth ACM
symposium on Operating systems principles, pages
95-109, New York, NY, USA, 1991. ACM Press.

[3] X. Besseron, S. Jafar, T. Gautier, and J.-L. Roch.
Cck: An improved coordinated checkpoint/rollback
protocol for dataflow applications in kaapi. In IEEE,
editor, Proceedings of the IEEE Conference on
Information and Communication Technologies
(ICTTA’06): from Theory to Applications, pages
3353-3358, Damascus, Syria, April 2006.

[4] G.E. Blelloch. NESL: A Nested Data-Parallel
Language. Technical Report CMU-CS-93-129, April
1993.

[5] R. Blumofe and C. Leiserson. Scheduling
multithreaded computations by work stealing. In
Proceedings of the 35th Annual Symposium on
Foundations of Computer Science, Santa Fe, New
Mexico., pages 356—-368, November 1994.

[6] R. D. Blumofe and P. A. Lisiecki. Adaptive and
reliable parallel computing on networks of
workstations. In Proceedings of the USENIX 1997
Annual Technical Conference on UNIX and Advanced
Computing Systems, pages 133-147, Anaheim,
California, January 1997.

[7] R.D. Blumofe, C.F. Joerg, B.C. Kuszmaul, C.E.
Leiserson, K.H. Randall, and Y. Zhou. Cilk: An
efficient multithreaded runtime system. Journal of
Parallel and Distributed Computing, 37(1):55-69,
1996.

[8] R.D. Blumofe and C.E. Leiserson. Space-efficient
scheduling of multithreaded computations. STAM
Journal on Computing, 1(27):202-229, 1997.

[9] D.E Culler and Arvind. Resource requirements of

dataflow programs. In Proceedings of the 15th Annual

International Symposium on Computer Architecture,

pages 141-150, Honolulu, Hawai, 1989.

V. Danjean, R. Gillard, S. Guelton, J.-L. Roch, and

T. Roche. Adaptive Loops with Kaapi on Multicore

and Grid: Applications in Symmetric Cryptography.

In Proceedings of the Parallel Symbolic Computation

(PASCO’07), 2007.

J.-G. Dumas, T. Gautier, M. Giesbrecht, P. Giorgi,

B. Hovinen, E. Kaltofen, B.D. Saunders, W.J. Turner,

and G. Villard. Linbox: A generic library for exact

linear algebra. In Proceedings of the International

Congress of Mathematical Software (ICMS’02),

Beijing, China, pages 40-50. World Scientific, 2002.

P. Fatourou and P.G. Spirakis. Efficient scheduling of

strict multithreaded computations. Theory of

Computing Systems, 33(3):173-232, 2000.

H. Franke, R. Russell, and M. Kirkwood. Fuss, futexes

and furwocks: Fast userlevel locking in linux. In

Proceedings of the Ottawa Linux Symposium, 2002.

(11]

(12]

(13]

[14]

[15]

[16]

[17]

[26]

M. Frigo, C.E. Leiserson, and K.H. Randall. The
implementation of the cilk-5 multithreaded language.
In Sigplan’98, pages 212-223, 1998.

F. Galilée, J.-L. Roch, G. Cavalheiro, and M. Doreille.
Athapascan-1: On-line building data flow graph in a
parallel language. In IEEE, editor, Pact’98, pages
88-95, Paris, France, October 1998.

T. Gautier, R. Revire, and Roch. Athapascan: Api for
asynchronous parallel programming. Technical Report
RR-0276, APACHE, INRIA Rhone-Alpes, February
2003.

T. Gautier, J.-L. Roch, and F. Wagner. Fine grain
distributed implementation of a dataflow language
with provable performances. In IEEE, editor,
Workshop PAPP 2007 - Practical Aspects of
High-Level Parallel Programming in International
Conference on Computational Science 2007
(ICCS2007), Beijing, China, May 2007.

Grid5000. http://www.grid5000.org.

L. J. Hendren, G. R. Gao, X. Tang, Y Zhu, X. Xue,
H. Cai, and P. Ouellet. Compiling ¢ for the earth
multithreaded architecture. In IEEE, editor, Pact’96,
pages 1223, Boston, USA, 1996.

High Performance Fortran Forum. High Performance
Fortran language specification, version 1.0. Technical
Report CRPC-TR92225, Houston, Tex., 1993.

J.-J. Hwang, Y.-C. Chow, F. D. Anger, and C.-Y. Lee.
Scheduling precedence graphs in systems with
interprocessor communication times. SIAM J.
Comput., 18(2):244-257, 1989.

S. Jafar, T. Gautier, A. Krings, and J-L. Roch. A
checkpoint/recovery model for heterogeneous dataflow
computations using work-stealing. In Proceedings of
(LNCS) EuroPar’05, Lisboa, Portugal, August 2005.
S. Jafar, A. Krings, T. Gautier, and J-L. Roch.
Theft-induced checkpointing for reconfigurable
dataflow applications. In Proceedings of the IEEE
Electro/Information Technology Conference EIT2005,
Lincoln, Nebraska,U.S.A., May 2005.

S. Jafar, L. Pigeon, T. Gautier, and J.-L.. Roch.
Self-adaptation of parallel applications in
heterogeneous and dynamic architectures. In IEEE,
editor, Proceedings of the IEEE Conference on
Information and Communication Technologies
(ICTTA’06): from Theory to Applications, pages
3347-3352, Damascus, Syria, April 2006.

Kaapi. http://kaapi.gforge.inria.fr.

G. Karypis and V. Kumar. Analysis of multilevel
graph partitioning. In Supercomputing ’95:
Proceedings of the 1995 ACM/IEEE conference on
Supercomputing (CDROM), page 29, New York, NY,
USA, 1995. ACM Press.

23

27]

(28]

29]

(30]

(31]

(32]

(33]

A. Mainwaring and D. Culler. Active message
applications programming interface and
communication subsystem organization. Technical
Report CSD-96-918.

C. J. Morrone, J. N. Amaral, G. Tremblay, and G. R.
Gao. A Multi-Threaded Runtime System for a
Multi-Processor/Multi-Node Cluster. In Kluwer
Academic, editor, 15th Annual International
Symposium on High Performance Computing Systems
and Applications, pages 18-20, Windsor, ON, Canada,
2001.

G.J. Narlikar. Scheduling threads for low space
requirement and good locality. Number TR
CMU-CS-99-121, may 1999. Extended version of the
paper published in Spaa’99.

Institute of Electrical and Inc. Electronic Engineers.
Information Technology — Portable Operating
Systems Interface (POSIX) — Part: System
Application Program Interface (API) — Amendment
2: Threads Extension [C Language|. IEEE Standard
1003.1c-1995, IEEE, New York, NY, 1995.

F. Pellegrini and J. Roman. Experimental analysis of
the dual recursive bipartitioning algorithm for static
mapping. Technical Report 1038-96, 1996.

M. L. Powell, Steve R. Kleiman, S. Barton, D. Shah,
D. Stein, and M. Weeks. Sunos multi-thread
architecture. In USENIX Winter, pages 65-80, 1991.
R. Revire, F. Zara, and T. Gautier. Efficient and easy
parallel implementation of large numerical simulation.
In Springer, editor, Proceedings of ParSim03 of
EuroPVM/MPI03, pages 663-666, Venice, Italy, 2003.
M.C. Rinard and M.S. Lam. The design,
implementation, and evaluation of Jade. ACM Trans.
Programming Languages and Systems, 20(3):483-545,
1998.

Takaken.
http://www.ic-net.or.jp/home/takaken/e/queen.
TakTuk. http://taktuk.gforge.inria.fr.

X. Tang, J. Wang, K. B. Theobald, and G. R. Gao.
Thread partitioning and scheduling based on cost
model. In ACM Symposium on Parallel Algorithms
and Architectures, pages 272281, 1997.

R. Vuduc, J. W. Demmel, and K. A. Yelick. OSKI: A
library of automatically tuned sparse matrix kernels.
Journal of Physics Conference Series, 16:521-530,
January 2005.

T. Yang and A. Gerasoulis. DSC: Scheduling Parallel
Tasks on an Unbounded Number of Processors. IEEE
Trans. Parallel Distrib. Syst., 5(9):951-967, 1994.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

