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ABSTRACT
We present a technique for analyzing the number of cache
misses incurred by multithreaded cache oblivious algorithms
on an idealized parallel machine in which each processor has
a private cache. We specialize this technique to computa-
tions executed by the Cilk work-stealing scheduler on a ma-
chine with dag-consistent shared memory. We show that a
multithreaded cache oblivious matrix multiplication incurs
O(n3/

√
Z + (Pn)1/3n2) cache misses when executed by the

Cilk scheduler on a machine with P processors, each with a
cache of size Z, with high probability. This bound is tighter
than previously published bounds. We also present a new
multithreaded cache oblivious algorithm for 1D stencil com-
putations, which incurs O(n2/Z+n+

√
Pn3+ε) cache misses

with high probability.

Categories and Subject Descriptors
F.2 [Theory]: Analysis of Algorithms and Problem Com-
plexity

General Terms
Algorithms

1. Introduction
In this paper we derive bounds to the number of cache

misses (the cache complexity) incurred by a computation
when executed by an idealized parallel machine with mul-
tiple processors. We assume that the computation is mul-
tithreaded : The computation expresses a partial order on
its instructions, and a scheduler external to the computa-
tion maps pieces of the computation onto processors. The
computation itself has no control over the schedule. Our
main focus is on analyzing the cache complexity of paral-
lel multithreaded cache oblivious algorithms [14], although,
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as a special case, our bounds also apply to a sequential pro-
cess migrated from one processor to another by an operating
system.

This problem has been studied in two complementary set-
tings, each modeling different aspects of real machines. In
the distributed cache model, each processor is connected
to a private cache that interacts somehow with the other
caches to maintain a desired memory model. In the shared
cache model, a single cache is common to all processors,
which are commonly referred to as (hardware) threads. In
this paper, we focus on the distributed-cache model.

A multithreaded computation defines a partial execution
order on its instructions, which we view as a directed acyclic
graph (dag) [1, 6, 9, 20]. The work T1 is the total number
of nodes in the dag, and the critical path T∞ is the length
of a longest path in the dag. It is well-known that these two
parameters characterize the dag for scheduling purposes: the
execution time TP of the dag on P processors satisfies TP ≥
max(T1/P, T∞), and a greedy scheduler [10, 18] matches this
lower bound within a factor of 2. A greedy scheduler is no
longer asymptotically optimal when taking cache effects into
account, however, and the best choice of a scheduler depends
upon whether caches are distributed or shared. Roughly
speaking, on a shared cache, threads that use the same data
should be scheduled concurrently so as to maximize data
reuse. On distributed caches, threads that do not share
data should be scheduled concurrently so as to minimize
inter-cache communication.

Multithreaded computations in the shared-cache model
have been investigated by Blelloch and Gibbons [5] who
proved a strong result: If the cache complexity of a com-
putation is Q1 on one processor with cache size Z1, then
a parallel schedule of the computation exists such that the
cache complexity QP on P processors satisfies QP ≤ Q1,
assuming that the P processors share a cache of slightly
larger size ZP ≥ Z1 + PT∞. Blelloch and Gibbons also give
a scheduler that achieves this bound.

The analysis of distributed caches is more involved. Acar
et al. [1] construct a family of dags with work Θ(n) and
critical path Θ(lg n) whose cache complexity is bounded by
O(Z) on one processor with a cache of size Z, but it explodes
to Ω(n) when the dag is executed in parallel on distributed
caches. For series-parallel dags, however, more encouraging
results are known. Blumofe et al. [7] prove that the Cilk ran-
domized work-stealing scheduler [9] executes a series-parallel
computation on P processors incurring

QP (Z) ≤ Q1(Z) + O(ZPT∞) (1)
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cache misses with high probability, where Q1 is the num-
ber of cache misses in a sequential execution and Z is the
size of one processor’s cache. This bound holds for a “dag-
consistent” shared memory with LRU caches. Acar et al. [1]
prove a similar upper bound for race-free series-parallel com-
putations under more general memory models and cache
replacement strategies, taking into account the time of a
cache miss and the time to steal a thread. The bound
in Eq. (1) diverges to infinity as the cache size increases,
and while pathological series-parallel computations exist for
which this bound is tight [1], Eq. (1) is not tight for those
“well-designed” programs whose sequential cache complex-
ity decreases as the cache size increases, including cache
oblivious algorithms.

In this paper, we introduce the ideal distributed cache
model for parallel machines as an extension of the (sequen-
tial) ideal cache model [14], and we give a technique for
proving bounds stronger than Eq. (1) for cache oblivious
algorithms [14]. Our most general result (Theorem 1) has
the following form. Consider the sequence of instructions
of the computation in program order (the trace). Assume
that a parallel scheduler can be modeled as partitioning the
trace into S “segments” of consecutive instructions, and that
the scheduler assigns each segment to some processor. Cilk’s
work-stealing scheduler, for example, can be modeled in this
way. Assume that the cache complexity of any segment of
the trace is bounded by a nondecreasing concave function f
of the work of the segment. Then the cache complexity of the
parallel execution is at most Sf(T1/S). For most existing
cache oblivious algorithms, the cache complexity is indeed
bounded by a concave function of the work, and therefore
this analysis is applicable. Furthermore, for the Cilk sched-
uler, the number of segments is O(PT∞) with high proba-
bility, and thus we derive bounds to the cache complexity in
terms of the work T1, the critical path T∞, and the sequen-
tial cache complexity.

For example, a multithreaded program for multiplying
two n × n matrices without using additional storage has
T1 = O(n3), T∞ = O(n), and sequential cache complexity

Q1 = O(n3/
√

Z + n2) [7]. When the program is executed
on P processors by the Cilk scheduler, we prove that its
cache complexity is QP = O

`
n3/

√
Z + (T∞P )1/3n2

´
with

high probability. As another application, we present a new
multithreaded cache oblivious algorithm for stencil compu-
tations, derived from our sequential algorithm [16]. Our
one-dimensional stencil algorithm for a square spacetime re-
gion has T1 = O(n2), T∞ = O(n), and sequential cache
complexity Q1 = O(n2/Z + n). The multithreaded algo-
rithm, when executed on P processors by the Cilk scheduler
has cache complexity QP = O

`
n2/Z + n +

√
Pn3+ε

´
with

high probability.
In Section 2 of this article we present the ideal distributed

cache model. In Section 3, we analyze the cache complex-
ity of multithreaded computations on a machine with an
ideal distributed cache. Then, in Section 4, we apply our
cache complexity bounds to the analysis of multithreaded,
cache oblivious programs for matrix multiplication and sten-
cil computations.

2. The Ideal Distributed Cache Model
In this section, we introduce the ideal distributed cache

model for parallel machines as an extension of the ideal
(sequential) cache model [14].

An ideal distributed-cache machine has a two-level mem-
ory hierarchy. The machine consists of P processors, each
equipped with a private ideal cache connected to an arbi-
trarily large shared main memory. An ideal cache is fully
associative and it implements the optimal off-line strategy of
replacing the cache line whose next access is farthest in the
future [2]; see [14, 21] for a justification of this assumption.

Each private cache contains Z words (the cache size),
and it is partitioned into cache lines consisting of L con-
secutive words (the line size) that are treated as atomic
units of transfers between cache and main memory.

A processor can only access data in its private cache. If
an accessed data word is not available in the cache, the
processor incurs a cache miss to bring the data from main
memory into its cache.

The number of cache misses incurred by a computation
running on a processor depends on the initial state of the
cache. The cache complexity Q of a computation is defined
as the number of cache misses incurred by the computation
on an ideal cache starting and ending with an empty cache.

The ideal distributed cache model assumes that the pri-
vate caches are noninterfering : the number of cache misses
incurred by one processor can be analyzed independently of
the actions of other processors in the system. Whether this
assumption is true in practice depends on the consistency
model maintained by the caches. For example, caches are
noninterfering in the dag-consistent memory model main-
tained by the Backer protocol [7]. Alternatively, caches are
noninterfering in the HSMS model [1] if the computation is
race-free.

Our ideal distributed cache model is almost the same as
the dag-consistent model analyzed by Blumofe et al. [7],
except that we assume ideal caches instead of caches with
LRU replacement. Bender et al. [3] consider a distributed-
cache model, but with cache coherence and atomic opera-
tions. This model is harder to analyze than ours yet sup-
ports lock-free algorithms that are not possible with nonin-
terfering caches. The shared ideal cache model of Blelloch
and Gibbons [5] features an ideal cache which, unlike in our
model, is shared by all processors. Like the PRAM [13] and
its variants, the ideal distributed cache model aims at sup-
porting a shared-memory programming model. Unlike the
lock-step synchronous PRAM, and unlike bulk-synchronous
models such as BSP [22] and LogP [12], our model is asyn-
chronous, and processors operate independently most of the
time. Like in the QSM model [17], each processor in our
model features a private memory, but the QSM manages
this private memory explicitly in software as part of each
application, whereas we envision an automatically managed
cache with hardware support.

3. The Cache Complexity of Multithreaded
Computations

In this section, we prove bounds on the cache complexity
of a multithreaded computation in terms of its sequential
cache complexity, assuming an ideal distributed-cache ma-
chine. Specifically, Theorem 1 bounds the cache complexity
of a multithreaded computation assuming a “generic” sched-
uler. Theorem 2 refines the analysis in the case of the Cilk
work-stealing scheduler. Finally, Theorem 5 gives a techni-
cal result that simplifies the analysis of the cache complexity
of divide-and-conquer computations.
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Let the trace of a multithreaded computation be the se-
quence of the computation’s instructions in some order con-
sistent with the partial order defined by the multithreaded
computation. Let a segment be a subsequence of consecu-
tive instructions of the trace. We denote with |A| the length
of segment A, and with Q(A) the number of cache misses in-
curred by the execution of segment A on an ideal cache that
is empty at the beginning and at the end of the segment.

We assume that the computation is executed in parallel by
a scheduler whose operation can be modeled as partitioning
the trace into segments and assigning segments to proces-
sors. For each segment assigned to it, a processor executes
the segment fully, and then proceeds to the execution of
the next segment. When completing a segment, we assume
that a processor completely invalidates and flushes its own
cache (but not other caches), and we count the cache misses
incurred by these actions as part of the parallel cache com-
plexity. This technical assumption makes our proofs easier;
a real scheduler may apply optimizations to avoid redundant
flushes. For correctness of the parallel execution, the sched-
uler must ensure that the assignment of segments to pro-
cessors respects the data dependencies of the multithreaded
computation, but our analysis holds for all partitions, in-
cluding incorrect ones.

Recall that a function f(x) is concave if αf(x0) + (1 −
α)f(x1) ≤ f(αx0 + (1 − α)x1) holds for 0 ≤ α ≤ 1, for all
x0 and x1 in the domain of f . For a concave function f and
integer S ≥ 1, Jensen’s inequality holds:

X
0≤i<S

f(xi)/S ≤ f

0
@ X

0≤i<S

xi/S

1
A .

Our first result relates the parallel cache complexity to the
sequential cache complexity and the number of segments.

Theorem 1. Let M be a trace of a multithreaded com-
putation. Assume that a scheduler partitions M into S seg-
ments and executes the segments on an ideal distributed-
cache machine. Let f be a concave function such that Q(A) ≤
f(|A|) holds for all segments A of M.

Then, the total number QP (M) of cache misses incurred
by the parallel execution of the trace is bounded by

QP (M) ≤ S · f(|M|/S) .

Proof. Let Ai, 0 ≤ i < S be the segments generated by
the scheduler. Because we assume that the scheduler exe-
cutes a segment starting and ending with an empty cache,
and because caches do not interfere with each other in the
ideal-cache model, the parallel execution incurs exactly
QP (M) =

P
0≤i<S Q(Ai) cache misses. By assumption,

we have
P

0≤i<S Q(Ai) ≤
P

0≤i<S f(|Ai|). By Jensen’s in-

equality we have
P

0≤i<S f(|Ai|) ≤ Sf
“P

0≤i<S |Ai|/S
”

=

Sf(|M|/S), and the theorem follows.

Because a segment incurs at most as many cache misses
as its number of memory accesses, Theorem 1 can always
be applied trivially with f(x) = x. Theorem 1 becomes
useful when we can find nontrivial concave functions, as in
the examples in Section 4.

We now analyze the cache complexity of multithreaded
Cilk [8, 15] programs assuming a dag-consistent shared mem-
ory [7]. Cilk extends the C language with fork/join par-

allelism managed automatically by a provably good work-
stealing scheduler [9]. In general, a Cilk procedure is al-
lowed to execute one of three actions: (1) execute sequen-
tial C code; (2) spawn a new procedure; or (3) wait until
all procedures previously spawned by the same procedure
have terminated. The latter operation is called a “sync”.
When a parent procedure spawns a child procedure, Cilk
suspends the parent, makes it available to be “stolen” by
another processor, and begins work on the child. When a
processor returns from a child procedure, it resumes work
on the parent if possible, or otherwise the processor becomes
idle. An idle processor attempts to steal work from another,
randomly selected processor. A procedure executing a sync
may block, in which case the processor executing the proce-
dure suspends it and starts stealing work.

The execution of a Cilk program can be viewed as a dag
of dependencies among instructions. Whenever the dag con-
tains an edge from node u to a node v executing on a differ-
ent processor, the Backer protocol [7] inserts the following
actions to enforce dag-consistent memory. The processor
executing u, after executing it, writes all dirty locations in
its cache back to main memory. The processor executing v,
before executing it but after the write back succeeding u,
flushes and invalidates its cache and resumes with an empty
cache. In terms of the Cilk source program, Backer can
be viewed as inserting memory consistency actions in two
places: (1) after a spawn at which a procedure is stolen,
and (2) before the sync that waits for such a spawn to com-
plete (the sync associated with the steal). If we view each
processor as working on a segment, then a steal breaks the
segment into four parts such that the noninterference as-
sumption holds within each part: (1) the portion of the seg-
ment executed by the victim before the steal; (2) the portion
of the segment executed by the victim after the steal; (3) the
portion of the segment executed by the thief before the sync
associated with the steal; and (4) the portion of the seg-
ment executed by the thief after the sync associated with
the steal. Thus, each steal operation increases the number
of segments by three. Combining this insight with Theo-
rem 1 and the upper bounds of Acar et al. [1], we obtain the
following theorem.

Theorem 2 (Cilk cache complexity). Consider a
Cilk computation with work T1 and critical path T∞, ex-
ecuted on an ideal distributed-cache machine with memory
consistency maintained by the Backer protocol. Assume that
a cache miss and a steal operation take constant time. Let
f be a concave function such that Q(A) ≤ f(|A|) holds for
all segments A of the trace of the computation.

Then, the parallel execution incurs

QP = O(S · f(T1/S)) (2a)

cache misses, where with high probability

S = O(PT∞) . (2b)

Proof. Acar et al. [1, Lemma 16] prove that the Cilk
scheduler executes O(�m/s�PT∞) steals with high proba-
bility, where m is the time for a cache miss and s is the
time for a steal. Their proof depends neither on the cache
replacement policy nor on the memory model. By assump-
tion, �m/s� = Θ(1) and we hide these parameters in the
O-notation from now on. Each steal creates three segments,
and therefore the number of segments is S = O(PT∞) with
high probability, proving Eq. (2b).
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The length of the trace is the same as the work T1. Caches
maintained by Backer are noninterfering within each seg-
ment and therefore Theorem 1 applies, proving Eq. (2a).

While we derived Theorem 2 for Cilk with dag-consistent
shared memory, we could have applied the same analysis to
race-free computations in the HSMS model of Acar et al. [1],
obtaining the same bound.

In order to apply Theorems 1 and 2, one must prove a
bound on the number of cache misses incurred by each of
the unique segments of trace M, which is hard to do in gen-
eral. For example, consider a divide-and-conquer computa-
tion that recursively solves a problem of size n by reducing
it to problems of size n/r. One can prove bounds on the
cache complexity by induction on complete subtrees of the
recursion tree, but this proof technique does not work for
segments that do not correspond to complete subtrees.

To aid these proofs, we now prove Theorem 5 below,
which bounds the cache complexity of an arbitrary segment
in terms of the cache complexity of a subset of recursively
nested segments. We call such a subset a recursive decom-
position of the trace. In a divide-and-conquer computation,
segments in the recursive decomposition would correspond
to complete subtrees of the recursion tree. Then, Theorem 5
extends a bound on complete subtrees to a bound valid for
all segments.

Definition 3 (Recursive segment decomposition).

Let A be a segment and r ≥ 2 be an integer. A r-recursive
decomposition of A is any set R of subsegments of A pro-
duced by the following nondeterministic algorithm:

If |A| = 1, then R = {A}.

If |A| > 1, choose integer q ≥ 2 and segments A1, A2, . . .,
Aq whose concatenation yields A, such that |Ai| ≥
|A|/r. Let Ri be a r-recursive decomposition of Ai.
Then R = {A} ∪ R1 ∪ R2 . . . ∪ Rr. We say that seg-
ment A is the parent of the segments Ai.

Before proving Theorem 5, we state a rather obvious prop-
erty of ideal caches.

Lemma 4 (Monotonicity of an ideal cache). Let
A and B be segments of a trace with B ⊂ A. Then Q(B) ≤
Q(A).

Proof. Execute B on a cache that incurs exactly the
same cache misses as an optimal execution of A, in the same
order. In this case, execution of B incurs exactly Q(A) cache
misses. An optimal replacement policy for B incurs at most
as many cache misses as the policy that we have just dis-
cussed.

Theorem 5. Let R be a r-recursive decomposition of
trace M. Let f be a nondecreasing function such that Q(A) ≤
f(|A|) for all A ∈ R. Then, for all segments A of M (not
only those in R) we have Q(A) ≤ 2f(r |A|).

Proof. We prove that A is included in the concatenation
of at most two segments in R of length at most r|A|. The
theorem then follows from Lemma 4.

Let B be the smallest segment in R that includes A. Such
a segment exists because the entire trace M ∈ R.

If a child B′ ∈ R of B exists that is included in A, then
|B|/r ≤ |B′| ≤ |A|. By Lemma 4 we have Q(A) ≤ Q(B) ≤
f(|B|) ≤ f(r |A|) ≤ 2f(r |A|) and we are done.

Otherwise, two consecutive children B′ and B′′ of B ex-
ist in R such that A is included in the concatenation of
B′ and B′′. Let A′ = A ∩ B′ and A′′ = A ∩ B′′. Then, by
construction, A′ is a suffix of B′ and A′′ is a prefix of B′′.

We now prove that Q(A′) ≤ f(r |A′|). Let C′ be the
smallest segment in R that includes A′. If A′ is empty or
A′ = C′, then Q(A′) ≤ f(|A′|) ≤ f(r |A′|). Otherwise, a
child of C′ exists in R. By construction, A′ is a suffix of C′,
and therefore the rightmost child D′ of C′ is included in A′.
Therefore, we have |C′|/r ≤ |D′| ≤ |A′|. By Lemma 4, we
have Q(A′) ≤ Q(C′) ≤ f(|C′|) ≤ f(r |A′|), as claimed.

A symmetric argument, substituting “prefix” for “suffix,”
proves that Q(A′′) ≤ f(r |A′′|).

By Lemma 4, we have Q(A) ≤ Q(A′)+Q(A′′) ≤ f(r |A′|)+
f(r |A′′|). By monotonicity of f , we conclude that Q(A) ≤
2f(r |A|) and the theorem is proven.

By combining Theorems 2 and 5, we obtain the follow-
ing bound on the parallel cache complexity in terms of the
number of segments and of the sequential cache complexity
of a recursive decomposition.

Corollary 6. Let R be a r-recursive decomposition of
trace M. Let f be a nondecreasing concave function such
that Q(A) ≤ f(|A|) for all A ∈ R. Assume a Cilk scheduler
with Backer as in Theorem 2.

Then, the total number QP (M) of cache misses incurred
by the parallel execution of the trace is

QP = O(S · f(rT1/S))

cache misses, where, with high probability,

S = O(PT∞) .

Proof. Let g(x) = 2f(rx). Then, g is concave. By The-
orem 5, we have Q(A) ≤ g(|A|) for all segments A of M.
The corollary then follows from Theorem 2.

Remark: If Sf(rT1/S) happens to be a concave function
of S, then the bounds hold in expectation as well, because
then we have E[Sf(rT1/S)] ≤ E[S]f(rT1/E[S])], and E[S] =
O(PT∞) holds [1].

4. Applications
In this section, we apply Corollary 6 to the analysis of

parallel cache oblivious algorithms for matrix multiplication
and stencil computations. The parallel stencil computation
algorithm was not previously published, and therefore we
discuss this algorithm in detail. All applications are pro-
grammed in Cilk [15]. A similar analysis could be applied to
suitable parallelizations of other cache oblivious algorithms,
such as the cache oblivious dynamic programming frame-
work of Chowdhury and Ramachandran [11].

4.1 Matrix Multiplication
Fig. 1 shows the pseudo code of multithreaded procedure

matmul for multiplying two n × n matrices for n = 2k [7].
This procedure executes T1 = O(n3) work and its critical
path is T∞ = O(n).1

1A shorter critical path is possible at the expense of additional
storage if addition is associative; see [7].

274



cilk void matmul(n, A, B, C)

{

if (n == 1) {

C += A * B;

} else {

spawn matmul(n/2, A11, B11, C11);

spawn matmul(n/2, A11, B12, C12);

spawn matmul(n/2, A21, B11, C21);

spawn matmul(n/2, A21, B12, C22);

sync;

spawn matmul(n/2, A12, B21, C11);

spawn matmul(n/2, A12, B22, C12);

spawn matmul(n/2, A22, B21, C21);

spawn matmul(n/2, A22, B22, C22);

}

}

Figure 1: Cilk pseudo code for computing C =
C + AB, where A, B, and C are n × n matrices. The
code for partitioning each matrix into four quad-
rants is not shown. The spawn keyword declares that
the spawned procedure may be executed in parallel
with the procedure that executes the spawn. A sync

statement waits until all procedures spawned by the
current procedure have terminated. Cilk implicitly
sync’s before returning from a procedure.

If we ignore the spawn annotations and the sync state-
ments, we obtain a special case of the sequential cache oblivi-
ous matrix multiplication algorithm, which incurs Q(n, Z, L)

= O
`
n3/(L

√
Z) + n2/L + 1

´
cache misses [14] when execut-

ing on one processor with an ideal cache of size Z and cache
line size L, assuming a “tall” cache with Z = Ω(L2). This
cache complexity is asymptotically optimal [19].

The trace of procedure matmul admits a simple 8-recursive
decomposition comprising all segments that compute a com-
plete subtree of the call tree. Moreover, the analysis of the
sequential case applies to each complete subtree. Hence, on
our ideal distributed-cache machine, each subtree that mul-
tiplies n×n matrices incurs O

`
n3/(L

√
Z)+n2/L+1

´
cache

misses.
To apply Corollary 6, we must find a concave function f

that bounds the number of cache misses Q as a function of a
segment’s length, for all segments in the recursive decompo-
sition. Consider a segment in the recursive decomposition
that multiplies n×n matrices. Ignoring constant factors, let
w = n3 be the length of the segment. Then Q ≤ f(w) for

some concave function f(w) ∈ O
`
w/(L

√
Z) + w2/3/L + 1

´
.

Since f is concave, we obtain the cache complexity of a
parallel execution of matmul by Corollary 6 as

QP (n, Z, L) = O
`
n3/(L

√
Z) + S1/3n2/L + S

´
, (4)

where S = O(Pn) with high probability.

Comparison With Previous Bounds. Assume now for
simplicity that L = Θ(1). The sequential cache complexity

is Q(n, Z, L) = O(n3/
√

Z +n2) and the Cilk cache complex-
ity is

QP (n, Z) = O
`
n3/

√
Z + (Pn)1/3n2

´
. (5)

How does the “new” bound Eq. (5) compare to the “old”
bound

QP (n, Z) = O
`
n3/

√
Z + ZPn

´
(6)

that was derived by Blumofe et al. [7]? As Z → ∞, Eq. (5)
remains bounded, whereas Eq. (6) diverges, and thus the
new bound is asymptotically tighter than the old bound for
some values of the parameters. If n3/

√
Z ≥ (Pn)1/3n2,

then the new bound is O(n3/
√

Z) and the old bound is

Ω(n3/
√

Z), and therefore the old bound is not tighter than

the new one. Otherwise, we have n3/
√

Z ≤ (Pn)1/3n2,

and thus
√

Z ≥ (Pn)−1/3n, from which ZPn ≥ (Pn)1/3n2

follows. Consequently, the new bound is O((Pn)1/3n2),

whereas the old bound is Ω(ZPn) = Ω((Pn)1/3n2), and
therefore the old bound is not tighter than the new one in
this case either. Thus, we conclude that the new bound
strictly subsumes the old bound.

We remark that the new bound is not optimal, however.
For example, a smart scheduler could achieve linear speedup
by partitioning the trace into S = P 3/2 segments, each com-
puting a matrix multiplication of size (n/

√
P ) × (n/

√
P ),

thereby yielding cache complexity O(n3/
√

Z +
√

Pn2).

4.2 1D Parallel Stencil Algorithm
In this section, we present a parallel cache oblivious algo-

rithm for stencil computations, derived from our sequential
cache oblivious algorithm [16], and we analyze its cache com-
plexity in the ideal cache model. Bilardi and Preparata [4]
analyze a more complicated parallel cache oblivious stencil
algorithm in a limiting technology where signal propagation
at the speed of light is the primary performance bottleneck.

A stencil defines the computation of an element in an n-
dimensional spatial grid at time t as a function of neighbor-
ing grid elements at time t−1, . . . , t−k. The n-dimensional
grid plus the time dimension span an (n + 1)-dimensional
spacetime. In practical implementations of stencils, there
is often no need to store the entire spacetime; storing a
bounded number of time steps per space point is sufficient.
For example, consider a 3-point stencil in 1-dimensional
space (2-dimensional spacetime): Because the computation
of a point at time t depends only upon three points at time
t− 1, it is sufficient to store two time steps only. Our cache
oblivious algorithm applies to such “in-place” computations
that allocate and reuse spacetime points for a bounded num-
ber of time steps.

For brevity we restrict our discussion to one-dimensional
stencils. The algorithm can be extended to stencils with
arbitrary dimensions as discussed in [16].

4.2.1 Description of 1D Stencil Algorithm
Procedure walk1 in Fig. 5 visits all points (t, x) in a rect-

angular spacetime region, where 0 ≤ t < T , 0 ≤ x < N , and
t and x are integers. The procedure visits point (t + 1, x)
after visiting points (t, x+k) for |k| ≤ σ, and thus it respects
the dependencies imposed by the stencil. We assume in this
paper that σ ≥ 1.2

Although we are ultimately interested in traversing rect-
angular spacetime regions, the procedure does in fact op-
erate on more general trapezoidal regions such as the one

2It is possible to modify our algorithm to work for σ = 0, al-
though it is always safe to choose a value of σ larger than strictly
necessary.

275



x0 x1

t0

t1

x

t
w

h

Figure 2: Illustration of the trapezoid
T (t0, t1, x0, ẋ0, x1, ẋ1) for ẋ0 = 1 and ẋ1 = −1. The
trapezoid includes all points in the shaded region,
except for those on the top and right edges.
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Figure 3: Illustration of a parallel space cut. The
black trapezoids are independent of each other and
can be visited in parallel. Once these trapezoids
have been visited, the gray trapezoids can in turn
be visited in parallel.

shown in Fig. 2. For integers t0, t1, x0, ẋ0, x1, and ẋ1, we
define the trapezoid T (t0, t1, x0, ẋ0, x1, ẋ1) to be the set of
integer pairs (t, x) such that t0 ≤ t < t1 and x0+ẋ0(t−t0) ≤
x < x1 + ẋ1(t − t0). (We use the Newtonian notation
ẋ = dx/dt.) The height of the trapezoid is h = t1 − t0,
and we define the width to be the average of the lengths of
the two parallel sides, i.e. w = (x1−x0)+(ẋ1− ẋ0)h/2. The
center of the trapezoid is point (t, x), where t = (t0 + t1)/2
and x = (x0 + x1)/2 + (ẋ0 + ẋ1)h/4 (i.e., the average of
the four corners). The area of the trapezoid is the number
of points in the trapezoid. We only consider well-defined
trapezoids, for which these three conditions hold: t1 ≥ t0,
x1 ≥ x0, and x1 + h · ẋ1 ≥ x0 + h · ẋ0.

Procedure walk1 decomposes T recursively into smaller
trapezoids, according to the following rules.

Parallel space cut: Whenever possible, the procedure ex-
ecutes a parallel space cut, decomposing T into into r
“black” trapezoids and some number of “gray” trape-
zoids, as illustrated in Fig. 3. The procedure spawns
the black trapezoids in parallel, waits for all of them to
complete, and then spawns the gray trapezoids in par-
allel. Such an execution order is correct because the
procedure operates the cut so that (1) points in dif-
ferent black trapezoids are independent of each other,
(2) points in different gray trapezoids are independent
of each other, and (3) points in a black trapezoid do
not depend on points in a gray trapezoid.

The base of each black trapezoid has length l = �(x1−
x0)/r�, except for the rightmost one, which may be
larger because of rounding. A black trapezoid has the
form T (t0, t1, x, σ, x + l,−σ). Slope σ of the edges is
necessary to guarantee that a point in a black trape-

t

x

T1

T2

Figure 4: Illustration of a time cut. The algorithm
cuts the trapezoid along the horizontal line through
its center, it recursively visits T1, and then it visits
T2.

zoid does not depend on points in a gray trapezoid.
A black trapezoid is well-defined only if the condition
l ≥ 2σh holds, or else the trapezoid would be self-
intersecting. Therefore, r black trapezoids fit into T
only if x1 − x0 ≥ 2rσh, which is the condition for the
applicability of the parallel space cut.

The procedure always generates r +1 gray trapezoids,
of which r−1 are located between black trapezoids, as
in Fig. 3, and two are located at the left and right edges
of T . In Fig. 3, the trapezoids at the edges happen to
be have zero area. The gray trapezoids in the middle
are in fact triangles of the form T (t0, t1, x,−σ, x, σ).

We leave the constant r unspecified for now. The
choice of r involves a tradeoff between the critical path
and the cache complexity, which we analyze in Sec-
tion 4.2.2.

Time cut: If h > 1 and the parallel space cut is not appli-
cable, procedure walk1 cuts the trapezoid along the
horizontal line through the center, as illustrated in
Fig. 4. The recursion first traverses trapezoid T1 =
T (t0, t0 + s, x0, ẋ0, x1, ẋ1), and then trapezoid T2 =
T (t0+s, t1, x0+ẋ0s, ẋ0, x1+ẋ1s, ẋ1), where s = �h/2�.

Base case: If h = 1, then T consists of the line of space-
time points (t0, x) with x0 ≤ x < x1. The base case
visits these points, calling the application-specific pro-
cedure kernel for each of them. The traversal order
is immaterial because these points are independent of
each other.

The work (sequential execution time) of procedure walk1,
when traversing a trapezoid, is proportional to the trape-
zoid’s area, i.e., T1 = Θ(wh) where w is the width of the
trapezoid and h is its height. This fact is not completely
obvious because the procedure may spawn up to two empty
gray trapezoids in case of a space cut, and the procedure
needs nonconstant Θ(h) time to execute an empty trapezoid
of height h. This additional work is asymptotically negligi-
ble, however. Procedure walk1 obeys the bound T1(w, h) ≤
2rT1(w/(2r), h) + O(h) in case of a space cut, and bound
T1(w, h) ≤ 2T1(w, h/2) + O(1) in case of a time cut. One
can verify by induction that T1(w, h) ≤ c(wh−w−h) holds
for some constant c and sufficiently large w and h. Alter-
natively, one can modify the procedure to test for empty
trapezoids at the beginning, thus avoiding this problem al-
together, but we prefer to keep the code simple even if the
analysis becomes slightly harder.
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0 int r; /* assert(r >= 2) */

1 cilk void walk1(int t0, int t1, int x0, int ẋ0, int x1, int ẋ1)

2 {

3 int h = t1 - t0, Δx = x1 - x0;

4 int x, i;

5 if (h >= 1 && Δx >= 2 * σ * h * r) { /* parallel space cut */

6 int l = Δx / r; /* base of a black trapezoid, rounded down */

7 for (i = 0; i < r - 1; ++i)

8 spawn walk1(t0, t1, x0 + i * l, σ, x0 + (i+1) * l, -σ);
9 spawn walk1(t0, t1, x0 + i * l, σ, x1, -σ);

10 sync;

11 spawn walk1(t0, t1, x0, ẋ0, x0, σ);
12 for (i = 1; i < r; ++i)

13 spawn walk1(t0, t1, x0 + i * l, -σ, x0 + i * l, σ);
14 spawn walk1(t0, t1, x1, -σ, x1, ẋ1);

15 } else if (h > 1) { /* time cut */

16 int s = h / 2;

17 spawn walk1(t0, t0 + s, x0, ẋ0, x1, ẋ1);

18 sync;

19 spawn walk1(t0 + s, t1, x0 + ẋ0 * s, ẋ0, x1 + ẋ1 * s, ẋ1);

20 } else if (h == 1) { /* base case */

21 for (x = x0; x < x1; ++x)
22 kernel(t0, x);
23 }

24 }

Figure 5: One-dimensional parallel stencil algorithm implemented in the Cilk language. In lines 7–9, we
spawn r black trapezoids. Because of the rounding of l in line 6, the length of the base of the last trapezoid
is not necessarily l, and we handle this trapezoid separately in line 9. The sync statement in line 10 waits for
the black trapezoids to complete, before spawning the gray trapezoids in lines 11–14.

The critical path of procedure walk1 is T∞ =
O(σrhw1/ lg(2(r−1))). Appendix A contains the laborious yet
straightforward proof.

4.2.2 Cache Complexity of the 1D Stencil Algorithm
We now analyze the cache complexity of our parallel sten-

cil procedure walk1. We assume an ideal cache with line
size L = Θ(1), because a general line size only complicates
the analysis without yielding further insights. The analysis
depends on two geometric invariants which we now state.

Lemma 7 (Aspect ratio). If procedure walk1 traverses
a trapezoid of height h0, then for each subtrapezoid of height h
and width w created by the procedure, the invariant h ≥
min(h0, w/(4σ(r + 1))) holds.

Proof. The proof is by induction on the number of cuts
required to produce a subtrapezoid. The invariant holds
by definition of h0 at the beginning of the execution. The
base case produces no subtrapezoids, and therefore it triv-
ially preserves the invariant. A parallel space cut does not
change h and does not increase w, thus preserving the in-
variant. In the time-cut case, Δx = x1 − x0 ≤ 2σrh holds
by construction of the procedure. Because |ẋi| ≤ σ, we
have w ≤ Δx + σh. The time cut produces trapezoids of
height h′ = h/2 and width w′ ≤ w + σh ≤ Δx + 2σh ≤
2σ(r + 1)h. Thus, a time cut preserves the invariant, and
the lemma is proven.

Lemma 8 (Aspect ratio after space cuts). If pro-
cedure walk1 traverses a trapezoid of height h0, then each
space cut produces trapezoids of height h and width w with
h ≥ min(h0, Ω(w/σ)), where the constant hidden in the Ω-
notation does not depend upon r.

Proof. Before applying a space cut to a trapezoid of
width w and height h, Lemma 7 holds. The space cut pro-
duces trapezoids of width w′ = Θ(w/r) and of the same
height h, and therefore we have h ≥ min(h0, Ω(w′/σ)).

Theorem 9 (Sequential cache complexity). Let
procedure walk1 traverse a trapezoid of height h0 on a single
processor with an ideal cache of size Z and line size L =
Θ(1). Then each subtrapezoid T of height h and width w
generated by walk1 incurs at most

O

„
wh

Z/(σr)
+

wh

h0
+ w

«

cache misses.

Proof. Let W be the maximum integer such that the
working set of any trapezoid of width W fits into the cache.
We have W = Θ(Z).

If w ≤ W , then the procedure incurs O(w) cache misses
to read and write the working set once, and the theorem is
proven.

If w > W , consider the set of maximal subtrapezoids of
width at most W generated by the procedure while travers-
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ing T . These trapezoids are generated either by a space cut
or by a time cut. Trapezoids generated by a time cut have
width w′ = Ω(W ) and height h′ = Ω

`
min(h0, w

′/(σr))
´

by Lemma 7. Trapezoids generated by a space cut have
width w′ = Ω(W/r) and height h′ = Ω

`
min(h0, w

′/σ))
´

by

Lemma 8. In either case, we have h′ = Ω
`
min(h0, W/(σr))

´
= Ω

`
min(h0, Z/(σr))

´
.

Execution of each maximal subproblem visits w′h′ space-
time points incurring O(w′) cache misses. Hence, the ratio
of useful work to cache misses for the execution of the sub-
problem is h′ = Ω

`
min(h0, Z/(σr))

´
. Thus, the same ratio

holds for the entire execution of T which, therefore, incurs
at most

wh

Ω
`
min(h0, Z/(σr))

´
cache misses, from which the theorem follows.

We are now ready to analyze the parallel cache complex-
ity of our cache oblivious stencil algorithm. We first derive
the sequential cache complexity of a trapezoid in terms of
its area A, which is proportional to the work of the trape-
zoid. Since the cache complexity turns out to be a concave
function of the work, we can then derive the Cilk cache com-
plexity from Corollary 6.

Lemma 10. Let procedure walk1 traverse a trapezoid of
height h0 on a single processor with an ideal cache of size Z
and line size L = Θ(1). Then each subtrapezoid T of area A
generated by walk1 incurs at most

O

„
A

Z/(σr)
+

A

h0
+

√
Aσr

«

cache misses.

Proof. Let w be the width of T . We first prove that

w = O

„
A

h0
+

√
Aσr

«
. (7)

From Lemma 7, we have h = A/w ≥ min
`
h0, w/(4σ(r+1))

´
.

Depending on which of the two terms is smaller, we have
two cases. If h0 ≤ w/(4σ(r + 1)), then we have A/w ≥ h0.
Consequently, we have w ≤ A/h0, which proves Eq. (7).
Otherwise, we have A/w ≥ w/(4σ(r + 1)), and thus w2 ≤
4Aσ(r + 1), again proving Eq. (7).

The lemma then follows by substituting Eq. (7) in Theo-
rem 9.

Theorem 11 (Parallel cache complexity). Assume
a Cilk scheduler, an ideal distributed-cache machine with P
processors and private caches of size Z and line size L =
Θ(1), and memory consistency maintained by the Backer
protocol. Let procedure walk1 traverse a trapezoid of width w0

and height h0. Then the execution incurs

O

„
w0h0

Z/(σr2)
+ rw0 + σh0

q
Pr3w1+α

0

«

cache misses with high probability, where α = 1/ lg(2(r−1)).

Proof. Consider the trace of the execution with the re-
cursive decomposition consisting of all segments correspond-
ing to trapezoids completely executed by the procedure. We
identify the length of a segment in the decomposition with

the area of the trapezoid. Then, from Lemma 10, the cache
complexity of a segment B in the recursive decomposition is
bounded by Q(B) ≤ f(|B|), for some nondecreasing concave
function f such that

f(A) ∈ O

„
A

Z/(σr)
+

A

h0
+

√
Aσr

«
.

With critical path T∞ = O (σrh0w
α
0 ), as proven in The-

orem 12 in Appendix A, the theorem follows from Corol-
lary 6.

Remark: Practical instances of procedure walk1 operate
with a constant value σ, and a relatively large constant
value r, such that α = 1/ lg(2(r − 1)) = ε, where ε is a
“small” constant. Then, the cache complexity of procedure
walk1 applied to a trapezoid of width and height n is with
high probability

QP (n, Z) = O
`
n2/Z + n +

√
Pn3+ε

´
.

5. Conclusion
We believe that programs that can cope with varying

memory hierarchies as exemplified by cache oblivious algo-
rithms, a provably efficient scheduler such as Cilk, and a
scalable shared memory as advocated by the dag consistent
memory model, provide a framework in which we can ob-
tain scalable and reasonably high performance with reason-
able programming effort. This framework suggests a scal-
able computer architecture based on processors with private
caches as part of an automatically managed memory hier-
archy. The theoretical results of this paper provide further
support for this hypothesis.
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APPENDIX

A. Analysis of the Critical Path of Walk1

Theorem 12. The critical path of walk1 when visiting
trapezoid T is

T∞(T ) = O
`
σrhw1/ lg(2(r−1))´

,

where h is the height of T and w is its width.

Proof. To avoid cluttering the proof with the O-notation,
assume that a call to the kernel procedure and a spawn

cost at most one unit of critical path. Furthermore, let
α = 1/ lg(2(r − 1)) for brevity. Because procedure walk1

uses r ≥ 2 to spawn at least two threads in the space cut,
we have α ≤ 1.

We now prove that

T∞(h, w) ≤ 2σr(2wαh − 1) (8)

by induction on the area of the trapezoid.

Base case: If h = 1 and 1 ≤ w < 2σr, then the procedure
enters its base case with a critical path T∞(h, w) = w ≤
2σr ≤ 2σr(2wα − 1), and Eq. (8) holds.

Inductive step: Otherwise, the procedure recursively cuts
the trapezoid into strictly smaller trapezoids for which we
assume inductively that Eq. (8) holds. Depending on whether
the procedure executes a time cut or a parallel space cut,
we distinguish two cases.

Time cut: If the procedure executes a time cut, we have

T∞(h, w) ≤ T∞(h/2, w1) + T∞(h/2, w2) + 1 ,

where w1 and w2 are the widths of the two trapezoids pro-
duced by the cut. By inductive hypothesis, we have

T∞(h/2, wi) ≤ 2σr(2wα
i h/2 − 1) .

Since α ≤ 1 holds, wα is a concave function of w. By
Jensen’s inequality, we have wα

1 + wα
2 ≤ 2((w1 + w2)/2)

α =
2wα. Consequently, the following inequalities hold:

T∞(h, w) ≤ 2σr(2wα
1 h/2 − 1) + 2σr(2wα

2 h/2 − 1) + 1

≤ 2σr ((wα
1 + wα

2 )h − 2) + 1

≤ 2σr(2wαh − 2) + 1

≤ 2σr(2wαh − 1) ,

thereby proving Eq. (8) in the time-cut case.

Space cut: If the procedure executes a parallel space cut,
it generates at least r−1 gray trapezoids of width wg = σh,
and r black trapezoids of width wb. The critical path is the
sum of the critical paths of one black and one gray trapezoid,
plus an additional critical path r for spawning the recursive
subproblems. Therefore, we have

T∞(h, w) ≤ T∞(h, wb) + T∞(h, wg) + r .

The total width of the black trapezoids it at most w −
(r − 1)wg, and therefore we have

wb ≤ (w − (r − 1)wg)/r

≤ (w − (r − 1)wg)/(r − 1)

≤ w/(r − 1) − wg .
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Consequently, we have

T∞(h, w) ≤ T∞(h, wb) + T∞(h, wg) + r

≤ 2σr(2(wα
b + wα

g )h − 2) + r

≤ 2σr(2((w/(r − 1) − wg)α + wα
g )h − 2) + r .

Again by Jensen’s inequality, we have

(w/(r − 1) − wg)
α + wα

g ≤ 2 (w/(2(r − 1)))α = wα ,

from which we conclude that

T∞(h, w) ≤ 2σr(2wαh − 2) + r

≤ 2σr(2wαh − 1) .

Thus, Eq. (8) holds inductively in the space cut case as well,
concluding the proof of the theorem.
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