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ABSTRACT

This paper introduces a storage format for sparse matrices, called
compressed sparse blocks (CSB), which allows both Ax and ATx

to be computed efficiently in parallel, where A is an n× n sparse
matrix with nnz ≥ n nonzeros and x is a dense n-vector. Our algo-
rithms use Θ(nnz) work (serial running time) and Θ(

√
n lgn) span

(critical-path length), yielding a parallelism of Θ(nnz/
√

n lgn),
which is amply high for virtually any large matrix. The storage
requirement for CSB is esssentially the same as that for the more-
standard compressed-sparse-rows (CSR) format, for which com-
puting Ax in parallel is easy but ATx is difficult. Benchmark results
indicate that on one processor, the CSB algorithms for Ax and ATx

run just as fast as the CSR algorithm for Ax, but the CSB algo-
rithms also scale up linearly with processors until limited by off-
chip memory bandwidth.

Categories and Subject Descriptors

F.2.1 [Analysis of Algorithms and Problem Complexity]: Nu-
merical Algorithms and Problems—computations on matrices; G.4
[Mathematics of Computing]: Mathematical Software—parallel

and vector implementations.

General Terms

Algorithms, Design, Experimentation, Performance, Theory.
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1. INTRODUCTION
When multiplying a large n× n sparse matrix A having nnz

nonzeros by a dense n-vector x, the memory bandwidth for reading
A can limit overall performance. Consequently, most algorithms to
compute Ax store A in a compressed format. One simple “tuple”
representation stores each nonzero of A as a triple consisting of its
row index, its column index, and the nonzero value itself. This
representation, however, requires storing 2nnz row and column in-
dices, in addition to the nonzeros. The current standard storage for-
mat for sparse matrices in scientific computing, compressed sparse

rows (CSR) [32], is more efficient, because it stores only n+nnz in-
dices or pointers. This reduction in storage of CSR compared with
the tuple representation tends to result in faster serial algorithms.

In the domain of parallel algorithms, however, CSR has its lim-
itations. Although CSR lends itself to a simple parallel algorithm
for computing the matrix-vector product Ax, this storage format
does not admit an efficient parallel algorithm for computing the
product ATx, where AT denotes the transpose of the matrix A —
or equivalently, for computing the product xTA of a row vector xT

by A. Although one could use compressed sparse columns (CSC)

to compute ATx, many applications, including iterative linear sys-
tem solvers such as biconjugate gradients and quasi-minimal resid-
ual [32], require both Ax and ATx. One could transpose A explicitly,
but computing the transpose for either CSR or CSC formats is ex-
pensive. Moreover, since matrix-vector multiplication for sparse
matrices is generally limited by memory bandwidth, it is desirable
to find a storage format for which both Ax and ATx can be computed
in parallel without performing more than nnz fetches of nonzeros
from the memory to compute either product.

This paper presents a new storage format called compressed

sparse blocks (CSB) for representing sparse matrices. Like CSR
and CSC, the CSB format requires only n + nnz words of storage
for indices. Because CSB does not favor rows over columns or vice
versa, it admits efficient parallel algorithms for computing either Ax

or ATx, as well as for computing Ax when A is symmetric and only
half the matrix is actually stored.

Previous work on parallel sparse matrix-vector multiplication
has focused on reducing communication volume in a distributed-
memory setting, often by using graph or hypergraph partitioning
techniques to find good data distributions for particular matrices
( [7,38], for example). Good partitions generally exist for matrices
whose structures arise from numerical discretizations of partial dif-
ferential equations in two or three spatial dimensions. Our work, by
contrast, is motivated by multicore and manycore architectures, in
which parallelism and memory bandwidth are key resources. Our
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Figure 1: Average performance of Ax and ATx operations on 13 different
matrices from our benchmark test suite. CSB_SpMV and CSB_SpMV_T

use compressed sparse blocks to perform Ax and ATx, respectively.
CSR_SpMV (Serial) and CSR_SpMV_T (Serial) use OSKI [39] and com-
pressed sparse rows without any matrix-specific optimizations. Star-P
(y=Ax) and Star-P (y’=x’A) use Star-P [34], a parallel code based on CSR.
The experiments were run on a ccNUMA architecture powered by AMD
Opteron 8214 (Santa Rosa) processors.

algorithms are efficient in these measures for matrices with arbi-
trary nonzero structure.

Figure 1 presents an overall summary of achieved performance.
The serial CSR implementation uses plain OSKI [39] without any
matrix-specific optimizations. The graph shows the average perfor-
mance over all our test matrices except for the largest, which failed
to run on Star-P [34] due to memory constraints. The performance
is measured in Mflops (Millions of FLoating-point OPerationS) per
second. Both Ax and ATx take 2 nnz flops. To measure perfor-
mance, we divide this value by the time it takes for the computation
to complete. Section 7 provides detailed performance results.

The remainder of this paper is organized as follows. Section 2
discusses the limitations of the CSR/CSC formats for parallelizing
Ax and ATx calculations. Section 3 describes the CSB format for
sparse matrices. Section 4 presents the algorithms for computing
Ax and ATx using the CSB format, and Section 5 provides a theo-
retical analysis of their parallel performance. Section 6 describes
the experimental setup we used, and Section 7 presents the results.
Section 8 offers some concluding remarks.

2. CONVENTIONAL STORAGE

FORMATS
This section describes the CSR and CSC sparse-matrix storage

formats and explores their limitations when it comes to computing
both Ax and ATx in parallel. We review the work/span formulation
of parallelism and show that performing Ax with CSR (or equiva-
lently ATx with CSC) yields ample parallelism. We consider vari-
ous strategies for performing ATx in parallel with CSR (or equiva-
lently Ax with CSC) and why they are problematic.

The compressed sparse row (CSR) format stores the nonzeros
(and ideally only the nonzeros) of each matrix row in consecutive
memory locations, and it stores an index to the first stored ele-
ment of each row. In one popular variant [14], CSR maintains one
floating-point array val[nnz] and two integer arrays, col_ind[nnz]
and row_ptr[n] to store the matrix A = (ai j). The row_ptr array
stores the index of each row in val. That is, if val[k] stores matrix
element ai j , then row_ptr[i]≤ k < row_ptr[i +1]. The col_ind ar-

CSR_SPMV(A,x,y)

1 n← A.rows

2 for i← 0 to n−1 in parallel

3 do y[i]← 0
4 for k← A.row_ptr[i] to A.row_ptr[i+1]−1
5 do y[i]← y[i]+A.val[k] · x[A.col_ind[k]]

Figure 2: Parallel procedure for computing y← Ax, where the n×n matrix
A is stored in CSR format.

ray stores the column indices of the elements in the val array. That
is, if val[k] stores matrix element ai j , then col_ind[k] = j.

The compressed sparse column (CSC) format is analogous to
CSR, except that the nonzeros of each column, instead of row, are
stored in contiguous memory locations. In other words, the CSC
format for A is obtained by storing AT in CSR format.

The earliest written description of CSR that we have been able
to divine from the literature is an unnamed “scheme” presented in
Table 1 of the 1967 article [36] by Tinney and Walker, although
in 1963 Sato and Tinney [33] allude to what is probably CSR.
Markowitz’s seminal paper [28] on sparse Gaussian elimination
does not discuss data structures, but it is likely that Markowitz used
such a format as well. CSR and CSC have since become ubiquitous
in sparse matrix computation [13, 16, 17, 21, 23, 32].

The following lemma states the well-known bound on space used
by the index data in the CSR format (and hence the CSC format as
well). By index data, we mean all data other than the nonzeros —
that is, the row_ptr and col_ind arrays.

LEMMA 1. The CSR format uses n lgnnz+nnz lgn bits of index

data for an n×n matrix.

For a CSR matrix A, computing y← Ax in parallel is straightfor-
ward, as shown in Figure 2. Procedure CSR_SPMV in the figure
computes each element of the output array in parallel, and it does
not suffer from race conditions, because each parallel iteration i

writes to a single location y[i] which is not updated by any other
iteration.

We shall measure the complexity of this code, and other codes in
this paper, in terms of work and span [10, Ch. 27]:

• The work, denoted by T1, is the running time on 1 processor.
• The span,1 denoted by T∞, is running time on an infinite

number of processors.

The parallelism of the algorithm is T1/T∞, which corresponds to
the maximum possible speedup on any number of processors. Gen-
erally, if a machine has somewhat fewer processors than the paral-
lelism of an application, a good scheduler should be able to achieve
linear speedup. Thus, for a fixed amount of work, our goal is to
achieve a sufficiently small span so that the parallelism exceeds the
number of processors by a reasonable margin.

The work of CSR_SPMV is Θ(nnz), assuming, as we shall, that
nnz ≥ n, because the body of the outer loop starting in line 2 ex-
ecutes for n iterations, and the body of the inner loop starting in
line 4 executes for the number of nonzeros in the ith row, for a total
of nnz times.

The span of CSR_SPMV depends on the maximum number nr

of nonzeros in any row of the matrix A, since that number deter-
mines the worst-case time of any iteration of the loop in line 4.
The n iterations of the parallel loop in line 2 contribute Θ(lgn) to
the span, assuming that loops are implemented as binary recursion.
Thus, the total span is Θ(nr+ lgn).

The parallelism is therefore Θ(nnz/(nr + lgn)). In many com-
mon situations, we have nnz = Θ(n), which we will assume for

1The literature also uses the terms depth [3] and critical-path length [4].



CSR_SPMV_T(A,x,y)

1 n← A.cols

2 for i← 0 to n−1
3 do y[i]← 0
4 for i← 0 to n−1
5 do for k← A.row_ptr[i] to A.row_ptr[i+1]−1
6 do y[A.col_ind[k]]← y[A.col_ind[k]]+A.val[k] · x[i]
Figure 3: Serial procedure for computing y← ATx, where the n×n matrix
A is stored in CSR format.

estimation purposes. The maximum number nr of nonzeros in any
row can vary considerably, however, from a constant, if all rows
have an average number of nonzeros, to n, if the matrix has a dense
row. If nr = O(1), then the parallelism is Θ(nnz/ lg n), which is
quite high for a matrix with a billion nonzeros. In particular, if we
ignore constants for the purpose of making a ballpark estimate, we
have nnz/ lgn≈ 109/(lg109) > 3×107, which is much larger than
any number of processors one is likely to encounter in the near fu-
ture. If nr = Θ(n), however, as is the case when there is even a
single dense row, we have parallelism Θ(nnz/n) = Θ(1), which
limits scalability dramatically. Fortunately, we can parallelize the
inner loop (line 4) using divide-and-conquer recursion to compute
the sparse inner product in lg(nr) span without affecting the asymp-
totic work, thereby achieving parallelism Θ(nnz/ lgn) in all cases.

Computing ATx serially can be accomplished by simply inter-
changing the row and column indices [15], yielding the pseudocode
shown in Figure 3. The work of procedure CSR_SPMV_T is
Θ(nnz), the same as CSR_SPMV.

Parallelizing CSR_SPMV_T is not straightforward, however.
We shall review several strategies to see why it is problematic.

One idea is to parallelize the loops in lines 2 and 5, but this strat-
egy yields minimal scalability. First, the span of the procedure is
Θ(n), due to the loop in line 4. Thus, the parallelism can be at
most O(nnz/n), which is a small constant in most common situ-
ations. Second, in any practical system, the communication and
synchronization overhead for executing a small loop in parallel is
much larger than the execution time of the few operations executed
in line 6.

Another idea is to execute the loop in line 4 in parallel. Unfor-
tunately, this strategy introduces race conditions in the read/modi-
fy/write to y[A.col_ind[k]] in line 6.2 These races can be addressed
in two ways, neither of which is satisfactory.

The first solution involves locking column col_ind[k] or using
some other form of atomic update.3 This solution is unsatisfac-
tory because of the high overhead of the lock compared to the cost
of the update. Moreover, if A contains a dense column, then the
contention on the lock is Θ(n), which completely destroys any par-
allelism in the common case where nnz = Θ(n).

The second solution involves splitting the output array y into
multiple arrays yp in a way that avoids races, and then accumu-
lating y← Σpyp at the end of the computation. For example, in a
system with P processors (or threads), one could postulate that pro-
cessor p only operates on array yp, thereby avoiding any races. This
solution is unsatisfactory because the work becomes Θ(nnz+Pn),
where the last term comes from the need to initialize and accumu-
late P (dense) length-n arrays. Thus, the parallel execution time is
Θ((nnz+Pn)/P) = Ω(n) no matter how many processors are avail-
able.

2In fact, if nnz > n, then the “pigeonhole principle” guarantees that the
program has at least one race condition.
3No mainstream hardware supports atomic update of floating-point quanti-
ties, however.

A third idea for parallelizing ATx is to compute the transpose
explicitly and then use CSR_SPMV. Unfortunately, parallel trans-
position of a sparse matrix in CSR format is costly and encounters
exactly the same problems we are trying to avoid. Moreover, ev-
ery element is accessed at least twice: once for the transpose, and
once for the multiplication. Since the calculation of a matrix-vector
product tends to be memory-bandwidth limited, this strategy is gen-
erally inferior to any strategy that accesses each element only once.

Finally, of course, we could store the matrix AT in CSR format,
that is, storing A in CSC format, but then computing Ax becomes
difficult.

To close this section, we should mention that if the matrix A is
symmetric, so that only about half the nonzeros need be stored —
for example, those on or above the diagonal — then computing
Ax in parallel for CSR is also problematic. For this example, the
elements below the diagonal are visited in an inconvenient order,
as if they were stored in CSC format.

3. THE CSB STORAGE FORMAT
This section describes the CSB storage format for sparse matri-

ces and shows that it uses the same amount of storage space as the
CSR and CSC formats. We also compare CSB to other blocking
schemes.

For a given block-size parameter β, CSB partitions the n× n

matrix A into n2/β2 equal-sized β×β square blocks4

A =

0

B

B

B

@

A00 A01 · · · A0,n/β−1

A10 A11 · · · A1,n/β−1

...
...

. . .
...

An/β−1,0 An/β−1,1 · · · An/β−1,n/β−1

1

C

C

C

A

,

where the block Ai j is the β× β submatrix of A containing el-
ements falling in rows iβ, iβ + 1, . . . ,(i + 1)β− 1 and columns
jβ, jβ + 1, . . . ,( j + 1)β− 1 of A. For simplicity of presentation,
we shall assume that β is an exact power of 2 and that it divides n;
relaxing these assumptions is straightforward.

Many or most of the individual blocks Ai j are hypersparse [6],
meaning that the ratio of nonzeros to matrix dimension is asymp-
totically 0. For example, if β =

√
n and nnz = cn, the average block

has dimension
√

n and only c nonzeros. The space to store a block
should therefore depend only on its nonzero count, not on its di-
mension.

CSB represents a block Ai j by compactly storing a triple for each
nonzero, associating with the nonzero data element a row and col-
umn index. In contrast to the column index stored for each nonzero
in CSR, the row and column indices lie within the submatrix Ai j,
and hence require fewer bits. In particular, if β =

√
n, then each

index into Ai j requires only half the bits of an index into A. Since
these blocks are stored contiguously in memory, CSB uses an aux-
iliary array of pointers to locate the beginning of each block.

More specifically, CSB maintains a floating-point array
val[nnz], and three integer arrays row_ind[nnz], col_ind[nnz], and
blk_ptr[n2/β2]. We describe each of these arrays in turn.

The val array stores all the nonzeros of the matrix and is anal-
ogous to CSR’s array of the same name. The difference is that
CSR stores rows contiguously, whereas CSB stores blocks con-
tiguously. Although each block must be contiguous, the ordering
among blocks is flexible. Let f (i, j) be the bijection from pairs of
block indices to integers in the range 0,1, . . . ,n2/β2 − 1 that de-
scribes the ordering among blocks. That is, f (i, j) < f (i′, j′) if and

4The CSB format may be easily extended to nonsquare n×m matrices. In

this case, the blocks remain as square β×β matrices, and there are nm/β2

blocks.



only if Ai j appears before Ai′ j′ in val. We discuss choices of order-
ing later in this section.

The row_ind and col_ind arrays store the row and column in-
dices, respectively, of the elements in the val array. These indices
are relative to the block containing the particular element, not the
entire matrix, and hence they range from 0 to β−1. That is, if val[k]
stores the matrix element aiβ+r, jβ+c, which is located in the rth row
and cth column of the block Ai j, then row_ind = r and col_ind = c.
As a practical matter, we can pack a corresponding pair of elements
of row_ind and col_ind into a single integer word of 2lgβ bits so
that they make a single array of length nnz, which is comparable to
the storage needed by CSR for the col_ind array.

The blk_ptr array stores the index of each block in the val array,
which is analogous to the row_ptr array for CSR. If val[k] stores
a matrix element falling in block Ai j, then blk_ptr[ f (i, j)] ≤ k <
blk_ptr[ f (i, j)+1].

The following lemma states the storage used for indices in the
CSB format.

LEMMA 2. The CSB format uses (n2/β2) lgnnz+2nnz lgβ bits

of index data.

PROOF. Since the val array contains nnz elements, referencing
an element requires lgnnz bits, and hence the blk_ptr array uses
(n2/β2) lgnnz bits of storage.

For each element in val, we use lgβ bits to represent the row
index and lgβ bits to represent the column index, requiring a total
of nnz lgβ bits for each of row_ind and col_ind. Adding the space
used by all three indexing arrays completes the proof.

To better understand the storage requirements of CSB, we
present the following corollary for β =

√
n. In this case, both CSR

(Lemma 1) and CSB use the same storage.

COROLLARY 3. The CSB format uses n lgnnz+nnz lgn bits of

index data when β =
√

n.

Thus far, we have not addressed the ordering of elements within
each block or the ordering of blocks. Within a block, we use a Z-
Morton ordering [29], storing first all those elements in the top-left
quadrant, then the top-right, bottom-left, and finally bottom-right
quadrants, using the same layout recursively within each quadrant.
In fact, these quadrants may be stored in any order, but the recursive
ordering is necessary for our algorithm to achieve good parallelism
within a block.

The choice of storing the nonzeros within blocks in a recursive
layout is opposite to the common wisdom for storing dense matri-
ces [18]. Although most compilers and architectures favor conven-
tional row/column ordering for optimal prefetching, the choice of
layout within the block becomes less significant for sparse blocks
as they already do not take full advantage of such features. More
importantly, a recursive ordering allows us to efficiently determine
the four quadrants of a block using binary search, which is crucial
for parallelizing individual blocks.

Our algorithm and analysis do not, however, require any particu-
lar ordering among blocks. A Z-Morton ordering (or any recursive
ordering) seems desirable as it should get better performance in
practice by providing spatial locality, and it matches the ordering
within a block. Computing the function f (i, j), however, is simpler
for a row-major or column-major ordering among blocks.

Comparison with other blocking methods

A blocked variant of CSR, called BCSR, has been used for im-
proving register reuse [24]. In BCSR, the sparse matrix is divided
into small dense blocks that are stored in consecutive memory loca-
tions. The pointers are maintained to the first block on each row of

blocks. BCSR storage is converse to CSB storage, because BCSR
stores a sparse collection of dense blocks, whereas CSB stores a
dense collection of sparse blocks. We conjecture that it would be
advantageous to apply BCSR-style register blocking to each indi-
vidual sparse block of CSB.

Nishtala et al. [30] have proposed a data structure similar to CSB
in the context of cache blocking. Our work differs from theirs in
two ways. First, CSB is symmetric without favoring rows over
columns. Second, our algorithms and analysis for CSB are de-
signed for parallelism instead of cache performance. As shown
in Section 5, CSB supports ample parallelism for algorithms com-
puting Ax and ATx, even on sparse and irregular matrices.

Blocking is also used in dense matrices. The Morton-hybrid lay-
out [1,27], for example, uses a parameter equivalent to our param-
eter β for selecting the block size. Whereas in CSB we store ele-
ments in a Morton ordering within blocks and an arbitrary ordering
among blocks, the Morton-hybrid layout stores elements in row-
major order within blocks and a Morton ordering among blocks.
The Morton-hybrid layout is designed to take advantage of hard-
ware and compiler optimizations (within a block) while still ex-
ploiting the cache benefits of a recursive layout. Typically the block
size is chosen to be 32×32, which is significantly smaller than the
Θ(
√

n) block size we propose for CSB. The Morton-hybrid lay-
out, however, considers only dense matrices, for which designing
a matrix-vector multiplication algorithm with good parallelism is
significantly easier.

4. MATRIX-VECTOR MULTIPLICATION

USING CSB
This section describes a parallel algorithm for computing the

sparse-matrix dense-vector product y← Ax, where A is stored in
CSB format. This algorithm can be used equally well for comput-
ing y← ATx by switching the roles of row and column. We first
give an overview of the algorithm and then describe it in detail.

At a high level, the CSB_SPMV multiplication algorithm sim-
ply multiplies each “blockrow” by the vector x in parallel, where
the ith blockrow is the row of blocks (Ai0Ai1 · · ·Ai,n/β−1). Since
each blockrow multiplication writes to a different portion of the
output vector, this part of the algorithm contains no races due to
write conflicts.

If the nonzeros were guaranteed to be distributed evenly among
block rows, then the simple blockrow parallelism would yield an
efficient algorithm with n/β-way parallelism by simply performing
a serial multiplication for each blockrow. One cannot, in general,
guarantee that distribution of nonzeros will be so nice, however. In
fact, sparse matrices in practice often include at least one dense row
containing roughly n nonzeros, whereas the number of nonzeros
is only nnz ≈ cn for some small constant c. Thus, performing a
serial multiplication for each blockrow yields no better than c-way
parallelism.

To make the algorithm robust to matrices of arbitrary nonzero
structure, we must parallelize the blockrow multiplication when a
blockrow contains “too many” nonzeros. This level of paralleliza-
tion requires care to avoid races, however, because two blocks in
the same blockrow write to the same region within the output vec-
tor. Specifically, when a blockrow contains Ω(β) nonzeros, we re-
cursively divide it “in half,” yielding two subblockrows, each con-
taining roughly half the nonzeros. Although each of these sub-
blockrows can be multiplied in parallel, they may need to write to
the same region of the output vector. To avoid the races that might
arise due to write conflicts between the subblockrows, we allocate a
temporary vector to store the result of one of the subblockrows and



CSB_SPMV(A,x,y)

1 for i← 0 to n/β−1 in parallel // For each blockrow.
2 do Initialize a dynamic array Ri

3 Ri[0]← 0
4 count← 0 // Count nonzeroes in chunk.
5 for j← 0 to n/β−2
6 do count← count +nnz(Ai j)
7 if count +nnz(Ai, j+1) > Θ(β)
8 then // End the chunk, since the next block

// makes it too large.
9 append j to Ri // Last block in chunk.

10 count← 0
11 append n/β−1 to Ri

12 CSB_BLOCKROWV(A, i,Ri,x,y[iβ . .(i+1)β−1])

Figure 4: Pseudocode for the matrix-vector multiplication y← Ax. The
procedure CSB_BLOCKROWV (pseudocode for which can be found in Fig-
ure 5) as called here multiplies the blockrow by the vector x and writes
the output into the appropriate region of the output vector y. The nota-
tion x[a . .b] means the subarray of x starting at index a and ending at in-
dex b. The function nnz(Ai j) is a shorthand for A.blk_ptr[ f (i, j) + 1]−
A.blk_ptr[ f (i, j)], which calculates the number of nonzeros in the block Ai j .
For conciseness, we have overloaded the Θ(β) notation (in line 7) to mean
“a constant times β”; any constant suffices for the analysis, and we use the
constant 3 in our implementation.

allow the other subblockrow to use the output vector. After both
subblockrow multiplications complete, we serially add the tempo-
rary vector into the output vector.

To facilitate fast subblockrow divisions, we first partition the
blockrow into “chunks” of consecutive blocks, each containing at
most O(β) nonzeros (when possible) and Ω(β) nonzeros on aver-
age. The lower bound of Ω(β) will allow us to amortize the cost
of writing to the length-β temporary vector against the nonzeros in
the chunk. By dividing a blockrow “in half,” we mean assigning to
each subblockrow roughly half the chunks.

Figure 4 gives the top-level algorithm, performing each block-
row vector multiplication in parallel. The “for . . . in parallel do”
construct means that each iteration of the for loop may be executed
in parallel with the others. For each loop iteration, we partition
the blockrow into chunks in lines 2–11 and then call the blockrow
multiplication in line 12. The array Ri stores the indices of the
last block in each chunk; specifically, the kth chunk, for k > 0, in-
cludes blocks (Ai,Ri[k−1]+1Ai,Ri[k−1]+2 · · ·Ai,Ri[k]). A chunk consists

of either a single block containing Ω(β) nonzeros, or it consists of
many blocks containing O(β) nonzeros in total. To compute chunk
boundaries, just iterate over blocks (in lines 5–10) until enough
nonzeros are accrued.

Figure 5 gives the parallel algorithm CSB_BLOCKROWV for
multiplying a blockrow by a vector, writing the result into the
length-β vector y. In lines 24–31, the algorithm recursively di-
vides the blockrow such that each half receives roughly the same
number of chunks. We find the appropriate middles of the chunk
array R and the input vector x in lines 24 and 25, respectively. We
then allocate a length-β temporary vector z (line 26) and perform
the recursive multiplications on each subblockrow in parallel (lines
27–29), having one of the recursive multiplications write its output
to z. When these recursive multiplications complete, we merge the
outputs into the vector y (lines 30–31).

The recursion bottoms out when the blockrow consists of a sin-
gle chunk (lines 14–23). If this chunk contains many blocks, it is
guaranteed to contain at most Θ(β) nonzeros, which is sufficiently
sparse to perform the serial multiplication in line 22. If, on the
other hand, the chunk is a single block, it may contain as many as

CSB_BLOCKROWV(A, i,R,x,y)

13 if R. length = 2 // The subblockrow is a single chunk.
14 then ℓ← R[0]+1 // Leftmost block in chunk.
15 r← R[1] // Rightmost block in chunk.
16 if ℓ = r

17 then // The chunk is a single (dense) block.
18 start← A.blk_ptr[ f (i, ℓ)]
19 end← A.blk_ptr[ f (i, ℓ)+1]−1
20 CSB_BLOCKV(A,start,end,β,x,y)
21 else // The chunk is sparse.
22 multiply y← (AiℓAi,ℓ+1 · · ·Air)x serially
23 return

// Since the block row is “dense,” split it in half.
24 mid← ⌈R. length/2⌉−1 // Divide chunks in half.

// Calculate the dividing point in the input vector x.
25 xmid← β · (R[mid]−R[0])
26 allocate a length-β temporary vector z, initialized to 0
27 in parallel

28 do CSB_BLOCKROWV(A, i,R[0 . .mid],x[0 . .xmid−1],y)
29 do CSB_BLOCKROWV(A, i,R[mid . .R. length−1],

x[xmid . .x. length−1],z)
30 for k← 0 to β−1
31 do y[k]← y[k]+ z[k]

Figure 5: Pseudocode for the subblockrow vector product y← (AiℓAi,ℓ+1

· · ·Air)x. The in parallel do . . .do . . . construct indicates that all of the do

code blocks may execute in parallel. The procedure CSB_BLOCKV (pseu-
docode for which can be found in Figure 6) calculates the product of the
block and the vector in parallel.

β2 ≈ n nonzeros. A serial multiplication here, therefore, would be
the bottleneck in the algorithm. Instead, we perform the parallel
block-vector multiplication CSB_BLOCKV in line 20.

If the blockrow recursion reaches a single block, we perform a
parallel multiplication of the block by the vector, given in Figure 6.
The block-vector multiplication proceeds by recursively dividing
the (sub)block M into quadrants M00, M01, M10, and M11, each of
which is conveniently stored contiguously in the Z-Morton-ordered
val, row_ind, and col_ind arrays between indices start and end. We
perform binary searches to find the appropriate dividing points in
the array in lines 38–40.

To understand the pseudocode, consider the search for the divid-
ing point s2 between M00M01 and M10M11. For any recursively
chosen dim×dim matrix M, the column indices and row indices
of all elements have the same leading lgβ− lgdim bits. Moreover,
for those elements in M00M01, the next bit in the row index is a
0, whereas for those in elements in M10M11, the next bit in the
row index is 1. The algorithm does a binary search for the point at
which this bit flips. The cases for the dividing point between M00

and M01 or M10 and M11 are similar, except that we focus on the
column index instead of the row index.

After dividing the matrix into quadrants, we execute the matrix
products involving matrices M00 and M11 in parallel (lines 41–43),
as they do not conflict on any outputs. After completing these prod-
ucts, we execute the other two matrix products in parallel (lines
44–46).5 This procedure resembles a standard parallel divide-and-
conquer matrix multiplication, except that our base case of serial
multiplication starts at a matrix containing Θ(dim) nonzeros (lines
33–36). Note that although we pass the full length-β arrays x and
y to each recursive call, the effective length of each array is halved

5The algorithm may instead do M00 and M10 in parallel followed by M01
and M11 in parallel without affecting the performance analysis. Presenting
the algorithm with two choices may yield better load balance.



CSB_BLOCKV(A,start,end,dim,x,y)

// A.val[start . .end] is a dim×dim matrix M.
32 if end−start ≤Θ(dim)
33 then // Perform the serial computation y← y+Mx.
34 for k← start to end

35 do y[A.row_ind[k]]← y[A.row_ind[k]]
+A.val[k] · x[A.col_ind[k]]

36 return

37 // Recurse. Find the indices of the quadrants.
38 binary search start,start+1, . . . ,end for the smallest s2

such that (A.row_ind[s2] & dim/2) 6= 0
39 binary search start,start+1, . . . ,s2−1 for the smallest s1

such that (A.col_ind[s1] & dim/2) 6= 0
40 binary search s2,s2 +1, . . . ,end for the smallest s3

such that (A.col_ind[s3] & dim/2) 6= 0
41 in parallel

42 do CSB_BLOCKV(A,start,s1−1,dim/2,x,y) // M00.
43 do CSB_BLOCKV(A,s3,end,dim/2,x,y) // M11.
44 in parallel

45 do CSB_BLOCKV(A,s1,s2−1,dim/2,x,y) // M01.
46 do CSB_BLOCKV(A,s2,s3−1,dim/2,x,y) // M10.

Figure 6: Pseudocode for the subblock-vector product y←Mx, where M
is the list of tuples stored in A.val[start . .end], A.row_ind[start . .end], and
A.col_ind[start . .end], in recursive Z-Morton order. The & operator is a
bitwise AND of the two operands.

implicitly by partitioning M into quadrants. Passing the full arrays
is a technical detail required to properly compute array indices, as
the indices A.row_ind and A.col_ind store offsets within the block.

The CSB_SPMV_T algorithm is identical to CSB_SPMV, ex-
cept that we operate over blockcolumns rather than blockrows.

5. ANALYSIS
In this section, we prove that for an n×n matrix with nnz nonze-

ros, CSB_SPMV operates with work Θ(nnz) and span O(
√

n lgn)
when β =

√
n, yielding a parallelism of Ω(nnz/

√
n lgn). We also

provide bounds in terms of β and analyze the space usage.
We begin by analyzing block-vector multiplication.

LEMMA 4. On a β × β block containing r nonzeros,

CSB_BLOCKV runs with work Θ(r) and span O(β).

PROOF. The span for multiplying a dim×dim matrix can be
described by the recurrence S(dim) = 2S(dim/2) + O(lgdim) =
O(dim). The lgdim term represents a loose upper bound on the
cost of the binary searches. In particular, the binary-search cost
is O(lgz) for a submatrix containing z nonzeros, and we have
z≤ dim2, and hence O(lgz) = O(lgdim), for a dim×dim matrix.

To calculate the work, consider the degree-4 tree of recursive
procedure calls, and associate with each node the work done by
that procedure call. We say that a node in the tree has height h if it
corresponds to a 2h×2h subblock, i.e., if dim = 2h is the parameter
passed into the corresponding CSB_BLOCKV call. Node heights
are integers ranging from 0 to lgβ. Observe that each height-h node
corresponds to a distinct 2h×2h subblock (although subblocks may
overlap for nodes having different heights). A height-h leaf node
(serial base case) corresponds to a subblock containing at most z =
O(2h) nonzeros and has work linear in this number z of nonzeros.
Summing across all leaves, therefore, gives Θ(r) work. A height-h
internal node, on the other hand, corresponds to a subblock contain-
ing at least z′= Ω(2h) nonzeros (or else it would not recurse further
and be a leaf) and has work O(lg2h) = O(h) arising from the bi-
nary searches. There can thus be at most O(r/2h) height-h internal

nodes having total work O((r/2h)h). Summing across all heights

gives total work of
Plgβ

h=0 O((r/2h)h) = r
Plgβ

h=0 O(h/2h) = O(r)
for internal nodes. Combining the work at internal nodes and leaf
nodes gives total work Θ(r).

The next lemma analyzes blockrow-vector multiplication.

LEMMA 5. On a blockrow containing n/β blocks and r

nonzeros, CSB_BLOCKROWV runs with work Θ(r) and span

O(β lg(n/β)).

PROOF. Consider a call to CSB_BLOCKROWV on a row that is
partitioned into C chunks, and let W (C) denote the work. The work
per recursive call on a multichunk subblockrow is dominated by the
Θ(β) work of initializing a temporary vector z and adding the vec-
tor z into the output vector y. The work for a CSB_BLOCKROWV
on a single-chunk subblockrow is linear in the number of nonze-
ros in the chunk. (We perform linear work either in line 22 or in
line 20 — see Lemma 4 for the work of line 20.) We can thus
describe the work by the recurrence W (C) ≤ 2W (⌈C/2⌉) + Θ(β)
with a base case of work linear in the nonzeros, which solves to
W (C) = Θ(Cβ+ r) for C > 1. When C = 1, we have W (C) = Θ(r),
as we do not operate on the temporary vector z.

To bound work, it remains to bound the maximum number of
chunks in a row. Notice that any two consecutive chunks contain
at least Ω(β) nonzeros. This fact follows from the way chunks are
chosen in lines 2–11: a chunk is terminated only if adding the next
block to the chunk would increase the number of nonzeros to more
than Θ(β). Thus, a blockrow consists of a single chunk whenever
r = O(β) and at most O(r/β) chunks whenever r = Ω(β). Hence,
the total work is Θ(r).

We can describe the span of CSB_BLOCKROWV by the recur-
rence S(C) = S(⌈C/2⌉)+O(β) = O(β lgC)+S(1). The base case
involves either serially multiplying a single chunk containing at
most O(β) nonzeros in line 22, which has span O(β), or multiplying
a single block in parallel in line 20, which also has span O(β) from
Lemma 4. We have, therefore, a span of O(β lgC) = O(β lg(n/β)),
since C ≤ n/β.

We are now ready to analyze matrix-vector multiplication itself.

THEOREM 6. On an n × n matrix containing nnz nonze-

ros, CSB_SPMV runs with work Θ(n2/β2 + nnz) and span

O(β lg(n/β)+n/β).

PROOF. For each blockrow, we add Θ(n/β) work and span for
computing the chunks, which arise from a serial scan of the n/β
blocks in the blockrow. Thus, the total work is O(n2/β2) in addi-
tion to the work for multiplying the blockrows, which is linear in
the number of nonzeros from Lemma 5.

The total span is O(lg(n/β)) to parallelize all the rows, plus
O(n/β) per row to partition the row into chunks, plus the
O(β lg(n/β)) span per blockrow from Lemma 5.

The following corollary gives the work and span bounds when
we choose β to yield the same space for the CSB storage format as
for the CSR or CSC formats.

COROLLARY 7. On an n × n matrix containing nnz ≥ n

nonzeros, by choosing β = Θ(
√

n), CSB_SPMV runs with

work Θ(nnz) and span O(
√

n lgn), achieving a parallelism of

Ω(nnz/
√

n lgn).

Since CSB_SPMV_T is isomorphic to CSB_SPMV, we obtain
the following corollary.



COROLLARY 8. On an n × n matrix containing nnz ≥ n

nonzeros, by choosing β = Θ(
√

n), CSB_SPMV_T runs with

work Θ(nnz) and span O(
√

n lgn), achieving a parallelism of

Ω(nnz/
√

n lgn).

The work of our algorithm is dominated by the space of the tem-
porary vectors z, and thus the space usage on an infinite number of
processors matches the work bound. When run on fewer proces-
sors however, the space usage reduces drastically. We can analyze
the space in terms of the serialization of the program, which corre-
sponds to the program obtained by removing all parallel keywords.

LEMMA 9. On an n× n matrix, by choosing β = Θ(
√

n), the

serialization of CSB_SPMV requires O(
√

n lgn) space (not count-

ing the storage for the matrix itself).

PROOF. The serialization executes one blockrow multiplica-
tion at a time. There are two space overheads. First, we use
O(n/β) = O(

√
n) space for the chunk array. Second, we use β

space to store the temporary vector z for each outstanding recursive
call to CSB_BLOCKROWV. Since the recursion depth is O(lgn),
the total space becomes O(β lgn) = O(

√
n lgn).

A typical work-stealing scheduler executes the program in a
depth-first (serial) manner on each processor. When a processor
completes all its work, it “steals” work from a different processor,
beginning a depth-first execution from some unexecuted parallel
branch. Although not all work-stealing schedulers are space effi-
cient, those maintaining the busy-leaves property [5] (e.g., as used
in the Cilk work-stealing scheduler [4]) are space efficient. The
“busy-leaves” property roughly says that if a procedure has begun
(but not completed) executing, then there exists a processor cur-
rently working on that procedure or one of its descendants proce-
dures.

COROLLARY 10. Suppose that a work-stealing scheduler with

the busy-leaves property schedules an execution of CSB_SPMV
on an n× n matrix with the choice β =

√
n. Then, the execution

requires O(P
√

n lgn) space.

PROOF. Combine Lemma 9 and Theorem 1 from [4].

The work overhead of our algorithm may be reduced by increas-
ing the constants in the Θ(β) threshold in line 7. Specifically, in-
creasing this threshold by a constant factor reduces the number of
reads and writes to temporaries by the same constant factor. As
these temporaries constitute the majority of the work overhead of
the algorithm, doubling the threshold nearly halves the overhead.
Increasing the threshold, however, also increases the span by a con-
stant factor, and so there is a trade-off.

6. EXPERIMENTAL DESIGN
This section describes our implementation of the CSB_SPMV

and CSB_SPMV_T algorithms, the benchmark matrices we used
to test the algorithms, the machines on which we ran our tests, and
the other codes with which we compared our algorithms.

Implementation

We parallelized our code using Cilk++ [9], which is a faithful
extension of C++ for multicore and shared-memory parallel pro-
gramming. Cilk++ is based on the earlier MIT Cilk system [20],
and it employs dynamic load balancing and provably optimal task
scheduling. The CSB code used for the experiments is freely avail-
able for academic use at http://gauss.cs.ucsb.edu/~aydin/
software.html.

The row_ind and col_ind arrays of CSB, which store the row and
column indices of each nonzero within a block (i.e., the lower-order
bits of the row and column indices within the matrix A), are imple-
mented as a single index array by concatenating the two values
together. The higher-order bits of row_ind and col_ind are stored
only implicitly, and are retrieved by referencing the blk_ptr array.

The CSB blocks themselves are stored in row-major order, while
the nonzeros within blocks are in Z-Morton order. The row-major
ordering among blocks may seem to break the overall symmetry
of CSB, but in practice it yields efficient handling of block indices
for look-up in A.blk_ptr by permitting an easily computed look-
up function f (i, j). The row-major ordering also allowed us to
count the nonzeros in a subblockrow more easily when comput-
ing y← Ax. This optimization is not symmetric, but interestingly,
we achieved similar performance when computing y← ATx, where
we must still aggregate the nonzeros in each block. In fact, in al-
most half the cases, computing ATx was faster than Ax, depending
on the matrix structure.

The Z-Morton ordering on nonzeros in each block is equiva-
lent to first interleaving the bits of row_ind and col_ind, and then
sorting the nonzeros using these bit-interleaved values as the keys.
Thus, it is tempting to store the index array in a bit-interleaved fash-
ion, thereby simplifying the binary searches in lines 38–40. Con-
verting to and from bit-interleaved integers, however, is expensive
with current hardware support,6 which would be necessary for the
serial base case in lines 33–36. Instead, the kth element of the in-
dex array is the concatenation of row_ind[k] and col_ind[k], as indi-
cated earlier. This design choice of storing concatenated, instead of
bit-interleaved, indices requires either some care when performing
the binary search (as presented in Figure 6) or implicitly converting
from the concatenated to interleaved format when making a binary-
search comparison. Our preliminary implementation does the lat-
ter, using a C++ function object for comparisons [35]. In practice,
the overhead of performing these conversions is small, since the
number of binary-search steps is small.

Performing the actual address calculation and determining the
pointers to x and y vectors are done by masking and bit-shifting.
The bitmasks are determined dynamically by the CSB constructor
depending on the input matrix and the data type used for storing
matrix indices. Our library allows any data type to be used for
matrix indices and handles any type of matrix dynamically. For
the results presented in Section 7, nonzero values are represented
as double-precision floating-point numbers, and indices are repre-
sented as 32-bit unsigned integers. Finally, as our library aims to
be general instead of matrix specific, we did not employ speculative
low-level optimizations such as software prefetching, pipelining, or
matrix-specific optimizations such as index and/or value compres-
sion [25, 40], but we believe that CSB and our algorithms should
not adversely affect incorporation of these approaches.

Choosing the block size β

We investigated different strategies to choose the block size that
achieves the best performance. For the types of loads we ran, we
found that a block size slightly larger than

√
n delivers reasonable

performance. Figure 7 shows the effect of different blocksizes on
the performance of the y← Ax operation with the representative
matrix Kkt_power. The closest exact power of 2 to

√
n is 1024,

which turns out to be slightly suboptimal. In our experiments, the
overall best performance was achieved when β satisfies the equa-
tion ⌈lg√n⌉ ≤ lgβ≤ 3+⌈lg√n⌉.

Merely setting β to a hard-coded value, however, is not robust

6Recent research [31] addresses these conversions.
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Figure 7: The effect of block size parameter β on SpMV performance using
the Kkt_power matrix. For values β > 32768 and β < 32, the experiment
failed to finish due to memory limitations. The experiment was conducted
on the AMD Opteron.

for various reasons. First, the elements stored in the index ar-
ray should use the same data type as that used for matrix indices.
Specifically, the integer β− 1 should fit in 2 bytes so that a con-
catenated row_ind and col_ind fit into 4 bytes. Second, the length-
β regions of the input vector x and output vector y (which are ac-
cessed when multiplying a single block) should comfortably fit into
L2 cache. Finally, to ensure speedup on matrices with evenly dis-
tributed nonzeros, there should be enough parallel slackness for
the parallelization across blockrows (i.e., the highest level paral-
lelism). Specifically, when β grows large, the parallelism is roughly
bounded by O(nnz/(β lg(n/β))) (by dividing the work and span
from Theorem 6). Thus, we want nnz/(β lg(n/β)) to be “large
enough,” which means limiting the maximum magnitude of β.

We adjusted our CSB constructor, therefore, to automatically
select a reasonable block-size parameter β. It starts with β =
3+ ⌈lg√n⌉ and keeps decreasing it until the aforementioned con-
straints are satisfied. Although a research opportunity may exist to
autotune the optimal block size with respect to a specific matrix and
architecture, in most test matrices, choosing β =

√
n degraded per-

formance by at most 10%–15%. The optimal β value barely shifts
along the x-axis when running on different numbers of processors
and is quite stable overall.

An optimization heuristic for structured matrices

Even though CSB_SPMV and CSB_SPMV_T are robust and ex-
hibit plenty of parallelism on most matrices, their practical perfor-
mance can be improved on some sparse matrices having regular
structure. In particular, a block diagonal matrix with equally sized
blocks has nonzeros that are evenly distributed across blockrows.
In this case, a simple algorithm based on blockrow parallelism
would suffice in place of the more complicated recursive method
from CSB_BLOCKV. This divide-and-conquer within blockrows
incurs overhead that might unnecessarily degrade performance.
Thus, when the nonzeros are evenly distributed across the block-
rows, our implementation of the top-level algorithm (given in
Figure 4) calls the serial multiplication in line 12 instead of the
CSB_BLOCKROWV procedure.

To see whether a given matrix is amenable to the optimization,
we apply the following “balance” heuristic. We calculate the imbal-
ance among blockrows (or blockcolumns in the case of y← ATx)
and apply the optimization only when no blocks have more than
twice the average number of nonzeros per blockrow. In other
words, if max(nnz(Ai)) < 2 ·mean(nnz(Ai)), then the matrix is con-
sidered to have balanced blockrows and the optimization is applied.

Of course, this optimization is not the only way to achieve a per-
formance boost on structured matrices.

Optimization of temporary vectors

One of the most significant overheads of our algorithm is the use
of temporary vectors to store intermediate results when paralleliz-
ing a blockrow multiplication in CSB_BLOCKROWV. The “bal-
ance” heuristic above is one way of reducing this overhead when
the nonzeros in the matrix are evenly distributed. For arbitrary
matrices, however, we can still reduce the overhead in practice.
In particular, we only need to allocate the temporary vector z (in
line 26) if both of the subsequent multiplications (lines 27–29) are
scheduled in parallel. If the first recursive call completes before
the second recursive call begins, then we instead write directly into
the output vector for both recursive calls. In other words, when
a blockrow multiplication is scheduled serially, the multiplication
procedure detects this fact and mimics a normal serial execution,
without the use of temporary vectors. Our implementation exploits
an undocumented feature of Cilk++ to test whether the first call has
completed before making the second recursive call, and we allocate
the temporary as appropriate. This test may also be implemented
using Cilk++ reducers [19].

Sparse-matrix test suite

We conducted experiments on a diverse set of sparse matrices
from real applications including circuit simulation, finite-element
computations, linear programming, and web-connectivity analysis.
These matrices not only cover a wide range of applications, but
they also greatly vary in size, density, and structure. The test suite
contains both rectangular and square matrices. Almost half of the
square matrices are asymmetric. Figure 8 summarizes the 14 test
matrices.

Included in Figure 8 is the load imbalance that is likely to oc-
cur for an SpMV algorithm parallelized with respect to columns
(CSC) and blocks (CSB). In the last column, the average (mean)
and the maximum number of nonzeros among columns (first line)
and blocks (second line) are shown for each matrix. The sparsity
of matrices can be quantified by the average number of nonzeros
per column, which is equivalent to the mean of CSC. The sparsest
matrix (Rajat31) has 4.3 nonzeros per column on the average while
the densest matrix has about 73 nonzeros per column (Sme3Dc and
Torso). For CSB, the reported mean/max values are obtained by
setting the block dimension β to be approximately

√
n, so that they

are comparable with statistics from CSC.

Architectures and comparisons

We ran our experiments on three multicore superscalar architec-
tures. Opteron is a ccNUMA architecture powered by AMD
Opteron 8214 (Santa Rosa) processors clocked at 2.2 GHz. Each
core of Opteron has a private 1 MB L2 cache, and each socket has
its own integrated memory controller. Although it is an 8-socket
dual-core system, we only experimented with up to 8 processors.
Harpertown is a dual-socket quad-core system running two Intel
Xeon X5460’s, each clocked at 3.16 GHz. Each socket has 12 MB
of L2 cache, shared among four cores, and a front-side bus (FSB)
running at 1333 MHz. Nehalem is a single-socket quad-core Intel
Core i7 920 processor. Like Opteron, Nehalem has an integrated
memory controller. Each core is clocked at 2.66 GHz and has a
private 256 KB L2 cache. The four cores share an 8 MB L3 cache.

While Opteron has 64 GB of RAM, Harpertown and Nehalem
have only 8 GB and 6 GB, respectively, which forced us to exclude
our biggest test matrix (Webbase2001) from our runs on Intel ar-
chitectures. We compiled our code using gcc 4.1 on Opteron and



Name

Spy Plot

Dimensions CSC (mean/max)

Description Nonzeros CSB (mean/max)

Asic_320k 321K×321K 6.0 / 157K

circuit simulation 1,931K 4.9 / 2.3K

Sme3Dc 42K×42K 73.3 / 405

3D structural 3,148K 111.6 / 1368

mechanics

Parabolic_fem 525K×525K 7.0 / 7

diff-convection 3,674K 3.5 / 1,534

reaction

Mittelmann 1,468K×1,961K 2.7 / 7

LP problem 5,382K 2.0 / 3,713

Rucci 1,977K×109K 70.9 / 108

Ill-conditioned 7,791K 9.4 / 36

least-squares

Torso 116K×116K 73.3 / 1.2K

Finite diff, 8,516K 41.3 / 36.6K

2D model of torso

Kkt_power 2.06M×2.06M 6.2 / 90

optimal power flow, 12.77M 3.1 / 1,840

nonlinear opt.

Rajat31 4.69M×4.69M 4.3 / 1.2K

circuit simulation 20.31M 3.9 / 8.7K

Ldoor 952K×952K 44.6 / 77

structural prob. 42.49M 49.1 / 43,872

Bone010 986K×986K 48.5 / 63

3D trabecular bone 47.85M 51.5 / 18,670

Grid3D200 8M×8M 6.97 / 7

3D 7-point 55.7M 3.7 / 9,818

finite-diff mesh

RMat23 8.4M×8.4M 9.4 / 70.3K

Real-world 78.7M 4.7 / 222.1K

graph model

Cage15 5.15M×5.15M 19.2 / 47

DNA electrophoresis 99.2M 15.6 / 39,712

Webbase2001 118M×118M 8.6 / 816K

Web connectivity 1,019M 4.9 / 2,375K

Figure 8: Structural information on the sparse matrices used in our exper-
iments, ordered by increasing number of nonzeros. The first ten matrices
and Cage15 are from the University of Florida sparse matrix collection [12].
Grid3D200 is a 7-point finite difference mesh generated using the Matlab
Mesh Partitioning and Graph Separator Toolbox [22]. The RMat23 ma-
trix [26], which models scale-free graphs, is generated by using repeated
Kronecker products [2]. We chose parameters A = 0.7, B = C = D = 0.1
for RMat23 in order to generate skewed matrices. Webbase2001 is a crawl
of the World Wide Web from the year 2001 [8].

 0

 100

 200

 300

 400

 500

 600

 700

Asic_320k

Sm
e3Dc

Parabolic_fem

M
ittelm

ann

Rucci

Torso
Kkt_power

M
F

lo
ps

/s
ec

p=1
p=2
p=4
p=8

Figure 9: CSB_SPMV performance on Opteron (smaller matrices).
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Figure 10: CSB_SPMV_T performance on Opteron (smaller matrices).

Harpertown and with gcc 4.3 on Nehalem, all with optimization
flags -O2 -fno-rtti -fno-exceptions.

To evaluate our code on a single core, we compared its perfor-
mance with “pure” OSKI matrix-vector multiplication [39] running
on one processor of Opteron. We did not enable OSKI’s prepro-
cessing step, which chooses blockings for cache and register usage
that are tuned to a specific matrix. We conjecture that such matrix-
specific tuning techniques can be combined advantageously with
our CSB data structure and parallel algorithms.

To compare with a parallel code, we used the matrix-vector
multiplication of Star-P [34] running on Opteron. Star-P is a
distributed-memory code that uses CSR to represent sparse matri-
ces and distributes matrices to processor memories by equal-sized
blocks of rows.

7. EXPERIMENTAL RESULTS
Figures 9 and 10 show how CSB_SPMV and CSB_SPMV_T,

respectively, scale for the seven smaller matrices on Opteron, and
Figures 11 and 12 show similar results for the seven larger matrices.
In most cases, the two codes show virtually identical performance,
confirming that the CSB data structure and algorithms are equally
suitable for both operations. In all the parallel scaling graphs, only
the values p = 1,2,4,8 are reported. They should be interpreted as
performance achievable by doubling the number of cores instead
of as the exact performance on p threads (e.g. , p = 8 is the best
performance achieved for 5≤ p≤ 8).

In general, we observed better speedups for larger problems. For
example, the average speedup of CSB_SPMV for the first seven
matrices was 2.75 on 8 processors, whereas it was 3.03 for the sec-
ond set of seven matrices with more nonzeros. Figure 13 sum-
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Figure 11: CSB_SPMV performance on Opteron (larger matrices).
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Figure 12: CSB_SPMV_T performance on Opteron (larger matrices).

Processors
CSB_SPMV CSB_SPMV_T

1–7 8–14 1–7 8–14

P = 2 1.65 1.70 1.44 1.49

P = 4 2.34 2.49 2.07 2.30

P = 8 2.75 3.03 2.81 3.16

Figure 13: Average speedup results for relatively smaller (1–7) and larger
(8–14) matrices. These experiments were conducted on Opteron.

marizes these results. The speedups are relative to the CSB code
running on a single processor, which Figure 1 shows is competitive
with serial CSR codes. In another study [41] on the same Opteron
architecture, multicore-specific parallelization of the CSR code for
4 cores achieved comparable speedup to what we report here, al-
beit on a slightly different sparse-matrix test suite. That study does
not consider the y← ATx operation, however, which is difficult to
parallelize with CSR but which achieves the same performance as
y← Ax when using CSB.

For CSB_SPMV on 4 processors, CSB reached its highest
speedup of 2.80 on the RMat23 matrix, showing that this algorithm
is robust even on a matrix with highly irregular nonzero structure.
On 8 processors, CSB_SPMV reached its maximum speedup of
3.93 on the Webbase2001 matrix, indicating the code’s ability to
handle very large matrices without sacrificing parallel scalability.

Sublinear speedup occurs only after the memory-system band-
width becomes the bottleneck. This bottleneck occurs at different
numbers of cores for different matrices. In most cases, we observed
nearly linear speedup up to 4 cores. Although the speedup is sub-
linear beyond 4 cores, in every case (except CSB_SPMV on Mit-
telmann), we see some performance improvement going from 4 to
8 cores on Opteron. Sublinear speedup of SpMV on superscalar
multicore architectures has been noted by others as well [41].
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Figure 14: Parallelism test for CSB_SPMV on Asic_320k obtained by
artificially increasing the flops per byte. The test shows that the algorithm
exhibits substantial parallelism and scales almost perfectly given sufficient
memory bandwidth.

We conducted an additional experiment to verify that perfor-
mance was limited by the memory-system bandwidth, not by lack
of parallelism. We repeated each scalar multiply-add operation of
the form yi ← yi + Ai jx j a fixed number t of times. Although the
resulting code computes y ← tAx, we ensured that the compiler
did not optimize away any multiply-add operations. Setting t = 10
did not affect the timings significantly—flops are indeed essentially
free—but, for t = 100, we saw almost perfect linear speedup up to
16 cores, as shown in Figure 14. We performed this experiment
with Asic_320k, the smallest matrix in the test suite, which should
exhibit the least parallelism. Asic_320k is also irregular in struc-
ture, which means that our balance heuristic does not apply. Nev-
ertheless, CSB_SPMV scaled almost perfectly given enough flops
per byte.

The parallel performance of CSB_SPMV and CSB_SPMV_T
is generally not affected by highly uneven row and column nonzero
counts. The highly skewed matrices RMat23 and Webbase2001
achieved speedups as good as for matrices with flat row and col-
umn counts. An unusual case is the Torso matrix, where both
CSB_SPMV and CSB_SPMV_T were actually slower on 2 pro-
cessors than serially. This slowdown does not, however, mark a
plateau in performance, since Torso speeds up as we add more than
2 processors. We believe this behavior occurs because the over-
head of intrablock parallelization is not amortized for 2 processors.
Torso requires a large number of intrablock parallelization calls,
because it is unusually irregular and dense.

Figure 15 shows the performance of CSB_SPMV on Harper-
town for a subset of test matrices. We do not report perfor-
mance for CSB_SPMV_T, as it was consistently close to that of
CSB_SPMV. The performance on this platform levels off beyond
4 processors for most matrices. Indeed, the average Mflops/sec on
8 processors is only 3.5% higher than on 4 processors. We believe
this plateau results from insufficient memory bandwidth. The con-
tinued speedup on Opteron is due to its higher ratio of memory
bandwidth (bytes) to peak performance (flops) per second.

Figure 16 summarizes the performance results of CSB_SPMV
for the same subset of test matrices on Nehalem. Despite having
only 4 physical cores, for most matrices, Nehalem achieved scal-
ing up to 8 threads thanks to hyperthreading. Running 8 threads
was necessary to utilize the processor fully, because hyperthreading
fills the pipeline more effectively. We observed that the improve-
ment from oversubscribing is not monotonic, however, because
running more threads reduces the effective cache size available to
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Figure 15: CSB_SPMV performance on Harpertown.
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Figure 16: CSB_SPMV performance on Nehalem.

each thread. Nehalem’s point-to-point interconnect is faster than
Opteron’s (a generation old Hypertransport 1.0), which explains its
better speedup values when comparing the 4-core performance of
both architectures. Its raw performance is also impressive, beating
both Opteron and Harpertown by large margins.

To determine CSB’s competitiveness with a conventional CSR
code, we compared the performance of the CSB serial code with
plain OSKI using no matrix-specific optimizations such as register
or cache blocking. Figures 17 and 18 present the results of the
comparison. As can be seen from the figures, CSB achieves similar
serial performance to CSR.

In general, CSR seems to perform best on banded matrices, all
of whose nonzeros are located near the main diagonal. (The max-
imum distance of any nonzero from the diagonal is called the ma-
trix’s bandwidth, not to be confused with memory bandwidth.) If
the matrix is banded, memory accesses to the input vector x tend
to be regular and thus favorable to cacheline reuse and automatic
prefetching. Strategies for reducing the bandwidth of a sparse ma-
trix by permuting its rows and columns have been studied exten-
sively (see [11, 37], for example). Many matrices, however, cannot
be permuted to have low bandwidth. For matrices with scattered
nonzeros, CSB outperforms CSR, because CSR incurs many cache
misses when accessing the x vector. An example of this effect oc-
curs for the RMat23 matrix, where the CSB implementation is al-
most twice as fast as CSR.

Figure 19 compares the parallel performance of the CSB algo-
rithms with Star-P. Star-P’s blockrow data distribution does not
afford any flexibility for load-balancing across processors. Load
balance is not an issue for matrices with nearly flat row counts,

 0

 50

 100

 150

 200

 250

 300

Asic_320k

Sm
e3Dc

Parabolic_fem

M
ittelm

ann

Rucci

Torso
Kkt_power

Rajat31

Ldoor

Grid3D200

Cage15

RM
at23

Bone010

W
ebbase2001

M
F

lo
ps

/s
ec

CSR
CSB

Figure 17: Serial performance comparison of SpMV for CSB and CSR.
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Figure 18: Serial performance comparison of SpMV_T for CSB and CSR.
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Figure 19: Performance comparison of parallel CSB_SPMV with Star-
P, which is a parallel-dialect of Matlab. The vertical axis shows the
performance ratio of CSB_SPMV to Star-P. A direct comparison of
CSB_SPMV_T with Star-P was not possible, because Star-P does not na-
tively support multiplying the transpose of a sparse matrix by a vector.

including finite-element and finite-difference matrices, such as
Grid3D200. Load balance does become an issue for skewed ma-
trices such as RMat23, however. Our performance results confirm
this effect. CSB_SPMV is about 500% faster than Star-P’s SpMV
routine for RMat23 on 8 cores. Moreover, for any number of pro-
cessors, CSB_SPMV runs faster for all the matrices we tested,
including the structured ones.



8. CONCLUSION
Compressed sparse blocks allow parallel operations on sparse

matrices to proceed either row-wise or column-wise with equal fa-
cility. We have demonstrated the efficacy of the CSB storage for-
mat for SpMV calculations on a sparse matrix or its transpose. It
remains to be seen, however, whether the CSB format is limited
to SpMV calculations or if it can also be effective in enabling par-
allel algorithms for multiplying two sparse matrices, performing
LU-, LUP-, and related decompositions, linear programming, and
a host of other problems for which serial sparse-matrix algorithms
currently use the CSC and CSR storage formats.

The CSB format readily enables parallel SpMV calculations on
a symmetric matrix where only half the matrix is stored, but we
were unable to attain one optimization that serial codes exploit
in this situation. In a typical serial code that computes y← Ax,
where A = (ai j) is a symmetric matrix, when a processor fetches
ai j = a ji out of memory to perform the update yi ← yi + ai jx j,
it can also perform the update y j ← y j + ai jxi at the same time.
This strategy halves the memory bandwidth compared to execut-
ing CSB_SPMV on the matrix, where ai j = a ji is fetched twice.
It remains an open problem whether the 50% savings in storage
for sparse matrices can be coupled with a 50% savings in memory
bandwidth, which is an important factor of 2, since it appears that
the bandwidth between multicore chips and DRAM will scale more
slowly than core count.
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