Analysis of Multithreaded Algorithms

Marc Moreno Maza

University of Western Ontario, London, Ontario (Canada)

CS4402-9535
Plan

Review of Complexity Notions

Divide-and-Conquer Recurrences

Matrix Multiplication

Merge Sort

Tableau Construction
Plan

Review of Complexity Notions

Divide-and-Conquer Recurrences

Matrix Multiplication

Merge Sort

Tableau Construction
Orders of magnitude

Let \(f, g \) and \(h \) be functions from \(\mathbb{N} \) to \(\mathbb{R} \).

- We say that \(g(n) \) is in the **order of magnitude** of \(f(n) \) and we write \(f(n) \in \Theta(g(n)) \) if there exist two strictly positive constants \(c_1 \) and \(c_2 \) such that for \(n \) big enough we have

 \[
 0 \leq c_1 \ g(n) \leq f(n) \leq c_2 \ g(n).
 \]

- We say that \(g(n) \) is an **asymptotic upper bound** of \(f(n) \) and we write \(f(n) \in O(g(n)) \) if there exists a strictly positive constant \(c_2 \) such that for \(n \) big enough we have

 \[
 0 \leq f(n) \leq c_2 \ g(n).
 \]

- We say that \(g(n) \) is an **asymptotic lower bound** of \(f(n) \) and we write \(f(n) \in \Omega(g(n)) \) if there exists a strictly positive constant \(c_1 \) such that for \(n \) big enough we have

 \[
 0 \leq c_1 \ g(n) \leq f(n).
 \]
With $f(n) = \frac{1}{2}n^2 - 3n$ and $g(n) = n^2$ we have $f(n) \in \Theta(g(n))$.

Indeed we have

$$c_1 n^2 \leq \frac{1}{2}n^2 - 3n \leq c_2 n^2.$$ \hspace{1cm} (4)

for $n \geq 12$ with $c_1 = \frac{1}{4}$ and $c_2 = \frac{1}{2}$.

Assume that there exists a positive integer n_0 such that $f(n) > 0$ and $g(n) > 0$ for every $n \geq n_0$. Then we have

$$\max(f(n), g(n)) \in \Theta(f(n) + g(n)).$$ \hspace{1cm} (5)

Indeed we have

$$\frac{1}{2}(f(n) + g(n)) \leq \max(f(n), g(n)) \leq (f(n) + g(n)).$$ \hspace{1cm} (6)

Assume a and b are positive real constants. Then we have

$$(n + a)^b \in \Theta(n^b).$$ \hspace{1cm} (7)

Indeed for $n \geq a$ we have

$$0 \leq n^b \leq (n + a)^b \leq (2n)^b.$$ \hspace{1cm} (8)

Hence we can choose $c_1 = 1$ and $c_2 = 2^b$.

Properties

- $f(n) \in \Theta(g(n))$ holds iff $f(n) \in \mathcal{O}(g(n))$ and $f(n) \in \Omega(g(n))$ hold together.

- Each of the predicates $f(n) \in \Theta(g(n))$, $f(n) \in \mathcal{O}(g(n))$ and $f(n) \in \Omega(g(n))$ define a reflexive and transitive binary relation among the \mathbb{N}-to-\mathbb{R} functions. Moreover $f(n) \in \Theta(g(n))$ is symmetric.

- We have the following transposition formula

$$f(n) \in \mathcal{O}(g(n)) \iff g(n) \in \Omega(f(n)). \quad (9)$$

In practice \in is replaced by $=$ in each of the expressions $f(n) \in \Theta(g(n))$, $f(n) \in \mathcal{O}(g(n))$ and $f(n) \in \Omega(g(n))$. Hence, the following

$$f(n) = h(n) + \Theta(g(n)) \quad (10)$$

means

$$f(n) - h(n) \in \Theta(g(n)). \quad (11)$$
Another example

Let us give another fundamental example. Let \(p(n) \) be a (univariate) polynomial with degree \(d > 0 \). Let \(a_d \) be its leading coefficient and assume \(a_d > 0 \). Let \(k \) be an integer. Then we have

(1) if \(k \geq d \) then \(p(n) \in O(n^k) \),
(2) if \(k \leq d \) then \(p(n) \in \Omega(n^k) \),
(3) if \(k = d \) then \(p(n) \in \Theta(n^k) \).

Exercise: Prove the following

\[
\sum_{k=1}^{n} k \in \Theta(n^2).
\]
Plan

Review of Complexity Notions

Divide-and-Conquer Recurrences

Matrix Multiplication

Merge Sort

Tableau Construction
Divide-and-Conquer Algorithms

Divide-and-conquer algorithms proceed as follows.

Divide the input problem into sub-problems.

Conquer on the sub-problems by solving them directly if they are small enough or proceed recursively.

Combine the solutions of the sub-problems to obtain the solution of the input problem.

Equation satisfied by $T(n)$. Assume that the size of the input problem increases with an integer n. Let $T(n)$ be the time complexity of a divide-and-conquer algorithm to solve this problem. Then $T(n)$ satisfies an equation of the form:

$$T(n) = a \cdot T(n/b) + f(n).$$ \hspace{1cm} (13)

where $f(n)$ is the cost of the combine-part, $a \geq 1$ is the number of recursively calls and n/b with $b > 1$ is the size of a sub-problem.
Labeled tree associated with the equation. Assume \(n \) is a power of \(b \), say \(n = b^p \). To solve the equation

\[
T(n) = a \, T(n/b) + f(n).
\]

we can associate a labeled tree \(A(n) \) to it as follows.

1. If \(n = 1 \), then \(A(n) \) is reduced to a single leaf labeled \(T(1) \).
2. If \(n > 1 \), then the root of \(A(n) \) is labeled by \(f(n) \) and \(A(n) \) possesses \(a \) labeled sub-trees all equal to \(A(n/b) \).

The labeled tree \(A(n) \) associated with \(T(n) = a \, T(n/b) + f(n) \) has height \(p + 1 \). Moreover the sum of its labels is \(T(n) \).
Solving divide-and-conquer recurrences (1/2)

\[T(n) \]

\[T(n/b) \quad T(n/b) \quad \cdots \quad T(n/b) \]

\[f(n) \]

\[f(n/b) \quad f(n/b) \quad \cdots \quad f(n/b) \]

\[T(n/b^2) \quad T(n/b^2) \quad \cdots \quad T(n/b^2) \]

\[T(1) \]
Solving divide-and-conquer recurrences (2/2)

IDEA: Compare $n^{\log_b a}$ with $f(n)$.
Master Theorem: case $n^{\log_b a} \gg f(n)$

Specifically, $f(n) = \Theta(n^{\log_b a})$

for some constant $\epsilon > 0$.
Master Theorem: case $f(n) \in \Theta(n^{\log_b a} \log^k n)$

Specifically, $f(n) = \Theta(n^{\log_b a} \log^k n)$ for some constant $k \geq 0$.

$T(n) = \Theta(n^{\log_b a} \log^{k+1} n))$
Master Theorem: case where \(f(n) \gg n^{\log_b a} \)

Specifically, \(f(n) = \Omega(n^{\log_b a + \varepsilon}) \) for some constant \(\varepsilon > 0 \).

*and \(f(n) \) satisfies the regularity condition that
\(a f(n/b) \leq c f(n) \) for some constant \(c < 1 \).
More examples

Consider the relation:

\[T(n) = 2 \, T(n/2) + n^2. \] \tag{14}

We obtain:

\[T(n) = n^2 + \frac{n^2}{2} + \frac{n^2}{4} + \frac{n^2}{8} + \cdots + \frac{n^2}{2^p} + n \, T(1). \] \tag{15}

Hence we have:

\[T(n) \in \Theta(n^2). \] \tag{16}

Consider the relation:

\[T(n) = 3 \, T(n/3) + n. \] \tag{17}

We obtain:

\[T(n) \in \Theta(\log_3(n)n). \] \tag{18}
Master Theorem when $b = 2$

Let $a > 0$ be an integer and let $f, T : \mathbb{N} \rightarrow \mathbb{R}_+$ be functions such that

(i) $f(2n) \geq 2f(n)$ and $f(n) \geq n$.

(ii) If $n = 2^p$ then $T(n) \leq aT(n/2) + f(n)$.

Then for $n = 2^p$ we have

(1) if $a = 1$ then

$$T(n) \leq (2 - 2/n)f(n) + T(1) \in O(f(n)), \quad (19)$$

(2) if $a = 2$ then

$$T(n) \leq f(n)\log_2(n) + T(1)n \in O(\log_2(n) f(n)), \quad (20)$$

(3) if $a \geq 3$ then

$$T(n) \leq \frac{2}{a-2} \left(n^{\log_2(a)-1} - 1\right)f(n) + T(1)n^{\log_2(a)} \in O(f(n)n^{\log_2(a)}), \quad (21)$$
Master Theorem when \(b = 2 \)

Indeed

\[
\begin{align*}
T(2^p) & \leq a T(2^{p-1}) + f(2^p) \\
& \leq a \left[a T(2^{p-2}) + f(2^{p-1}) \right] + f(2^p) \\
& = a^2 T(2^{p-2}) + a f(2^{p-1}) + f(2^p) \\
& \leq a^2 \left[a T(2^{p-3}) + f(2^{p-2}) \right] + a f(2^{p-1}) + f(2^p) \\
& = a^3 T(2^{p-3}) + a^2 f(2^{p-2}) + a f(2^{p-1}) + f(2^p) \\
& \leq a^p \ T(s1) + \sigma^{j=p-1}_{j=0} \ a^j f(2^{p-j})
\end{align*}
\]

(22)
Master Theorem when $b = 2$

Moreover

\[
\begin{align*}
 f(2^p) & \geq 2f(2^{p-1}) \\
 f(2^p) & \geq 2^2 f(2^{p-2}) \\
 & \quad \vdots \\
 f(2^p) & \geq 2^j f(2^{p-j})
\end{align*}
\] \quad (23)

Thus

\[
\sum_{j=0}^{j=p-1} a^j f(2^{p-j}) \leq f(2^p) \sum_{j=0}^{j=p-1} \left(\frac{a}{2}\right)^j.
\] \quad (24)
Master Theorem when $b = 2$

Hence

$$T(2^p) \leq a^p T(1) + f(2^p) \sum_{j=0}^{p-1} \left(\frac{a}{2} \right)^j. \quad (25)$$

For $a = 1$ we obtain

$$T(2^p) \leq T(1) + f(2^p) \sum_{j=0}^{p-1} \left(\frac{1}{2} \right)^j$$
$$= T(1) + f(2^p) \frac{\frac{1}{2} - 1}{\frac{1}{2} - 1}$$
$$= T(1) + f(n) (2 - 2/n). \quad (26)$$

For $a = 2$ we obtain

$$T(2^p) \leq 2^p T(1) + f(2^p) p$$
$$= n T(1) + f(n) \log_2(n). \quad (27)$$
Master Theorem cheat sheet

For $a \geq 1$ and $b > 1$, consider again the equation

$$T(n) = a\, T(n/b) + f(n).$$ \hspace{1cm} (28)

- We have:

$$\exists \varepsilon > 0 \quad f(n) \in O(n^{\log_b a - \varepsilon}) \implies T(n) \in \Theta(n^{\log_b a}) \quad (29)$$

- We have:

$$\exists \varepsilon > 0 \quad f(n) \in \Theta(n^{\log_b a \log^k n}) \implies T(n) \in \Theta(n^{\log_b a \log^{k+1} n}) \quad (30)$$

- We have:

$$\exists \varepsilon > 0 \quad f(n) \in \Omega(n^{\log_b a + \varepsilon}) \implies T(n) \in \Theta(f(n)) \quad (31)$$
Master Theorem quizz!

- $T(n) = 4T(n/2) + n$
- $T(n) = 4T(n/2) + n^2$
- $T(n) = 4T(n/2) + n^3$
- $T(n) = 4T(n/2) + n^2/\log n$
Acknowledgements

- Charles E. Leiserson (MIT) for providing me with the sources of its lecture notes.
Plan

Review of Complexity Notions

Divide-and-Conquer Recurrences

Matrix Multiplication

Merge Sort

Tableau Construction
Matrix multiplication

\[
\begin{pmatrix}
c_{11} & c_{12} & \cdots & c_{1n} \\
c_{21} & c_{22} & \cdots & c_{2n} \\vdots & \vdots & \ddots & \vdots \\
c_{n1} & c_{n2} & \cdots & c_{nn}
\end{pmatrix}
\begin{pmatrix}
a_{11} & a_{12} & \cdots & a_{1n} \\
a_{21} & a_{22} & \cdots & a_{2n} \\vdots & \vdots & \ddots & \vdots \\
a_{n1} & a_{n2} & \cdots & a_{nn}
\end{pmatrix}
= \begin{pmatrix}
b_{11} & b_{12} & \cdots & b_{1n} \\
b_{21} & b_{22} & \cdots & b_{2n} \\vdots & \vdots & \ddots & \vdots \\
b_{n1} & b_{n2} & \cdots & b_{nn}
\end{pmatrix}
\]

\(CAB\)

We will study three approaches:

▶ a naive and iterative one
▶ a divide-and-conquer one
▶ a divide-and-conquer one with memory management consideration
Naive iterative matrix multiplication

cilk_for (int i=1; i<n; ++i) {
 cilk_for (int j=0; j<n; ++j) {
 for (int k=0; k<n; ++k {
 C[i][j] += A[i][k] * B[k][j];
 }
 }
}

► Work: ?
► Span: ?
► Parallelism: ?
Naive iterative matrix multiplication

cilk_for (int i=1; i<n; ++i) {
 cilk_for (int j=0; j<n; ++j) {
 for (int k=0; k<n; ++k {
 C[i][j] += A[i][k] * B[k][j];
 }
 }
}

- **Work**: $\Theta(n^3)$
- **Span**: $\Theta(n)$
- **Parallelism**: $\Theta(n^2)$
Matrix multiplication based on block decomposition

\[
\begin{pmatrix}
C_{11} & C_{12} \\
C_{21} & C_{22}
\end{pmatrix} =
\begin{pmatrix}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{pmatrix} \cdot
\begin{pmatrix}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{pmatrix}
\]

\[
= \begin{pmatrix}
A_{11}B_{11} & A_{11}B_{12} \\
A_{21}B_{11} & A_{21}B_{12}
\end{pmatrix} +
\begin{pmatrix}
A_{12}B_{21} & A_{12}B_{22} \\
A_{22}B_{21} & A_{22}B_{22}
\end{pmatrix}
\]

The divide-and-conquer approach is simply the one based on blocking, presented in the first lecture.
Divide-and-conquer matrix multiplication

// C <- C + A * B
void MMult(T *C, T *A, T *B, int n, int size) {
 T *D = new T[n*n];
 //base case & partition matrices
 cilk_spawn MMult(C11, A11, B11, n/2, size);
 cilk_spawn MMult(C12, A11, B12, n/2, size);
 cilk_spawn MMult(C22, A21, B12, n/2, size);
 cilk_spawn MMult(C21, A21, B11, n/2, size);
 cilk_spawn MMult(D11, A12, B21, n/2, size);
 cilk_spawn MMult(D12, A12, B22, n/2, size);
 cilk_spawn MMult(D22, A22, B22, n/2, size);
 cilk_spawn MMult(D21, A22, B21, n/2, size);
 cilk_sync;
 MAdd(C, D, n, size); // C += D;
 delete[] D;
}

Work ? Span ? Parallelism ?
Divide-and-conquer matrix multiplication

```c
void MMult(T *C, T *A, T *B, int n, int size) {
    T *D = new T[n*n];
    //base case & partition matrices
    cilk_spawn MMult(C11, A11, B11, n/2, size);
    cilk_spawn MMult(C12, A11, B12, n/2, size);
    cilk_spawn MMult(C22, A21, B12, n/2, size);
    cilk_spawn MMult(C21, A21, B11, n/2, size);
    cilk_spawn MMult(D11, A12, B21, n/2, size);
    cilk_spawn MMult(D12, A12, B22, n/2, size);
    cilk_spawn MMult(D22, A22, B22, n/2, size);
    MMult(D21, A22, B21, n/2, size);
    cilk_sync; MAdd(C, D, n, size); // C += D;
    delete[] D; }
```

- $A_p(n)$ and $M_p(n)$: times on p proc. for $n \times n$ ADD and MUL.
 - $A_1(n) = 4A_1(n/2) + \Theta(1) = \Theta(n^2)$
 - $A_\infty(n) = A_\infty(n/2) + \Theta(1) = \Theta(\lg n)$
 - $M_1(n) = 8M_1(n/2) + A_1(n) = 8M_1(n/2) + \Theta(n^2) = \Theta(n^3)$
 - $M_\infty(n) = M_\infty(n/2) + \Theta(\lg n) = \Theta(\lg^2 n)$
 - $M_1(n)/M_\infty(n) = \Theta(n^3/\lg^2 n)$
Divide-and-conquer matrix multiplication: No temporaries!

```cpp
template <typename T>
void MMult2(T *C, T *A, T *B, int n, int size) {
    //base case & partition matrices
    cilk_spawn MMult2(C11, A11, B11, n/2, size);
    cilk_spawn MMult2(C12, A11, B12, n/2, size);
    cilk_spawn MMult2(C22, A21, B12, n/2, size);
    MMult2(C21, A21, B11, n/2, size);
    cilk_sync;
    cilk_spawn MMult2(C11, A12, B21, n/2, size);
    cilk_spawn MMult2(C12, A12, B22, n/2, size);
    cilk_spawn MMult2(C22, A22, B22, n/2, size);
    MMult2(C21, A22, B21, n/2, size);
    cilk_sync;
}
```

Work ? Span ? Parallelism ?
Divide-and-conquer matrix multiplication: No temporaries!

```cpp
template <typename T>
void MMult2(T *C, T *A, T *B, int n, int size) {
    //base case & partition matrices
    cilk_spawn MMult2(C11, A11, B11, n/2, size);
    cilk_spawn MMult2(C12, A11, B12, n/2, size);
    cilk_spawn MMult2(C22, A21, B12, n/2, size);
    MMult2(C21, A21, B11, n/2, size);
    cilk_sync;
    cilk_spawn MMult2(C11, A12, B21, n/2, size);
    cilk_spawn MMult2(C12, A12, B22, n/2, size);
    cilk_spawn MMult2(C22, A22, B22, n/2, size);
    MMult2(C21, A22, B21, n/2, size);
    cilk_sync; }
```

- $MA_p(n)$: time on p proc. for $n \times n$ MULT-ADD.
- $MA_1(n) = \Theta(n^3)$
- $MA_\infty(n) = 2MA_\infty(n/2) + \Theta(1) = \Theta(n)$
- $MA_1(n)/MA_\infty(n) = \Theta(n^2)$
- Besides, saving space often saves time due to hierarchical memory.
Plan

Review of Complexity Notions

Divide-and-Conquer Recurrences

Matrix Multiplication

Merge Sort

Tableau Construction
Merging two sorted arrays

```c
void Merge(T *C, T *A, T *B, int na, int nb) {
    while (na>0 && nb>0) {
        if (*A <= *B) {
            *C++ = *A++; na--;
        } else {
            *C++ = *B++; nb--;  
        }
    }
    while (na>0) {
        *C++ = *A++; na--;  
    }
    while (nb>0) {
        *C++ = *B++; nb--;  
    }
}
```

Time for merging \(n \) elements is \(\Theta(n) \).
Merge sort

merge

merge

merge

3 4 12 14 19 21 33 46
3 12 19 46 4 14 21 33
3 19 12 46 4 33 14 21
19 3 12 46 33 4 21 14
template <typename T>
void MergeSort(T *B, T *A, int n) {
 if (n==1) {
 B[0] = A[0];
 } else {
 T* C[n];
 cilk_spawn MergeSort(C, A, n/2);
 MergeSort(C+n/2, A+n/2, n-n/2);
 cilk_sync;
 Merge(B, C, C+n/2, n/2, n-n/2);
 }
}

▶ Work?
▶ Span?
Parallel merge sort with serial merge

template <typename T>
void MergeSort(T *B, T *A, int n) {
 if (n==1) {
 B[0] = A[0];
 } else {
 T* C[n];
 cilk_spawn MergeSort(C, A, n/2);
 MergeSort(C+n/2, A+n/2, n-n/2);
 cilk_sync;
 Merge(B, C, C+n/2, n/2, n-n/2);
 }
}

▶ $T_1(n) = 2T_1(n/2) + \Theta(n)$ thus $T_1(n) = \Theta(n \lg n)$.
▶ $T_\infty(n) = T_\infty(n/2) + \Theta(n)$ thus $T_\infty(n) = \Theta(n)$.
▶ $T_1(n)/T_\infty(n) = \Theta(\lg n)$. **Puny parallelism!**
▶ We need to parallelize the merge!
Parallel merge

Idea: if the total number of elements to be sorted in $n = n_a + n_b$ then the maximum number of elements in any of the two merges is at most $3n/4$.
Parallel merge

```cpp
template <typename T>
void P_Merge(T *C, T *A, T *B, int na, int nb) {
    if (na < nb) {
        P_Merge(C, B, A, nb, na);
    } else if (na==0) {
        return;
    } else {
        int ma = na/2;
        int mb = BinarySearch(A[ma], B, nb);
        C[ma+mb] = A[ma];
        cilk_spawn P_Merge(C, A, B, ma, mb);
        P_Merge(C+ma+mb+1, A+ma+1, B+mb, na-ma-1, nb-mb);
        cilk_sync;
    }
}
```

- One should coarse the base case for efficiency.
- **Work? Span?**
Parallel merge

```c
template <typename T>
void P_Merge(T *C, T *A, T *B, int na, int nb) {
    if (na < nb) {
        P_Merge(C, B, A, nb, na);
    } else if (na==0) {
        return;
    } else {
        int ma = na/2;
        int mb = BinarySearch(A[ma], B, nb);
        C[ma+mb] = A[ma];
        cilk_spawn P_Merge(C, A, B, ma, mb);
        P_Merge(C+ma+mb+1, A+ma+1, B+mb, na-ma-1, nb-mb);
        cilk_sync; }
}
```

▶ Let $PM_p(n)$ be the p-processor running time of P-MERGE.

▶ In the worst case, the span of P-MERGE is

$$PM_\infty(n) \leq PM_\infty(3n/4) + \Theta(\lg n) = \Theta(\lg^2 n)$$

▶ The worst-case work of P-MERGE satisfies the recurrence

$$PM_1(n) \leq PM_1(\alpha n) + PM_1((1 - \alpha)n) + \Theta(\lg n)$$

, where α is a constant in the range $1/4 \leq \alpha \leq 3/4$.
Analyzing parallel merge

- Recall $PM_1(n) \leq PM_1(\alpha n) + PM_1((1 - \alpha)n) + \Theta(\lg n)$ for some $1/4 \leq \alpha \leq 3/4$.
- To solve this **hairy equation** we use the substitution method.
- We assume there exist some constants $a, b > 0$ such that $PM_1(n) \leq an - b \lg n$ holds for all $1/4 \leq \alpha \leq 3/4$.
- After substitution, this hypothesis implies:
 $PM_1(n) \leq an - b \lg n - b \lg n + \Theta(\lg n)$.
- We can pick b large enough such that we have $PM_1(n) \leq an - b \lg n$ for all $1/4 \leq \alpha \leq 3/4$ and all $n > 1/\ldots$
- Then pick a large enough to satisfy the base conditions.
- Finally we have $PM_1(n) = \Theta(n)$.
template <typename T>
void P_MergeSort(T *B, T *A, int n) {
 if (n==1) {
 B[0] = A[0];
 } else {
 T C[n];
 cilk_spawn P_MergeSort(C, A, n/2);
 P_MergeSort(C+n/2, A+n/2, n-n/2);
 cilk_sync;
 P_Merge(B, C, C+n/2, n/2, n-n/2);
 }
}

- **Work?**
- **Span?**
Parallel merge sort with parallel merge

template <typename T>
void P_MergeSort(T *B, T *A, int n) {
 if (n==1) {
 B[0] = A[0];
 } else {
 T C[n];
 cilk_spawn P_MergeSort(C, A, n/2);
 P_MergeSort(C+n/2, A+n/2, n-n/2);
 cilk_sync;
 P_Merge(B, C, C+n/2, n/2, n-n/2);
 }
}

- The work satisfies $T_1(n) = 2T_1(n/2) + \Theta(n)$ (as usual) and we have $T_1(n) = \Theta(n \log(n))$.
- The worst case critical-path length of the `Merge-Sort` now satisfies

 $$T_\infty(n) = T_\infty(n/2) + \Theta(\log^2 n) = \Theta(\log^3 n)$$

 .
- The parallelism is now $\Theta(n \log n)/\Theta(\log^3 n) = \Theta(n/ \log^2 n)$.

Plan

Review of Complexity Notions

Divide-and-Conquer Recurrences

Matrix Multiplication

Merge Sort

Tableau Construction
Tableau construction

\[
\begin{array}{cccccccc}
00 & 01 & 02 & 03 & 04 & 05 & 06 & 07 \\
10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 \\
20 & 21 & 22 & 23 & 24 & 25 & 26 & 27 \\
30 & 31 & 32 & 33 & 34 & 35 & 36 & 37 \\
40 & 41 & 42 & 43 & 44 & 45 & 46 & 47 \\
50 & 51 & 52 & 53 & 54 & 55 & 56 & 57 \\
60 & 61 & 62 & 63 & 64 & 65 & 66 & 67 \\
70 & 71 & 72 & 73 & 74 & 75 & 76 & 77 \\
\end{array}
\]

Constructing a tableau \(A \) satisfying a relation of the form:

\[
A[i, j] = R(A[i - 1, j], A[i - 1, j - 1], A[i, j - 1]).
\] (32)

The work is \(\Theta(n^2) \).
Recursive construction

- \(T_1(n) = 4T_1(n/2) + \Theta(1) \), thus \(T_1(n) = \Theta(n^2) \).
- \(T_\infty(n) = 3T_\infty(n/2) + \Theta(1) \), thus \(T_\infty(n) = \Theta(n^{\log_2 3}) \).
- **Parallelism**: \(\Theta(n^{2 - \log_2 3}) = \Omega(n^{0.41}) \).

Parallel code:

```cilk
I;
cilk_spawn II;
III; I II
n
;
cilk_sync;
IV;
I II
III IV
```
A more parallel construction

$T_1(n) = 9T_1(n/3) + \Theta(1)$, thus $T_1(n) = \Theta(n^2)$.

$T_\infty(n) = 5T_\infty(n/3) + \Theta(1)$, thus $T_\infty(n) = \Theta(n^{\log_3 5})$.

Parallelism: $\Theta(n^{2-\log_3 5}) = \Omega(n^{0.53})$.

This nine-way d-n-c has more parallelism than the four way but exhibits more cache complexity (more on this later).
Acknowledgements

▶ Charles E. Leiserson (MIT) for providing me with the sources of its lecture notes.

▶ Matteo Frigo (Intel) for supporting the work of my team with Cilk++ and offering us the next lecture.

▶ Yuzhen Xie (UWO) for helping me with the images used in these slides.

▶ Liyun Li (UWO) for generating the experimental data.