Analysis of Multithreaded Algorithms

Marc Moreno Maza

University of Western Ontario, London, Ontario (Canada)

CS4402-9535
Plan

1. Review of Complexity Notions
2. Divide-and-Conquer Recurrences
3. Matrix Multiplication
4. Merge Sort
5. Tableau Construction
Plan

1. Review of Complexity Notions
2. Divide-and-Conquer Recurrences
3. Matrix Multiplication
4. Merge Sort
5. Tableau Construction
Orders of magnitude

Let \(f, g \) et \(h \) be functions from \(\mathbb{N} \) to \(\mathbb{R} \).

- We say that \(g(n) \) is in the **order of magnitude** of \(f(n) \) and we write \(f(n) \in \Theta(g(n)) \) if there exist two strictly positive constants \(c_1 \) and \(c_2 \) such that for \(n \) big enough we have
 \[
 0 \leq c_1 \ g(n) \leq f(n) \leq c_2 \ g(n). \tag{1}
 \]

- We say that \(g(n) \) is an **asymptotic upper bound** of \(f(n) \) and we write \(f(n) \in \mathcal{O}(g(n)) \) if there exists a strictly positive constants \(c_2 \) such that for \(n \) big enough we have
 \[
 0 \leq f(n) \leq c_2 \ g(n). \tag{2}
 \]

- We say that \(g(n) \) is an **asymptotic lower bound** of \(f(n) \) and we write \(f(n) \in \Omega(g(n)) \) if there exists a strictly positive constants \(c_1 \) such that for \(n \) big enough we have
 \[
 0 \leq c_1 \ g(n) \leq f(n). \tag{3}
 \]
Examples

- With $f(n) = \frac{1}{2} n^2 - 3n$ and $g(n) = n^2$ we have $f(n) \in \Theta(g(n))$. Indeed we have
 \[c_1 n^2 \leq \frac{1}{2} n^2 - 3n \leq c_2 n^2. \]
 for $n \geq 12$ with $c_1 = \frac{1}{4}$ and $c_2 = \frac{1}{2}$.

- Assume that there exists a positive integer n_0 such that $f(n) > 0$ and $g(n) > 0$ for every $n \geq n_0$. Then we have
 \[\max(f(n), g(n)) \in \Theta(f(n) + g(n)). \]
 Indeed we have
 \[\frac{1}{2}(f(n) + g(n)) \leq \max(f(n), g(n)) \leq (f(n) + g(n)). \]

- Assume a and b are positive real constants. Then we have
 \[(n + a)^b \in \Theta(n^b). \]
 Indeed for $n \geq a$ we have
Properties

- \(f(n) \in \Theta(g(n)) \) holds iff \(f(n) \in \mathcal{O}(g(n)) \) and \(f(n) \in \Omega(g(n)) \) hold together.

- Each of the predicates \(f(n) \in \Theta(g(n)) \), \(f(n) \in \mathcal{O}(g(n)) \) and \(f(n) \in \Omega(g(n)) \) define a reflexive and transitive binary relation among the \(\mathbb{N}\)-to-\(\mathbb{R} \) functions. Moreover \(f(n) \in \Theta(g(n)) \) is symmetric.

- We have the following transposition formula

\[
 f(n) \in \mathcal{O}(g(n)) \iff g(n) \in \Omega(f(n)). \tag{9}
\]

In practice \(\in \) is replaced by \(= \) in each of the expressions \(f(n) \in \Theta(g(n)) \), \(f(n) \in \mathcal{O}(g(n)) \) and \(f(n) \in \Omega(g(n)) \). Hence, the following

\[
 f(n) = h(n) + \Theta(g(n)) \tag{10}
\]

means

\[
 f(n) - h(n) \in \Theta(g(n)). \tag{11}
\]
Another example

Let us give another fundamental example. Let $p(n)$ be a (univariate) polynomial with degree $d > 0$. Let a_d be its leading coefficient and assume $a_d > 0$. Then we have

1. If $k \geq d$ then $p(n) \in \mathcal{O}(n^k)$,
2. If $k \leq d$ then $p(n) \in \Omega(n^k)$,
3. If $k = d$ then $p(n) \in \Theta(n^k)$.

Exercise: Prove the following

$$\sum_{k=1}^{n} k \in \Theta(n^2).$$
Plan

1. Review of Complexity Notions
2. Divide-and-Conquer Recurrences
3. Matrix Multiplication
4. Merge Sort
5. Tableau Construction
Divide-and-Conquer Algorithms

Divide-and-conquer algorithms proceed as follows.

Divide the input problem into sub-problems.

Conquer on the sub-problems by solving them directly if they are small enough or proceed recursively.

Combine the solutions of the sub-problems to obtain the solution of the input problem.

Equation satisfied by $T(n)$. Assume that the size of the input problem increases with an integer n. Let $T(n)$ be the time complexity of a divide-and-conquer algorithm to solve this problem. Then $T(n)$ satisfies an equation of the form:

$$T(n) = a \, T(n/b) + f(n).$$

(13)

where $f(n)$ is the cost of the combine-part, $a \geq 1$ is the number of recursively calls and n/b with $b > 1$ is the size of a sub-problem.
Labeled tree associated with the equation. Assume \(n \) is a power of \(b \), say \(n = b^p \). To solve the equation

\[
T(n) = a \ T(n/b) + f(n).
\]

we can associate a labeled tree \(A(n) \) to it as follows.

1. If \(n = 1 \), then \(A(n) \) is reduced to a single leaf labeled \(T(1) \).
2. If \(n > 1 \), then the root of \(A(n) \) is labeled by \(f(n) \) and \(A(n) \) possesses a labeled sub-trees all equal to \(A(n/b) \).

The labeled tree \(A(n) \) associated with \(T(n) = a \ T(n/b) + f(n) \) has height \(p + 1 \). Moreover the sum of its labels is \(T(n) \).
Solving divide-and-conquer recurrences (1/2)

\[T(n) \]

\[T(n) \]

\[\frac{T(n)}{b} \]

\[\frac{T(n)}{b^2} \]

\[f(n) \]

\[f(n/b) \]

\[f(n/b^2) \]

\[a \]

\[… \]
Solving divide-and-conquer recurrences (2/2)

IDEA: Compare $n^{\log_b a}$ with $f(n)$.
Master Theorem: case $n^{\log_b a} \gg f(n)$

Specifically, $f(n) = O(n^{\log_b a - \epsilon})$ for some constant $\epsilon > 0$.

$T(n) = \Theta(n^{\log_b a})$
Master Theorem: case \(f(n) \in \Theta(n^{\log_b a} \log^k n) \)

Specifically, \(f(n) = \Theta(n^{\log_b a} \log^k n) \) for some constant \(k \geq 0 \).

\[
T(n) = \Theta(n^{\log_b a} \log^{k+1} n))
\]
Master Theorem: case where \(f(n) \gg n^{\log_b a} \)

Specifically, \(f(n) = \Omega(n^{\log_b a + \epsilon}) \) for some constant \(\epsilon > 0 \).

*and \(f(n) \) satisfies the regularity condition that \(af(n/b) \leq cf(n) \) for some constant \(c < 1 \).
More examples

- Consider the relation:

$$T(n) = 2 T(n/2) + n^2.$$ \hspace{1cm} (14)

We obtain:

$$T(n) = n^2 + \frac{n^2}{2} + \frac{n^2}{4} + \frac{n^2}{8} + \cdots + \frac{n^2}{2^p} + nT(1).$$ \hspace{1cm} (15)

Hence we have:

$$T(n) \in \Theta(n^2).$$ \hspace{1cm} (16)

- Consider the relation:

$$T(n) = 3 T(n/3) + n.$$ \hspace{1cm} (17)

We obtain:

$$T(n) \in \Theta(\log_3(n) n).$$ \hspace{1cm} (18)
Master Theorem when $b = 2$

Let $a > 0$ be an integer and let $f, T : \mathbb{N} \rightarrow \mathbb{R}_+$ be functions such that

(i) $f(2n) \geq 2f(n)$ and $f(n) \geq n$.

(ii) If $n = 2^p$ then $T(n) \leq aT(n/2) + f(n)$.

Then for $n = 2^p$ we have

(1) if $a = 1$ then

$$T(n) \leq (2 - 2/n) f(n) + T(1) \in \mathcal{O}(f(n)), \quad (19)$$

(2) if $a = 2$ then

$$T(n) \leq f(n) \log_2(n) + T(1) n \in \mathcal{O}(\log_2(n) f(n)), \quad (20)$$

(3) if $a \geq 3$ then

$$T(n) \leq \frac{2}{a-2} \left(n^{\log_2(a) - 1} - 1\right) f(n) + T(1) n^{\log_2(a)} \in \mathcal{O}(f(n) n^{\log_2(a) - 1}). \quad (21)$$
Master Theorem when $b = 2$

Indeed

\[
T(2^p) \leq a T(2^{p-1}) + f(2^p)
\]
\[
\leq a \left[a T(2^{p-2}) + f(2^{p-1}) \right] + f(2^p)
\]
\[
= a^2 T(2^{p-2}) + a f(2^{p-1}) + f(2^p)
\]
\[
\leq a^2 \left[a T(2^{p-3}) + f(2^{p-2}) \right] + a f(2^{p-1}) + f(2^p)
\]
\[
= a^3 T(2^{p-3}) + a^2 f(2^{p-2}) + a f(2^{p-1}) + f(2^p)
\]
\[
\leq a^p T(s1) + \sum_{j=0}^{p-1} a^j f(2^{p-j})
\]
Divide-and-Conquer Recurrences

Master Theorem when $b = 2$

Moreover

$$ f(2^p) \geq 2f(2^{p-1}) $$
$$ f(2^p) \geq 2^2 f(2^{p-2}) $$
$$ \vdots \quad \vdots \quad \vdots $$
$$ f(2^p) \geq 2^j f(2^{p-j}) $$

Thus

$$ \sum_{j=0}^{p-1} a^j f(2^{p-j}) \leq f(2^p) \sum_{j=0}^{p-1} \left(\frac{a}{2} \right)^j. $$

(23)

(24)
Master Theorem when $b = 2$

Hence

$$T(2^p) \leq a^p T(1) + f(2^p) \sum_{j=0}^{p-1} \left(\frac{a}{2} \right)^j.$$ \hfill (25)

For $a = 1$ we obtain

$$T(2^p) \leq T(1) + f(2^p) \sum_{j=0}^{p-1} \left(\frac{1}{2} \right)^j$$

$$= T(1) + f(2^p) \frac{\frac{1}{2}^{p-1}}{\frac{1}{2} - 1}$$

$$= T(1) + f(n) \left(2 - \frac{2}{n} \right).$$ \hfill (26)

For $a = 2$ we obtain

$$T(2^p) \leq 2^p T(1) + f(2^p) p$$

$$= n T(1) + f(n) \log_2(n).$$ \hfill (27)
Divide-and-Conquer Recurrences

Master Theorem cheat sheet

For $a \geq 1$ and $b > 1$, consider again the equation

$$T(n) = a \cdot T(n/b) + f(n).$$

(28)

We have:

$$(\exists \varepsilon > 0) \ f(n) \in O(n^{\log_b a - \varepsilon}) \implies T(n) \in \Theta(n^{\log_b a})$$

(29)

We have:

$$(\exists \varepsilon > 0) \ f(n) \in \Theta(n^{\log_b a \log^k n}) \implies T(n) \in \Theta(n^{\log_b a \log^{k+1} n})$$

(30)

We have:

$$(\exists \varepsilon > 0) \ f(n) \in \Omega(n^{\log_b a + \varepsilon}) \implies T(n) \in \Theta(f(n))$$

(31)
Master Theorem quizz!

- \(T(n) = 4T(n/2) + n \)
- \(T(n) = 4T(n/2) + n^2 \)
- \(T(n) = 4T(n/2) + n^3 \)
- \(T(n) = 4T(n/2) + n^2 / \log n \)
Plan

1. Review of Complexity Notions
2. Divide-and-Conquer Recurrences
3. Matrix Multiplication
4. Merge Sort
5. Tableau Construction
Matrix multiplication

\[
\begin{pmatrix}
c_{11} & c_{12} & \cdots & c_{1n} \\
c_{21} & c_{22} & \cdots & c_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
c_{n1} & c_{n2} & \cdots & c_{nn}
\end{pmatrix}
= \begin{pmatrix}
a_{11} & a_{12} & \cdots & a_{1n} \\
a_{21} & a_{22} & \cdots & a_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n1} & a_{n2} & \cdots & a_{nn}
\end{pmatrix}
\cdot
\begin{pmatrix}
b_{11} & b_{12} & \cdots & b_{1n} \\
b_{21} & b_{22} & \cdots & b_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
b_{n1} & b_{n2} & \cdots & b_{nn}
\end{pmatrix}
\]

C \quad A \quad B

We will study three approaches:

- a naive and iterative one
- a divide-and-conquer one
- a divide-and-conquer one with memory management consideration

(Moreno Maza)
Matrix Multiplication

Naive iterative matrix multiplication

cilk_for (int i=1; i<n; ++i) {
 cilk_for (int j=0; j<n; ++j) {
 for (int k=0; k<n; ++k {
 C[i][j] += A[i][k] * B[k][j];
 }
 }
}

- Work: ?
- Span: ?
- Parallelism: ?
Naive iterative matrix multiplication

cilk_for (int i=1; i<n; ++i) {
 cilk_for (int j=0; j<n; ++j) {
 for (int k=0; k<n; ++k {
 C[i][j] += A[i][k] * B[k][j];
 }
 }
}

- **Work**: $\Theta(n^3)$
- **Span**: $\Theta(n)$
- **Parallelism**: $\Theta(n^2)$
Matrix multiplication based on block decomposition

\[
\begin{pmatrix}
 C_{11} & C_{12} \\
 C_{21} & C_{22}
\end{pmatrix}
=
\begin{pmatrix}
 A_{11} & A_{12} \\
 A_{21} & A_{22}
\end{pmatrix}
\cdot
\begin{pmatrix}
 B_{11} & B_{12} \\
 B_{21} & B_{22}
\end{pmatrix}
\]

\[
= \begin{pmatrix}
 A_{11}B_{11} & A_{11}B_{12} \\
 A_{21}B_{11} & A_{21}B_{12}
\end{pmatrix}
+ \begin{pmatrix}
 A_{12}B_{21} & A_{12}B_{22} \\
 A_{22}B_{21} & A_{22}B_{22}
\end{pmatrix}
\]

The divide-and-conquer approach is simply the one based on blocking, presented in the first lecture.
Matrix Multiplication

Divide-and-conquer matrix multiplication

// C <- C + A * B
void MMult(T *C, T *A, T *B, int n, int size) {
 T *D = new T[n*n];
 // base case & partition matrices
 cilk_spawn MMult(C11, A11, B11, n/2, size);
 cilk_spawn MMult(C12, A11, B12, n/2, size);
 cilk_spawn MMult(C22, A21, B12, n/2, size);
 cilk_spawn MMult(C21, A21, B11, n/2, size);
 cilk_spawn MMult(D11, A12, B21, n/2, size);
 cilk_spawn MMult(D12, A12, B22, n/2, size);
 cilk_spawn MMult(D22, A22, B22, n/2, size);
 cilk_sync;
 MAdd(C, D, n, size); // C += D;
 delete[] D;
}

Work? Span? Parallelism?
Divide-and-conquer matrix multiplication

```c
void MMult(T *C, T *A, T *B, int n, int size) {
    T *D = new T[n*n];
    //base case & partition matrices
    cilk_spawn MMult(C11, A11, B11, n/2, size);
    cilk_spawn MMult(C12, A11, B12, n/2, size);
    cilk_spawn MMult(C22, A21, B12, n/2, size);
    cilk_spawn MMult(C21, A21, B11, n/2, size);
    cilk_spawn MMult(D11, A12, B21, n/2, size);
    cilk_spawn MMult(D12, A12, B22, n/2, size);
    cilk_spawn MMult(D22, A22, B22, n/2, size);
    cilk_spawn MMult(D21, A22, B21, n/2, size);
    cilk_sync; MAdd(C, D, n, size); // C += D;
    delete[] D; }
```

- $A_p(n)$ and $M_p(n)$: times on p proc. for $n \times n$ Add and Mult.
- $A_1(n) = 4A_1(n/2) + \Theta(1) = \Theta(n^2)$
- $A_{\infty}(n) = A_{\infty}(n/2) + \Theta(1) = \Theta(\lg n)$
- $M_1(n) = 8M_1(n/2) + A_1(n) = 8M_1(n/2) + \Theta(n^2) = \Theta(n^3)$
- $M_{\infty}(n) = M_{\infty}(n/2) + \Theta(\lg n) = \Theta(\lg^2 n)$
- $M_1(n)/M_{\infty}(n) = \Theta(n^3 / \lg^2 n)$
Divide-and-conquer matrix multiplication: No temporaries!

```cpp
template <typename T>
void MMult2(T *C, T *A, T *B, int n, int size) {
    //base case & partition matrices
    cilk_spawn MMult2(C11, A11, B11, n/2, size);
    cilk_spawn MMult2(C12, A11, B12, n/2, size);
    cilk_spawn MMult2(C22, A21, B12, n/2, size);
    MMult2(C21, A21, B11, n/2, size);
    cilk_sync;
    cilk_spawn MMult2(C11, A12, B21, n/2, size);
    cilk_spawn MMult2(C12, A12, B22, n/2, size);
    cilk_spawn MMult2(C22, A22, B22, n/2, size);
    MMult2(C21, A22, B21, n/2, size);
    cilk_sync; }
```

Work? Span? Parallelism?
Divide-and-conquer matrix multiplication: No temporaries!

template <typename T>
void MMult2(T *C, T *A, T *B, int n, int size) {
 //base case & partition matrices
 cilk_spawn MMult2(C11, A11, B11, n/2, size);
 cilk_spawn MMult2(C12, A11, B12, n/2, size);
 cilk_spawn MMult2(C21, A21, B11, n/2, size);
 cilk_spawn MMult2(C22, A21, B12, n/2, size);
 cilk_sync;
 cilk_spawn MMult2(C11, A12, B21, n/2, size);
 cilk_spawn MMult2(C12, A12, B22, n/2, size);
 cilk_spawn MMult2(C22, A22, B22, n/2, size);
 cilk_spawn MMult2(C21, A22, B21, n/2, size);
 cilk_sync; }

- \(MA_p(n) \): time on \(p \) proc. for \(n \times n \) \textsc{Mult-Add}.
- \(MA_1(n) = \Theta(n^3) \)
- \(MA_\infty(n) = 2MA_\infty(n/2) + \Theta(1) = \Theta(n) \)
- \(MA_1(n) / MA_\infty(n) = \Theta(n^2) \)
- Besides, saving space often saves time due to hierarchical memory.
Plan

1. Review of Complexity Notions
2. Divide-and-Conquer Recurrences
3. Matrix Multiplication
4. Merge Sort
5. Tableau Construction
Merging two sorted arrays

```c
void Merge(T *C, T *A, T *B, int na, int nb) {
    while (na>0 && nb>0) {
        if (*A <= *B) {
            *C++ = *A++; na--;
        } else {
            *C++ = *B++; nb--;
        }
    }
    while (na>0) {
        *C++ = *A++; na--;
    }
    while (nb>0) {
        *C++ = *B++; nb--;
    }
}
```

Time for merging n elements is $\Theta(n)$.

(Moreno Maza)
Merge sort

Algorithm:
1. Divide the input list into two halves.
2. Recursively sort the two halves.
3. Merge the two sorted halves.

Example:
Input: 3, 4, 12, 14, 19, 21, 33, 46

First iteration:
- Divide: 3, 4, 12, 14, 19, 21, 33, 46
- Merge: 3, 4, 12, 14, 19, 21, 33, 46

Second iteration:
- Divide: 3, 4, 12, 14, 19, 21, 33, 46
- Merge: 3, 12, 19, 46, 4, 14, 21, 33

Third iteration:
- Divide: 3, 12, 19, 46, 4, 14, 21, 33
- Merge: 3, 19, 12, 46, 4, 33, 14, 21

Final result:
- 3, 4, 12, 14, 19, 21, 33, 46
Parallel merge sort with serial merge

template <typename T>
void MergeSort(T *B, T *A, int n) {
 if (n==1) {
 B[0] = A[0];
 } else {
 T* C[n];
 cilk_spawn MergeSort(C, A, n/2);
 MergeSort(C+n/2, A+n/2, n-n/2);
 cilk_sync;
 Merge(B, C, C+n/2, n/2, n-n/2);
 }
}

- **Work?**
- **Span?**
Parallel merge sort with serial merge

```cpp
template <typename T>
void MergeSort(T *B, T *A, int n) {
    if (n==1) {
        B[0] = A[0];
    } else {
        T* C[n];
        cilk_spawn MergeSort(C, A, n/2);
        MergeSort(C+n/2, A+n/2, n-n/2);
        cilk_sync;
        Merge(B, C, C+n/2, n/2, n-n/2);
    }
}
```

- $T_1(n) = 2T_1(n/2) + \Theta(n)$ thus $T_1(n) = \Theta(n \lg n)$.
- $T_\infty(n) = T_\infty(n/2) + \Theta(n)$ thus $T_\infty(n) = \Theta(n)$.
- $T_1(n)/T_\infty(n) = \Theta(\lg n)$. **Puny parallelism!**
- We need to parallelize the merge!
Parallel merge

Idea: if the total number of elements to be sorted in $n = n_a + n_b$ then the maximum number of elements in any of the two merges is at most $3n/4$.
Parallel merge

template<typename T>
void P_Merge(T *C, T *A, T *B, int na, int nb) {
 if (na < nb) {
 P_Merge(C, B, A, nb, na);
 } else if (na==0) {
 return;
 } else {
 int ma = na/2;
 int mb = BinarySearch(A[ma], B, nb);
 C[ma+mb] = A[ma];
 cilk_spawn P_Merge(C, A, B, ma, mb);
 P_Merge(C+ma+mb+1, A+ma+1, B+mb, na-ma-1, nb-mb);
 cilk_sync;
 }
}

- One should coarse the base case for efficiency.
- **Work? Span?**
template <typename T>
void P_Merge(T *C, T *A, T *B, int na, int nb) {
 if (na < nb) {
 P_Merge(C, B, A, nb, na);
 } else if (na==0) {
 return;
 } else {
 int ma = na/2;
 int mb = BinarySearch(A[ma], B, nb);
 C[ma+mb] = A[ma];
 cilk_spawn P_Merge(C, A, B, ma, mb);
 P_Merge(C+ma+mb+1, A+ma+1, B+mb, na-ma-1, nb-mb);
 cilk_sync; } } }

- Let $PM_p(n)$ be the p-processor running time of P-Merge.
- In the worst case, the span of P-Merge is
 \[PM_\infty(n) \leq PM_\infty(3n/4) + \Theta(\lg n) = \Theta(\lg^2 n) \]
- The worst-case work of P-Merge satisfies the recurrence
 \[PM_1(n) \leq PM_1(\alpha n) + PM_1((1 - \alpha)n) + \Theta(\lg n) \]
Analyzing parallel merge

- Recall $PM_1(n) \leq PM_1(\alpha n) + PM_1((1 - \alpha)n) + \Theta(\lg n)$ for some $1/4 \leq \alpha \leq 3/4$.

- To solve this **hairy equation** we use the substitution method.

- We assume there exist some constants $a, b > 0$ such that $PM_1(n) \leq an - b \lg n$ holds for all $1/4 \leq \alpha \leq 3/4$.

- After substitution, this hypothesis implies: $PM_1(n) \leq an - b \lg n - b \lg n + \Theta(\lg n)$.

- We can pick b large enough such that we have $PM_1(n) \leq an - b \lg n$ for all $1/4 \leq \alpha \leq 3/4$ and all $n > 1/

- Then pick a large enough to satisfy the base conditions.

- Finally we have $PM_1(n) = \Theta(n)$.
Parallel merge sort with parallel merge

```cpp
template <typename T>
void P_MergeSort(T *B, T *A, int n) {
    if (n==1) {
        B[0] = A[0];
    } else {
        T C[n];
        cilk_spawn P_MergeSort(C, A, n/2);
        P_MergeSort(C+n/2, A+n/2, n-n/2);
        cilk_sync;
        P_Merge(B, C, C+n/2, n/2, n-n/2);
    }
}
```

- **Work**?
- **Span**?
Parallel merge sort with parallel merge

template <typename T>
void P_MergeSort(T *B, T *A, int n) {
 if (n==1) {
 B[0] = A[0];
 } else {
 T C[n];
 cilk_spawn P_MergeSort(C, A, n/2);
 P_MergeSort(C+n/2, A+n/2, n-n/2);
 cilk_sync;
P_Merge(B, C, C+n/2, n/2, n-n/2);
 }
}

- The work satisfies $T_1(n) = 2T_1(n/2) + \Theta(n)$ (as usual) and we have $T_1(n) = \Theta(n\log(n))$.
- The worst case critical-path length of the Merge-Sort now satisfies
 $$T_\infty(n) = T_\infty(n/2) + \Theta(\lg^2 n) = \Theta(\lg^3 n).$$
- The parallelism is now $\Theta(n\lg n)/\Theta(\lg^3 n) = \Theta(n/\lg^2 n)$.

(Moreno Maza)
Plan

1. Review of Complexity Notions
2. Divide-and-Conquer Recurrences
3. Matrix Multiplication
4. Merge Sort
5. Tableau Construction
Tableau construction

Constructing a tableau A satisfying a relation of the form:

$$A[i,j] = R(A[i - 1,j], A[i - 1,j - 1], A[i,j - 1]).$$ \hfill (32)

The work is $\Theta(n^2)$.

\[
\begin{array}{cccccccc}
00 & 01 & 02 & 03 & 04 & 05 & 06 & 07 \\
10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 \\
20 & 21 & 22 & 23 & 24 & 25 & 26 & 27 \\
30 & 31 & 32 & 33 & 34 & 35 & 36 & 37 \\
40 & 41 & 42 & 43 & 44 & 45 & 46 & 47 \\
50 & 51 & 52 & 53 & 54 & 55 & 56 & 57 \\
60 & 61 & 62 & 63 & 64 & 65 & 66 & 67 \\
70 & 71 & 72 & 73 & 74 & 75 & 76 & 77 \\
\end{array}
\]
Recursive construction

- $T_1(n) = 4T_1(n/2) + \Theta(1)$, thus $T_1(n) = \Theta(n^2)$.
- $T_\infty(n) = 3T_\infty(n/2) + \Theta(1)$, thus $T_\infty(n) = \Theta(n^{\log_2 3})$.
- **Parallelism**: $\Theta(n^{2-\log_2 3}) = \Omega(n^{0.41})$.

Parallel code

```plaintext
I; 
cilk_spawn II; 
III; 
I II 
III IV; 
cilk_sync;
```

Tableau Construction

Parallel code
A more parallel construction

- $T_1(n) = 9T_1(n/3) + \Theta(1)$, thus $T_1(n) = \Theta(n^2)$.
- $T_\infty(n) = 5T_\infty(n/3) + \Theta(1)$, thus $T_\infty(n) = \Theta(n^\log_3 5)$.
- **Parallelism**: $\Theta(n^{2-\log_3 5}) = \Omega(n^{0.53})$.
- This nine-way d-n-c has more parallelism than the four way but exhibits more cache complexity (more on this later).
Acknowledgements

- Charles E. Leiserson (MIT) for providing me with the sources of its lecture notes.

- Matteo Frigo (Intel) for supporting the work of my team with Cilk++ and offering us the next lecture.

- Yuzhen Xie (UWO) for helping me with the images used in these slides.

- Liyun Li (UWO) for generating the experimental data.