
Distributed and Parallel Systems Due on Friday, February 17, 2017

Assignment 1
CS4402B / CS9535B University of Western Ontario

Submission instructions.

Format: The answers to the problem questions should be typed.

• If these are programs, input test files and a Makefile (for compiling and running)
are required.

• If these are algorithms or complexity analyzes, LATEX is highly recommended; in
any case a PDF file should gather all these answers.

All the files should be archived using the UNIX command tar.

Submission: The assignment should submitted through the OWL website of the class.

Collaboration. You are expected to do this assignment on your own without assistance
from anyone else in the class. However, you can use literature and if you do so, briefly
list your references in the assignment. Be careful! You might find on the web solutions
to our problems which are not appropriate. For instance, because the parallelism model
is different. So please, avoid those traps and work out the solutions by yourself. You
should not hesitate to contact me if you have any questions regarding this assignment.
I will be more than happy to help.

Marking. This assignment will be marked out of 100. A 10 % bonus will be given if your
paper is clearly organized, the answers are precise and concise, the typography and the
language are in good order. Messy assignments (unclear statements, lack of correctness
in the reasoning, many typographical and language mistakes) may give rise to a 10 %
malus.

1

PROBBLEM 1. [20 points] The objective of this problem is to prove that, with respect
to the Theorem of Graham & Brent, a greedy scheduler achieves the stronger bound:

TP ≤ (T1 − T∞)/p + T∞.

Let G = (V,E) be the DAG representing the instruction stream for a multithreaded
program in the fork-join parallelism model. The sets V and E denote the vertices and edges
of G respectively. Let T1 and T∞ be the work and span of the corresponding multithreaded
program. We assume that G is connected. We also assume that G admits a single source
(vertex with no predecessors) denoted by s and a single target (vertex with no successors)
denoted by t. Recall that T1 is the total number of elements of V and T∞ is the maximum
number of nodes on a path from s to t (counting s and t).

Let S0 = {s}. For i ≥ 0, we denote by Si+1 the set of the vertices w satisfying the
following two properties:

(i) all immediate predecessors of w belong to Si ∪ Si−1 ∪ · · · ∪ So,

(ii) at least one immediate predecessor of w belongs to Si.

Therefore, the set Si represents all the units of work which can be done during the i−-th
parallel step (and not before that point) on infinitely many processors.

Let p > 1 be an integer. For all i ≥ 0, we denote by wi the number of elements in Si.
Let ` be the largest integer i such that wi 6= 0. Observe that S0, S1, . . . , S` form a partition
of V . Finally, we define the following sequence of integers:

ci =

{
0 if wi ≤ p

dwi/pe − 1 if wi > p

Question 1. For the computation of the 5-th Fibonacci number (as studied in class) what are
S0, S1, S2, . . .?

Question 2. Show that ` + 1 = T∞ and w0 + · · ·+ w` = T1 both hold.
Question 3. Show that we have:

c0 + · · ·+ c` ≤ (T1 − T∞)/p.

Question 4. Prove the desired inequality:

TP ≤ (T1 − T∞)/p + T∞.

Question 5. Application: Professor Brown takes some measurements of his (deterministic)
multithreaded program, which is scheduled using a greedy scheduler, and finds that
T8 = 80 seconds and T64 = 20 seconds. Give lower bound and an upper bound for
Professor Brown’s computation running time on p processors, for 1 ≤ p ≤ 100? Using
a plot is recommended.

PROBBLEM 2. [30 points]
In the chapter Analysis of Multithreaded Algorithms, we studied the 2-way and 3-way

construction of a tableau.

2

Question 1. Describe, in plain words, how to construct a tableau in a k-way fashion, for
an arbitrary integer k ≥ 2, using the same stencil (the one of the Pascal triangle
construction) as in the lectures.

Question 2. Determine the work and the span for an input square array of order n.
Question 3. Realize a Julia or CilkPlus a multithreaded implementation of that algorithm.

Collect running times (both serial and parallel) for increasing values of n (say consec-
utive powers of 2) and different values of k (at least 2 and 3).

PROBBLEM 3. [50 points] Let G be a directed graph with n vertices. For simplicity we
identify the vertex set to the set of positive integers {1, 2, . . . , n}. To each couple (i, j), with
1 ≤ i, j ≤ n, we associate a weight wi,j such that:

(i) wi,j is a non-negative integer if and only if (i, j) is an arc in G,

(ii) wi,j is +∞ if and only if (i, j) is not an arc in G.

We assume wi,i = 0 for all 1 ≤ i ≤ n. If x1, x2, . . . , xm are m ≥ 2 vertices of G such that
(x1, x2), (x2, x2), . . . , (xm−1, xm) are all arcs of G, we say that p = (x1, x2, . . . , xm) is a path
in G from x1 to xm; moreover the weight of p is denoted by w(p) and defined by

w(p) = wx1,x2 + wx2,x3 + · · ·+ wxm,xm−1

For each couple (i, j) which is not an arc in G it is natural to ask whether

(1) there is a path in G from i to j, and

(2) if such path exists, then compute the minimal weight of such a path.

This question is often referred as ASAP for All-Pair Shortest Paths. The celebrated
Floyd–Warshall algorithm solves ASAP by computing a matrix path as follows:

for k = 1 to n

for i = 1 to n

for j = 1 to n

path[i][j] = min (path[i][j], path[i][k]+path[k][j]);

after initializing path[i][j] to wi,j. For more details, please refer to the Wikipedia page of
the Floyd-Warshall algorithm.

Question 1. [5 points] Is it possible to turn the FloydWarshall algorithm into a parallel al-
gorithm for the fork-join parallelism? If yes, analyze the work, the span and the
parallelism of this algorithm.

Question 2. [5 points] Discuss the data locality of the above sequential FloydWarshall algo-
rithm (not your parallel version of it). Doing a formal cache complexity analysis is not
required.

3

One way to obtain a better algorithm for ASAP (in terms of parallelism and data locality)
is to apply a divide and conquer approach. To this end we view (wi,j) as an n × n-matrix,
denoted by W . We also view the targeted result, namely the values (path[i][j]) as an
n× n-matrix, denoted by W .

Before stating the divide and conquer formulation, we introduce a few notations. Let
X, Y be square matrices (of the same order) whose entries are non-negative integers or +∞.
We denote by

• XY the min-plus product of X by Y (obtained from the usual matrix multiplication
by replacing + (resp. ×) by min (resp. +))

• X ∨ Y = min(X, Y) the element-wise minimum of the two matrices X and Y .

We are ready to state the divide and conquer formulation. If we decompose W into four
n/2× n/2-blocks, namely

W =

(
A B
C D

)
then we have

W =

(
E EBD
G D ∨GBD

)
where we have E = A ∨BDC and G = DCE. We shall admit that these formulas are
correct (even though proving them is not that hard).

Question 3. [5 points] Propose an algorithm for computing W in the fork-join parallelism
model.

Question 4. [5 points] Analyze the work, the span and the parallelism of your algorithm.

There exist alternative algorithms for the ASAP problem which rely on the min-plus
multiplication. A simple one is based on the observation that W = W n (and in fact W n−1)
where is the n-th power W is computed for min-plus multiplication using repeated squaring.

Question 5. [5 points] Propose such an algorithm. You are welcome to use the literature or
simply to use the one suggested above.

Question 6. [5 points] Analyze the work, the span and the parallelism of this third algorithm.

Question 7. [20 points] Realize a Julia or CilkPlus a multithreaded implementation of that
algorithm. Collect running times (both serial and parallel) for increasing values of n
(say consecutive powers of 2) and different values of k (at least 2 and 3).

4

	Lecture – Assignment 1

