
Distributed and Parallel Systems Due on Sunday, March 19, 2017

Assignment 2
CS4402B / CS9535B University of Western Ontario

Submission instructions. This assignment consists of a single problem which asks
to write a CUDA program for performing a counting sort.

Format: The submission should consist of

• the source code of this program together with

• a Makefile for compiling it, similarly to the simple examples posted on the course
web site.

Your CUDA program should contain a test applying your counting sort code to an input
array containing n elements with random values between 0 and 256. The integer n will
be assumed to be a power of 2. You should test your program:

• n = 1024 for debugging/verification purposes and print the result on the screen,

• n = 220, N = 221, N = 222, N = 223, N = 224 for performance measurements,
comparing the running time of your CUDA program against a serial version written
in C.

Submission: The assignment should be submitted through the OWL website of the class.

Collaboration. You are expected to do this assignment on your own without assistance
from anyone else in the class. However, you can use the literature. Be careful! You
might find on the web solutions to our problem which are not appropriate. For instance,
because the parallelism model is different. So please, avoid those traps and work out
the solutions by yourself. You should not hesitate to contact me if you have any
questions regarding this assignment. I will be more than happy to help.

Marking. This assignment will be marked out of 100. A 10 % bonus will be given if your
program is clearly organized and documented. Messy or undocumented code may give
rise to a 10 % malus.

1

PROBBLEM 1. [100 points] The goal of this problem is to realize a CUDA implementation
of the counting sort algorithm We use the same notations as in the Wikipedia page:

https://en.wikipedia.org/wiki/Counting_sort

We assume that k is small, say k ∈ {26, 27, 28} (we assume that the entries are positive
integers in the range 1 · · · k) while n is large, say n ∈ {220, 221, 222, 223, 224}. We propose
the following algorithm targeting a CUDA implementation using a one-dimensional grid and
one-dimensional thread-blocks. Let B and p be two powers of 2 such that each thread-block
has B threads, and the input array Input is divided in p consecutive sub-arrays such that
the i-th thread-block works with the i sub-array, for 0 ≤ i < p. In the proposed Kernel 1
below, each thread in each thread-block sorts B elements from Input. Hence, each of these
sub-arrays is regarded as the row-major layout of a matrix with B columns and B rows. B
is intended to be small, say B = 25 or B = 26. Therefore, we have p = n/B2.

Kernel 1: Each thread, in each thread-block, uses a “private” Count array. In fact, this
Count array should be a row of a shared array with B rows and k columns. This
latter array resides in shared memory and is shared among the threads of a given
thread-block.

Step 1.1 : For all 0 ≤ i ≤ p − 1, for all 0 ≤ j ≤ B − 1, the j-th thread of the i-th
thread-block scans the elements jB · · · (j + 1)B − 1 of the i sub-array and fills
up its private Count array. It is true that, in this design, accesses will not be
coalesced. You are free to fix that, which is easy, by modifying the way data is
layed out in global memory.

Step 1.2 : the B threads (of the i-th thread-block, for all 0 ≤ i ≤ p−1) together add
the “private” Count arrays. That is, these B threads add those arrays component-
wise into a single Count array.

Step 1.3 : Thread 0 applies the prefix sum algorithm to Count (in order to calculate
the starting index for each key). It is true that, in this design, hardware occupancy
is low during that step. However, B is small and accessing shared memory is fast.
Hence, this is only a minor concern in terms of performance.

Step 1.4 : Thread 0 computes (and writes to global memory) the Output array, which
correspond to the entries that were read by the threads of its thread-block, from
the Input array. Since B is small and memory accesses are coalesced, this step is
again a minor concern in terms of (low) hardware occupancy.

Hence at the end of this kernel, n/p Output arrays have been written to the global
memory.

Kernel 2: Its goal is to merge the Output arrays in O(log(p)) calls. Recall that the Output

arrays have been sorted by Kernel 1.

• During its first call, this kernel merges p Output arrays of size n/p into p/2 Output

arrays of size 2n/p.

2

https://en.wikipedia.org/wiki/Counting_sort

• During its second call, this kernel merges p/2 Output arrays of size 2n/p into p/4
Output arrays of size 4n/p.

• etc.

• Merging is done with the merge procedure of MergeSort algorithm. You are free
to use either a serial merge or a parallel one, based on the ideas seen in class.

• For this kernel to make a good use of the hardware, one can have each thread-block
merging several pairs, but this is not required.

3

	Lecture – Assignment 2

