
Distributed and Parallel Systems Due on Friday, 18, 2022

Assignment 1
CS4402B / CS9635B University of Western Ontario

Submission instructions.

Format: The answers to the problem questions should be typed:

• source programs must be accompanied with input test files and,
• in the case of Cilk or C+11 code, a Makefile (for compiling and running) is

required,
• in the case of Julia, code with comments must be gathered in a Jupyter note-

book, and
• for algorithms or complexity analyzes, LATEX is highly recommended.

A PDF file (no other format allowed) should gather all the answers to non-programming
questions. All the files (the PDF, the source programs, the input test files and Make-
files) should be archived using the UNIX command tar.

Submission: The assignment should submitted through the OWL website of the class.

Collaboration. You are expected to do this assignment on your own without assistance
from anyone else in the class. However, you can use literature and if you do so, briefly
list your references in the assignment. Be careful! You might find on the web solutions
to our problems which are not appropriate. For instance, because the parallelism
model is different. So please, avoid those traps and work out the solutions by yourself.
You should not hesitate to contact the instructor or the TA if you have any questions
regarding this assignment. We will be more than happy to help.

Marking. This assignment will be marked out of 100. A 10 % bonus will be given if your
paper is clearly organized, the answers are precise and concise, the typography and the
language are in good order. Messy assignments (unclear statements, lack of correctness
in the reasoning, many typographical and language mistakes) may yield a 10 % malus.

PROBBLEM 1. [Parallelizing Strassen multiplication: 25 points] Multiplying dense ma-
trices can be achieved by various algorithms, see the Wikipedia page Matrix multiplication
algorithm. We saw in class how to efficiently implement the cubic (or plain) matrix multi-
plication algorithm using a divide-and-conquer process. There exist various matrix multi-
plication algorithms with a sub-cubic algebraic complexity, the most famous one is due to
Volker Strassen and is described in the Wikipedia page Strassen algorithm

You will find at this page Julia code for a serial implementation of Strassen algorithm:

http://rosettacode.org/wiki/Strassen%27s algorithm#Julia

Note that two algorithms are implemented there. One using a blocking strategy (and dy-
namic padding) and one using a direct recursive approach. The latter is clearly not as
optimized as the former. Indeed, the latter allocates more auxiliary memory. Also, its
threshold between the plain multiplication or Strassen algorithm is clearly too low.

1

https://en.wikipedia.org/wiki/Matrix_multiplication_algorithm
https://en.wikipedia.org/wiki/Matrix_multiplication_algorithm
https://en.wikipedia.org/wiki/Strassen_algorithm#:~:text=In%20linear%20algebra%2C%20the%20Strassen,often%20better%20for%20smaller%20matrices.
http://rosettacode.org/wiki/Strassen%27s_algorithm#Julia

Question 1. [5 points] Estimate the amount of auxiliary memory used by each of those Julia

codes of Strassen algorithm. HINT: For the recursive one, one can proceed as follows.
Let M(n) be the amount of auxiliary memory in words for a call to the function
Strassen on input matrices of order n. Determine the recurrence relation satisfied by
M(n) and deduce the value of M(n) from that equation.

Question 1. [5 points] Compare experimentally the two implementation of Strassen algorithm:
the one using dynamic padding and the recursive one. For this, collect running times for
randomly generated matrices A and B (as we did in class for the plain multiplication),
for n taking successive powers of 2, namely 4, 8, 16, 32, 64, 128, 256, 512, 1024. The goal
is to determine which one performs better. You are welcome to optimize this recursive
approach, for instance, by using a larger threshold between the base case and the case
where recursive calls are made. One can also try to reduce the amount of auxiliary
memory.

Question 3. [10 points] Using multi-threading or multi-processing, make a parallel Julia ver-
sion of the Strassen multiplication code that you have determined to be best performing
at Question 1. For the tests, use matrices with randomly generated coefficients, in the
way we did in class. You must provide two types of tests with your code:

• correctness tests: a couple examples with n = 4 for which your code verifies
that A ∗B is indeed what your parallel implementation computes.
• performance tests: tests for which n takes successive powers of 2, namely

4, 8, 16, 32, 64, 128, 256, 512, 1024 and the matrices A and B are randomly gener-
ated as we did in class for the plain multiplication.

Question 4. [5 points] Compare experimentally the performance of your parallel implementa-
tion of Strassen multiplication against the parallel version of the plain multiplication
studied with multi-processing (or the one we did as home work using shared arrays ,and
possibly multi-threading). Use the same performance tests as in Question 3. Here, we
should report not only the running times of each parallel implementation but also its
speedup ratio w.r.t. each serial counterpart. These running times and speedup ratios
should be measured using 4 workers, thus on a multi-core processor with at least 4
physical cores.

PROBBLEM 2. [Euclidean Traveling Salesperson Problem: 25 points] We consider the
famous Traveling Salesperson Problem (TSP), see the Wikipedia page Traveling Salesperson
Problem. The TSP asks the following question: Given a list of cities and the distances
between each pair of cities connected by a road, what is the shortest possible route that
visits each city exactly once and returns to the origin city?” One variant of the TSP asks the
simpler question: Given a list of cities and the distances between each pair of cities, what is
the shortest possible route that visits each city exactly once and returns to the origin city?”
In that second problem, it is assumed that every city is connected to every other by a road.
In other words, the graph of those connecting roads is complete. One approximate algorithm
solving that simpler TSP is described in Section 7.4 of those lecture notes:

2

https://en.wikipedia.org/wiki/Travelling_salesman_problem#Heuristic_and_approximation_algorithms
https://en.wikipedia.org/wiki/Travelling_salesman_problem#Heuristic_and_approximation_algorithms

http://www.cs.cmu.edu/afs/cs/academic/class/15210-s15/www/lectures/dandc-notes.pdf

We will call this algorithm eTSP, for Euclidean Traveling Salesperson Problem.
The article Polynomial time approximation schemes for Euclidean traveling salesman and

other geometric problems by Sanjeev Arora gives the details of that approximate algorithm.
The above mentioned lecture notes give enough details about eTSP except may be for the
subroutine splitLongestDim, so we do it here.

For a group P of points in the plane (where each point M is known by its coordinates
(xM , ym), we call enclosing box, the rectangle with smallest area (with edges parallel to the
(Cartesian) coordinate axes) containing all points of P . This rectangle is fully determined
by two points A(xA, yA) and B(xB, yB), where A (resp. B) is the North-West (South-East)
corner of P . Hence, we assume xA ≤ xB and yA ≥ yB. In fact, xA (resp. yB) is the minimum
value of the xM (resp. yM) for M ∈ P . Similarly, yA (resp. xB) is the maximum value of
the yM (resp. xM) for M ∈ P . The spread along x of P is xB − xA and the spread along
y of P is yA − xB. If xB − xA ≥ yA − xB, splitLongestDim splits P vertically otherwise
splitLongestDim splits P horizontally. To be precise, let us assume xB − xA ≥ yA − xB.
Then, we find a value m so that roughly half of the points in P have their x-coordinate
satisfying x < m and the rest of the points in P have their x-coordinate satisfying m ≤ x.

Question 1. [5 points] Give an upper bound estimate (as sharp as possible) for the number of
cache misses incurred by eTSP for an input collection of points of size n (each coefficient
of each point is a floating point number occupying a single word) and an ideal cache
of size Z with L words per cache line.

Question 2. [5 points] Estimate the work W (n) and the span S(n) of eTSP in the fork-join
model.

Question 3. [5 points] Implement eTSP in Julia. We note that Julia implementation of
algorithms for TSP are available at this place:

https://ericphanson.github.io/TravelingSalesmanExact.jl/dev/

Question 4. [5 points] Using multi-threading and shared arrays, make a parallel Julia version
of eTSP This implies determining threshold experimentally between serial and parallel
execution. You must provide two types of tests with your code:

• correctness tests: a couple examples with n = 8 for which your code is “veri-
fied” against Julia’s pre-existing implementation of TSP. Of course, our approxi-
mate algorithm for eTSP may not compute the exact solution given by TSP (applied
to the complete graph of all cities). But it should not be too far from it either.
By that we mean that the length of the route computed by the approximate algo-
rithm for eTSP should be in the same order of magnitude that the route computed
by the exact algorithm for TSP. In fact, theoretically, the former should be within
a factor of 2 of the latter.
• performance tests: tests for which n takes successive multiples of 2, namely

20, 22, 24, . . . , 64. For each value of n, the test used for the serial and parallel
approximate eTSP codes should be the same. Therefore, for each value of n, the

3

http://www.cs.cmu.edu/afs/cs/academic/class/15210-s15/www/lectures/dandc-notes.pdf
https://dl.acm.org/doi/10.1145/290179.290180
https://dl.acm.org/doi/10.1145/290179.290180
https://ericphanson.github.io/TravelingSalesmanExact.jl/dev/

test should be generated once for all and used whenever a problem of size n is
needed. Generating a test of size n means generating n points with x and y integer
coordinates ranging −100 and 100.

Question 5. [5 points] Compare experimentally the performance of your parallel implemen-
tation of eTSP against its serial counterpart. Use the same performance tests as in
Question 4. Here, we should report not only the running times of each parallel im-
plementation but also the speedup ratio between the two. These running times and
speedup ratio should be measured using 4 workers, thus on a multi-core processor with
at least 4 physical cores.

PROBBLEM 3. [3D transpose: 25 points] Consider a three-dimensional array A imple-
mented in the C programming language. Hence A can be seen as a pile of two-dimensional
arrays A[1 ; ;], A[2 ; ;], ..., using Julia notations. For convenience, we refer to
these 3 dimensions as z (the altitude index), x (the row index) and y (the column index).
We denote that the dimension sizes of A by m,n, p respectively for x, y, z. Because in C
all arrays are one-dimensional arrays, we need to decide on a storage layout for A and we
choose by altitude, then row, then column. We denote this storage layout as z > x > y.
Similarly, one can define 5 other storage layouts z > y > x, x > z > y, y > z > x, x > y > z
and y > x > z. The 3D Transpose Problem (3DTP) asks for an algorithm converting A

to another one-dimensional array B when changing the storage layout from z > x > y to
another storage layout.

The following article discusses 3DTP:

https://booksc.eu/book/49184328/409d17

You will find Julia functions for multi-dimensional array permutations at:

https://docs.julialang.org/en/v1/base/arrays/

Question 1. [10 points] Design an algorithm for 3DTP for the input C array A when the target
storage layout is

• z > y > x
• y > x > z

The intention is, of course, to minimize cache-misses.

Question 2. [5 points] Give an upper bound estimate (as sharp as possible) for the number
of cache misses incurred by 3DTP for the input C array A and an ideal cache of size Z
with L words per cache line, when the target storage layout is

• z > y > x
• y > x > z

Are your algorithms optimal in the point of view of cache complexity?

4

https://booksc.eu/book/49184328/409d17
https://docs.julialang.org/en/v1/base/arrays/

Question 3. [5 points] Realize a C (or C++) implementation of your algorithms as well as an
implementation of their naive counterparts.

Question 4. [5 points] Compare experimentally the performance of your algorithms against
their naive counterparts. You are free to design your experimentation.

PROBBLEM 4. [Pipelined factorization:25 points] Given a square matrix A of order n.
QR decomposition computes an orthogonal matrix Q and an upper triangular matrix R such
that A = QR. This factorization has numerous applications. One way of computing a QR
decomposition of A is through the so-called Householder reflections, see the Wikipedia page

https://en.wikipedia.org/wiki/QR decomposition#Using Householder reflections

A Julia implementation can be found here:

https://gist.github.com/eamartin/8118181

One can observe that the body of the for-loop between Line 10 and Line 26 has three parts:
Stage 1: between Lines 11 and 12, M is updated with the current of value of R,
Stage 2: between Lines 17 and 19, R is updated with the current of value of M,
Stage 3: between Lines 22 and 24, Q is updated with the current of value of M.

As a result, the updates of R and Q, that is, Stage 2 and Stage 3 can be done concurrently.
In Questions 1 and 2, we take advantage of this observation using respectively a pipeline
approach and multi-processing (or multi-threading).

Question 1. [15 points] Realize a Julia implementation of the QR decomposition (based
on Householder reflections and the above mentioned Julia code) by means of the
producer-consumer scheme. This implies refactoring this code: defining auxiliary func-
tions and using Julia’s channels. Compare experimentally the performance of serial
and pipelined code for randomly generated square matrices A with floating point num-
ber coefficients and order n taking successive powers of 2, namely 4, 8, 16, 32, 64, 128, 256, 512, 1024.

Question 2. [10 points] Realize a Julia implementation of the QR decomposition (based
on Householder reflections and the above mentioned Julia code) by means of multi-
processing (or multi-threading). This implies refactoring this code: defining auxiliary
functions and using Julia’s constructs for multi-processing (or multi-threading). Com-
pare experimentally the performance of serial and multi-processed (or multi-threaded).
for randomly generated square matrices A with floating point number coefficients and
order n taking successive powers of 2, namely 4, 8, 16, 32, 64, 128, 256, 512, 1024.

5

https://en.wikipedia.org/wiki/QR_decomposition
https://en.wikipedia.org/wiki/QR_decomposition#Using_Householder_reflections
https://gist.github.com/eamartin/8118181

	Lecture – Assignment 1

