
Distributed and Parallel Systems Due on March, 21, 2022

Assignment 2
CS4402B / CS9635B University of Western Ontario

Submission instructions.

Format: The answers to the problem questions should be typed:

• source programs must be accompanied with input test files and,
• in the case of Cilk or C+11 code, a Makefile (for compiling and running) is

required,
• in the case of Julia, code with comments must be gathered in a Jupyter note-

book, and
• for algorithms or complexity analyzes, LATEX is highly recommended.

A PDF file (no other format allowed) should gather all the answers to non-programming
questions. All the files (the PDF, the source programs, the input test files and Make-
files) should be archived using the UNIX command tar.

Submission: The assignment should submitted through the OWL website of the class.

Collaboration. You are expected to do this assignment on your own without assistance
from anyone else in the class. However, you can use literature and if you do so, briefly
list your references in the assignment. Be careful! You might find on the web solutions
to our problems which are not appropriate. For instance, because the parallelism
model is different. So please, avoid those traps and work out the solutions by yourself.
You should not hesitate to contact the instructor or the TA if you have any questions
regarding this assignment. We will be more than happy to help.

Marking. This assignment will be marked out of 100. A 10 % bonus will be given if your
paper is clearly organized, the answers are precise and concise, the typography and the
language are in good order. Messy assignments (unclear statements, lack of correctness
in the reasoning, many typographical and language mistakes) may yield a 10 % malus.

PROBBLEM 1. [The doubly-logarithmic Paradigm 20 points] We saw in class how, on a
COMMON CRCW PRAM machine, one can find the maximum value of n integer numbers
in time T (n, p) = Θ(1) for p = n2 processors. Let us call this algorithm SUPER-FAST-
MAX. The efficiency of that algorithm is E(n, p) = 1/n, Thus, SUPER-FAST-MAX is only
interesting in practice when n is much smaller than p, namely p ∈ Ω(n2). In order to make
this algorithm more useful in practice, one can use it as a base-case of another algorithm
solving the same problem in time T (n, p) = Θ(log2log2n) for p = n processors. We describe
this other algorithm, that we shall call FAST-MAX.

For simplicity assume that n = 22h for some integer h > 0. This means that h =
log2log2n holds. Assume that the input data M [1 · · ·n] is partitioned into

√
n segments

A1, A2, . . . , A√n, corresponding to the sub-arrays M [1 · · ·
√
n], M [

√
n+1 · · · 2

√
n], . . . , M [n−

sqrtn− 1, · · · , n], respectively. The algorithm FAST-MAX proceeds as follows.
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(1) recursively find the maximum value for each sub-array Ai, for 1 ≤ i ≤
√
n, denoting

those values m1, . . . ,m√n,
(2) call SUPER-FAST-MAX to find the maximum value of m1, . . . ,m√n.

Question 1. [5 points] Prove that the algorithm FAST-MAX can be executed on a COMMON
CRCW PRAM machine using p = n processors.

From now on, we assume p = n. For simplicity, we denote by T (n) (resp. W (n)) the time
T (n, p) (resp. the work W (n, p)) of FAST-MAX on a COMMON CRCW PRAM machine.

Question 1=2. [5 points] Prove that we have:

T (n) ≤ T (
√
n) + c1 and W (n) ≤

√
nW (

√
n) + c2n.

for some positive constants c1 and c2.

Question 3. [5 points] Deduce that the following estimates

T (n) ∈ O(log2log2n) and W (n) ∈ O(n log2log2n)

What is the efficiency E(n, n) of FAST-MAX?

Question 4. [5 points] Adapt FAST-MAX to work with p ∈ Θ(
√
n) processors still using a

COMMON CRCW PRAM machine. What are the running time, work and efficiency
of the new algorithm.

PROBBLEM 2. [Prefix sum: 15 points]
The prefix sum is a fundamental operation in computer science with many basic applica-

tions. Given a vector ~x = (x1, x2, . . . , xn), the prefix sum of ~x is the vector ~y = (y1, y2, . . . , yn)
such that yi =

∑j=i
j=1 xj for 1 ≤ j ≤ n. For instance, the prefix sum of ~x = (1, 2, 3, 4, 5, 6, 7, 8)

is ~y = (1, 3, 6, 10, 15, 21, 28, 36). Hence, a Julia implementation of the above specification
would be:

function prefixSum(x)

n = length(x)

y = fill(x[1],n)

for i=2:n

y[i] = y[i-1] + x[i]

end

y

end
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The i-th iteration of the loop is not at all decoupled from the (i− 1)-th iteration. Hence, it
looks like it is impossible to parallelize prefix sum computations, right?

In fact, there is a parallel counterpart (and even several ones) of the above algorithm. In
this problem, we propose to analyze a divide and conquer algorithm strategy for computing
prefix sums in a parallel fashion.

Consider again the input vector x[1], x[2], . . . , x[n] where n is a power of 2. This divide
and conquer strategy works as follows:
(1) if n = 2 then return (x[1], x[1] + x[2]);
(2) for all even k’s between 2 and n, replace the pair (x[k−1], x[k]) with (x[k], x[k−1]+x[k]);
(3) make a recursive call on x[2], x[4], . . . , x[n];
(4) for all even k’s between 2 and n, compute x[k − 1] = x[k]− x[k − 1];
(5) return x.

The above picture illustrates this algorithm with n = 8.

Question 1. [3 points ] Write down the recurrence relation satisfied by the work T1(n) of the
algorithm described above. Then, using that recurrence relation and the Master The-
orem, give an asymptotic estimate of T1(n).

Question 2. [5 points ] Explain in plain words how this algorithm can be parallelized in the
fork-join model, that is, using Cilk. Writing pseudo-code is recommended, but writing
real code is not required.

Question 3. [3 points ] Write down the recurrence relation satisfied by the span T∞(n) of your
algorithm. Then, using that recurrence relation and the Master Theorem, give an
asymptotic estimate of T∞(n).

Question 4. [4 points ] Discuss what would be challenging in the implementation on multi-core
processors.

PROBBLEM 3. [Using prefix sums for parallel quick-select: 15 points] We discuss in this
problem an application of the prefix sum operation discussed in Problem refpb:2: the parallel
quick-select. Given an array A of integer numbers and an integer k, where 0leqk < |A| holds,
the quick-select operation asks for the k-th smallest element in A. Naively, we may first sort
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the sequence A, then select the k-th element; this requires O(nlog2n) work. In fact, it is
possible to perform quick-select with work Θ(n) and span Olog2

2n) in the fork-join model.
The key is a sub-algorithm, that we call SPLIT, with the following specifications

Input: an array A of n integer numbers and a pivot element min(A) ≤ p ≤ max(A),
Output: two arrays L and R containing the elements in A that are less than (or greater than

or equal to) p.
Pseudo-code for SPLIT follows:
(1) Compute the left indicator array IL[0, . . . , n1] of size n so that I[i] is equal to 1, if

A[i] < b holds, and 0 otherwise
(2) Deduce the right indicator array IR[0, . . . , n1] of size n so that I[i] is equal to 1, if

A[i] ≥ b holds, and 0 otherwise
(3) Apply prefix sum to IL, storing the result in an array PL.
(4) Create the array L of size n− PL[n− 1]
(5) Apply prefix sum to IR, storing the result in an array PR.
(6) Create the array R of size n− PR[n− 1]
(7) for i ∈ {1, 2, . . . , n} do

(7.1) if A[i] < b then L[PL[i]] := A[i] else R[PR[i]] := A[i]
(8) return (L,R)

Question 1. [5 points] Prove that SPLIT has work Θ(n) and span Olog2n) in the fork-join
model.

Question 2. [5 points] Propose an algorithm performing Quick-Select that uses SPLIT as a
sub-algorithm. Your algorithm can be stated in the same style of pseudo-code as SPLIT

Question 3. [5 points] Prove that the algorithm proposed in Question 2 has work Θ(n) and
span Olog2

2n) in the fork-join model.

PROBBLEM 4. [Effective parallel matrix inversion 50 points]
Let A be a square matrix of order n ≥ 2, where n is assumed to be a power of 2. The

goal of this problem is to write an efficient program for computing the inverse of A. To do
so, we will rely on a classical technique, the called Blockwise inversion.

We will start by analyzing the work and the critical path of this algorithm in the fork-join
model. We assume that we have two parallel sub-algorithms at our disposal:
• ADD(C,T, n) computing the sum of two square matrices C and T (C is replaced by
C + T ) of order n in work A1(n) = Θ(n2) and with critical path A∞(n) = Θ(log(n));
• MULT(C,A,B, n) computing the product of two square matrices A and B (C is re-

placed by AB) of order n in work M1(n) = Θ(n3) and with critical path M∞(n) =
Θ(log2(n));

As noted in class MULT(C,A,B, n) would not be what we would use in an actual computer
program, say on multi-core processors.

We review below the principle of lockwise inversion. We partition A into four square
blocks of order n/2:

A =

[
A11 A12

A21 A22

]
(1)
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Let O and I be the zero and identity matrices of order n/2, respectively. We assume that
the upper right block A11 is an invertible matrix. Then we define S = A22 − A21A

−1
11 A12

(called the Schur complement). We assume that S is also invertible. Then we have:

A−1 =

[
I −A−111 A12

O I

] [
A−111 O
O S−1

] [
I O

−A21A
−1
11 I

]
(2)

Let us denote by U,D,L the above three matrices, respectively.

Question 1. [5 points] Write a Cilk-like program computing the inverse of A based on the
above formula. We will assume that at each recursive call the upper right block
(namely A111) and the Schur complement are invertible. You shall try to make the
critical path as small as possible.

Question 2. [5 points] Estimate the work I1(n) and the critical path I∞(n) of your algorithm.

We shall write a Cilk program for computing the inverse of A, based on blockwise inver-
sion. Towards that goal and based on our experience with matrix multiplication, we consider
modifying the above algorithm so as to avoid intermediate allocation of extra memory stor-
age, say at each recursive call.

Question 3. [5 points] Propose a multithreaded algorithm, in the form of a Cilk-like program,
computing the inverse of A based on blockwise inversion, so that no intermediate
allocation of extra memory storage is needed. To this end, this algorithm will take the
following matrices as input arguments:

• the input matrix A of order n,
• the output matrix I (that is, A−1) of order n,
• one work-space matrix W of order n,
• one (or more) work-space matrix C of order n/2.

Since the work-space matrices are allocated once for all, they are not considered as
intermediate allocation of extra memory storage. Recursive calls should make use of
blocks of those work-space matrices. Before the matrix I is fully computed, blocks of
I can also be used as work-space to store intermediate expressions. The matrix A can
also be overwritten and used as work-space.

Question 4. [5 points] Analyze the work and span of the algorithm presented in Question 3.

Question 5. [30 points] Realize a CIlk implementation of the algorithm proposed at Ques-
tion 3. For the tests, use dense matrices:

1. with randomly generated coefficients of type float, as well as
2. the Hilbert matrix Hn = ( 1

i+j−1 , 1 ≤ i, j ≤ n).

Note that, with probability 1, a dense randomly generated matrix is invertible. As for
the Hilbert matrix Hn, it can be shown to be invertible for every positive n.

You must provide two types of tests with your code:
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• correctness tests: a couple examples with n = 4 for which your code verifies
that A·B = In (or close to that due to truncation errors), where B is the computed
inverse and In is the identity matrix of order n.
• performance tests: tests for which n takes successive powers of 2, namely

4, 8, 16, 32, 64, 128, 256, 512, 1024 considering both for A randomly generated ma-
trices and Hilbert matrices, collecting both parallel running times and serial run-
ning times. Moreover, for n = 1024, you should use CilkScale to produce the
same type of performance plots as in the collection of OpenCilk examples used in
class.
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