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CPU Cache (1/6)

∎ A CPU cache is an auxiliary memory which is smaller, faster memory
than the main memory and which stores copies of the main memory
locations that are expectedly frequently used.

∎ Most modern desktop and server CPUs have at least three
independent caches: the data cache, the instruction cache and the
translation look-aside buffer.
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CPU Cache (2/6)

∎ Each location in each memory (main or cache) has

ë a cache line which ranges between 8 and 512 bytes in size, while a
datum requested by a CPU instruction ranges between 1 and 16,

ë a unique index (called address in the case of the main memory).
∎ In the cache, each location has also a tag (storing the address of the

corresponding cached datum).
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CPU Cache (3/6)

∎ When the CPU needs to read or write a location, it checks the cache:

ë if it finds it there, we have a cache hit
ë if not, we have a cache miss and (in most cases) the processor needs to

create a new entry in the cache.
∎ Making room for a new entry requires a replacement policy: the Least

Recently Used (LRU) discards the least recently used items first; this
requires to use age bits.
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CPU Cache (4/6)

∎ Modifying data in the cache requires a write policy for updating the
main memory

- write-through cache: writes are immediately mirrored to main
memory

- write-back cache: the main memory is mirrored when that data is
evicted from the cache

∎ The cached copy may become out-of-date or stale, if other processors
modify the original entry in the main memory.
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CPU Cache (5/6)

∎ The replacement policy decides, where in the cache, a copy of a
particular entry of main memory will go:

- fully associative: any entry in the cache can hold it
- direct mapped: only one possible entry in the cache can hold it
- 𝑁 -way set associative: 𝑁 possible entries can hold it
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∎ Cache Performance for SPEC CPU2000 by J.F. Cantin and M.D. Hill.

∎ The SPEC CPU suites are collections of compute-intensive, non-trivial
programs used to evaluate the performance of a computer’s CPU, memory
system, and compilers (http://www.spec.org/osg ).
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Cache issues

∎ Cold miss: The first time the data is available.

Cure: Prefetching
may be able to reduce this type of cost.

∎ Capacity miss: The previous access has been evicted because too
much data touched in between, since the working data set is too
large.

Cure: Reorganize the data access such that reuse occurs
before eviction.

∎ Conflict miss: Multiple data items mapped to the same location with
eviction before cache is full.

Cure: Rearrange data and/or pad arrays.

∎ True sharing miss: Occurs when a thread in another processor wants
the same data.

Cure: Minimize sharing.

∎ False sharing miss: Occurs when another processor uses different
data in the same cache line.

Cure: Pad data.
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A typical matrix multiplication C code

#define IND(A, x, y, d) A[(x)*(d)+(y)]
uint64_t testMM(const int x, const int y, const int z)
{

double *A; double *B; double *C;
long started, ended;
float timeTaken;
int i, j, k;
srand(getSeed());
A = (double *)malloc(sizeof(double)*x*y);
B = (double *)malloc(sizeof(double)*x*z);
C = (double *)malloc(sizeof(double)*y*z);
for (i = 0; i < x*z; i++) B[i] = (double) rand() ;
for (i = 0; i < y*z; i++) C[i] = (double) rand() ;
for (i = 0; i < x*y; i++) A[i] = 0 ;
started = example_get_time();
for (i = 0; i < x; i++)

for (j = 0; j < y; j++)
for (k = 0; k < z; k++)

// A[i][j] += B[i][k] * C[k][j];
IND(A,i,j,y) += IND(B,i,k,z) * IND(C,k,j,z);

ended = example_get_time();
timeTaken = (ended - started)/1.f;

return timeTaken;
}
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Issues with matrix representation

A

=

B

C
x

∎ The matrices A, B, C are stored in row-major layout.

∎ Consequently, memory accesses to B (but not C) are contiguous.
∎ Contiguous accesses are better:

ë Data fetch as cache line (Core 2 Duo: 64 byte per cache line)
ë With contiguous data, a single cache fetch supports 8 reads of doubles.
ë Transposing the matrix C should reduce L1 cache misses!
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Transposing for optimizing spatial locality

float testMM(const int x, const int y, const int z)
{

double *A; double *B; double *C; double *Cx;
long started, ended; float timeTaken; int i, j, k;
A = (double *)malloc(sizeof(double)*x*y);
B = (double *)malloc(sizeof(double)*x*z);
C = (double *)malloc(sizeof(double)*y*z);
Cx = (double *)malloc(sizeof(double)*y*z);
srand(getSeed());
for (i = 0; i < x*z; i++) B[i] = (double) rand() ;
for (i = 0; i < y*z; i++) C[i] = (double) rand() ;
for (i = 0; i < x*y; i++) A[i] = 0 ;
started = example_get_time();
for(j =0; j < y; j++)

for(k=0; k < z; k++)
IND(Cx,j,k,z) = IND(C,k,j,y);

for (i = 0; i < x; i++)
for (j = 0; j < y; j++)

for (k = 0; k < z; k++)
IND(A, i, j, y) += IND(B, i, k, z) *IND(Cx, j, k, z);

ended = example_get_time();
timeTaken = (ended - started)/1.f;

return timeTaken;
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Issues with data reuse

C

1024 1024384

4

A B

C= x

10
24

10
24

38
4

∎ Remember the formats of A, B and C.

∎ We compare two strategies for computing 1024 coefficients of A.
∎ Naive calculation of a row of A, so computing 1024 coefficients: 1024

accesses in A, 384 in B and 1024 × 384 = 393, 216 in C. Total
= 394, 524.

∎ Computing a 32×32-block of A, so computing again 1024 coefficients:
1024 accesses in A, 384 × 32 in B and 32 × 384 in C. Total = 25, 600.

∎ With the second strategy, the iteration space is traversed so as to
reduce memory accesses.
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Blocking for optimizing temporal locality

float testMM(const int x, const int y, const int z)
{

double *A; double *B; double *C;
long started, ended; float timeTaken; int i, j, k, i0, j0, k0;
A = (double *)malloc(sizeof(double)*x*y);
B = (double *)malloc(sizeof(double)*x*z);
C = (double *)malloc(sizeof(double)*y*z);
srand(getSeed());
for (i = 0; i < x*z; i++) B[i] = (double) rand() ;
for (i = 0; i < y*z; i++) C[i] = (double) rand() ;
for (i = 0; i < x*y; i++) A[i] = 0 ;
started = example_get_time();
for (i = 0; i < x; i += BLOCK_X)

for (j = 0; j < y; j += BLOCK_Y)
for (k = 0; k < z; k += BLOCK_Z)

for (i0 = i; i0 < min(i + BLOCK_X, x); i0++)
for (j0 = j; j0 < min(j + BLOCK_Y, y); j0++)

for (k0 = k; k0 < min(k + BLOCK_Z, z); k0++)
IND(A,i0,j0,y) += IND(B,i0,k0,z) * IND(C,k0,j0,y);

ended = example_get_time();
timeTaken = (ended - started)/1.f;

return timeTaken;
}
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Experimental results

Computing the product of two 𝑛×𝑛 matrices on my 12-year laptop (Core2
Duo CPU P8600 @ 2.40GHz, L1 cache of 3072 KB, 4 GBytes of RAM).

𝑛 naive transposed speedup 64 × 64-tiled speedup t. & t. speedup
128 7 3 7 2
256 26 43 155 23
512 1805 265 6.81 1928 0.936 187 9.65
1024 24723 3730 6.62 14020 1.76 1490 16.59
2048 271446 29767 9.11 112298 2.41 11960 22.69
4096 2344594 238453 9.83 1009445 2.32 101264 23.15

Timings are in milliseconds.

The cache-oblivious multiplication (more on this later) runs within 12978
and 106758 for 𝑛 = 2048 and 𝑛 = 4096 respectively.

Use my C programs to do those benchmarks on your machine.

Marc Moreno Maza Cache Memories, Cache Complexity CS4402 - CS9535 21 / 98

http://www.csd.uwo.ca/~moreno/HPC-Slides/matrix_transpose_algorithms_in_picture.pdf


Experimental results

Computing the product of two 𝑛×𝑛 matrices on my 12-year laptop (Core2
Duo CPU P8600 @ 2.40GHz, L1 cache of 3072 KB, 4 GBytes of RAM).

𝑛 naive transposed speedup 64 × 64-tiled speedup t. & t. speedup
128 7 3 7 2
256 26 43 155 23
512 1805 265 6.81 1928 0.936 187 9.65
1024 24723 3730 6.62 14020 1.76 1490 16.59
2048 271446 29767 9.11 112298 2.41 11960 22.69
4096 2344594 238453 9.83 1009445 2.32 101264 23.15

Timings are in milliseconds.

The cache-oblivious multiplication (more on this later) runs within 12978
and 106758 for 𝑛 = 2048 and 𝑛 = 4096 respectively.

Use my C programs to do those benchmarks on your machine.

Marc Moreno Maza Cache Memories, Cache Complexity CS4402 - CS9535 21 / 98

http://www.csd.uwo.ca/~moreno/HPC-Slides/matrix_transpose_algorithms_in_picture.pdf


Experimental results

Computing the product of two 𝑛×𝑛 matrices on my 12-year laptop (Core2
Duo CPU P8600 @ 2.40GHz, L1 cache of 3072 KB, 4 GBytes of RAM).

𝑛 naive transposed speedup 64 × 64-tiled speedup t. & t. speedup
128 7 3 7 2
256 26 43 155 23
512 1805 265 6.81 1928 0.936 187 9.65
1024 24723 3730 6.62 14020 1.76 1490 16.59
2048 271446 29767 9.11 112298 2.41 11960 22.69
4096 2344594 238453 9.83 1009445 2.32 101264 23.15

Timings are in milliseconds.

The cache-oblivious multiplication (more on this later) runs within 12978
and 106758 for 𝑛 = 2048 and 𝑛 = 4096 respectively.

Use my C programs to do those benchmarks on your machine.

Marc Moreno Maza Cache Memories, Cache Complexity CS4402 - CS9535 21 / 98

http://www.csd.uwo.ca/~moreno/HPC-Slides/matrix_transpose_algorithms_in_picture.pdf


Other performance counters

Hardware counter events

∎ CPI – Clock cycles Per Instruction: the number of clock cycles that
happen when an instruction is being executed. With pipelining we can
improve the CPI by exploiting instruction level parallelism

∎ L1 and L2 Cache Miss Rate.
∎ Instructions Retired: In the event of a misprediction, instructions that

were scheduled to execute along the mispredicted path must be
canceled; the other ones (those needed by the program flow) are
called retired.
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Analyzing cache misses in the naive and transposed
multiplication

A

=

B

C
x

∎ Let 𝐴, 𝐵 and 𝐶 have format (𝑚, 𝑛), (𝑚, 𝑝) and (𝑝, 𝑛) respectively.

∎ 𝐴 is scanned once, so 𝑚𝑛⇑𝐿 cache misses if 𝐿 is the number of
coefficients per cache line.

∎ 𝐵 is scanned 𝑛 times, so 𝑚𝑛𝑝⇑𝐿 cache misses if the cache cannot hold
a row.

∎ 𝐶 is accessed “nearly randomly” (for 𝑚 large enough) leading to 𝑚𝑛𝑝
cache misses.

∎ Since 2𝑚 𝑛 𝑝 arithmetic operations are performed, this means roughly
one cache miss for two flops!

∎ If 𝐶 is transposed, then the ratio improves to 1 for 𝐿.
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Analyzing cache misses in the tiled multiplication
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∎ Let 𝐴, 𝐵 and 𝐶 are all square of order of 𝑛.

∎ Assume all tiles are square of order 𝑏 and three fit in cache.
∎ If 𝐶 is transposed, then loading three blocks in cache cost 3𝑏2⇑𝐿.
∎ This process happens 𝑛3⇑𝑏3 times, leading to 3𝑛3⇑(𝑏𝐿) cache misses.
∎ Three blocks fit in cache for 3𝑏2 < 𝑍, if 𝑍 is the cache size.
∎ So 𝑂(𝑛3⇑(

⌋︂
𝑍𝐿)) cache misses, if 𝑏 is well chosen, which is optimal.
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Outline

1. Cache memories
1.1 The basics
1.2 Matrix multiplication in practice
1.3 More practical examples

2. The ideal-cache model
2.1 The basics
2.2 Application to counting sort
2.3 Application to matrix transposition
2.4 Application to matrix multiplication
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Basic idea of a cache memory (review)

Cache

Memory……Cache Lines

∎ Recall that a cache is a smaller memory, faster to access.

∎ Using smaller memory to cache contents of larger memory provides
the illusion of fast larger memory.

∎ Key reasons why this works: temporal locality and spatial locality.
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A simple cache example

Cache

Memory……Cache Lines

∎ Byte addressable memory

∎ Cache of 32 Kbyte with direct mapping and 64 byte lines (thus 512
lines) so the cache can fit 29 × 24 = 213 int.

∎ “Therefore” successive 32 Kbyte memory blocks line up in cache
∎ A cache access costs 1 cycle while a memory access costs 100 = 99 +

1 cycles.
∎ How addresses map into cache?

ë The bottom 6 bits are used as offset in a cache line,
ë The next 9 bits determine the cache line
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Exercise 1 (1/2)

// sizeof(int) = 4 and Array laid out sequentially in memory
#define S ((1<<20)*sizeof(int))
int A[S];
// Thus size of A is 2^(20) x 4
for (i = 0; i < S; i++) {

read A[i];
}

Memory

A

Total access time? What kind of locality? What kind of misses?
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Exercise 1 (2/2)

#define S ((1<<20)*sizeof(int))
int A[S];
for (i = 0; i < S; i++) {

read A[i];
}

∎ S reads to A.
∎ 16 elements of A per cache line
∎ 15 of every 16 hit in cache.
∎ Total access time: 15(𝑆⇑16) + 100(𝑆⇑16).
∎ spatial locality, cold misses.
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Exercise 2 (1/2)

#define S ((1<<20)*sizeof(int))
int A[S];
for (i = 0; i < S; i++) {

read A[0];
}

Memory

A

Total access time? What kind of locality? What kind of misses?
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Exercise 2 (2/2)

#define S ((1<<20)*sizeof(int))
int A[S];
for (i = 0; i < S; i++) {

read A[0];
}

∎ S reads to A

∎ All except the first one hit in cache.
∎ Total access time: 100 + (𝑆 − 1).
∎ Temporal locality
∎ Cold misses.
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Exercise 3 (1/2)

// Assume 4 <= N <= 13
#define S ((1<<20)*sizeof(int))
int A[S];
for (i = 0; i < S; i++) {

read A[i % (1<<N)];
}

Memory

A Cache

Total access time? What kind of locality? What kind of misses?
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Exercise 3 (2/2)

// Assume 4 <= N <= 13
#define S ((1<<20)*sizeof(int))
int A[S];
for (i = 0; i < S; i++) {

read A[i % (1<<N)];
}

∎ S reads to A

∎ One miss for each accessed line, rest hit in cache.
∎ Number of accessed lines: 2𝑁−4.
∎ Total access time: 2𝑁−4100 + (𝑆 − 2𝑁−4).
∎ Temporal and spatial locality
∎ Cold misses.
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Exercise 4 (1/2)

// Assume 14 <= N
#define S ((1<<20)*sizeof(int))
int A[S];
for (i = 0; i < S; i++) {
read A[i % (1<<N)];

}

Memory

A Cache

Total access time? What kind of locality? What kind of misses?
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Exercise 4 (2/2)

// Assume 14 <= N
#define S ((1<<20)*sizeof(int))
int A[S];
for (i = 0; i < S; i++) {
read A[i % (1<<N)];

}

∎ S reads to A.
∎ First access to each line misses
∎ Rest accesses to that line hit.
∎ Total access time: 15(𝑆⇑16) + 100(𝑆⇑16).
∎ Spatial locality
∎ Cold and capacity misses.
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Exercise 5 (1/2)

// Assume 14 <= N
#define S ((1<<20)*sizeof(int))
int A[S];
for (i = 0; i < S; i++) {
read A[(i*16) % (1<<N)];
}

Memory

A Cache

Data Fetched
But Not AccessedBut Not Accessed

Total access time? What kind of locality? What kind of misses?
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Exercise 5 (2/2)

// Assume 14 <= N
#define S ((1<<20)*sizeof(int))
int A[S];
for (i = 0; i < S; i++) {
read A[(i*16) % (1<<N)];
}

∎ S reads to A.
∎ First access to each line misses
∎ One access per line.
∎ Total access time: 100𝑆.
∎ No locality!
∎ Cold and conflict misses.
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Exercise 6 (1/2)

#define S ((1<<20)*sizeof(int))
int A[S];
for (i = 0; i < S; i++) {

read A[random()%S];
}

Memory

A Cache

Total access time? What kind of locality? What kind of misses?
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Exercise 6 (2/2)

#define S ((1<<20)*sizeof(int))
int A[S];
for (i = 0; i < S; i++) {

read A[random()%S];
}

∎ S reads to A.
∎ After 𝑁 iterations, for some 𝑁 , the cache is full.
∎ Them the chance of hitting in cache is 29⇑218 = 1⇑512, that is the

number of lines in the cache divided by the total number of cache
lines used by A.

∎ Estimated total access time: 𝑆(511⇑512)100 + 𝑆(1⇑512).
∎ Almost no locality!
∎ Cold, capacity conflict misses.

Marc Moreno Maza Cache Memories, Cache Complexity CS4402 - CS9535 39 / 98



Exercise 7 (1/2)

#define S ((1<<19)*sizeof(int))
int A[S];
int B[S];
for (i = 0; i < S; i++) {
read A[i], B[i];
}

Memory

A Cache

B

Total access time? What kind of locality? What kind of misses?
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Exercise 7 (2/2)

#define S ((1<<19)*sizeof(int))
int A[S];
int B[S];
for (i = 0; i < S; i++) {
read A[i], B[i];
}

∎ S reads to A and B.
∎ A and B interfere in cache: indeed two cache lines whose addresses

differ by a multiple of 29 have the same way to cache.
∎ Total access time: 200𝑆.
∎ Spatial locality but the cache cannot exploit it.
∎ Cold and conflict misses.
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Exercise 8 (1/2)

#define S ((1<<19+4)*sizeof(int))
int A[S];
int B[S];
for (i = 0; i < S; i++) {
read A[i], B[i];
}

Memory

A Cache

B

Total access time? What kind of locality? What kind of misses?
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Exercise 8 (2/2)

#define S ((1<<19+4)*sizeof(int))
int A[S];
int B[S];
for (i = 0; i < S; i++) {
read A[i], B[i];
}

∎ S reads to A and B.
∎ A and B almost do not interfere in cache.
∎ Total access time: 2(15𝑆⇑16 + 100𝑆⇑16).
∎ Spatial locality.
∎ Cold misses.
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Set Associative Caches

Way 0 Way 1

…Sets

∎ Set associative caches have sets with multiple lines per set.
∎ Each line in a set is called a way
∎ Each memory line maps to a specific set and can be put into any

cache line in its set
∎ In our example, we assume a 32 Kbyte cache, with 64 byte lines,

2-way associative. Hence we have:
ë 256 sets
ë Bottom six bits determine offset in cache line
ë Next 8 bits determine the set.
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Exercise 9 (1/2)

#define S ((1<<19)*sizeof(int))
int A[S];
int B[S];
for (i = 0; i < S; i++) {
read A[i], B[i];
}

A Cache

B

Total access time? What kind of locality? What kind of misses?
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Exercise 9 (2/2)

#define S ((1<<19)*sizeof(int))
int A[S];
int B[S];
for (i = 0; i < S; i++) {
read A[i], B[i];
}

∎ S reads to A and B.
∎ A and B lines hit same set, but enough lines in a set.
∎ Total access time: 2(15𝑆⇑16 + 100𝑆⇑16).
∎ Spatial locality.
∎ Cold misses.
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Extra Exercise A

#define S ((1<<19)*sizeof(int))
int A[S];
int B[S];
int C[S};
for (i = 0; i < S; i++) {

C[i] := A[i] + B[i];
}

For the above 2-way associative cache (of size 32 Kbyte cache, and with
64 byte lines): Total access time? What kind of locality? What kind of
misses?
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1. Cache memories
1.1 The basics
1.2 Matrix multiplication in practice
1.3 More practical examples

2. The ideal-cache model
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The ideal cache model (1/5)

∎ Computer with a two-level memory hierarchy:

ë an ideal (data) cache of 𝑍 words partitioned into 𝑍⇑𝐿 cache lines,
where 𝐿 is the number of words per cache line.

ë an arbitrarily large main memory.
∎ Data moved between cache and main memory are always cache lines.
∎ The cache is tall, that is, 𝑍 is much larger than 𝐿, say 𝑍 ∈ Ω(𝐿2).
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The ideal cache model (2/5)

∎ The processor can only reference words that reside in the cache.

∎ If the referenced word belongs to a line already in cache, a cache hit
occurs, and the word is delivered to the processor.

∎ Otherwise, a cache miss occurs, and the line is fetched and installed
into the cache.
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The ideal cache model (3/5)

∎ The ideal cache is fully associative: cache lines can be stored
anywhere in the cache.

∎ The ideal cache uses the optimal off-line strategy of replacement,
that is, replacing the cache line whose next access is furthest in the
future

∎ This strategy exploits temporal locality perfectly.
∎ While full associativity and the optimal off-line strategy of

replacement cannot be implemented, experimental and theoretical
results show that they can be approximated in a satisfactory manner.
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The ideal cache model (4/5)

∎ For an algorithm with an input of size 𝑛, the ideal-cache model uses
two complexity measures:

ë the work complexity 𝑊 (𝑛), which is its conventional running time in
a RAM model.

ë the cache complexity 𝑄(𝑛; 𝑍, 𝐿), the number of cache misses it
incurs (as a function of the size 𝑍 and line length 𝐿 of the ideal cache).

ë When 𝑍 and 𝐿 are clear from context, we simply write 𝑄(𝑛) instead of
𝑄(𝑛; 𝑍, 𝐿).
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The ideal cache model (5/5)

∎ An algorithm is said to be cache aware if its behavior (and thus
performances) can be tuned (and thus depend on) on the particular
cache size and line length of the targeted machine.

∎ Otherwise the algorithm is cache oblivious.
∎ Cache oblivious naturally performs well on hierarchical memories.
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Scanning

∎ Scanning 𝑛 words stored in a contiguous segment of memory with
cache-line size 𝐿 costs at most [︂𝑛⇑𝐿⌉︂ + 1 cache misses.

∎ If this vector of 𝑛 words is aligned in memory, then this estimate is
simply [︂𝑛⇑𝐿⌉︂.

Proof.
∎ Let (𝑞, 𝑟) be the quotient and remainder in the integer division of 𝑛 by 𝐿.

∎ Let 𝑢 (resp. 𝑤) be the total number of words stored in cache-lines fully (not fully) used
by those 𝑛 consecutive words. Thus, we have 𝑛 = 𝑢 +𝑤. Three cases arise.

1 if 𝑤 = 0 then (𝑞, 𝑟) = (⟨︀𝑛⇑𝐿⧹︀, 0) and the scanning costs exactly 𝑞; thus the
conclusion is clear since [︂𝑛⇑𝐿⌉︂ = ⟨︀𝑛⇑𝐿⧹︀ in this case.

2 if 0 < 𝑤 < 𝐿 then (𝑞, 𝑟) = (⟨︀𝑛⇑𝐿⧹︀, 𝑤) and the scanning cost is at most 𝑞 + 2; the
conclusion is clear since [︂𝑛⇑𝐿⌉︂ = ⟨︀𝑛⇑𝐿⧹︀ + 1 in this case.

3 if 𝐿 ≤ 𝑤 < 2𝐿 then (𝑞, 𝑟) = (⟨︀𝑛⇑𝐿⧹︀, 𝑤 −𝐿) and the scanning cost is at most 𝑞 + 1;
the conclusion is clear again.
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Adding vectors

∎ Consider 𝑚 ≥ 2 vectors 𝑉1, . . . , 𝑉𝑚 of size 𝑛 ≥ 1 aligned in memory.

∎ Consider 𝑚 − 1 scalars 𝛼1, . . . , 𝛼𝑚−1, stored in a contiguous segment
of memory in 𝑚 − 1 words.

∎ Assume that the ideal cache has at least [︂𝑚⇑𝐿⌉︂ + 4 cache-lines.
∎ Then, computing the linear combination 𝛼1𝑉1 +⋯ + 𝛼𝑚−1𝑉𝑚−1 and

writing it to 𝑉𝑚 can be done in no more cache misses than those
required for scanning 𝑉1, . . . , 𝑉𝑚, 𝛼1, . . . , 𝛼𝑚−1,

∎ thus, within 𝑚[︂𝑛⇑𝐿⌉︂ + [︂𝑚⇑𝐿⌉︂ + 1 cache misses.

Proof.
∎ We first load 𝛼1, . . . , 𝛼𝑚−1 into the cache, thus using at most [︂𝑚⇑𝐿⌉︂ + 1 cache-lines.

∎ In the pseudo-code below, vector indexing starts at 0.
1 For 𝑏 with 0 ≤ 𝑏 ≤ ⟨︀𝑛⇑𝐿⧹︀, for each 𝑗 with 1 ≤ 𝑗 < 𝑚, for each 𝑖 with 0 ≤ 𝑖 < 𝐿 do:

1 𝑘 := 𝑏 ∗𝐿 + 𝑖,
2 if 𝑘 < 𝑛 then 𝑉𝑚(︀𝑘⌋︀ := 𝑉𝑚(︀𝑘⌋︀ + 𝛼𝑗𝑉𝑗(︀𝑘⌋︀

∎ Use the optimal replacement policy and the fact that vectors are aligned in memory
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Counting sort: the algorithm
allocate an array Count[0..k]; initialize each array cell to zero
for each input item x:

Count[key(x)] = Count[key(x)] + 1
total = 0
for i = 0, 1, ... k:

c = Count[i]
Count[i] = total
total = total + c

allocate an output array Output[0..n-1]
for each input item x:

store x in Output[Count[key(x)]]
Count[key(x)] = Count[key(x)] + 1

return Output

∎ Counting sort takes as input a collection of n items, each of which
known by a key in the range 0⋯𝑘.

∎ The algorithm computes a histogram of the number of times each key
occurs.

∎ Then performs a prefix sum to compute positions in the output.
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Counting sort: cache complexity analysis with short
explanations

allocate an array Count[0..k]; initialize each array cell to zero
for each input item x:

Count[key(x)] = Count[key(x)] + 1
total = 0
for i = 0, 1, ... k:

c = Count[i]
Count[i] = total
total = total + c

allocate an output array Output[0..n-1]
for each input item x:

store x in Output[Count[key(x)]]
Count[key(x)] = Count[key(x)] + 1

return Output

1 𝑛⇑𝐿 to compute 𝑘.

2 𝑘⇑𝐿 cache misses to initialize Count.
3 𝑛⇑𝐿 + 𝑛 cache misses for the histogram (worst case).
4 𝑘⇑𝐿 cache misses for the prefix sum.
5 𝑛⇑𝐿 + 𝑛 + 𝑛 cache misses for building Output (worst case).
6 Total: 3𝑛+3𝑛⇑𝐿 + 2𝑘⇑𝐿 cache misses (worst case).
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Counting sort: cache complexity analysis with detailed
explanations

1 𝑛⇑𝐿 to compute 𝑘: this can be done by traversing the items linearly.

2 𝑘⇑𝐿 cache misses to initialize Count: this can be done by traversing
the Count linearly (with a stride of 1).

3 𝑛⇑𝐿 + 𝑛 cache misses for the histogram (worst case): accesses in
items are linear but accesses in Count are potentially random.

4 𝑘⇑𝐿 cache misses for the prefix sum: accesses in Count are linear.
5 𝑛⇑𝐿 + 𝑛 + 𝑛 cache misses for building Output (worst case): accesses

in items are linear but accesses in Output and Count are potentially
random.

6 Total: 3𝑛+3𝑛⇑𝐿 + 2𝑘⇑𝐿 cache misses (worst case).
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Counting sort has a poor spatial locality

allocate an array Count[0..k]; initialize each array cell to zero
for each input item x:

Count[key(x)] = Count[key(x)] + 1
total = 0
for i = 0, 1, ... k:

c = Count[i]
Count[i] = total
total = total + c

allocate an output array Output[0..n-1]
for each input item x:

store x in Output[Count[key(x)]]
Count[key(x)] = Count[key(x)] + 1

return Output

∎ For 𝑛 large enough: 𝑄(𝑛; 𝑍, 𝐿) = 3𝑛 + 3𝑛⇑𝐿 + 2𝑘⇑𝐿 cache misses
(worst case).

∎ The possibly random distribution of the input values creates possibly
many non-cold misses, see counting_sort.pdf for an animation.
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How to fix the poor data locality of counting sort?

allocate an array Count[0..k]; initialize each array cell to zero
for each input item x:

Count[key(x)] = Count[key(x)] + 1
total = 0
for i = 0, 1, ... k:

c = Count[i]
Count[i] = total
total = total + c

allocate an output array Output[0..n-1]
for each input item x:

store x in Output[Count[key(x)]]
Count[key(x)] = Count[key(x)] + 1

return Output

∎ Recall that our worst case is 3𝑛+3𝑛⇑𝐿 + 2𝑘⇑𝐿 cache misses.

∎ The troubles come from the irregular accesses which experience
capacity misses and conflict misses.

∎ To solve this problem, we preprocess the input so that counting sort is
applied in succession to several smaller input item sets with smaller
value ranges.

∎ To put it simply, so that 𝑘 and 𝑛 are small enough for Output and
Count to incur cold misses only.
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Counting sort: bukecting the input

alloacate an array bucketsize[0..m-1]; initialize each array cell to zero
for each input item x:

bucketsize[floor(key(x) m/(k+1))] := bucketsize[floor(key(x) m/(k+1))] + 1
total = 0
for i = 0, 1, ... m-1:

c = bucketsize[i]
bucketsize[i] = total
total = total + c

alloacate an array bucketedinput[0..n-1];
for each input item x:

q := floor(key(x) m/(k+1))
bucketedinput[bucketsize[q] ] := key(x)
bucketsize[q] := bucketsize[q] + 1

return bucketedinput

∎ Intention: after preprocessing, the arrays Count and Output incur cold
misses only, , see counting_sort_bucket.pdf for an animation.

∎ To this end we choose a parameter 𝑚 (more on this later) such that,
after preprocessing:

1 any key in the range (︀𝑖ℎ, (𝑖 + 1)ℎ − 1⌋︀ is always ≤ any key in the range
(︀(𝑖 + 1)ℎ, (𝑖 + 2)ℎ − 1⌋︀, for 𝑖 = 0⋯𝑚 − 2, with ℎ = 𝑘⇑𝑚,

2 bucketsize and 𝑚 cache-lines from bucketedinput all fit in cache.
That is, counting cache-lines, 𝑚𝐿 +𝑚 ≤ 𝑍.
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Counting sort: cache complexity with bukecting

alloacate an array bucketsize[0..m-1]; initialize each array cell to zero
for each input item x:

bucketsize[floor(key(x) m/(k+1))] := bucketsize[floor(key(x) m/(k+1))] + 1
total = 0
for i = 0, 1, ... m-1:

c = bucketsize[i]
bucketsize[i] = total
total = total + c

alloacate an array bucketedinput[0..n-1];
for each input item x:

q := floor(key(x) m/(k+1))
bucketedinput[bucketsize[q] ] := key(x)
bucketsize[q] := bucketsize[q] + 1

return bucketedinput

1 3𝑚⇑𝐿 + 𝑛⇑𝐿 caches misses to compute bucketsize

2 Key observation: bucketedinput is traversed regularly by segment.
3 Hence, 2𝑛⇑𝐿 +𝑚 +𝑚⇑𝐿 caches misses to compute bucketedinput
4 Preprocessing: 3𝑛⇑𝐿 + 4𝑚⇑𝐿 +𝑚 cache misses.
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Counting sort: cache complexity with bukecting:
explanations

1 3𝑚⇑𝐿 + 𝑛⇑𝐿 caches misses to compute bucketsize:
ë 𝑚⇑𝐿 to set each cell of bucketsize to zero,

ë 𝑚⇑𝐿 + 𝑛⇑𝐿 for the first for loop,
ë 𝑚⇑𝐿 for the second for loop.

2 Key observation: bucketedinput is traversed regularly by segment:

ë So writing bucketedinput means writing (in a linear traversal) 𝑚
consecutive arrays, of possibly different sizes, but with total size 𝑛.

ë Thus, because of possible misalignments between those arrays and
their cache-lines, this writing procedure can yield 𝑛⇑𝐿+𝑚 cache misses
(and not just 𝑛⇑𝐿).

3 Hence, 2𝑛⇑𝐿 +𝑚 +𝑚⇑𝐿 caches misses to compute bucketedinput:

ë 𝑛⇑𝐿 to read the items,
ë 𝑛⇑𝐿 +𝑚 to write bucketedinput,
ë 𝑚⇑𝐿 to load bucketsize.
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their cache-lines, this writing procedure can yield 𝑛⇑𝐿+𝑚 cache misses
(and not just 𝑛⇑𝐿).

3 Hence, 2𝑛⇑𝐿 +𝑚 +𝑚⇑𝐿 caches misses to compute bucketedinput:
ë 𝑛⇑𝐿 to read the items,

ë 𝑛⇑𝐿 +𝑚 to write bucketedinput,
ë 𝑚⇑𝐿 to load bucketsize.
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Cache friendly counting sort: complete cache complexity
analysis

∎ Assumption: the preprocessing creates buckets of average size 𝑛⇑𝑚.

∎ After preprocessing, counting sort is applied to each bucket whose values
are in a range (︀𝑖ℎ, (𝑖 + 1)ℎ − 1⌋︀, for 𝑖 = 0⋯𝑚 − 1.

∎ To be cache-friendly, this requires, for 𝑖 = 0⋯𝑚 − 1,
ℎ+ ⋃︀{key ∈ (︀𝑖ℎ, (𝑖+ 1)ℎ− 1⌋︀}⋃︀ < 𝑍 and 𝑚 < 𝑍⇑(1+𝐿). These two are very
realistic assumption considering today’s cache size.

∎ And the total complexity becomes;
𝑄total = 𝑄preprocessing +𝑄sorting

= 𝑄preprocessing +𝑚 𝑄sortingofonebucket
= 𝑄preprocessing +𝑚 (3 𝑛

𝑚 L + 3 𝑛
𝑚𝐿 + 2 𝑘

𝑚𝐿)

= 𝑄preprocessing + 6𝑛⇑𝐿 + 2𝑘⇑𝐿
= 3𝑛⇑𝐿 + 4𝑚⇑𝐿 +𝑚 + 6𝑛⇑𝐿 + 2𝑘⇑𝐿
= 9𝑛⇑𝐿 + 4𝑚⇑𝐿 +𝑚 + 2𝑘⇑𝐿

Instead of 3𝑛+3𝑛⇑𝐿 + 2𝑘⇑𝐿 for the naive counting sort.
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Counting sort: experimentation

∎ Experimentation on an Intel(R) Core(TM) i7 CPU @ 2.93GHz. It has
L2 cache of 8MB.

∎ CPU times in seconds for both classical and cache-friendly counting
sort algorithm.

∎ The keys are random machine integers in the range (︀0, 𝑛⌋︀.

n classical cache-friendly
counting counting sort

sort (bucketing + sorting)
100000000 13.74 4.66 (= 3.04 + 1.62 )
200000000 30.20 9.93 (= 6.16 + 3.77)
300000000 50.19 16.02 (= 9.32 + 6.70)
400000000 71.55 22.13 (= 12.50 +9.63)
500000000 94.32 28.37 (= 15.71 + 12.66)
600000000 116.74 34.61 (= 18.95 + 15.66)
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Cache-friendly counting sort: extension to sample sort

1 Split the input array into
⌋︂

𝑛 contiguous subarrays of size
⌋︂

𝑛 and
sort those subarrays recursively.

2 Choose 𝑚 ∶=
⌋︂

𝑛 − 1 “good” pivot values 𝑝1 ≤ 𝑝2 ≤ ⋯ ≤ 𝑝𝑚.
3 Distribute subarrays into buckets 𝐵1, . . . , 𝐵𝑚+1 according to pivots.

Bucket 𝐵𝑖 has size 𝑛𝑖 ≃
⌋︂

𝑛, expectedly.
4 Recursively sort the buckets
5 Copy-concatenate the buckets back to the input array.

Cache complexity analysis of Sample sort

∎ Step 1 costs
⌋︂

𝑛𝑄(
⌋︂

𝑛), Step 4 (expectedly) costs
⌋︂

𝑛𝑄(
⌋︂

𝑛) also
and Steps 2, 3, 5 cost Θ(𝑛⇑𝐿). Thus, we have:

𝑄(𝑛) = {
𝑛⇑𝐿 if 𝑛 < 𝑍 (base case)

2
⌋︂

𝑛𝑄(
⌋︂

𝑛) +Θ(𝑛⇑𝐿) if 𝑛 ≥ 𝑍 (recurrence)

∎ This yields 𝑄(𝑛) ∈ Θ(𝑛
𝐿 log𝑍(𝑛)).
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1.1 The basics
1.2 Matrix multiplication in practice
1.3 More practical examples

2. The ideal-cache model
2.1 The basics
2.2 Application to counting sort
2.3 Application to matrix transposition
2.4 Application to matrix multiplication
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Matrix transposition: various algorithms (1/2)

∎ Matrix transposition problem: Given an 𝑚 × 𝑛 matrix 𝐴 stored in a
row-major layout, compute and store 𝐴𝑇 into an 𝑛 ×𝑚 matrix 𝐵 also
stored in a row-major layout.

∎ We shall describe a recursive cache-oblivious algorithm which uses
Θ(𝑚𝑛) work and incurs Θ(1+𝑚𝑛⇑𝐿) cache misses, which is optimal.

∎ The straightforward algorithm employing doubly nested loops incurs
Θ(𝑚𝑛) cache misses on one of the matrices when 𝑚 ≫ 𝑍⇑𝐿 and
𝑛 ≫ 𝑍⇑𝐿.

∎ We will also study an apparently good algorithm and use complexity
analysis to show that it is even worse than the straightforward
algorithm.
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Matrix transposition: various algorithms (2/2)

∎ Assume that multi-dimensional arrays (and in particular dense
rectangular matrices) are stored in memory using a row-major layout.

∎ Assume that each array coefficient is stored on a single word.
∎ Therefore, reading a 𝑘×𝑘 block may incur 𝑘([︂𝑘⇑𝐿⌉︂+1) caches misses.
∎ In this exercise sheet, determine the cache complexity of the proposed

algorithms for transposing a square matrix of order 𝑛. Assume 𝑛 large
(say 𝑛 > 𝑍) and 𝑛 is a power of 2.

∎ Algo 1: Θ(𝑛2). Algo 2: Θ(log2(
𝑛
𝑍 )

𝑛2

𝐿 ). Algo 3: Θ(𝑛2⇑𝐿). Proofs
and precise estimates below.
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Matrix transposition: a first divide-and-conquer (1/4)

∎ For simplicity, assume that our input matrix 𝐴 is square of order 𝑛
and that 𝑛 is a power of 2, say 𝑛 = 2𝑘.

∎ We divide 𝐴 into four square quadrants of order 𝑛⇑2 and we have

𝐴 = (
𝐴1,1 𝐴1,2
𝐴2,1 𝐴2,2

) ⇒
𝑡𝐴 = (

𝑡𝐴1,1
𝑡𝐴2,1

𝑡𝐴1,2
𝑡𝐴2,2

) .

∎ This observation yields an “in-place” algorithm:

1 If 𝑛 = 1 then return 𝐴.
2 If 𝑛 > 1 then

1 recursively compute 𝑡𝐴1,1,𝑡 𝐴2,1,𝑡 𝐴1,2,𝑡 𝐴2,2 in place as

(
𝑡𝐴1,1

𝑡𝐴1,2
𝑡𝐴2,1

𝑡𝐴2,2
)

2 exchange 𝑡𝐴1,2 and 𝑡𝐴2,1.

∎ What is the number 𝑀(𝑛) of memory accesses to 𝐴, performed by
this algorithm on an input matrix 𝐴 of order 𝑛?
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Matrix transposition: a first divide-and-conquer (2/4)

∎ 𝑀(𝑛) satisfies the following recurrence relation

𝑀(𝑛) = {
0 if 𝑛 = 1

4𝑀(𝑛⇑2) + 2(𝑛⇑2)2 if 𝑛 > 1.

∎ Unfolding the tree of recursive calls or using the Master’s Theorem,
one obtains:

𝑀(𝑛) = 2(𝑛⇑2)2 log2(𝑛).

∎ This is worse than the straightforward algorithm (which employs
doubly nested loops). Indeed, for this latter, we have 𝑀(𝑛) = 𝑛2 − 𝑛.
Explain why!

∎ Despite of this negative result, we shall analyze the cache complexity
of this first divide-and-conquer algorithm. Indeed, it provides us with
an easy training exercise

∎ We shall study later a second and efficiency-optimal
divide-and-conquer algorithm, whose cache complexity analysis is
more involved.
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Matrix transposition: a first divide-and-conquer (3/4)

∎ We shall determine 𝑄(𝑛) the number of cache misses incurred by our
first divide-and-conquer algorithm on a (𝑍, 𝐿)-ideal cache machine.

∎ For 𝑛 small enough, the entire input matrix or the entire block (input of
some recursive call) fits in cache and incurs only the cost of a scanning.
Because of possible misalignment, that is, 𝑛([︂𝑛⇑𝐿⌉︂ + 1).

∎ Important: For simplicity, some authors write 𝑛⇑𝐿 instead of [︂𝑛⇑𝐿⌉︂.
This can be dangerous.

∎ However: these simplifications are fine for asymptotic estimates,
keeping in mind that 𝑛⇑𝐿 is a rational number satisfying

𝑛⇑𝐿 − 1 ≤ ⟨︀𝑛⇑𝐿⧹︀ ≤ 𝑛⇑𝐿 ≤ [︂𝑛⇑𝐿⌉︂ ≤ 𝑛⇑𝐿 + 1.

Thus, for a fixed 𝐿, the functions ⟨︀𝑛⇑𝐿⧹︀, 𝑛⇑𝐿 and [︂𝑛⇑𝐿⌉︂ are
asymptotically of the same order of magnitude.

∎ We need to translate “for 𝑛 small enough” into a formula. We claim
that there exists a real constant 𝛼 > 0 s.t. for all 𝑛 and 𝑍 we have

𝑛2
< 𝛼𝑍 ⇒ 𝑄(𝑛) ≤ 𝑛2

⇑𝐿 + 𝑛.
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∎ For 𝑛 small enough, the entire input matrix or the entire block (input of
some recursive call) fits in cache and incurs only the cost of a scanning.
Because of possible misalignment, that is, 𝑛([︂𝑛⇑𝐿⌉︂ + 1).

∎ Important: For simplicity, some authors write 𝑛⇑𝐿 instead of [︂𝑛⇑𝐿⌉︂.
This can be dangerous.

∎ However: these simplifications are fine for asymptotic estimates,
keeping in mind that 𝑛⇑𝐿 is a rational number satisfying

𝑛⇑𝐿 − 1 ≤ ⟨︀𝑛⇑𝐿⧹︀ ≤ 𝑛⇑𝐿 ≤ [︂𝑛⇑𝐿⌉︂ ≤ 𝑛⇑𝐿 + 1.

Thus, for a fixed 𝐿, the functions ⟨︀𝑛⇑𝐿⧹︀, 𝑛⇑𝐿 and [︂𝑛⇑𝐿⌉︂ are
asymptotically of the same order of magnitude.

∎ We need to translate “for 𝑛 small enough” into a formula. We claim
that there exists a real constant 𝛼 > 0 s.t. for all 𝑛 and 𝑍 we have

𝑛2
< 𝛼𝑍 ⇒ 𝑄(𝑛) ≤ 𝑛2
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Marc Moreno Maza Cache Memories, Cache Complexity CS4402 - CS9535 74 / 98



Matrix transposition: a first divide-and-conquer (3/4)

∎ We shall determine 𝑄(𝑛) the number of cache misses incurred by our
first divide-and-conquer algorithm on a (𝑍, 𝐿)-ideal cache machine.

∎ For 𝑛 small enough, the entire input matrix or the entire block (input of
some recursive call) fits in cache and incurs only the cost of a scanning.
Because of possible misalignment, that is, 𝑛([︂𝑛⇑𝐿⌉︂ + 1).

∎ Important: For simplicity, some authors write 𝑛⇑𝐿 instead of [︂𝑛⇑𝐿⌉︂.
This can be dangerous.

∎ However: these simplifications are fine for asymptotic estimates,
keeping in mind that 𝑛⇑𝐿 is a rational number satisfying

𝑛⇑𝐿 − 1 ≤ ⟨︀𝑛⇑𝐿⧹︀ ≤ 𝑛⇑𝐿 ≤ [︂𝑛⇑𝐿⌉︂ ≤ 𝑛⇑𝐿 + 1.

Thus, for a fixed 𝐿, the functions ⟨︀𝑛⇑𝐿⧹︀, 𝑛⇑𝐿 and [︂𝑛⇑𝐿⌉︂ are
asymptotically of the same order of magnitude.

∎ We need to translate “for 𝑛 small enough” into a formula. We claim
that there exists a real constant 𝛼 > 0 s.t. for all 𝑛 and 𝑍 we have

𝑛2
< 𝛼𝑍 ⇒ 𝑄(𝑛) ≤ 𝑛2

⇑𝐿 + 𝑛.

Marc Moreno Maza Cache Memories, Cache Complexity CS4402 - CS9535 74 / 98



Matrix transposition: a first divide-and-conquer (3/4)

∎ We shall determine 𝑄(𝑛) the number of cache misses incurred by our
first divide-and-conquer algorithm on a (𝑍, 𝐿)-ideal cache machine.

∎ For 𝑛 small enough, the entire input matrix or the entire block (input of
some recursive call) fits in cache and incurs only the cost of a scanning.
Because of possible misalignment, that is, 𝑛([︂𝑛⇑𝐿⌉︂ + 1).

∎ Important: For simplicity, some authors write 𝑛⇑𝐿 instead of [︂𝑛⇑𝐿⌉︂.
This can be dangerous.

∎ However: these simplifications are fine for asymptotic estimates,
keeping in mind that 𝑛⇑𝐿 is a rational number satisfying

𝑛⇑𝐿 − 1 ≤ ⟨︀𝑛⇑𝐿⧹︀ ≤ 𝑛⇑𝐿 ≤ [︂𝑛⇑𝐿⌉︂ ≤ 𝑛⇑𝐿 + 1.

Thus, for a fixed 𝐿, the functions ⟨︀𝑛⇑𝐿⧹︀, 𝑛⇑𝐿 and [︂𝑛⇑𝐿⌉︂ are
asymptotically of the same order of magnitude.

∎ We need to translate “for 𝑛 small enough” into a formula. We claim
that there exists a real constant 𝛼 > 0 s.t. for all 𝑛 and 𝑍 we have

𝑛2
< 𝛼𝑍 ⇒ 𝑄(𝑛) ≤ 𝑛2

⇑𝐿 + 𝑛.

Marc Moreno Maza Cache Memories, Cache Complexity CS4402 - CS9535 74 / 98



Matrix transposition: a first divide-and-conquer (4/4)

∎ 𝑄(𝑛) satisfies the following recurrence relation

𝑄(𝑛) = {
𝑛2⇑𝐿 + 𝑛 if 𝑛2 < 𝛼𝑍 (base case)

4𝑄(𝑛⇑2) + 𝑛2

2𝐿 + 𝑛 if 𝑛2 ≥ 𝛼𝑍 (recurrence)

∎ Indeed, exchanging 2 blocks amount to 2((𝑛⇑2)2⇑𝐿+𝑛⇑2) accesses.
∎ Unfolding the recurrence relation 𝑘 times (using an induction) yields

𝑄(𝑛) = 4𝑘 𝑄(
𝑛

2𝑘
) + 𝑘

𝑛2

2𝐿
+ (2𝑘

− 1)𝑛.

∎ The minimum 𝑘 for reaching the base case satisfies 𝑛2

4𝑘 = 𝛼𝑍, that is,
4𝑘 = 𝑛2

𝛼𝑍 , that is, 𝑘 = log4(
𝑛2

𝛼𝑍 ). This implies 2𝑘 = 𝑛
⌋︂

𝛼𝑍
and thus

𝑄(𝑛) ≤ 𝑛2

𝛼𝑍 (𝛼𝑍⇑𝐿 +
⌋︂

𝛼𝑍) + log4(
𝑛2

𝛼𝑍 )
𝑛2

2𝐿 + 𝑛
⌋︂

𝛼𝑍
𝑛

≤ 𝑛2⇑𝐿 + 2 𝑛2
⌋︂

𝛼𝑍
+ log4(

𝑛2

𝛼𝑍 )
𝑛2

2𝐿 .
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A matrix transposition cache-oblivious algorithm (1/2)

∎ If 𝑛 ≥ 𝑚, the Rec-Transpose algorithm partitions

𝐴 = (𝐴1 𝐴2) , 𝐵 = (
𝐵1
𝐵2

)

and recursively executes Rec-Transpose(𝐴1, 𝐵1) and
Rec-Transpose(𝐴2, 𝐵2).

∎ If 𝑚 > 𝑛, the Rec-Transpose algorithm partitions

𝐴 = (
𝐴1
𝐴2

) , 𝐵 = (𝐵1 𝐵2)

and recursively executes Rec-Transpose(𝐴1, 𝐵1) and
Rec-Transpose(𝐴2, 𝐵2).
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A matrix transposition cache-oblivious algorithm (2/2)

∎ Recall that the matrices are stored in row-major layout.

∎ Let 𝛼 be a constant sufficiently small such that the following two
conditions hold:

(𝑖) two sub-matrices of size 𝑚 × 𝑛 and 𝑛 ×𝑚, where max {𝑚, 𝑛} ≤ 𝛼𝐿, fit
in cache

(𝑖𝑖) even if each row starts at a different cache line.

∎ We distinguish three cases for the input matrix 𝐴:

ë Case I: max {𝑚, 𝑛} ≤ 𝛼𝐿.
ë Case II: 𝑚 ≤ 𝛼𝐿 < 𝑛 or 𝑛 ≤ 𝛼𝐿 < 𝑚.
ë Case III: 𝑚, 𝑛 > 𝛼𝐿.
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Case I: max {𝑚, 𝑛} ≤ 𝛼𝐿.

∎ Both matrices fit in 𝑂(1) + 2𝑚𝑛⇑𝐿 lines.

∎ From the choice of 𝛼, the number of lines required for the entire
computation is at most 𝑍⇑𝐿.

∎ Thus, no cache lines need to be evicted during the computation.
Hence, it feels like we are simply scanning 𝐴 and 𝐵.

∎ Therefore 𝑄(𝑚, 𝑛) ∈ 𝑂(1 +𝑚𝑛⇑𝐿).
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Case II: 𝑚 ≤ 𝛼𝐿 < 𝑛 or 𝑛 ≤ 𝛼𝐿 <𝑚.

∎ Consider 𝑛 ≤ 𝛼𝐿 < 𝑚. The Rec-Transpose algorithm divides the
greater dimension 𝑚 by 2 and recurses.

∎ At some point in the recursion, we have 𝛼𝐿⇑2 ≤ 𝑚 ≤ 𝛼𝐿 and the
whole computation fits in cache. At this point:

ë the input array resides in contiguous locations, requiring at most
Θ(1 + 𝑛𝑚⇑𝐿) cache misses

ë the output array consists of 𝑛𝑚 elements in 𝑛 rows, where in the worst
case every row starts at a different cache line, leading to at most
Θ(𝑛 + 𝑛𝑚⇑𝐿) cache misses.

∎ Since 𝑚⇑𝐿 ∈ (︀𝛼⇑2, 𝛼⌋︀, the total cache complexity for this base case is
Θ(1 + 𝑛), yielding the recurrence (where the resulting 𝑄(𝑚, 𝑛) is a
worst case estimate)

𝑄(𝑚, 𝑛) = {
Θ(1 + 𝑛) if 𝑚 ∈ (︀𝛼𝐿⇑2, 𝛼𝐿⌋︀ ,
2𝑄(𝑚⇑2, 𝑛) +𝑂(1) otherwise ;

whose solution satisfies 𝑄(𝑚, 𝑛) = Θ(1 +𝑚𝑛⇑𝐿).
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Case III: 𝑚, 𝑛 > 𝛼𝐿.

∎ As in Case II, at some point in the recursion both 𝑛 and 𝑚 fall into
the range (︀𝛼𝐿⇑2, 𝛼𝐿⌋︀.

∎ The whole problem fits into cache and can be solved with at most
Θ(𝑚 + 𝑛 +𝑚𝑛⇑𝐿) cache misses.

∎ The worst case cache miss estimate satisfies the recurrence

𝑄(𝑚, 𝑛) =
)︀⌉︀⌉︀⌉︀
⌋︀
⌉︀⌉︀⌉︀]︀

Θ(𝑚 + 𝑛 +𝑚𝑛⇑𝐿) if 𝑚, 𝑛 ∈ (︀𝛼𝐿⇑2, 𝛼𝐿⌋︀ ,
2𝑄(𝑚⇑2, 𝑛) +𝑂(1) if 𝑚 ≥ 𝑛 ,
2𝑄(𝑚, 𝑛⇑2) +𝑂(1) otherwise;

whose solution is 𝑄(𝑚, 𝑛) = Θ(1 +𝑚𝑛⇑𝐿).
∎ Therefore, the Rec-Transpose algorithm has optimal cache

complexity.
∎ Indeed, for an 𝑚 × 𝑛 matrix, the algorithm must write to 𝑚𝑛 distinct

elements, which occupy at least [︂𝑚𝑛⇑𝐿⌉︂ cache lines.
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Tuned cache-oblivious square matrix transposition

void DC_matrix_transpose(int *A, int lda, int i0, int i1,
int j0, int dj0, int j1 /*, int dj1 = 0 */){
const int THRESHOLD = 16; // tuned for the target machine

tail:
int di = i1 - i0, dj = j1 - j0;
if (dj >= 2 * di && dj > THRESHOLD) {

int dj2 = dj / 2;
cilk_spawn DC_matrix_transpose(A, lda, i0, i1, j0, dj0, j0 + dj2);
j0 += dj2; dj0 = 0; goto tail;

} else if (di > THRESHOLD) {
int di2 = di / 2;
cilk_spawn DC_matrix_transpose(A, lda, i0, i0 + di2, j0, dj0, j1);
i0 += di2; j0 += dj0 * di2; goto tail;

} else {
for (int i = i0; i < i1; ++i) {

for (int j = j0; j < j1; ++j) {
int x = A[j * lda + i];
A[j * lda + i] = A[i * lda + j];
A[i * lda + j] = x;

}
j0 += dj0;

}
}
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Tuned cache-oblivious matrix transposition benchmarks

size Naive Cache-oblivious ratio
5000x5000 126 79 1.59
10000x10000 627 311 2.02
20000x20000 4373 1244 3.52
30000x30000 23603 2734 8.63
40000x40000 62432 4963 12.58
∎ Intel(R) Xeon(R) CPU E7340 @ 2.40GHz

∎ L1 data 32 KB, L2 4096 KB, cache line size 64bytes
∎ Both codes run on 1 core
∎ The improvement comes simply from an optimal memory access

pattern.
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Tuned cache-oblivious matrix multiplication

Marc Moreno Maza Cache Memories, Cache Complexity CS4402 - CS9535 83 / 98



Outline

1. Cache memories
1.1 The basics
1.2 Matrix multiplication in practice
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2. The ideal-cache model
2.1 The basics
2.2 Application to counting sort
2.3 Application to matrix transposition
2.4 Application to matrix multiplication
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Cache complexity of the naive matrix multiplication

// A is stored in ROW-major and B in COLUMN-major
for(i=0; i < n; i++)

for(j=0; j < n; j++)
for(k=0; k < n; k++)

C[i][j] += A[i][k] * B[j][k];

∎ Recall the tall cache assumption, that is, 𝑍 ∈ Ω(𝐿2).

∎ If the 3 matrices fit in cache, say 3𝑛2 ≤ 𝑍 holds, then all cache misses
are cold and we have 𝑄(𝑛, 𝑍, 𝐿) ∈ 𝑂(1 + 𝑛2⇑𝐿).

∎ If 𝑍 is large enough, precislely if 𝑍 ∈ Ω(𝑛) holds, then Row 𝑖 of 𝐴 will
be remembered for its entire involvement in computing row 𝑖 of 𝐶.

∎ For Column 𝑗 of 𝐵 to be remembered when necessary, one needs
𝑍 ∈ Ω(𝑛2) in which case the whole computation fits in cache.
Therefore, we have:

𝑄(𝑛, 𝑍, 𝐿) = {
𝑂(1 + 𝑛2⇑𝐿) if 3𝑛2 ≤ 𝑍,
𝑂(𝑛 + 𝑛3⇑𝐿) if 𝑍 < 𝑛2.
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A cache-aware matrix multiplication algorithm (1/2)

// A, B and C are in row-major storage
for(i =0; i < n/s; i++)

for(j =0; j < n/s; j++)
for(k=0; k < n/s; k++)

blockMult(A,B,C,i,j,k,s);

∎ Each matrix 𝑀 ∈ {𝐴, 𝐵, 𝐶} consists of (𝑛⇑𝑠) × (𝑛⇑𝑠) submatrices
𝑀𝑖𝑗 (the blocks), each of which has size 𝑠 × 𝑠, where 𝑠 is a tuning
parameter.

∎ Assume 𝑠 divides 𝑛 to keep the analysis simple.
∎ blockMult(A,B,C,i,j,k,s) computes 𝐶𝑖𝑗 = 𝐴𝑖𝑘 ×𝐵𝑘𝑗 using the

naive algorithm
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∎ Assume 𝑠 divides 𝑛 to keep the analysis simple.

∎ blockMult(A,B,C,i,j,k,s) computes 𝐶𝑖𝑗 = 𝐴𝑖𝑘 ×𝐵𝑘𝑗 using the
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A cache-aware matrix multiplication algorithm (2/2)

// A, B and C are in row-major storage
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∎ Choose 𝑠 to be the largest value such that three 𝑠 × 𝑠 submatrices
simultaneously fit in cache, that is, 𝑍 ∈ Θ(𝑠2), that is, 𝑠 ∈ Θ(

⌋︂
𝑍).

∎ An 𝑠 × 𝑠 submatrix is stored on Θ(𝑠 + 𝑠2⇑𝐿) cache lines.
∎ Thus blockMult(A,B,C,i,j,k,s) runs within Θ(𝑠 + 𝑠2⇑𝐿) cache

misses.
∎ Initializing the 𝑛2 elements of 𝐶 amounts to Θ(1 + 𝑛2⇑𝐿) caches

misses. Therefore we have
𝑄(𝑛, 𝑍, 𝐿) ∈ Θ(1 + 𝑛2⇑𝐿 + (𝑛⇑

⌋︂
𝑍)3(

⌋︂
𝑍 +𝑍⇑𝐿))

∈ Θ(1 + 𝑛2⇑𝐿 + 𝑛3⇑𝑍 + 𝑛3⇑(𝐿
⌋︂

𝑍)).
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A cache-oblivious matrix multiplication algorithm (1/3)

∎ We describe and analyze a cache-oblivious algorithm for multiplying
an 𝑚 × 𝑛 matrix by an 𝑛 × 𝑝 matrix cache-obliviously using

ë Θ(𝑚𝑛𝑝) work and incurring
ë Θ(𝑚 + 𝑛 + 𝑝 + (𝑚𝑛 + 𝑛𝑝 +𝑚𝑝)⇑𝐿 +𝑚𝑛𝑝⇑(𝐿

⌋︂
𝑍)) cache misses.

∎ This straightforward divide-and-conquer algorithm contains no
voodoo parameters (tuning parameters) and it uses cache optimally.

∎ Intuitively, this algorithm uses the cache effectively, because once a
subproblem fits into the cache, its smaller subproblems can be solved
in cache with no further cache misses.

∎ These results require the tall-cache assumption for matrices stored in
row-major layout format,

∎ This assumption can be relaxed for certain other layouts, see (Frigo et
al. 1999).

∎ The case of Strassen’s algorithm is also treated in (Frigo et al. 1999).
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A cache-oblivious matrix multiplication algorithm (2/3)

∎ To multiply an 𝑚 × 𝑛 matrix 𝐴 and an 𝑛 × 𝑝 matrix 𝐵, the
Rec-Mult algorithm halves the largest of the three dimensions and
recurs according to one of the following three cases:

(
𝐴1
𝐴2

)𝐵 = (
𝐴1𝐵
𝐴2𝐵

) , (1)

(𝐴1 𝐴2)(
𝐵1
𝐵2

) = 𝐴1𝐵1 +𝐴2𝐵2 , (2)

𝐴 (𝐵1 𝐵2) = (𝐴𝐵1 𝐴𝐵2) . (3)

∎ In case (1), we have 𝑚 ≥ max {𝑛, 𝑝}. Matrix 𝐴 is split horizontally,
and both halves are multiplied by matrix 𝐵.

∎ In case (2), we have 𝑛 ≥ max {𝑚, 𝑝}. Both matrices are split, and the
two halves are multiplied.

∎ In case (3), we have 𝑝 ≥ max {𝑚, 𝑛}. Matrix 𝐵 is split vertically, and
each half is multiplied by 𝐴.

∎ The base case occurs when 𝑚 = 𝑛 = 𝑝 = 1.
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A cache-oblivious matrix multiplication algorithm (3/3)

∎ let 𝛼 > 0 be the largest constant sufficiently small that three
submatrices of sizes 𝑚′ × 𝑛′, 𝑛′ × 𝑝′, and 𝑚′ × 𝑝′ all fit completely in
the cache, whenever max {𝑚′, 𝑛′, 𝑝′} ≤ 𝛼

⌋︂
𝑍 holds.

∎ We distinguish four cases depending on the initial size of the
matrices.

ë Case I: 𝑚, 𝑛, 𝑝 > 𝛼
⌋︂

𝑍.

ë Case II: (𝑚 ≤ 𝛼
⌋︂

𝑍 and 𝑛, 𝑝 > 𝛼
⌋︂

𝑍) or (𝑛 ≤ 𝛼
⌋︂

𝑍 and 𝑚, 𝑝 > 𝛼
⌋︂

𝑍)
or (𝑝 ≤ 𝛼

⌋︂
𝑍 and 𝑚, 𝑛 > 𝛼

⌋︂
𝑍).

ë Case III: (𝑛, 𝑝 ≤ 𝛼
⌋︂
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Case I: 𝑚, 𝑛, 𝑝 > 𝛼
⌋︂

𝑍. (1/2)

𝑄(𝑚, 𝑛, 𝑝) = (4)
)︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀
⌋︀
⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀]︀

Θ((𝑚𝑛 + 𝑛𝑝 +𝑚𝑝)⇑𝐿) if 𝑚, 𝑛, 𝑝 ∈ (︀𝛼
⌋︂

𝑍⇑2, 𝛼
⌋︂

𝑍⌋︀ ,
2𝑄(𝑚⇑2, 𝑛, 𝑝) +𝑂(1) ow. if 𝑚 ≥ 𝑛 and 𝑚 ≥ 𝑝 ,
2𝑄(𝑚, 𝑛⇑2, 𝑝) +𝑂(1) ow. if 𝑛 > 𝑚 and 𝑛 ≥ 𝑝 ,
2𝑄(𝑚, 𝑛, 𝑝⇑2) +𝑂(1) otherwise .

∎ The base case arises as soon as all three submatrices fit in cache:

ë The total number of cache lines used by the three submatrices is
Θ((𝑚𝑛 + 𝑛𝑝 +𝑚𝑝)⇑𝐿).

ë The only cache misses that occur during the remainder of the recursion
are the Θ((𝑚𝑛 + 𝑛𝑝 +𝑚𝑝)⇑𝐿) cache misses required to bring the
matrices into cache.
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Case I: 𝑚, 𝑛, 𝑝 > 𝛼
⌋︂

𝑍. (2/2)

𝑄(𝑚, 𝑛, 𝑝) =
)︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀
⌋︀
⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀]︀

Θ((𝑚𝑛 + 𝑛𝑝 +𝑚𝑝)⇑𝐿) if 𝑚, 𝑛, 𝑝 ∈ (︀𝛼
⌋︂

𝑍⇑2, 𝛼
⌋︂

𝑍⌋︀ ,
2𝑄(𝑚⇑2, 𝑛, 𝑝) +𝑂(1) ow. if 𝑚 ≥ 𝑛 and 𝑚 ≥ 𝑝 ,
2𝑄(𝑚, 𝑛⇑2, 𝑝) +𝑂(1) ow. if 𝑛 > 𝑚 and 𝑛 ≥ 𝑝 ,
2𝑄(𝑚, 𝑛, 𝑝⇑2) +𝑂(1) otherwise .

∎ In the recursive cases, when the matrices do not fit in cache, we pay
for the cache misses of the recursive calls, plus 𝑂(1) cache misses for
the overhead of manipulating submatrices.

∎ The solution to this recurrence is

𝑄(𝑚, 𝑛, 𝑝) = Θ(𝑚𝑛𝑝⇑(𝐿
⌋︂

𝑍)).

∎ Indeed, for the base-case 𝑚, 𝑚, 𝑝 ∈ Θ(𝛼
⌋︂

𝑍).

Marc Moreno Maza Cache Memories, Cache Complexity CS4402 - CS9535 92 / 98



Case I: 𝑚, 𝑛, 𝑝 > 𝛼
⌋︂

𝑍. (2/2)

𝑄(𝑚, 𝑛, 𝑝) =
)︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀
⌋︀
⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀]︀

Θ((𝑚𝑛 + 𝑛𝑝 +𝑚𝑝)⇑𝐿) if 𝑚, 𝑛, 𝑝 ∈ (︀𝛼
⌋︂

𝑍⇑2, 𝛼
⌋︂

𝑍⌋︀ ,
2𝑄(𝑚⇑2, 𝑛, 𝑝) +𝑂(1) ow. if 𝑚 ≥ 𝑛 and 𝑚 ≥ 𝑝 ,
2𝑄(𝑚, 𝑛⇑2, 𝑝) +𝑂(1) ow. if 𝑛 > 𝑚 and 𝑛 ≥ 𝑝 ,
2𝑄(𝑚, 𝑛, 𝑝⇑2) +𝑂(1) otherwise .

∎ In the recursive cases, when the matrices do not fit in cache, we pay
for the cache misses of the recursive calls, plus 𝑂(1) cache misses for
the overhead of manipulating submatrices.

∎ The solution to this recurrence is

𝑄(𝑚, 𝑛, 𝑝) = Θ(𝑚𝑛𝑝⇑(𝐿
⌋︂

𝑍)).

∎ Indeed, for the base-case 𝑚, 𝑚, 𝑝 ∈ Θ(𝛼
⌋︂

𝑍).

Marc Moreno Maza Cache Memories, Cache Complexity CS4402 - CS9535 92 / 98



Case I: 𝑚, 𝑛, 𝑝 > 𝛼
⌋︂

𝑍. (2/2)

𝑄(𝑚, 𝑛, 𝑝) =
)︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀
⌋︀
⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀]︀

Θ((𝑚𝑛 + 𝑛𝑝 +𝑚𝑝)⇑𝐿) if 𝑚, 𝑛, 𝑝 ∈ (︀𝛼
⌋︂

𝑍⇑2, 𝛼
⌋︂

𝑍⌋︀ ,
2𝑄(𝑚⇑2, 𝑛, 𝑝) +𝑂(1) ow. if 𝑚 ≥ 𝑛 and 𝑚 ≥ 𝑝 ,
2𝑄(𝑚, 𝑛⇑2, 𝑝) +𝑂(1) ow. if 𝑛 > 𝑚 and 𝑛 ≥ 𝑝 ,
2𝑄(𝑚, 𝑛, 𝑝⇑2) +𝑂(1) otherwise .

∎ In the recursive cases, when the matrices do not fit in cache, we pay
for the cache misses of the recursive calls, plus 𝑂(1) cache misses for
the overhead of manipulating submatrices.

∎ The solution to this recurrence is

𝑄(𝑚, 𝑛, 𝑝) = Θ(𝑚𝑛𝑝⇑(𝐿
⌋︂

𝑍)).

∎ Indeed, for the base-case 𝑚, 𝑚, 𝑝 ∈ Θ(𝛼
⌋︂

𝑍).
Marc Moreno Maza Cache Memories, Cache Complexity CS4402 - CS9535 92 / 98



Case II: (𝑚 ≤ 𝛼
⌋︂

𝑍) and (𝑛, 𝑝 > 𝛼
⌋︂

𝑍).

∎ Here, we shall present the case where 𝑚 ≤ 𝛼
⌋︂

𝑍 and 𝑛, 𝑝 > 𝛼
⌋︂

𝑍.

∎ The Rec-Mult algorithm always divides 𝑛 or 𝑝 by 2 according to
cases (2) and (3).

∎ At some point in the recursion, both 𝑛 and 𝑝 are small enough that
the whole problem fits into cache.

∎ The number of cache misses can be described by the recurrence

𝑄(𝑚, 𝑛, 𝑝) = (5)
)︀⌉︀⌉︀⌉︀
⌋︀
⌉︀⌉︀⌉︀]︀

Θ(1 + 𝑛 +𝑚 + 𝑛𝑝⇑𝐿) if 𝑛, 𝑝 ∈ (︀𝛼
⌋︂

𝑍⇑2, 𝛼
⌋︂

𝑍⌋︀ ,
2𝑄(𝑚, 𝑛⇑2, 𝑝) +𝑂(1) otherwise if 𝑛 ≥ 𝑝 ,
2𝑄(𝑚, 𝑛, 𝑝⇑2) +𝑂(1) otherwise ;

whose solution is 𝑄(𝑚, 𝑛, 𝑝) = Θ(𝑛𝑝⇑𝐿 +𝑚𝑛𝑝⇑(𝐿
⌋︂

𝑍)).
∎ Indeed, in the base case: 𝑚𝑛𝑝⇑(𝐿

⌋︂
𝑍) ≤ 𝛼𝑛𝑝⇑𝐿.

∎ The term Θ(1 + 𝑛 +𝑚) appears because of the row-major layout.

Marc Moreno Maza Cache Memories, Cache Complexity CS4402 - CS9535 93 / 98



Case II: (𝑚 ≤ 𝛼
⌋︂

𝑍) and (𝑛, 𝑝 > 𝛼
⌋︂

𝑍).

∎ Here, we shall present the case where 𝑚 ≤ 𝛼
⌋︂

𝑍 and 𝑛, 𝑝 > 𝛼
⌋︂

𝑍.
∎ The Rec-Mult algorithm always divides 𝑛 or 𝑝 by 2 according to

cases (2) and (3).

∎ At some point in the recursion, both 𝑛 and 𝑝 are small enough that
the whole problem fits into cache.

∎ The number of cache misses can be described by the recurrence

𝑄(𝑚, 𝑛, 𝑝) = (5)
)︀⌉︀⌉︀⌉︀
⌋︀
⌉︀⌉︀⌉︀]︀

Θ(1 + 𝑛 +𝑚 + 𝑛𝑝⇑𝐿) if 𝑛, 𝑝 ∈ (︀𝛼
⌋︂

𝑍⇑2, 𝛼
⌋︂

𝑍⌋︀ ,
2𝑄(𝑚, 𝑛⇑2, 𝑝) +𝑂(1) otherwise if 𝑛 ≥ 𝑝 ,
2𝑄(𝑚, 𝑛, 𝑝⇑2) +𝑂(1) otherwise ;

whose solution is 𝑄(𝑚, 𝑛, 𝑝) = Θ(𝑛𝑝⇑𝐿 +𝑚𝑛𝑝⇑(𝐿
⌋︂

𝑍)).
∎ Indeed, in the base case: 𝑚𝑛𝑝⇑(𝐿

⌋︂
𝑍) ≤ 𝛼𝑛𝑝⇑𝐿.

∎ The term Θ(1 + 𝑛 +𝑚) appears because of the row-major layout.

Marc Moreno Maza Cache Memories, Cache Complexity CS4402 - CS9535 93 / 98



Case II: (𝑚 ≤ 𝛼
⌋︂

𝑍) and (𝑛, 𝑝 > 𝛼
⌋︂

𝑍).

∎ Here, we shall present the case where 𝑚 ≤ 𝛼
⌋︂

𝑍 and 𝑛, 𝑝 > 𝛼
⌋︂

𝑍.
∎ The Rec-Mult algorithm always divides 𝑛 or 𝑝 by 2 according to

cases (2) and (3).
∎ At some point in the recursion, both 𝑛 and 𝑝 are small enough that

the whole problem fits into cache.

∎ The number of cache misses can be described by the recurrence

𝑄(𝑚, 𝑛, 𝑝) = (5)
)︀⌉︀⌉︀⌉︀
⌋︀
⌉︀⌉︀⌉︀]︀

Θ(1 + 𝑛 +𝑚 + 𝑛𝑝⇑𝐿) if 𝑛, 𝑝 ∈ (︀𝛼
⌋︂

𝑍⇑2, 𝛼
⌋︂

𝑍⌋︀ ,
2𝑄(𝑚, 𝑛⇑2, 𝑝) +𝑂(1) otherwise if 𝑛 ≥ 𝑝 ,
2𝑄(𝑚, 𝑛, 𝑝⇑2) +𝑂(1) otherwise ;

whose solution is 𝑄(𝑚, 𝑛, 𝑝) = Θ(𝑛𝑝⇑𝐿 +𝑚𝑛𝑝⇑(𝐿
⌋︂

𝑍)).
∎ Indeed, in the base case: 𝑚𝑛𝑝⇑(𝐿

⌋︂
𝑍) ≤ 𝛼𝑛𝑝⇑𝐿.

∎ The term Θ(1 + 𝑛 +𝑚) appears because of the row-major layout.

Marc Moreno Maza Cache Memories, Cache Complexity CS4402 - CS9535 93 / 98



Case II: (𝑚 ≤ 𝛼
⌋︂

𝑍) and (𝑛, 𝑝 > 𝛼
⌋︂

𝑍).

∎ Here, we shall present the case where 𝑚 ≤ 𝛼
⌋︂

𝑍 and 𝑛, 𝑝 > 𝛼
⌋︂

𝑍.
∎ The Rec-Mult algorithm always divides 𝑛 or 𝑝 by 2 according to

cases (2) and (3).
∎ At some point in the recursion, both 𝑛 and 𝑝 are small enough that

the whole problem fits into cache.
∎ The number of cache misses can be described by the recurrence

𝑄(𝑚, 𝑛, 𝑝) = (5)
)︀⌉︀⌉︀⌉︀
⌋︀
⌉︀⌉︀⌉︀]︀

Θ(1 + 𝑛 +𝑚 + 𝑛𝑝⇑𝐿) if 𝑛, 𝑝 ∈ (︀𝛼
⌋︂

𝑍⇑2, 𝛼
⌋︂

𝑍⌋︀ ,
2𝑄(𝑚, 𝑛⇑2, 𝑝) +𝑂(1) otherwise if 𝑛 ≥ 𝑝 ,
2𝑄(𝑚, 𝑛, 𝑝⇑2) +𝑂(1) otherwise ;

whose solution is 𝑄(𝑚, 𝑛, 𝑝) = Θ(𝑛𝑝⇑𝐿 +𝑚𝑛𝑝⇑(𝐿
⌋︂

𝑍)).

∎ Indeed, in the base case: 𝑚𝑛𝑝⇑(𝐿
⌋︂

𝑍) ≤ 𝛼𝑛𝑝⇑𝐿.
∎ The term Θ(1 + 𝑛 +𝑚) appears because of the row-major layout.

Marc Moreno Maza Cache Memories, Cache Complexity CS4402 - CS9535 93 / 98



Case II: (𝑚 ≤ 𝛼
⌋︂

𝑍) and (𝑛, 𝑝 > 𝛼
⌋︂

𝑍).

∎ Here, we shall present the case where 𝑚 ≤ 𝛼
⌋︂

𝑍 and 𝑛, 𝑝 > 𝛼
⌋︂

𝑍.
∎ The Rec-Mult algorithm always divides 𝑛 or 𝑝 by 2 according to

cases (2) and (3).
∎ At some point in the recursion, both 𝑛 and 𝑝 are small enough that

the whole problem fits into cache.
∎ The number of cache misses can be described by the recurrence

𝑄(𝑚, 𝑛, 𝑝) = (5)
)︀⌉︀⌉︀⌉︀
⌋︀
⌉︀⌉︀⌉︀]︀

Θ(1 + 𝑛 +𝑚 + 𝑛𝑝⇑𝐿) if 𝑛, 𝑝 ∈ (︀𝛼
⌋︂

𝑍⇑2, 𝛼
⌋︂

𝑍⌋︀ ,
2𝑄(𝑚, 𝑛⇑2, 𝑝) +𝑂(1) otherwise if 𝑛 ≥ 𝑝 ,
2𝑄(𝑚, 𝑛, 𝑝⇑2) +𝑂(1) otherwise ;

whose solution is 𝑄(𝑚, 𝑛, 𝑝) = Θ(𝑛𝑝⇑𝐿 +𝑚𝑛𝑝⇑(𝐿
⌋︂

𝑍)).
∎ Indeed, in the base case: 𝑚𝑛𝑝⇑(𝐿

⌋︂
𝑍) ≤ 𝛼𝑛𝑝⇑𝐿.

∎ The term Θ(1 + 𝑛 +𝑚) appears because of the row-major layout.

Marc Moreno Maza Cache Memories, Cache Complexity CS4402 - CS9535 93 / 98



Case II: (𝑚 ≤ 𝛼
⌋︂

𝑍) and (𝑛, 𝑝 > 𝛼
⌋︂

𝑍).

∎ Here, we shall present the case where 𝑚 ≤ 𝛼
⌋︂

𝑍 and 𝑛, 𝑝 > 𝛼
⌋︂

𝑍.
∎ The Rec-Mult algorithm always divides 𝑛 or 𝑝 by 2 according to

cases (2) and (3).
∎ At some point in the recursion, both 𝑛 and 𝑝 are small enough that

the whole problem fits into cache.
∎ The number of cache misses can be described by the recurrence

𝑄(𝑚, 𝑛, 𝑝) = (5)
)︀⌉︀⌉︀⌉︀
⌋︀
⌉︀⌉︀⌉︀]︀

Θ(1 + 𝑛 +𝑚 + 𝑛𝑝⇑𝐿) if 𝑛, 𝑝 ∈ (︀𝛼
⌋︂

𝑍⇑2, 𝛼
⌋︂

𝑍⌋︀ ,
2𝑄(𝑚, 𝑛⇑2, 𝑝) +𝑂(1) otherwise if 𝑛 ≥ 𝑝 ,
2𝑄(𝑚, 𝑛, 𝑝⇑2) +𝑂(1) otherwise ;

whose solution is 𝑄(𝑚, 𝑛, 𝑝) = Θ(𝑛𝑝⇑𝐿 +𝑚𝑛𝑝⇑(𝐿
⌋︂

𝑍)).
∎ Indeed, in the base case: 𝑚𝑛𝑝⇑(𝐿

⌋︂
𝑍) ≤ 𝛼𝑛𝑝⇑𝐿.

∎ The term Θ(1 + 𝑛 +𝑚) appears because of the row-major layout.
Marc Moreno Maza Cache Memories, Cache Complexity CS4402 - CS9535 93 / 98



Case III: (𝑛, 𝑝 ≤ 𝛼
⌋︂

𝑍 and 𝑚 > 𝛼
⌋︂

𝑍)

∎ In each of these cases, one of the matrices fits into cache, and the
others do not.

∎ Here, we shall present the case where 𝑛, 𝑝 ≤ 𝛼
⌋︂

𝑍 and 𝑚 > 𝛼
⌋︂

𝑍.
∎ The Rec-Mult algorithm always divides 𝑚 by 2 according to case

(1).
∎ At some point in the recursion, 𝑚 falls into the range

𝛼
⌋︂

𝑍⇑2 ≤ 𝑚 ≤ 𝛼
⌋︂

𝑍, and the whole problem fits in cache.
∎ The number cache misses can be described by the recurrence

𝑄(𝑚, 𝑛, 𝑝) = (6)

{
Θ(1 +𝑚) if 𝑚 ∈ (︀𝛼

⌋︂
𝑍⇑2, 𝛼

⌋︂
𝑍⌋︀ ,

2𝑄(𝑚⇑2, 𝑛, 𝑝) +𝑂(1) otherwise ;

whose solution is 𝑄(𝑚, 𝑛, 𝑝) = Θ(𝑚 +𝑚𝑛𝑝⇑(𝐿
⌋︂

𝑍)).
∎ Indeed, in the base case: 𝑚𝑛𝑝⇑(𝐿

⌋︂
𝑍) ≤ 𝛼

⌋︂
𝑍𝑚⇑𝐿; moreover

𝑍 ∈ Ω(𝐿2) (tall cache assumption).
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Case IV: 𝑚, 𝑛, 𝑝 ≤ 𝛼
⌋︂

𝑍.

∎ From the choice of 𝛼, all three matrices fit into cache.

∎ The matrices are stored on Θ(1+𝑚𝑛⇑𝐿+𝑛𝑝⇑𝐿+𝑚𝑝⇑𝐿) cache lines.

∎ Therefore, we have 𝑄(𝑚, 𝑛, 𝑝) = Θ(1 + (𝑚𝑛 + 𝑛𝑝 +𝑚𝑝)⇑𝐿).
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Case IV: 𝑚, 𝑛, 𝑝 ≤ 𝛼
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Typical memory layouts for matrices
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