
(Automatic) Parallelization

Marc Moreno Maza

Ontario Research Center for Computer Algebra
Departments of Computer Science and Mathematics

University of Western Ontario, Canada

CS4402 - CS9635, February 28, 2024

Marc Moreno Maza Dependence Analysis and (Automatic) Parallelization CS4402 - CS9635 1 / 42



Outline

1. Dependence analysis
1.1 Introductory examples
1.2 Data dependence classification
1.3 Iteration space graphs
1.4 Distance and direction vectors

2. (Automatic) parallelization
2.1 Data Dependence Tests
2.2 The polyhedral model

Marc Moreno Maza Dependence Analysis and (Automatic) Parallelization CS4402 - CS9635 2 / 42



Outline

1. Dependence analysis
1.1 Introductory examples
1.2 Data dependence classification
1.3 Iteration space graphs
1.4 Distance and direction vectors

2. (Automatic) parallelization
2.1 Data Dependence Tests
2.2 The polyhedral model

Marc Moreno Maza Dependence Analysis and (Automatic) Parallelization CS4402 - CS9635 3 / 42



First examples

∎ Can the loop on the
right be run in parallel?

∎ That is, can we replace
for with cilk_for?

∎ No, since one cannot
guarantee the executuion
order of iterations when
run concurrently.

∎ What needs to be true
for a loop to be
parallelizable?

∎ Iterations cannot
interfere with each other

Marc Moreno Maza Dependence Analysis and (Automatic) Parallelization CS4402 - CS9635 4 / 42



First examples

∎ Can the loop on the
right be run in parallel?

∎ That is, can we replace
for with cilk_for?

∎ No, since one cannot
guarantee the executuion
order of iterations when
run concurrently.

∎ What needs to be true
for a loop to be
parallelizable?

∎ Iterations cannot
interfere with each other

Marc Moreno Maza Dependence Analysis and (Automatic) Parallelization CS4402 - CS9635 4 / 42



First examples

∎ Can the loop on the
right be run in parallel?

∎ That is, can we replace
for with cilk_for?

∎ No, since one cannot
guarantee the executuion
order of iterations when
run concurrently.

∎ What needs to be true
for a loop to be
parallelizable?

∎ Iterations cannot
interfere with each other

Marc Moreno Maza Dependence Analysis and (Automatic) Parallelization CS4402 - CS9635 4 / 42



First examples

∎ Can the loop on the
right be run in parallel?

∎ That is, can we replace
for with cilk_for?

∎ No, since one cannot
guarantee the executuion
order of iterations when
run concurrently.

∎ What needs to be true
for a loop to be
parallelizable?

∎ Iterations cannot
interfere with each other

Marc Moreno Maza Dependence Analysis and (Automatic) Parallelization CS4402 - CS9635 4 / 42



First examples

∎ Can the loop on the
right be run in parallel?

∎ That is, can we replace
for with cilk_for?

∎ No, since one cannot
guarantee the executuion
order of iterations when
run concurrently.

∎ What needs to be true
for a loop to be
parallelizable?

∎ Iterations cannot
interfere with each other

Marc Moreno Maza Dependence Analysis and (Automatic) Parallelization CS4402 - CS9635 4 / 42



Detailed answer

∎ A flow dependence occurs when one iteration writes a location that a
later iteration reads.

∎ In the first example of the previous slide, there is a flow dependence
from the first statement at iteration i to the second statement at
iteration i+1.

Marc Moreno Maza Dependence Analysis and (Automatic) Parallelization CS4402 - CS9635 5 / 42



Detailed answer

∎ A flow dependence occurs when one iteration writes a location that a
later iteration reads.

∎ In the first example of the previous slide, there is a flow dependence
from the first statement at iteration i to the second statement at
iteration i+1.

Marc Moreno Maza Dependence Analysis and (Automatic) Parallelization CS4402 - CS9635 5 / 42



Other kinds of dependence

∎ Anti dependence: when
an iteration reads a
location that a later
iteration writes

∎ why considering that
dependence?

∎ Same reason as for flow
dependence.

∎ Output dependence:
when an iteration writes
a location that a later
iteration writes

∎ Same motivation as for
flow dependence.

Marc Moreno Maza Dependence Analysis and (Automatic) Parallelization CS4402 - CS9635 6 / 42



Other kinds of dependence

∎ Anti dependence: when
an iteration reads a
location that a later
iteration writes

∎ why considering that
dependence?

∎ Same reason as for flow
dependence.

∎ Output dependence:
when an iteration writes
a location that a later
iteration writes

∎ Same motivation as for
flow dependence.

Marc Moreno Maza Dependence Analysis and (Automatic) Parallelization CS4402 - CS9635 6 / 42



Other kinds of dependence

∎ Anti dependence: when
an iteration reads a
location that a later
iteration writes

∎ why considering that
dependence?

∎ Same reason as for flow
dependence.

∎ Output dependence:
when an iteration writes
a location that a later
iteration writes

∎ Same motivation as for
flow dependence.

Marc Moreno Maza Dependence Analysis and (Automatic) Parallelization CS4402 - CS9635 6 / 42



Other kinds of dependence

∎ Anti dependence: when
an iteration reads a
location that a later
iteration writes

∎ why considering that
dependence?

∎ Same reason as for flow
dependence.

∎ Output dependence:
when an iteration writes
a location that a later
iteration writes

∎ Same motivation as for
flow dependence.

Marc Moreno Maza Dependence Analysis and (Automatic) Parallelization CS4402 - CS9635 6 / 42



Other kinds of dependence

∎ Anti dependence: when
an iteration reads a
location that a later
iteration writes

∎ why considering that
dependence?

∎ Same reason as for flow
dependence.

∎ Output dependence:
when an iteration writes
a location that a later
iteration writes

∎ Same motivation as for
flow dependence.

Marc Moreno Maza Dependence Analysis and (Automatic) Parallelization CS4402 - CS9635 6 / 42



Outline

1. Dependence analysis
1.1 Introductory examples
1.2 Data dependence classification
1.3 Iteration space graphs
1.4 Distance and direction vectors

2. (Automatic) parallelization
2.1 Data Dependence Tests
2.2 The polyhedral model

Marc Moreno Maza Dependence Analysis and (Automatic) Parallelization CS4402 - CS9635 7 / 42



Data dependence analysis

Data dependence

∎ A data dependency happens when, in a program, (𝑖) a statement 𝑆2
accesses a memory location that is accessed by a preceding statement
𝑆1, (𝑖𝑖) one of these two accesses is a WRITE, and (𝑖𝑖𝑖) there is an
execution path from 𝑆1 to 𝑆2.

∎ We denote by 𝐼(𝑆𝑖) (resp. 𝑂(𝑆𝑖)) the set of the memory locations
read (resp. written) by the statement 𝑆𝑖, for 1 ≤ 𝑖 ≤ 2.

There are three types of dependence:

1 Anti-dependence: 𝐼(𝑆1) ∩𝑂(𝑆2) ≠ ∅, that is, 𝑆1 reads some memory
location before 𝑆2 overwrites it

2 True dependence (or Flow dependence): 𝑂(𝑆1) ∩ 𝐼(𝑆2) ≠ ∅, that is,
𝑆1 writes to some memory location before 𝑆2 reads from it

3 Output dependence: 𝑂(𝑆1) ∩𝑂(𝑆2) ≠ ∅, that is, 𝑆1 and 𝑆2 write to
the same memory location.

Marc Moreno Maza Dependence Analysis and (Automatic) Parallelization CS4402 - CS9635 8 / 42



Data dependence analysis

Data dependence

∎ A data dependency happens when, in a program, (𝑖) a statement 𝑆2
accesses a memory location that is accessed by a preceding statement
𝑆1, (𝑖𝑖) one of these two accesses is a WRITE, and (𝑖𝑖𝑖) there is an
execution path from 𝑆1 to 𝑆2.

∎ We denote by 𝐼(𝑆𝑖) (resp. 𝑂(𝑆𝑖)) the set of the memory locations
read (resp. written) by the statement 𝑆𝑖, for 1 ≤ 𝑖 ≤ 2.

There are three types of dependence:

1 Anti-dependence: 𝐼(𝑆1) ∩𝑂(𝑆2) ≠ ∅, that is, 𝑆1 reads some memory
location before 𝑆2 overwrites it

2 True dependence (or Flow dependence): 𝑂(𝑆1) ∩ 𝐼(𝑆2) ≠ ∅, that is,
𝑆1 writes to some memory location before 𝑆2 reads from it

3 Output dependence: 𝑂(𝑆1) ∩𝑂(𝑆2) ≠ ∅, that is, 𝑆1 and 𝑆2 write to
the same memory location.

Marc Moreno Maza Dependence Analysis and (Automatic) Parallelization CS4402 - CS9635 8 / 42



Data dependence analysis

Data dependence

∎ A data dependency happens when, in a program, (𝑖) a statement 𝑆2
accesses a memory location that is accessed by a preceding statement
𝑆1, (𝑖𝑖) one of these two accesses is a WRITE, and (𝑖𝑖𝑖) there is an
execution path from 𝑆1 to 𝑆2.

∎ We denote by 𝐼(𝑆𝑖) (resp. 𝑂(𝑆𝑖)) the set of the memory locations
read (resp. written) by the statement 𝑆𝑖, for 1 ≤ 𝑖 ≤ 2.

There are three types of dependence:

1 Anti-dependence: 𝐼(𝑆1) ∩𝑂(𝑆2) ≠ ∅, that is, 𝑆1 reads some memory
location before 𝑆2 overwrites it

2 True dependence (or Flow dependence): 𝑂(𝑆1) ∩ 𝐼(𝑆2) ≠ ∅, that is,
𝑆1 writes to some memory location before 𝑆2 reads from it

3 Output dependence: 𝑂(𝑆1) ∩𝑂(𝑆2) ≠ ∅, that is, 𝑆1 and 𝑆2 write to
the same memory location.

Marc Moreno Maza Dependence Analysis and (Automatic) Parallelization CS4402 - CS9635 8 / 42



Data dependence analysis

Data dependence

∎ A data dependency happens when, in a program, (𝑖) a statement 𝑆2
accesses a memory location that is accessed by a preceding statement
𝑆1, (𝑖𝑖) one of these two accesses is a WRITE, and (𝑖𝑖𝑖) there is an
execution path from 𝑆1 to 𝑆2.

∎ We denote by 𝐼(𝑆𝑖) (resp. 𝑂(𝑆𝑖)) the set of the memory locations
read (resp. written) by the statement 𝑆𝑖, for 1 ≤ 𝑖 ≤ 2.

There are three types of dependence:
1 Anti-dependence: 𝐼(𝑆1) ∩𝑂(𝑆2) ≠ ∅, that is, 𝑆1 reads some memory

location before 𝑆2 overwrites it

2 True dependence (or Flow dependence): 𝑂(𝑆1) ∩ 𝐼(𝑆2) ≠ ∅, that is,
𝑆1 writes to some memory location before 𝑆2 reads from it

3 Output dependence: 𝑂(𝑆1) ∩𝑂(𝑆2) ≠ ∅, that is, 𝑆1 and 𝑆2 write to
the same memory location.

Marc Moreno Maza Dependence Analysis and (Automatic) Parallelization CS4402 - CS9635 8 / 42



Data dependence analysis

Data dependence

∎ A data dependency happens when, in a program, (𝑖) a statement 𝑆2
accesses a memory location that is accessed by a preceding statement
𝑆1, (𝑖𝑖) one of these two accesses is a WRITE, and (𝑖𝑖𝑖) there is an
execution path from 𝑆1 to 𝑆2.

∎ We denote by 𝐼(𝑆𝑖) (resp. 𝑂(𝑆𝑖)) the set of the memory locations
read (resp. written) by the statement 𝑆𝑖, for 1 ≤ 𝑖 ≤ 2.

There are three types of dependence:
1 Anti-dependence: 𝐼(𝑆1) ∩𝑂(𝑆2) ≠ ∅, that is, 𝑆1 reads some memory

location before 𝑆2 overwrites it
2 True dependence (or Flow dependence): 𝑂(𝑆1) ∩ 𝐼(𝑆2) ≠ ∅, that is,

𝑆1 writes to some memory location before 𝑆2 reads from it

3 Output dependence: 𝑂(𝑆1) ∩𝑂(𝑆2) ≠ ∅, that is, 𝑆1 and 𝑆2 write to
the same memory location.

Marc Moreno Maza Dependence Analysis and (Automatic) Parallelization CS4402 - CS9635 8 / 42



Data dependence analysis

Data dependence

∎ A data dependency happens when, in a program, (𝑖) a statement 𝑆2
accesses a memory location that is accessed by a preceding statement
𝑆1, (𝑖𝑖) one of these two accesses is a WRITE, and (𝑖𝑖𝑖) there is an
execution path from 𝑆1 to 𝑆2.

∎ We denote by 𝐼(𝑆𝑖) (resp. 𝑂(𝑆𝑖)) the set of the memory locations
read (resp. written) by the statement 𝑆𝑖, for 1 ≤ 𝑖 ≤ 2.

There are three types of dependence:
1 Anti-dependence: 𝐼(𝑆1) ∩𝑂(𝑆2) ≠ ∅, that is, 𝑆1 reads some memory

location before 𝑆2 overwrites it
2 True dependence (or Flow dependence): 𝑂(𝑆1) ∩ 𝐼(𝑆2) ≠ ∅, that is,

𝑆1 writes to some memory location before 𝑆2 reads from it
3 Output dependence: 𝑂(𝑆1) ∩𝑂(𝑆2) ≠ ∅, that is, 𝑆1 and 𝑆2 write to

the same memory location.
Marc Moreno Maza Dependence Analysis and (Automatic) Parallelization CS4402 - CS9635 8 / 42



Data dependence analysis

∎ The dependence source is the earlier statement (the statement at the
tail of the dependence arrow)

∎ The dependence sink is the later statement (the statement at the head
of the dependence arrow)

Note that dependences can only go forward in time: always from an earlier
iteration to a later iteration.

Marc Moreno Maza Dependence Analysis and (Automatic) Parallelization CS4402 - CS9635 9 / 42



Data dependence analysis

∎ The dependence source is the earlier statement (the statement at the
tail of the dependence arrow)

∎ The dependence sink is the later statement (the statement at the head
of the dependence arrow)

Note that dependences can only go forward in time: always from an earlier
iteration to a later iteration.

Marc Moreno Maza Dependence Analysis and (Automatic) Parallelization CS4402 - CS9635 9 / 42



Data dependence analysis

Loop dependence theorem
There exists a dependence from statement 𝑆1 to statement 𝑆2 in a common
nest of loops if and only if there exist two index vectors i and j for the nest,
such that
(1) i < j or i = j and there is a path from 𝑆1 to 𝑆2 in the body of the loop,
(2) statement 𝑆1 accesses memory location 𝑀 on index i and statement 𝑆2

accesses location 𝑀 on index j, and
(3) one of these accesses is a WRITE.
When no such dependence exists within that loop nest, then all iterations
can be executed in parallel.

Problems

∎ How do we represent dependences in loops?
∎ How do we determine if there are dependences?

Marc Moreno Maza Dependence Analysis and (Automatic) Parallelization CS4402 - CS9635 10 / 42



Data dependence analysis

Loop dependence theorem
There exists a dependence from statement 𝑆1 to statement 𝑆2 in a common
nest of loops if and only if there exist two index vectors i and j for the nest,
such that
(1) i < j or i = j and there is a path from 𝑆1 to 𝑆2 in the body of the loop,
(2) statement 𝑆1 accesses memory location 𝑀 on index i and statement 𝑆2

accesses location 𝑀 on index j, and
(3) one of these accesses is a WRITE.
When no such dependence exists within that loop nest, then all iterations
can be executed in parallel.

Problems

∎ How do we represent dependences in loops?

∎ How do we determine if there are dependences?

Marc Moreno Maza Dependence Analysis and (Automatic) Parallelization CS4402 - CS9635 10 / 42



Data dependence analysis

Loop dependence theorem
There exists a dependence from statement 𝑆1 to statement 𝑆2 in a common
nest of loops if and only if there exist two index vectors i and j for the nest,
such that
(1) i < j or i = j and there is a path from 𝑆1 to 𝑆2 in the body of the loop,
(2) statement 𝑆1 accesses memory location 𝑀 on index i and statement 𝑆2

accesses location 𝑀 on index j, and
(3) one of these accesses is a WRITE.
When no such dependence exists within that loop nest, then all iterations
can be executed in parallel.

Problems

∎ How do we represent dependences in loops?
∎ How do we determine if there are dependences?

Marc Moreno Maza Dependence Analysis and (Automatic) Parallelization CS4402 - CS9635 10 / 42



Outline

1. Dependence analysis
1.1 Introductory examples
1.2 Data dependence classification
1.3 Iteration space graphs
1.4 Distance and direction vectors

2. (Automatic) parallelization
2.1 Data Dependence Tests
2.2 The polyhedral model

Marc Moreno Maza Dependence Analysis and (Automatic) Parallelization CS4402 - CS9635 11 / 42



Iteration space graphs

∎ Loop dependence analysis focuses on finding the dependencies within
iterations of a loop or a loop-nest.

∎ One way to show the dependence between the same statement in
different iterations of the loop is to use the iteration space graphs

Iteration space graph
The iteration space graphs represent each execution point (a particular
statement at a particular iteration) of a loop as a node in a graph. Then,
one draws an arrow from one point 𝑃 to a point 𝑄 whenever there is a
flow dependence from 𝑃 to 𝑄.

Marc Moreno Maza Dependence Analysis and (Automatic) Parallelization CS4402 - CS9635 12 / 42



Iteration space graphs

∎ Loop dependence analysis focuses on finding the dependencies within
iterations of a loop or a loop-nest.

∎ One way to show the dependence between the same statement in
different iterations of the loop is to use the iteration space graphs

Iteration space graph
The iteration space graphs represent each execution point (a particular
statement at a particular iteration) of a loop as a node in a graph. Then,
one draws an arrow from one point 𝑃 to a point 𝑄 whenever there is a
flow dependence from 𝑃 to 𝑄.

Marc Moreno Maza Dependence Analysis and (Automatic) Parallelization CS4402 - CS9635 12 / 42



Iteration space graphs

∎ Loop dependence analysis focuses on finding the dependencies within
iterations of a loop or a loop-nest.

∎ One way to show the dependence between the same statement in
different iterations of the loop is to use the iteration space graphs

Iteration space graph
The iteration space graphs represent each execution point (a particular
statement at a particular iteration) of a loop as a node in a graph. Then,
one draws an arrow from one point 𝑃 to a point 𝑄 whenever there is a
flow dependence from 𝑃 to 𝑄.

Marc Moreno Maza Dependence Analysis and (Automatic) Parallelization CS4402 - CS9635 12 / 42



Iteration space graphs

Iteration space graphs

for (int i ...)
a[i + 2] = a[i];

for (int i ...)
for (int j ...)

a[i + 1][j - 2] = a[i][j] + 1;

Marc Moreno Maza Dependence Analysis and (Automatic) Parallelization CS4402 - CS9635 13 / 42



Iteration space graphs

Remarks

∎ Iteration space graphs can also be used to represent output and anti
dependences

∎ To this end, one can use different kinds of arrows for clarity.

Limitations

∎ The number of arrows in an Iteration space graph can grow
exponentially with the number of iterations.

∎ Can we represent dependences in a more compact way?

Marc Moreno Maza Dependence Analysis and (Automatic) Parallelization CS4402 - CS9635 14 / 42



Iteration space graphs

Remarks

∎ Iteration space graphs can also be used to represent output and anti
dependences

∎ To this end, one can use different kinds of arrows for clarity.

Limitations

∎ The number of arrows in an Iteration space graph can grow
exponentially with the number of iterations.

∎ Can we represent dependences in a more compact way?

Marc Moreno Maza Dependence Analysis and (Automatic) Parallelization CS4402 - CS9635 14 / 42



Iteration space graphs

Remarks

∎ Iteration space graphs can also be used to represent output and anti
dependences

∎ To this end, one can use different kinds of arrows for clarity.

Limitations

∎ The number of arrows in an Iteration space graph can grow
exponentially with the number of iterations.

∎ Can we represent dependences in a more compact way?

Marc Moreno Maza Dependence Analysis and (Automatic) Parallelization CS4402 - CS9635 14 / 42



Iteration space graphs

Remarks

∎ Iteration space graphs can also be used to represent output and anti
dependences

∎ To this end, one can use different kinds of arrows for clarity.

Limitations

∎ The number of arrows in an Iteration space graph can grow
exponentially with the number of iterations.

∎ Can we represent dependences in a more compact way?

Marc Moreno Maza Dependence Analysis and (Automatic) Parallelization CS4402 - CS9635 14 / 42



Outline

1. Dependence analysis
1.1 Introductory examples
1.2 Data dependence classification
1.3 Iteration space graphs
1.4 Distance and direction vectors

2. (Automatic) parallelization
2.1 Data Dependence Tests
2.2 The polyhedral model

Marc Moreno Maza Dependence Analysis and (Automatic) Parallelization CS4402 - CS9635 15 / 42



Distance and direction vectors

Distance vector: informal definition

∎ The distance vector represents each dependence arrow in an iteration
space graph as a vector

∎ That is, it captures the “shape” of the dependence, but loses where
the dependence originates

∎ For the above 1D iteration space graph, the distance vector is (2)
∎ Indeed, each dependence is 2 iterations forward

Marc Moreno Maza Dependence Analysis and (Automatic) Parallelization CS4402 - CS9635 16 / 42



Distance and direction vectors

Distance vector: informal definition

∎ The distance vector represents each dependence arrow in an iteration
space graph as a vector

∎ That is, it captures the “shape” of the dependence, but loses where
the dependence originates

∎ For the above 1D iteration space graph, the distance vector is (2)
∎ Indeed, each dependence is 2 iterations forward

Marc Moreno Maza Dependence Analysis and (Automatic) Parallelization CS4402 - CS9635 16 / 42



Distance and direction vectors

Distance vector: informal definition

∎ The distance vector represents each dependence arrow in an iteration
space graph as a vector

∎ That is, it captures the “shape” of the dependence, but loses where
the dependence originates

∎ For the above 1D iteration space graph, the distance vector is (2)

∎ Indeed, each dependence is 2 iterations forward

Marc Moreno Maza Dependence Analysis and (Automatic) Parallelization CS4402 - CS9635 16 / 42



Distance and direction vectors

Distance vector: informal definition

∎ The distance vector represents each dependence arrow in an iteration
space graph as a vector

∎ That is, it captures the “shape” of the dependence, but loses where
the dependence originates

∎ For the above 1D iteration space graph, the distance vector is (2)
∎ Indeed, each dependence is 2 iterations forward

Marc Moreno Maza Dependence Analysis and (Automatic) Parallelization CS4402 - CS9635 16 / 42



Distance and direction vectors

Distance vector
For an 𝑛-loop nest, let 𝐼 = (𝑖1, . . . , 𝑖𝑛) and 𝐼 ′ = (𝑖′1, . . . , 𝑖′𝑛) be two
iterations. The distance vector 𝑑(𝐼, 𝐼 ′) from 𝐼 to 𝐼 ′ is a vector of length 𝑛
and with 𝑖′𝑘 − 𝑖𝑘 as 𝑘-th coordinate.

Direction vector
With the same notations as above, the direction vector 𝐷(𝐼, 𝐼 ′) is defined
as a vector of length 𝑛 such that

𝐷(𝐼, 𝐼 ′)𝑘 =

)︀⌉︀⌉︀⌉︀
⌋︀
⌉︀⌉︀⌉︀]︀

“ < ” if 𝑑(𝐼, 𝐼 ′)𝑘 > 0
“ = ” if 𝑑(𝐼, 𝐼 ′)𝑘 = 0
“ > ” if 𝑑(𝐼, 𝐼 ′)𝑘 < 0

Marc Moreno Maza Dependence Analysis and (Automatic) Parallelization CS4402 - CS9635 17 / 42



Distance and direction vectors

Distance vector
For an 𝑛-loop nest, let 𝐼 = (𝑖1, . . . , 𝑖𝑛) and 𝐼 ′ = (𝑖′1, . . . , 𝑖′𝑛) be two
iterations. The distance vector 𝑑(𝐼, 𝐼 ′) from 𝐼 to 𝐼 ′ is a vector of length 𝑛
and with 𝑖′𝑘 − 𝑖𝑘 as 𝑘-th coordinate.

Direction vector
With the same notations as above, the direction vector 𝐷(𝐼, 𝐼 ′) is defined
as a vector of length 𝑛 such that

𝐷(𝐼, 𝐼 ′)𝑘 =

)︀⌉︀⌉︀⌉︀
⌋︀
⌉︀⌉︀⌉︀]︀

“ < ” if 𝑑(𝐼, 𝐼 ′)𝑘 > 0
“ = ” if 𝑑(𝐼, 𝐼 ′)𝑘 = 0
“ > ” if 𝑑(𝐼, 𝐼 ′)𝑘 < 0

Marc Moreno Maza Dependence Analysis and (Automatic) Parallelization CS4402 - CS9635 17 / 42



Distance and direction vectors

Iteration space graphs

for (int i ...)
for (int j ...)

a[i + 1][j - 2] = a[i][j] +
a[i - 1][j - 2];

Distance and direction vectors

The distance vectors are: (1,−2), (2, 0)
The direction vectors are: (<,>), (<,=)

Marc Moreno Maza Dependence Analysis and (Automatic) Parallelization CS4402 - CS9635 18 / 42



Distance and direction vectors

Iteration space graphs

for (int i ...)
for (int j ...)

a[i + 1][j - 2] = a[i][j] +
a[i - 1][j - 2];

Distance and direction vectors
The distance vectors are: (1,−2), (2, 0)

The direction vectors are: (<,>), (<,=)

Marc Moreno Maza Dependence Analysis and (Automatic) Parallelization CS4402 - CS9635 18 / 42



Distance and direction vectors

Iteration space graphs

for (int i ...)
for (int j ...)

a[i + 1][j - 2] = a[i][j] +
a[i - 1][j - 2];

Distance and direction vectors
The distance vectors are: (1,−2), (2, 0)
The direction vectors are: (<,>), (<,=)

Marc Moreno Maza Dependence Analysis and (Automatic) Parallelization CS4402 - CS9635 18 / 42



Distance and direction vectors

Problems with distance vectors
Cannot always summarize as easily:

for (i = 0; i < N; i++)
a[2*i] = a[i];

Nevertheless:

∎ Direction vectors lose a lot of information, but do capture some useful
information: Which dimension and direction the dependence is in.

∎ Often, the only information we need to determine (in order to decide
whether an optimization is legal) is captured by direction vectors.

Marc Moreno Maza Dependence Analysis and (Automatic) Parallelization CS4402 - CS9635 19 / 42



Distance and direction vectors

Problems with distance vectors
Cannot always summarize as easily:

for (i = 0; i < N; i++)
a[2*i] = a[i];

Nevertheless:

∎ Direction vectors lose a lot of information, but do capture some useful
information: Which dimension and direction the dependence is in.

∎ Often, the only information we need to determine (in order to decide
whether an optimization is legal) is captured by direction vectors.

Marc Moreno Maza Dependence Analysis and (Automatic) Parallelization CS4402 - CS9635 19 / 42



More examples (1/3)

for (int i = 0; i < n; i++)
for (int j = 0; j < n; j++)

a[i][j + 1] = a[i][j] + 1;

Can parallelize i loop but not j loop

Marc Moreno Maza Dependence Analysis and (Automatic) Parallelization CS4402 - CS9635 20 / 42



More examples (1/3)

for (int i = 0; i < n; i++)
for (int j = 0; j < n; j++)

a[i][j + 1] = a[i][j] + 1;

Can parallelize i loop but not j loop

Marc Moreno Maza Dependence Analysis and (Automatic) Parallelization CS4402 - CS9635 20 / 42



More examples (2/3)

for (int i = 0; i < n; i++)
for (int j = 0; j < n; j++)

a[i+1][j] = a[i-1][j] + 1

Can parallelize j loop but not i loop

Marc Moreno Maza Dependence Analysis and (Automatic) Parallelization CS4402 - CS9635 21 / 42



More examples (2/3)

for (int i = 0; i < n; i++)
for (int j = 0; j < n; j++)

a[i+1][j] = a[i-1][j] + 1

Can parallelize j loop but not i loop

Marc Moreno Maza Dependence Analysis and (Automatic) Parallelization CS4402 - CS9635 21 / 42



More examples (3/3)

for (int i = 0; i < n; i++)
for (int j = 0; j < n; j++)

for (int k = 0; j < n; j++)
a[i+1][j][k] = a[i][j][k+1] + B

∎ Two iterations (𝑖0, 𝑗0, 𝑘0) and (𝑖0 +Δ𝑖, 𝑗0 +Δ𝑗, 𝑘0 +Δ𝑘) access the
same memory location, whenever we have:

𝑖0 + 1 = 𝑖0 +Δ𝑖; 𝑗0 = 𝑗0 +Δ𝑗; 𝑘0 = 𝑘0 +Δ𝑘 + 1.
∎ That is:

Δ𝑖 = 1; Δ𝑗 = 0; Δ𝑘 = −1.
∎ The corresponding direction vector is: (<,=,>).
∎ The 𝑗-loop can be vectorized.

Marc Moreno Maza Dependence Analysis and (Automatic) Parallelization CS4402 - CS9635 22 / 42



More examples (3/3)

for (int i = 0; i < n; i++)
for (int j = 0; j < n; j++)

for (int k = 0; j < n; j++)
a[i+1][j][k] = a[i][j][k+1] + B

∎ Two iterations (𝑖0, 𝑗0, 𝑘0) and (𝑖0 +Δ𝑖, 𝑗0 +Δ𝑗, 𝑘0 +Δ𝑘) access the
same memory location, whenever we have:

𝑖0 + 1 = 𝑖0 +Δ𝑖; 𝑗0 = 𝑗0 +Δ𝑗; 𝑘0 = 𝑘0 +Δ𝑘 + 1.

∎ That is:
Δ𝑖 = 1; Δ𝑗 = 0; Δ𝑘 = −1.

∎ The corresponding direction vector is: (<,=,>).
∎ The 𝑗-loop can be vectorized.

Marc Moreno Maza Dependence Analysis and (Automatic) Parallelization CS4402 - CS9635 22 / 42



More examples (3/3)

for (int i = 0; i < n; i++)
for (int j = 0; j < n; j++)

for (int k = 0; j < n; j++)
a[i+1][j][k] = a[i][j][k+1] + B

∎ Two iterations (𝑖0, 𝑗0, 𝑘0) and (𝑖0 +Δ𝑖, 𝑗0 +Δ𝑗, 𝑘0 +Δ𝑘) access the
same memory location, whenever we have:

𝑖0 + 1 = 𝑖0 +Δ𝑖; 𝑗0 = 𝑗0 +Δ𝑗; 𝑘0 = 𝑘0 +Δ𝑘 + 1.
∎ That is:

Δ𝑖 = 1; Δ𝑗 = 0; Δ𝑘 = −1.

∎ The corresponding direction vector is: (<,=,>).
∎ The 𝑗-loop can be vectorized.

Marc Moreno Maza Dependence Analysis and (Automatic) Parallelization CS4402 - CS9635 22 / 42



More examples (3/3)

for (int i = 0; i < n; i++)
for (int j = 0; j < n; j++)

for (int k = 0; j < n; j++)
a[i+1][j][k] = a[i][j][k+1] + B

∎ Two iterations (𝑖0, 𝑗0, 𝑘0) and (𝑖0 +Δ𝑖, 𝑗0 +Δ𝑗, 𝑘0 +Δ𝑘) access the
same memory location, whenever we have:

𝑖0 + 1 = 𝑖0 +Δ𝑖; 𝑗0 = 𝑗0 +Δ𝑗; 𝑘0 = 𝑘0 +Δ𝑘 + 1.
∎ That is:

Δ𝑖 = 1; Δ𝑗 = 0; Δ𝑘 = −1.
∎ The corresponding direction vector is: (<,=,>).
∎ The 𝑗-loop can be vectorized.

Marc Moreno Maza Dependence Analysis and (Automatic) Parallelization CS4402 - CS9635 22 / 42



Outline

1. Dependence analysis
1.1 Introductory examples
1.2 Data dependence classification
1.3 Iteration space graphs
1.4 Distance and direction vectors

2. (Automatic) parallelization
2.1 Data Dependence Tests
2.2 The polyhedral model

Marc Moreno Maza Dependence Analysis and (Automatic) Parallelization CS4402 - CS9635 23 / 42



Outline

1. Dependence analysis
1.1 Introductory examples
1.2 Data dependence classification
1.3 Iteration space graphs
1.4 Distance and direction vectors

2. (Automatic) parallelization
2.1 Data Dependence Tests
2.2 The polyhedral model

Marc Moreno Maza Dependence Analysis and (Automatic) Parallelization CS4402 - CS9635 24 / 42



Delinearization

Linearized multi-dimensional array

for (int i = 0; i < n; i ++)
for (int j = i + 1; j < n; j ++)

A[i * n + j] =
A[n * n - n + j - 1];

)︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀
⌋︀
⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀]︀

0 ≤ 𝑖1 < 𝑛
𝑖1 + 1 ≤ 𝑗1 < 𝑛

0 ≤ 𝑖2 < 𝑛
𝑖2 + 1 ≤ 𝑗2 < 𝑛

𝑖1 ∗ 𝑛 + 𝑗1 = 𝑛2 − 𝑛 + 𝑗2 − 1

(1)

Delinearized multi-dimensional array

for (int i = 0; i < n; i ++)
for (int j = i + 1; j < n; j ++)

A[i][j] = A[n - 1][j - 1];

)︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀
⌋︀
⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀]︀

0 ≤ 𝑖1 < 𝑛
𝑖1 + 1 ≤ 𝑗1 < 𝑛

0 ≤ 𝑖2 < 𝑛
𝑖2 + 1 ≤ 𝑗2 < 𝑛

𝑖1 = 𝑛 − 1
𝑗1 = 𝑗2 − 1

(2)

Marc Moreno Maza Dependence Analysis and (Automatic) Parallelization CS4402 - CS9635 25 / 42



Type of array references

∎ We assume that arrays are multi-dimensional, thus delinearization has
been applied.

∎ A pair of array references (or subscripts) in the same dimension is

ë zero index variable (ZIV) if it does not involve any loop counter,
ë single index variable (SIV) if it involves only one loop counter
ë multiple index variable (MIV) if it involves more than one one loop

counter.

for (int i = 0; i < n; i++)
for (int j = 0; j < n; j++)

for (int k = 0; j < n; j++)
a [5][i+1][j] = a[N][i][k] + B

In the above loop body, the pair [5], [N] is ZIV, the pair [i+1],[i] is
SIV and the pair [j],[k] is MIV.

Marc Moreno Maza Dependence Analysis and (Automatic) Parallelization CS4402 - CS9635 26 / 42



Type of array references

∎ We assume that arrays are multi-dimensional, thus delinearization has
been applied.

∎ A pair of array references (or subscripts) in the same dimension is

ë zero index variable (ZIV) if it does not involve any loop counter,
ë single index variable (SIV) if it involves only one loop counter
ë multiple index variable (MIV) if it involves more than one one loop

counter.

for (int i = 0; i < n; i++)
for (int j = 0; j < n; j++)

for (int k = 0; j < n; j++)
a [5][i+1][j] = a[N][i][k] + B

In the above loop body, the pair [5], [N] is ZIV, the pair [i+1],[i] is
SIV and the pair [j],[k] is MIV.

Marc Moreno Maza Dependence Analysis and (Automatic) Parallelization CS4402 - CS9635 26 / 42



Type of array references

∎ We assume that arrays are multi-dimensional, thus delinearization has
been applied.

∎ A pair of array references (or subscripts) in the same dimension is
ë zero index variable (ZIV) if it does not involve any loop counter,

ë single index variable (SIV) if it involves only one loop counter
ë multiple index variable (MIV) if it involves more than one one loop

counter.

for (int i = 0; i < n; i++)
for (int j = 0; j < n; j++)

for (int k = 0; j < n; j++)
a [5][i+1][j] = a[N][i][k] + B

In the above loop body, the pair [5], [N] is ZIV, the pair [i+1],[i] is
SIV and the pair [j],[k] is MIV.

Marc Moreno Maza Dependence Analysis and (Automatic) Parallelization CS4402 - CS9635 26 / 42



Type of array references

∎ We assume that arrays are multi-dimensional, thus delinearization has
been applied.

∎ A pair of array references (or subscripts) in the same dimension is
ë zero index variable (ZIV) if it does not involve any loop counter,
ë single index variable (SIV) if it involves only one loop counter

ë multiple index variable (MIV) if it involves more than one one loop
counter.

for (int i = 0; i < n; i++)
for (int j = 0; j < n; j++)

for (int k = 0; j < n; j++)
a [5][i+1][j] = a[N][i][k] + B

In the above loop body, the pair [5], [N] is ZIV, the pair [i+1],[i] is
SIV and the pair [j],[k] is MIV.

Marc Moreno Maza Dependence Analysis and (Automatic) Parallelization CS4402 - CS9635 26 / 42



Type of array references

∎ We assume that arrays are multi-dimensional, thus delinearization has
been applied.

∎ A pair of array references (or subscripts) in the same dimension is
ë zero index variable (ZIV) if it does not involve any loop counter,
ë single index variable (SIV) if it involves only one loop counter
ë multiple index variable (MIV) if it involves more than one one loop

counter.

for (int i = 0; i < n; i++)
for (int j = 0; j < n; j++)

for (int k = 0; j < n; j++)
a [5][i+1][j] = a[N][i][k] + B

In the above loop body, the pair [5], [N] is ZIV, the pair [i+1],[i] is
SIV and the pair [j],[k] is MIV.

Marc Moreno Maza Dependence Analysis and (Automatic) Parallelization CS4402 - CS9635 26 / 42



ZIV test

∎ Consider two statements 𝑆1 and 𝑆2 accessing an array 𝐴, one of
them for writing.

∎ Suppose that for that pair, we have a ZIV
∎ If the two index expressions are different, then the corresponding array

references are independent.
∎ If the two index expressions are the same, further dependence analysis

is needed.

Marc Moreno Maza Dependence Analysis and (Automatic) Parallelization CS4402 - CS9635 27 / 42



ZIV test

∎ Consider two statements 𝑆1 and 𝑆2 accessing an array 𝐴, one of
them for writing.

∎ Suppose that for that pair, we have a ZIV

∎ If the two index expressions are different, then the corresponding array
references are independent.

∎ If the two index expressions are the same, further dependence analysis
is needed.

Marc Moreno Maza Dependence Analysis and (Automatic) Parallelization CS4402 - CS9635 27 / 42



ZIV test

∎ Consider two statements 𝑆1 and 𝑆2 accessing an array 𝐴, one of
them for writing.

∎ Suppose that for that pair, we have a ZIV
∎ If the two index expressions are different, then the corresponding array

references are independent.

∎ If the two index expressions are the same, further dependence analysis
is needed.

Marc Moreno Maza Dependence Analysis and (Automatic) Parallelization CS4402 - CS9635 27 / 42



ZIV test

∎ Consider two statements 𝑆1 and 𝑆2 accessing an array 𝐴, one of
them for writing.

∎ Suppose that for that pair, we have a ZIV
∎ If the two index expressions are different, then the corresponding array

references are independent.
∎ If the two index expressions are the same, further dependence analysis

is needed.

Marc Moreno Maza Dependence Analysis and (Automatic) Parallelization CS4402 - CS9635 27 / 42



Strong SIV

∎ Consider two statements 𝑆1 and 𝑆2 accessing an array 𝐴, one of
them for writing.

∎ Suppose that for both, a subscript is SIV and involves the index 𝑖.
∎ We say that this SIV subscript is strong if the two index expressions

are of the form 𝑎 𝑖 + 𝑐1, 𝑎 𝑖′ + 𝑐2 respectively, where 𝑎, 𝑐1, 𝑐2 are
integers with 𝑎 ≠ 0.

∎ The corresponding dependence distance is calculated by

𝑑 = 𝑖′ − 𝑖 =
𝑐1 − 𝑐2

𝑎
.

Strong SIV Test

∎ A dependence exists between two references only if ⋃︀𝑑⋃︀ ≤ 𝑈 −𝐿, where
𝑈 and 𝐿 are the loop upper and lower bounds for the index 𝑖.

∎ Otherwise, no dependence exists.

Marc Moreno Maza Dependence Analysis and (Automatic) Parallelization CS4402 - CS9635 28 / 42



Strong SIV

∎ Consider two statements 𝑆1 and 𝑆2 accessing an array 𝐴, one of
them for writing.

∎ Suppose that for both, a subscript is SIV and involves the index 𝑖.

∎ We say that this SIV subscript is strong if the two index expressions
are of the form 𝑎 𝑖 + 𝑐1, 𝑎 𝑖′ + 𝑐2 respectively, where 𝑎, 𝑐1, 𝑐2 are
integers with 𝑎 ≠ 0.

∎ The corresponding dependence distance is calculated by

𝑑 = 𝑖′ − 𝑖 =
𝑐1 − 𝑐2

𝑎
.

Strong SIV Test

∎ A dependence exists between two references only if ⋃︀𝑑⋃︀ ≤ 𝑈 −𝐿, where
𝑈 and 𝐿 are the loop upper and lower bounds for the index 𝑖.

∎ Otherwise, no dependence exists.

Marc Moreno Maza Dependence Analysis and (Automatic) Parallelization CS4402 - CS9635 28 / 42



Strong SIV

∎ Consider two statements 𝑆1 and 𝑆2 accessing an array 𝐴, one of
them for writing.

∎ Suppose that for both, a subscript is SIV and involves the index 𝑖.
∎ We say that this SIV subscript is strong if the two index expressions

are of the form 𝑎 𝑖 + 𝑐1, 𝑎 𝑖′ + 𝑐2 respectively, where 𝑎, 𝑐1, 𝑐2 are
integers with 𝑎 ≠ 0.

∎ The corresponding dependence distance is calculated by

𝑑 = 𝑖′ − 𝑖 =
𝑐1 − 𝑐2

𝑎
.

Strong SIV Test

∎ A dependence exists between two references only if ⋃︀𝑑⋃︀ ≤ 𝑈 −𝐿, where
𝑈 and 𝐿 are the loop upper and lower bounds for the index 𝑖.

∎ Otherwise, no dependence exists.

Marc Moreno Maza Dependence Analysis and (Automatic) Parallelization CS4402 - CS9635 28 / 42



Strong SIV

∎ Consider two statements 𝑆1 and 𝑆2 accessing an array 𝐴, one of
them for writing.

∎ Suppose that for both, a subscript is SIV and involves the index 𝑖.
∎ We say that this SIV subscript is strong if the two index expressions

are of the form 𝑎 𝑖 + 𝑐1, 𝑎 𝑖′ + 𝑐2 respectively, where 𝑎, 𝑐1, 𝑐2 are
integers with 𝑎 ≠ 0.

∎ The corresponding dependence distance is calculated by

𝑑 = 𝑖′ − 𝑖 =
𝑐1 − 𝑐2

𝑎
.

Strong SIV Test

∎ A dependence exists between two references only if ⋃︀𝑑⋃︀ ≤ 𝑈 −𝐿, where
𝑈 and 𝐿 are the loop upper and lower bounds for the index 𝑖.

∎ Otherwise, no dependence exists.

Marc Moreno Maza Dependence Analysis and (Automatic) Parallelization CS4402 - CS9635 28 / 42



Strong SIV

∎ Consider two statements 𝑆1 and 𝑆2 accessing an array 𝐴, one of
them for writing.

∎ Suppose that for both, a subscript is SIV and involves the index 𝑖.
∎ We say that this SIV subscript is strong if the two index expressions

are of the form 𝑎 𝑖 + 𝑐1, 𝑎 𝑖′ + 𝑐2 respectively, where 𝑎, 𝑐1, 𝑐2 are
integers with 𝑎 ≠ 0.

∎ The corresponding dependence distance is calculated by

𝑑 = 𝑖′ − 𝑖 =
𝑐1 − 𝑐2

𝑎
.

Strong SIV Test

∎ A dependence exists between two references only if ⋃︀𝑑⋃︀ ≤ 𝑈 −𝐿, where
𝑈 and 𝐿 are the loop upper and lower bounds for the index 𝑖.

∎ Otherwise, no dependence exists.

Marc Moreno Maza Dependence Analysis and (Automatic) Parallelization CS4402 - CS9635 28 / 42



Strong SIV

∎ Consider two statements 𝑆1 and 𝑆2 accessing an array 𝐴, one of
them for writing.

∎ Suppose that for both, a subscript is SIV and involves the index 𝑖.
∎ We say that this SIV subscript is strong if the two index expressions

are of the form 𝑎 𝑖 + 𝑐1, 𝑎 𝑖′ + 𝑐2 respectively, where 𝑎, 𝑐1, 𝑐2 are
integers with 𝑎 ≠ 0.

∎ The corresponding dependence distance is calculated by

𝑑 = 𝑖′ − 𝑖 =
𝑐1 − 𝑐2

𝑎
.

Strong SIV Test

∎ A dependence exists between two references only if ⋃︀𝑑⋃︀ ≤ 𝑈 −𝐿, where
𝑈 and 𝐿 are the loop upper and lower bounds for the index 𝑖.

∎ Otherwise, no dependence exists.

Marc Moreno Maza Dependence Analysis and (Automatic) Parallelization CS4402 - CS9635 28 / 42



Strong SIV test example

do 𝐼 = 1, 𝑁
𝑆1 : 𝐴(𝐼 + 2 ∗𝑁) = 𝐴(𝐼 +𝑁) +𝐵
enddo

∎ The dependence distance: 𝑑 = 2 ∗𝑁 −𝑁 = 𝑁 ;
∎ 𝑈 −𝐿 = 𝑁 − 1;
∎ Thus, since ⋃︀𝑑⋃︀ > 𝑈 −𝐿, no dependence exists.

parallel do 𝐼 = 1, 𝑁
𝑆1 : 𝐴(𝐼 + 2 ∗𝑁) = 𝐴(𝐼 +𝑁) +𝐵
enddo

Marc Moreno Maza Dependence Analysis and (Automatic) Parallelization CS4402 - CS9635 29 / 42



Strong SIV test example

do 𝐼 = 1, 𝑁
𝑆1 : 𝐴(𝐼 + 2 ∗𝑁) = 𝐴(𝐼 +𝑁) +𝐵
enddo

∎ The dependence distance: 𝑑 = 2 ∗𝑁 −𝑁 = 𝑁 ;

∎ 𝑈 −𝐿 = 𝑁 − 1;
∎ Thus, since ⋃︀𝑑⋃︀ > 𝑈 −𝐿, no dependence exists.

parallel do 𝐼 = 1, 𝑁
𝑆1 : 𝐴(𝐼 + 2 ∗𝑁) = 𝐴(𝐼 +𝑁) +𝐵
enddo

Marc Moreno Maza Dependence Analysis and (Automatic) Parallelization CS4402 - CS9635 29 / 42



Strong SIV test example

do 𝐼 = 1, 𝑁
𝑆1 : 𝐴(𝐼 + 2 ∗𝑁) = 𝐴(𝐼 +𝑁) +𝐵
enddo

∎ The dependence distance: 𝑑 = 2 ∗𝑁 −𝑁 = 𝑁 ;
∎ 𝑈 −𝐿 = 𝑁 − 1;

∎ Thus, since ⋃︀𝑑⋃︀ > 𝑈 −𝐿, no dependence exists.

parallel do 𝐼 = 1, 𝑁
𝑆1 : 𝐴(𝐼 + 2 ∗𝑁) = 𝐴(𝐼 +𝑁) +𝐵
enddo

Marc Moreno Maza Dependence Analysis and (Automatic) Parallelization CS4402 - CS9635 29 / 42



Strong SIV test example

do 𝐼 = 1, 𝑁
𝑆1 : 𝐴(𝐼 + 2 ∗𝑁) = 𝐴(𝐼 +𝑁) +𝐵
enddo

∎ The dependence distance: 𝑑 = 2 ∗𝑁 −𝑁 = 𝑁 ;
∎ 𝑈 −𝐿 = 𝑁 − 1;
∎ Thus, since ⋃︀𝑑⋃︀ > 𝑈 −𝐿, no dependence exists.

parallel do 𝐼 = 1, 𝑁
𝑆1 : 𝐴(𝐼 + 2 ∗𝑁) = 𝐴(𝐼 +𝑁) +𝐵
enddo

Marc Moreno Maza Dependence Analysis and (Automatic) Parallelization CS4402 - CS9635 29 / 42



Strong SIV test example

do 𝐼 = 1, 𝑁
𝑆1 : 𝐴(𝐼 + 2 ∗𝑁) = 𝐴(𝐼 +𝑁) +𝐵
enddo

∎ The dependence distance: 𝑑 = 2 ∗𝑁 −𝑁 = 𝑁 ;
∎ 𝑈 −𝐿 = 𝑁 − 1;
∎ Thus, since ⋃︀𝑑⋃︀ > 𝑈 −𝐿, no dependence exists.

parallel do 𝐼 = 1, 𝑁
𝑆1 : 𝐴(𝐼 + 2 ∗𝑁) = 𝐴(𝐼 +𝑁) +𝐵
enddo

Marc Moreno Maza Dependence Analysis and (Automatic) Parallelization CS4402 - CS9635 29 / 42



Weak SIV test

∎ Consider two statements 𝑆1 and 𝑆2 accessing an array 𝐴, one of
them for writing.

∎ Suppose that for both, a subscript is SIV and involves the index 𝑖.
∎ We say that this SIV subscript is weak if the two index expressions

are of the form 𝑎1 𝑖+ 𝑐1, 𝑎2 𝑖′ + 𝑐2, where 𝑎1, 𝑎2, 𝑐1, 𝑐2 are integers with
𝑎1 ≠ 𝑎2 and non-zero.

∎ The dependence equation is
𝑎1 𝑖 + 𝑐1 = 𝑎2 𝑖′ + 𝑐2.

Marc Moreno Maza Dependence Analysis and (Automatic) Parallelization CS4402 - CS9635 30 / 42



Weak SIV test

∎ Consider two statements 𝑆1 and 𝑆2 accessing an array 𝐴, one of
them for writing.

∎ Suppose that for both, a subscript is SIV and involves the index 𝑖.

∎ We say that this SIV subscript is weak if the two index expressions
are of the form 𝑎1 𝑖+ 𝑐1, 𝑎2 𝑖′ + 𝑐2, where 𝑎1, 𝑎2, 𝑐1, 𝑐2 are integers with
𝑎1 ≠ 𝑎2 and non-zero.

∎ The dependence equation is
𝑎1 𝑖 + 𝑐1 = 𝑎2 𝑖′ + 𝑐2.

Marc Moreno Maza Dependence Analysis and (Automatic) Parallelization CS4402 - CS9635 30 / 42



Weak SIV test

∎ Consider two statements 𝑆1 and 𝑆2 accessing an array 𝐴, one of
them for writing.

∎ Suppose that for both, a subscript is SIV and involves the index 𝑖.
∎ We say that this SIV subscript is weak if the two index expressions

are of the form 𝑎1 𝑖+ 𝑐1, 𝑎2 𝑖′ + 𝑐2, where 𝑎1, 𝑎2, 𝑐1, 𝑐2 are integers with
𝑎1 ≠ 𝑎2 and non-zero.

∎ The dependence equation is
𝑎1 𝑖 + 𝑐1 = 𝑎2 𝑖′ + 𝑐2.

Marc Moreno Maza Dependence Analysis and (Automatic) Parallelization CS4402 - CS9635 30 / 42



Weak SIV test

∎ Consider two statements 𝑆1 and 𝑆2 accessing an array 𝐴, one of
them for writing.

∎ Suppose that for both, a subscript is SIV and involves the index 𝑖.
∎ We say that this SIV subscript is weak if the two index expressions

are of the form 𝑎1 𝑖+ 𝑐1, 𝑎2 𝑖′ + 𝑐2, where 𝑎1, 𝑎2, 𝑐1, 𝑐2 are integers with
𝑎1 ≠ 𝑎2 and non-zero.

∎ The dependence equation is
𝑎1 𝑖 + 𝑐1 = 𝑎2 𝑖′ + 𝑐2.

Marc Moreno Maza Dependence Analysis and (Automatic) Parallelization CS4402 - CS9635 30 / 42



Weak SIV test

∎ Consider two statements 𝑆1 and 𝑆2 accessing an array 𝐴, one of
them for writing.

∎ Suppose that for both, a subscript is SIV and involves the index 𝑖.
∎ We say that this SIV subscript is weak if the two index expressions

are of the form 𝑎1 𝑖+ 𝑐1, 𝑎2 𝑖′ + 𝑐2, where 𝑎1, 𝑎2, 𝑐1, 𝑐2 are integers with
𝑎1 ≠ 𝑎2 and non-zero.

∎ The dependence equation is
𝑎1 𝑖 + 𝑐1 = 𝑎2 𝑖′ + 𝑐2.

Marc Moreno Maza Dependence Analysis and (Automatic) Parallelization CS4402 - CS9635 30 / 42



Weak SIV test example (1/2)

∎ When 𝑎2 = −𝑎1, the dependence equation becomes

𝑖 + 𝑖′ =
𝑐2 − 𝑐1

𝑎1
.

∎ Thus 𝑎1 must divide 𝑐2 − 𝑐1 in order to have a solution.
∎ With the example on the next slide, we have 𝑖 = 𝑛 − 𝑖′ + 1 with

1 ≤ 𝑖, 𝑖′ ≤ 𝑛.
∎ This leads to

𝑖 + 𝑖′ = 𝑛 + 1

∎ To break this dependence (assuming 𝑛 is even for simplicity) we split
the loop into two: 1 ≤ 𝑖 ≤ 𝑛⇑2 and 𝑛⇑2 + 1 ≤ 𝑖 ≤ 𝑛.

Marc Moreno Maza Dependence Analysis and (Automatic) Parallelization CS4402 - CS9635 31 / 42



Weak SIV test example (1/2)

∎ When 𝑎2 = −𝑎1, the dependence equation becomes

𝑖 + 𝑖′ =
𝑐2 − 𝑐1

𝑎1
.

∎ Thus 𝑎1 must divide 𝑐2 − 𝑐1 in order to have a solution.

∎ With the example on the next slide, we have 𝑖 = 𝑛 − 𝑖′ + 1 with
1 ≤ 𝑖, 𝑖′ ≤ 𝑛.

∎ This leads to
𝑖 + 𝑖′ = 𝑛 + 1

∎ To break this dependence (assuming 𝑛 is even for simplicity) we split
the loop into two: 1 ≤ 𝑖 ≤ 𝑛⇑2 and 𝑛⇑2 + 1 ≤ 𝑖 ≤ 𝑛.

Marc Moreno Maza Dependence Analysis and (Automatic) Parallelization CS4402 - CS9635 31 / 42



Weak SIV test example (1/2)

∎ When 𝑎2 = −𝑎1, the dependence equation becomes

𝑖 + 𝑖′ =
𝑐2 − 𝑐1

𝑎1
.

∎ Thus 𝑎1 must divide 𝑐2 − 𝑐1 in order to have a solution.
∎ With the example on the next slide, we have 𝑖 = 𝑛 − 𝑖′ + 1 with

1 ≤ 𝑖, 𝑖′ ≤ 𝑛.

∎ This leads to
𝑖 + 𝑖′ = 𝑛 + 1

∎ To break this dependence (assuming 𝑛 is even for simplicity) we split
the loop into two: 1 ≤ 𝑖 ≤ 𝑛⇑2 and 𝑛⇑2 + 1 ≤ 𝑖 ≤ 𝑛.

Marc Moreno Maza Dependence Analysis and (Automatic) Parallelization CS4402 - CS9635 31 / 42



Weak SIV test example (1/2)

∎ When 𝑎2 = −𝑎1, the dependence equation becomes

𝑖 + 𝑖′ =
𝑐2 − 𝑐1

𝑎1
.

∎ Thus 𝑎1 must divide 𝑐2 − 𝑐1 in order to have a solution.
∎ With the example on the next slide, we have 𝑖 = 𝑛 − 𝑖′ + 1 with

1 ≤ 𝑖, 𝑖′ ≤ 𝑛.
∎ This leads to

𝑖 + 𝑖′ = 𝑛 + 1

∎ To break this dependence (assuming 𝑛 is even for simplicity) we split
the loop into two: 1 ≤ 𝑖 ≤ 𝑛⇑2 and 𝑛⇑2 + 1 ≤ 𝑖 ≤ 𝑛.

Marc Moreno Maza Dependence Analysis and (Automatic) Parallelization CS4402 - CS9635 31 / 42



Weak SIV test example (1/2)

∎ When 𝑎2 = −𝑎1, the dependence equation becomes

𝑖 + 𝑖′ =
𝑐2 − 𝑐1

𝑎1
.

∎ Thus 𝑎1 must divide 𝑐2 − 𝑐1 in order to have a solution.
∎ With the example on the next slide, we have 𝑖 = 𝑛 − 𝑖′ + 1 with

1 ≤ 𝑖, 𝑖′ ≤ 𝑛.
∎ This leads to

𝑖 + 𝑖′ = 𝑛 + 1

∎ To break this dependence (assuming 𝑛 is even for simplicity) we split
the loop into two: 1 ≤ 𝑖 ≤ 𝑛⇑2 and 𝑛⇑2 + 1 ≤ 𝑖 ≤ 𝑛.

Marc Moreno Maza Dependence Analysis and (Automatic) Parallelization CS4402 - CS9635 31 / 42



Weak SIV test example (2/2)

do 𝐼 = 1, 𝑁
𝑆1 : 𝐴(𝐼) = 𝐴(𝑁 − 𝐼 + 1) +𝐵
enddo

parallel do 𝐼 = 1, 𝑁⇑2
𝑆1 : 𝐴(𝐼) = 𝐴(𝑁 − 𝐼 + 1) +𝐵
enddo parallel do 𝐼 = 𝑁⇑2 + 1, 𝑁
𝑆2 : 𝐴(𝐼) = 𝐴(𝑁 − 𝐼 + 1) +𝐵
enddo

Marc Moreno Maza Dependence Analysis and (Automatic) Parallelization CS4402 - CS9635 32 / 42



Weak SIV test example (2/2)

do 𝐼 = 1, 𝑁
𝑆1 : 𝐴(𝐼) = 𝐴(𝑁 − 𝐼 + 1) +𝐵
enddo

parallel do 𝐼 = 1, 𝑁⇑2
𝑆1 : 𝐴(𝐼) = 𝐴(𝑁 − 𝐼 + 1) +𝐵
enddo parallel do 𝐼 = 𝑁⇑2 + 1, 𝑁
𝑆2 : 𝐴(𝐼) = 𝐴(𝑁 − 𝐼 + 1) +𝐵
enddo

Marc Moreno Maza Dependence Analysis and (Automatic) Parallelization CS4402 - CS9635 32 / 42



Symbolic SIV test

do 𝐼 = 𝐿1, 𝑈1
𝑆1 : 𝐴(𝑎1 ∗ 𝐼 + 𝑐1) = . . .
enddo
do 𝐽 = 𝐿2, 𝑈2
𝑆2 : 𝐴(𝑎2 ∗ 𝐽 + 𝑐2) = . . .
enddo

∎ A dependence exists if the following dependence equation is satisfied

𝑎1 𝑖 − 𝑎2 𝑗 = 𝑐2 − 𝑐1,

for some index value of 𝑖, s.t. 𝐿1 ≤ 𝑖 ≤ 𝑈1, and 𝑗, s.t. 𝐿2 ≤ 𝑗 ≤ 𝑈2.
∎ Hence, for 𝑎1 > 0, there is a dependence only if

𝑎1 𝐿1 − 𝑎2 𝑈2 ≤ 𝑐2 − 𝑐1 ≤ 𝑎1 𝑈1 − 𝑎2 𝐿2, if 𝑎2 > 0;
𝑎1 𝐿1 − 𝑎2 𝐿2 ≤ 𝑐2 − 𝑐1 ≤ 𝑎1 𝑈1 − 𝑎2 𝑈2, if 𝑎2 < 0.

Marc Moreno Maza Dependence Analysis and (Automatic) Parallelization CS4402 - CS9635 33 / 42



Symbolic SIV test

do 𝐼 = 𝐿1, 𝑈1
𝑆1 : 𝐴(𝑎1 ∗ 𝐼 + 𝑐1) = . . .
enddo
do 𝐽 = 𝐿2, 𝑈2
𝑆2 : 𝐴(𝑎2 ∗ 𝐽 + 𝑐2) = . . .
enddo

∎ A dependence exists if the following dependence equation is satisfied

𝑎1 𝑖 − 𝑎2 𝑗 = 𝑐2 − 𝑐1,

for some index value of 𝑖, s.t. 𝐿1 ≤ 𝑖 ≤ 𝑈1, and 𝑗, s.t. 𝐿2 ≤ 𝑗 ≤ 𝑈2.

∎ Hence, for 𝑎1 > 0, there is a dependence only if

𝑎1 𝐿1 − 𝑎2 𝑈2 ≤ 𝑐2 − 𝑐1 ≤ 𝑎1 𝑈1 − 𝑎2 𝐿2, if 𝑎2 > 0;
𝑎1 𝐿1 − 𝑎2 𝐿2 ≤ 𝑐2 − 𝑐1 ≤ 𝑎1 𝑈1 − 𝑎2 𝑈2, if 𝑎2 < 0.

Marc Moreno Maza Dependence Analysis and (Automatic) Parallelization CS4402 - CS9635 33 / 42



Symbolic SIV test

do 𝐼 = 𝐿1, 𝑈1
𝑆1 : 𝐴(𝑎1 ∗ 𝐼 + 𝑐1) = . . .
enddo
do 𝐽 = 𝐿2, 𝑈2
𝑆2 : 𝐴(𝑎2 ∗ 𝐽 + 𝑐2) = . . .
enddo

∎ A dependence exists if the following dependence equation is satisfied

𝑎1 𝑖 − 𝑎2 𝑗 = 𝑐2 − 𝑐1,

for some index value of 𝑖, s.t. 𝐿1 ≤ 𝑖 ≤ 𝑈1, and 𝑗, s.t. 𝐿2 ≤ 𝑗 ≤ 𝑈2.
∎ Hence, for 𝑎1 > 0, there is a dependence only if

𝑎1 𝐿1 − 𝑎2 𝑈2 ≤ 𝑐2 − 𝑐1 ≤ 𝑎1 𝑈1 − 𝑎2 𝐿2, if 𝑎2 > 0;
𝑎1 𝐿1 − 𝑎2 𝐿2 ≤ 𝑐2 − 𝑐1 ≤ 𝑎1 𝑈1 − 𝑎2 𝑈2, if 𝑎2 < 0.

Marc Moreno Maza Dependence Analysis and (Automatic) Parallelization CS4402 - CS9635 33 / 42



Symbolic SIV test: idea of the proof

∎ The solutions of the linear Diophantine equation

𝑎1 𝑥 − 𝑏1 𝑦 = 𝑏0 − 𝑎0

provide the values 𝑖, 𝑗 of the index variable of the previous symbolic
SIV test.

∎ Let 𝑒𝑎 and 𝑒𝑏 be two values such that 𝑒𝑎 𝑎1 + 𝑒𝑏 𝑏1 = gcd(𝑎1, 𝑏1).
∎ The solutions of the Diophantine equation are given by

𝑥𝑘 = 𝑒𝑎 ( 𝑏0−𝑎0
𝑔 ) + 𝑘 𝑏1

𝑔

𝑦𝑘 = 𝑒𝑏 (
𝑏0−𝑎0

𝑔 ) + 𝑘 𝑎1
𝑔

∎ For dependence to exist, these solutions must occur in the region
defined by the loop bounds.

Marc Moreno Maza Dependence Analysis and (Automatic) Parallelization CS4402 - CS9635 34 / 42



Symbolic SIV test: idea of the proof

∎ The solutions of the linear Diophantine equation

𝑎1 𝑥 − 𝑏1 𝑦 = 𝑏0 − 𝑎0

provide the values 𝑖, 𝑗 of the index variable of the previous symbolic
SIV test.

∎ Let 𝑒𝑎 and 𝑒𝑏 be two values such that 𝑒𝑎 𝑎1 + 𝑒𝑏 𝑏1 = gcd(𝑎1, 𝑏1).

∎ The solutions of the Diophantine equation are given by

𝑥𝑘 = 𝑒𝑎 ( 𝑏0−𝑎0
𝑔 ) + 𝑘 𝑏1

𝑔

𝑦𝑘 = 𝑒𝑏 (
𝑏0−𝑎0

𝑔 ) + 𝑘 𝑎1
𝑔

∎ For dependence to exist, these solutions must occur in the region
defined by the loop bounds.

Marc Moreno Maza Dependence Analysis and (Automatic) Parallelization CS4402 - CS9635 34 / 42



Symbolic SIV test: idea of the proof

∎ The solutions of the linear Diophantine equation

𝑎1 𝑥 − 𝑏1 𝑦 = 𝑏0 − 𝑎0

provide the values 𝑖, 𝑗 of the index variable of the previous symbolic
SIV test.

∎ Let 𝑒𝑎 and 𝑒𝑏 be two values such that 𝑒𝑎 𝑎1 + 𝑒𝑏 𝑏1 = gcd(𝑎1, 𝑏1).
∎ The solutions of the Diophantine equation are given by

𝑥𝑘 = 𝑒𝑎 ( 𝑏0−𝑎0
𝑔 ) + 𝑘 𝑏1

𝑔

𝑦𝑘 = 𝑒𝑏 (
𝑏0−𝑎0

𝑔 ) + 𝑘 𝑎1
𝑔

∎ For dependence to exist, these solutions must occur in the region
defined by the loop bounds.

Marc Moreno Maza Dependence Analysis and (Automatic) Parallelization CS4402 - CS9635 34 / 42



Symbolic SIV test: idea of the proof

∎ The solutions of the linear Diophantine equation

𝑎1 𝑥 − 𝑏1 𝑦 = 𝑏0 − 𝑎0

provide the values 𝑖, 𝑗 of the index variable of the previous symbolic
SIV test.

∎ Let 𝑒𝑎 and 𝑒𝑏 be two values such that 𝑒𝑎 𝑎1 + 𝑒𝑏 𝑏1 = gcd(𝑎1, 𝑏1).
∎ The solutions of the Diophantine equation are given by

𝑥𝑘 = 𝑒𝑎 ( 𝑏0−𝑎0
𝑔 ) + 𝑘 𝑏1

𝑔

𝑦𝑘 = 𝑒𝑏 (
𝑏0−𝑎0

𝑔 ) + 𝑘 𝑎1
𝑔

∎ For dependence to exist, these solutions must occur in the region
defined by the loop bounds.

Marc Moreno Maza Dependence Analysis and (Automatic) Parallelization CS4402 - CS9635 34 / 42



Outline

1. Dependence analysis
1.1 Introductory examples
1.2 Data dependence classification
1.3 Iteration space graphs
1.4 Distance and direction vectors

2. (Automatic) parallelization
2.1 Data Dependence Tests
2.2 The polyhedral model

Marc Moreno Maza Dependence Analysis and (Automatic) Parallelization CS4402 - CS9635 35 / 42



Key notions (1/2)

∎ The polyhedral model is mathematical framework for analyzing, scheduling
and optimizing for-loop nests.

∎ It views the iterations of a for-loop nest as the integer points of a polyhedral
set.

∎ It makes a number of natural assumptions, in particular: every array reference
is an affine expression in the loop counters, loop bounds, array dimension sizes
and possibly other constants.

do 𝑖 = 0, 𝑁 − 1
do 𝑗 = 0, 𝑁 − 1

𝑆1 : 𝐴(︀𝑖, 𝑗⌋︀+ = 𝑢(︀𝑖⌋︀ ∗ 𝑣(︀𝑖⌋︀
enddo

enddo
do 𝑘 = 0, 𝑁 − 1

do ℓ = 0, 𝑁 − 1
𝑆2 : 𝑥(︀𝑘⌋︀+ = 𝐴(︀ℓ, 𝑘⌋︀ ∗ 𝑦(︀ℓ⌋︀

enddo
enddo

Iteration domain

0 ≤ 𝑖 < 𝑁
0 ≤ 𝑗 < 𝑁
0 ≤ 𝑘 < 𝑁
0 ≤ ℓ < 𝑁

Dependence equation

𝑖 = ℓ
𝑗 = 𝑘

Marc Moreno Maza Dependence Analysis and (Automatic) Parallelization CS4402 - CS9635 36 / 42



Key notions (1/2)

∎ The polyhedral model is mathematical framework for analyzing, scheduling
and optimizing for-loop nests.

∎ It views the iterations of a for-loop nest as the integer points of a polyhedral
set.

∎ It makes a number of natural assumptions, in particular: every array reference
is an affine expression in the loop counters, loop bounds, array dimension sizes
and possibly other constants.

do 𝑖 = 0, 𝑁 − 1
do 𝑗 = 0, 𝑁 − 1

𝑆1 : 𝐴(︀𝑖, 𝑗⌋︀+ = 𝑢(︀𝑖⌋︀ ∗ 𝑣(︀𝑖⌋︀
enddo

enddo
do 𝑘 = 0, 𝑁 − 1

do ℓ = 0, 𝑁 − 1
𝑆2 : 𝑥(︀𝑘⌋︀+ = 𝐴(︀ℓ, 𝑘⌋︀ ∗ 𝑦(︀ℓ⌋︀

enddo
enddo

Iteration domain

0 ≤ 𝑖 < 𝑁
0 ≤ 𝑗 < 𝑁
0 ≤ 𝑘 < 𝑁
0 ≤ ℓ < 𝑁

Dependence equation

𝑖 = ℓ
𝑗 = 𝑘

Marc Moreno Maza Dependence Analysis and (Automatic) Parallelization CS4402 - CS9635 36 / 42



Key notions (1/2)

∎ The polyhedral model is mathematical framework for analyzing, scheduling
and optimizing for-loop nests.

∎ It views the iterations of a for-loop nest as the integer points of a polyhedral
set.

∎ It makes a number of natural assumptions, in particular: every array reference
is an affine expression in the loop counters, loop bounds, array dimension sizes
and possibly other constants.

do 𝑖 = 0, 𝑁 − 1
do 𝑗 = 0, 𝑁 − 1

𝑆1 : 𝐴(︀𝑖, 𝑗⌋︀+ = 𝑢(︀𝑖⌋︀ ∗ 𝑣(︀𝑖⌋︀
enddo

enddo
do 𝑘 = 0, 𝑁 − 1

do ℓ = 0, 𝑁 − 1
𝑆2 : 𝑥(︀𝑘⌋︀+ = 𝐴(︀ℓ, 𝑘⌋︀ ∗ 𝑦(︀ℓ⌋︀

enddo
enddo

Iteration domain

0 ≤ 𝑖 < 𝑁
0 ≤ 𝑗 < 𝑁
0 ≤ 𝑘 < 𝑁
0 ≤ ℓ < 𝑁

Dependence equation

𝑖 = ℓ
𝑗 = 𝑘

Marc Moreno Maza Dependence Analysis and (Automatic) Parallelization CS4402 - CS9635 36 / 42



Key notions (2/2)

∎ The iteration domain is defined by the value ranges of the loop counters.

∎ The dependence equations are deduced from the array references of the pair of
statements under study.

∎ The dependence polyhedron collects the equality and inequality constraints
from the iteration domain and the dependence equations. Obviously, this
polyhedron has integer points, this there is an output dependence.

Iteration domain

0 ≤ 𝑖 < 𝑁
0 ≤ 𝑗 < 𝑁
0 ≤ 𝑘 < 𝑁
0 ≤ ℓ < 𝑁

Dependence equation

𝑖 = ℓ
𝑗 = 𝑘

Dependence polyhedron for 𝑆1 → 𝑆2

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0 0 0
0 −1 0 0 1 −1
0 0 1 0 0 0
0 0 0 −1 1 −1
1 0 0 −1 0 0
0 1 −1 0 0 0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎨
⎝
⎝
⎝
⎝
⎝
⎝
⎝
⎝
⎝
⎝
⎝
⎝
⎪

𝑖
𝑗
𝑘
ℓ
𝑁
1

⎬
⎠
⎠
⎠
⎠
⎠
⎠
⎠
⎠
⎠
⎠
⎠
⎠
⎮

≥ 0

= 0

Marc Moreno Maza Dependence Analysis and (Automatic) Parallelization CS4402 - CS9635 37 / 42



Key notions (2/2)

∎ The iteration domain is defined by the value ranges of the loop counters.
∎ The dependence equations are deduced from the array references of the pair of

statements under study.

∎ The dependence polyhedron collects the equality and inequality constraints
from the iteration domain and the dependence equations. Obviously, this
polyhedron has integer points, this there is an output dependence.

Iteration domain

0 ≤ 𝑖 < 𝑁
0 ≤ 𝑗 < 𝑁
0 ≤ 𝑘 < 𝑁
0 ≤ ℓ < 𝑁

Dependence equation

𝑖 = ℓ
𝑗 = 𝑘

Dependence polyhedron for 𝑆1 → 𝑆2

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0 0 0
0 −1 0 0 1 −1
0 0 1 0 0 0
0 0 0 −1 1 −1
1 0 0 −1 0 0
0 1 −1 0 0 0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎨
⎝
⎝
⎝
⎝
⎝
⎝
⎝
⎝
⎝
⎝
⎝
⎝
⎪

𝑖
𝑗
𝑘
ℓ
𝑁
1

⎬
⎠
⎠
⎠
⎠
⎠
⎠
⎠
⎠
⎠
⎠
⎠
⎠
⎮

≥ 0

= 0

Marc Moreno Maza Dependence Analysis and (Automatic) Parallelization CS4402 - CS9635 37 / 42



Key notions (2/2)

∎ The iteration domain is defined by the value ranges of the loop counters.
∎ The dependence equations are deduced from the array references of the pair of

statements under study.
∎ The dependence polyhedron collects the equality and inequality constraints

from the iteration domain and the dependence equations. Obviously, this
polyhedron has integer points, this there is an output dependence.

Iteration domain

0 ≤ 𝑖 < 𝑁
0 ≤ 𝑗 < 𝑁
0 ≤ 𝑘 < 𝑁
0 ≤ ℓ < 𝑁

Dependence equation

𝑖 = ℓ
𝑗 = 𝑘

Dependence polyhedron for 𝑆1 → 𝑆2

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0 0 0
0 −1 0 0 1 −1
0 0 1 0 0 0
0 0 0 −1 1 −1
1 0 0 −1 0 0
0 1 −1 0 0 0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎨
⎝
⎝
⎝
⎝
⎝
⎝
⎝
⎝
⎝
⎝
⎝
⎝
⎪

𝑖
𝑗
𝑘
ℓ
𝑁
1

⎬
⎠
⎠
⎠
⎠
⎠
⎠
⎠
⎠
⎠
⎠
⎠
⎠
⎮

≥ 0

= 0

Marc Moreno Maza Dependence Analysis and (Automatic) Parallelization CS4402 - CS9635 37 / 42



Automatic parallelization: plain multiplication (1/2)
Serial dense univariate polynomial multiplication

for(i=0; i<=n; i++){
c[i] = 0; c[i+n] = 0;
for(j=0; j<=n; j++)

c[i+j] += a[i] * b[j];
}

∎ Can 2 different iterations access the same memory location at least one for writing?

∎ Given an integer 𝑝 ≥ 2, every (𝑖, 𝑗) satisfying 𝑖 + 𝑗 = 𝑝 will access 𝑐(︀𝑝⌋︀ in writing.
∎ However, for 2 integers 𝑞 > 𝑝 ≥ 2, an iteration (𝑖, 𝑗) satisfying 𝑖 + 𝑗 = 𝑝 and an

iteration (𝑘, ℓ) satisfying 𝑘 + ℓ = 𝑞 won’t access the same location in the array 𝑐.
∎ Hence, this suggests a change of coordinates with one new coordinate being

𝑝 = 𝑖 + 𝑗, where 𝑝 stands for processor. What can be the second coordinate?
∎ Call it 𝑡 for time. The map 𝑀 ∶ (𝑖, 𝑗) z→ (𝑝, 𝑡) must be linear, given by a

unimodular matrix (thus with determinant equal to 1 or −1).
∎ In general, such a map should also preserve order between iterations, that is,

(𝑖, 𝑗) < (𝑘, ℓ) must imply 𝑀(𝑖, 𝑗) < 𝑀(𝑘, ℓ).
∎ One possible choice is 𝑡(𝑖, 𝑗) = 𝑛 − 𝑗.

Marc Moreno Maza Dependence Analysis and (Automatic) Parallelization CS4402 - CS9635 38 / 42



Automatic parallelization: plain multiplication (1/2)
Serial dense univariate polynomial multiplication

for(i=0; i<=n; i++){
c[i] = 0; c[i+n] = 0;
for(j=0; j<=n; j++)

c[i+j] += a[i] * b[j];
}

∎ Can 2 different iterations access the same memory location at least one for writing?
∎ Given an integer 𝑝 ≥ 2, every (𝑖, 𝑗) satisfying 𝑖 + 𝑗 = 𝑝 will access 𝑐(︀𝑝⌋︀ in writing.

∎ However, for 2 integers 𝑞 > 𝑝 ≥ 2, an iteration (𝑖, 𝑗) satisfying 𝑖 + 𝑗 = 𝑝 and an
iteration (𝑘, ℓ) satisfying 𝑘 + ℓ = 𝑞 won’t access the same location in the array 𝑐.

∎ Hence, this suggests a change of coordinates with one new coordinate being
𝑝 = 𝑖 + 𝑗, where 𝑝 stands for processor. What can be the second coordinate?

∎ Call it 𝑡 for time. The map 𝑀 ∶ (𝑖, 𝑗) z→ (𝑝, 𝑡) must be linear, given by a
unimodular matrix (thus with determinant equal to 1 or −1).

∎ In general, such a map should also preserve order between iterations, that is,
(𝑖, 𝑗) < (𝑘, ℓ) must imply 𝑀(𝑖, 𝑗) < 𝑀(𝑘, ℓ).

∎ One possible choice is 𝑡(𝑖, 𝑗) = 𝑛 − 𝑗.

Marc Moreno Maza Dependence Analysis and (Automatic) Parallelization CS4402 - CS9635 38 / 42



Automatic parallelization: plain multiplication (1/2)
Serial dense univariate polynomial multiplication

for(i=0; i<=n; i++){
c[i] = 0; c[i+n] = 0;
for(j=0; j<=n; j++)

c[i+j] += a[i] * b[j];
}

∎ Can 2 different iterations access the same memory location at least one for writing?
∎ Given an integer 𝑝 ≥ 2, every (𝑖, 𝑗) satisfying 𝑖 + 𝑗 = 𝑝 will access 𝑐(︀𝑝⌋︀ in writing.
∎ However, for 2 integers 𝑞 > 𝑝 ≥ 2, an iteration (𝑖, 𝑗) satisfying 𝑖 + 𝑗 = 𝑝 and an

iteration (𝑘, ℓ) satisfying 𝑘 + ℓ = 𝑞 won’t access the same location in the array 𝑐.

∎ Hence, this suggests a change of coordinates with one new coordinate being
𝑝 = 𝑖 + 𝑗, where 𝑝 stands for processor. What can be the second coordinate?

∎ Call it 𝑡 for time. The map 𝑀 ∶ (𝑖, 𝑗) z→ (𝑝, 𝑡) must be linear, given by a
unimodular matrix (thus with determinant equal to 1 or −1).

∎ In general, such a map should also preserve order between iterations, that is,
(𝑖, 𝑗) < (𝑘, ℓ) must imply 𝑀(𝑖, 𝑗) < 𝑀(𝑘, ℓ).

∎ One possible choice is 𝑡(𝑖, 𝑗) = 𝑛 − 𝑗.

Marc Moreno Maza Dependence Analysis and (Automatic) Parallelization CS4402 - CS9635 38 / 42



Automatic parallelization: plain multiplication (1/2)
Serial dense univariate polynomial multiplication

for(i=0; i<=n; i++){
c[i] = 0; c[i+n] = 0;
for(j=0; j<=n; j++)

c[i+j] += a[i] * b[j];
}

∎ Can 2 different iterations access the same memory location at least one for writing?
∎ Given an integer 𝑝 ≥ 2, every (𝑖, 𝑗) satisfying 𝑖 + 𝑗 = 𝑝 will access 𝑐(︀𝑝⌋︀ in writing.
∎ However, for 2 integers 𝑞 > 𝑝 ≥ 2, an iteration (𝑖, 𝑗) satisfying 𝑖 + 𝑗 = 𝑝 and an

iteration (𝑘, ℓ) satisfying 𝑘 + ℓ = 𝑞 won’t access the same location in the array 𝑐.
∎ Hence, this suggests a change of coordinates with one new coordinate being

𝑝 = 𝑖 + 𝑗, where 𝑝 stands for processor. What can be the second coordinate?

∎ Call it 𝑡 for time. The map 𝑀 ∶ (𝑖, 𝑗) z→ (𝑝, 𝑡) must be linear, given by a
unimodular matrix (thus with determinant equal to 1 or −1).

∎ In general, such a map should also preserve order between iterations, that is,
(𝑖, 𝑗) < (𝑘, ℓ) must imply 𝑀(𝑖, 𝑗) < 𝑀(𝑘, ℓ).

∎ One possible choice is 𝑡(𝑖, 𝑗) = 𝑛 − 𝑗.

Marc Moreno Maza Dependence Analysis and (Automatic) Parallelization CS4402 - CS9635 38 / 42



Automatic parallelization: plain multiplication (1/2)
Serial dense univariate polynomial multiplication

for(i=0; i<=n; i++){
c[i] = 0; c[i+n] = 0;
for(j=0; j<=n; j++)

c[i+j] += a[i] * b[j];
}

∎ Can 2 different iterations access the same memory location at least one for writing?
∎ Given an integer 𝑝 ≥ 2, every (𝑖, 𝑗) satisfying 𝑖 + 𝑗 = 𝑝 will access 𝑐(︀𝑝⌋︀ in writing.
∎ However, for 2 integers 𝑞 > 𝑝 ≥ 2, an iteration (𝑖, 𝑗) satisfying 𝑖 + 𝑗 = 𝑝 and an

iteration (𝑘, ℓ) satisfying 𝑘 + ℓ = 𝑞 won’t access the same location in the array 𝑐.
∎ Hence, this suggests a change of coordinates with one new coordinate being

𝑝 = 𝑖 + 𝑗, where 𝑝 stands for processor. What can be the second coordinate?
∎ Call it 𝑡 for time. The map 𝑀 ∶ (𝑖, 𝑗) z→ (𝑝, 𝑡) must be linear, given by a

unimodular matrix (thus with determinant equal to 1 or −1).

∎ In general, such a map should also preserve order between iterations, that is,
(𝑖, 𝑗) < (𝑘, ℓ) must imply 𝑀(𝑖, 𝑗) < 𝑀(𝑘, ℓ).

∎ One possible choice is 𝑡(𝑖, 𝑗) = 𝑛 − 𝑗.

Marc Moreno Maza Dependence Analysis and (Automatic) Parallelization CS4402 - CS9635 38 / 42



Automatic parallelization: plain multiplication (1/2)
Serial dense univariate polynomial multiplication

for(i=0; i<=n; i++){
c[i] = 0; c[i+n] = 0;
for(j=0; j<=n; j++)

c[i+j] += a[i] * b[j];
}

∎ Can 2 different iterations access the same memory location at least one for writing?
∎ Given an integer 𝑝 ≥ 2, every (𝑖, 𝑗) satisfying 𝑖 + 𝑗 = 𝑝 will access 𝑐(︀𝑝⌋︀ in writing.
∎ However, for 2 integers 𝑞 > 𝑝 ≥ 2, an iteration (𝑖, 𝑗) satisfying 𝑖 + 𝑗 = 𝑝 and an

iteration (𝑘, ℓ) satisfying 𝑘 + ℓ = 𝑞 won’t access the same location in the array 𝑐.
∎ Hence, this suggests a change of coordinates with one new coordinate being

𝑝 = 𝑖 + 𝑗, where 𝑝 stands for processor. What can be the second coordinate?
∎ Call it 𝑡 for time. The map 𝑀 ∶ (𝑖, 𝑗) z→ (𝑝, 𝑡) must be linear, given by a

unimodular matrix (thus with determinant equal to 1 or −1).
∎ In general, such a map should also preserve order between iterations, that is,

(𝑖, 𝑗) < (𝑘, ℓ) must imply 𝑀(𝑖, 𝑗) < 𝑀(𝑘, ℓ).

∎ One possible choice is 𝑡(𝑖, 𝑗) = 𝑛 − 𝑗.

Marc Moreno Maza Dependence Analysis and (Automatic) Parallelization CS4402 - CS9635 38 / 42



Automatic parallelization: plain multiplication (1/2)
Serial dense univariate polynomial multiplication

for(i=0; i<=n; i++){
c[i] = 0; c[i+n] = 0;
for(j=0; j<=n; j++)

c[i+j] += a[i] * b[j];
}

∎ Can 2 different iterations access the same memory location at least one for writing?
∎ Given an integer 𝑝 ≥ 2, every (𝑖, 𝑗) satisfying 𝑖 + 𝑗 = 𝑝 will access 𝑐(︀𝑝⌋︀ in writing.
∎ However, for 2 integers 𝑞 > 𝑝 ≥ 2, an iteration (𝑖, 𝑗) satisfying 𝑖 + 𝑗 = 𝑝 and an

iteration (𝑘, ℓ) satisfying 𝑘 + ℓ = 𝑞 won’t access the same location in the array 𝑐.
∎ Hence, this suggests a change of coordinates with one new coordinate being

𝑝 = 𝑖 + 𝑗, where 𝑝 stands for processor. What can be the second coordinate?
∎ Call it 𝑡 for time. The map 𝑀 ∶ (𝑖, 𝑗) z→ (𝑝, 𝑡) must be linear, given by a

unimodular matrix (thus with determinant equal to 1 or −1).
∎ In general, such a map should also preserve order between iterations, that is,

(𝑖, 𝑗) < (𝑘, ℓ) must imply 𝑀(𝑖, 𝑗) < 𝑀(𝑘, ℓ).
∎ One possible choice is 𝑡(𝑖, 𝑗) = 𝑛 − 𝑗.

Marc Moreno Maza Dependence Analysis and (Automatic) Parallelization CS4402 - CS9635 38 / 42



Automatic parallelization: plain multiplication (2/2)

∎ What should be the loop bounds in the new system of coordinates?

∎ On the left, see our input iteration domain with the coordinate change
∎ Some linear transformations produces the new iteration domain with

the inverse of our change of coordinates

)︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀
⌋︀
⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀]︀

𝑖 ≥ 0
𝑖 ≤ 𝑛
𝑗 ≥ 0
𝑗 ≤ 𝑛
𝑡 = 𝑛 − 𝑗
𝑝 = 𝑖 + 𝑗,

)︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀
⌋︀
⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀]︀

𝑖 = 𝑝 + 𝑡 − 𝑛
𝑗 = −𝑡 + 𝑛
𝑡 ≥ −𝑝 + 𝑛
𝑡 ≤ −𝑝 + 2𝑛
𝑛 ≥ 𝑡
0 ≤ 𝑡
𝑝 ≥ 0
𝑝 ≤ 2𝑛.

Asynchronous parallel dense univariate polynomial multiplication

parallel_for (p=0; p<=2*n; p++){
c [ p ] =0;
for (t=max(0,n-p); t<= min(n,2*n-p);t++)

C [ p ] = C [ p ]
+ A [ t+p-n ] * B [ n-t ] ;

}

Marc Moreno Maza Dependence Analysis and (Automatic) Parallelization CS4402 - CS9635 39 / 42



Automatic parallelization: plain multiplication (2/2)

∎ What should be the loop bounds in the new system of coordinates?
∎ On the left, see our input iteration domain with the coordinate change

∎ Some linear transformations produces the new iteration domain with
the inverse of our change of coordinates

)︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀
⌋︀
⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀]︀

𝑖 ≥ 0
𝑖 ≤ 𝑛
𝑗 ≥ 0
𝑗 ≤ 𝑛
𝑡 = 𝑛 − 𝑗
𝑝 = 𝑖 + 𝑗,

)︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀
⌋︀
⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀]︀

𝑖 = 𝑝 + 𝑡 − 𝑛
𝑗 = −𝑡 + 𝑛
𝑡 ≥ −𝑝 + 𝑛
𝑡 ≤ −𝑝 + 2𝑛
𝑛 ≥ 𝑡
0 ≤ 𝑡
𝑝 ≥ 0
𝑝 ≤ 2𝑛.

Asynchronous parallel dense univariate polynomial multiplication

parallel_for (p=0; p<=2*n; p++){
c [ p ] =0;
for (t=max(0,n-p); t<= min(n,2*n-p);t++)

C [ p ] = C [ p ]
+ A [ t+p-n ] * B [ n-t ] ;

}

Marc Moreno Maza Dependence Analysis and (Automatic) Parallelization CS4402 - CS9635 39 / 42



Automatic parallelization: plain multiplication (2/2)

∎ What should be the loop bounds in the new system of coordinates?
∎ On the left, see our input iteration domain with the coordinate change
∎ Some linear transformations produces the new iteration domain with

the inverse of our change of coordinates

)︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀
⌋︀
⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀]︀

𝑖 ≥ 0
𝑖 ≤ 𝑛
𝑗 ≥ 0
𝑗 ≤ 𝑛
𝑡 = 𝑛 − 𝑗
𝑝 = 𝑖 + 𝑗,

)︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀
⌋︀
⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀]︀

𝑖 = 𝑝 + 𝑡 − 𝑛
𝑗 = −𝑡 + 𝑛
𝑡 ≥ −𝑝 + 𝑛
𝑡 ≤ −𝑝 + 2𝑛
𝑛 ≥ 𝑡
0 ≤ 𝑡
𝑝 ≥ 0
𝑝 ≤ 2𝑛.

Asynchronous parallel dense univariate polynomial multiplication

parallel_for (p=0; p<=2*n; p++){
c [ p ] =0;
for (t=max(0,n-p); t<= min(n,2*n-p);t++)

C [ p ] = C [ p ]
+ A [ t+p-n ] * B [ n-t ] ;

}

Marc Moreno Maza Dependence Analysis and (Automatic) Parallelization CS4402 - CS9635 39 / 42



Generating parametric code & use of tiling techniques

parallel_for (p=0; p<=2*n; p++){
c [ p ] =0;
for (t=max(0,n-p); t<= min(n,2*n-p);t++)

C [ p ] = C [ p ]
+ A [ t+p-n ] * B [ n-t ] ;

}

Improving the parallelization

∎ The above generated code is not practical for multicore implementation: the
number of processors is in Θ(𝑛). (Not to mention poor locality!) and the work is
unevenly distributed among the workers.

∎ We group the virtual processors (or threads) into 1D blocks, each of size 𝐵. Each
thread is known by its block number 𝑏 and a local coordinate 𝑢 in its block.

∎ Blocks represent good units of work which have good locality property.
∎ This yields the following constraints: 0 ≤ 𝑢 < 𝐵, 𝑝 = 𝑏𝐵 + 𝑢.

Marc Moreno Maza Dependence Analysis and (Automatic) Parallelization CS4402 - CS9635 40 / 42



Generating parametric code & use of tiling techniques

parallel_for (p=0; p<=2*n; p++){
c [ p ] =0;
for (t=max(0,n-p); t<= min(n,2*n-p);t++)

C [ p ] = C [ p ]
+ A [ t+p-n ] * B [ n-t ] ;

}

Improving the parallelization

∎ The above generated code is not practical for multicore implementation: the
number of processors is in Θ(𝑛). (Not to mention poor locality!) and the work is
unevenly distributed among the workers.

∎ We group the virtual processors (or threads) into 1D blocks, each of size 𝐵. Each
thread is known by its block number 𝑏 and a local coordinate 𝑢 in its block.

∎ Blocks represent good units of work which have good locality property.
∎ This yields the following constraints: 0 ≤ 𝑢 < 𝐵, 𝑝 = 𝑏𝐵 + 𝑢.

Marc Moreno Maza Dependence Analysis and (Automatic) Parallelization CS4402 - CS9635 40 / 42



Generating parametric code & use of tiling techniques

parallel_for (p=0; p<=2*n; p++){
c [ p ] =0;
for (t=max(0,n-p); t<= min(n,2*n-p);t++)

C [ p ] = C [ p ]
+ A [ t+p-n ] * B [ n-t ] ;

}

Improving the parallelization

∎ The above generated code is not practical for multicore implementation: the
number of processors is in Θ(𝑛). (Not to mention poor locality!) and the work is
unevenly distributed among the workers.

∎ We group the virtual processors (or threads) into 1D blocks, each of size 𝐵. Each
thread is known by its block number 𝑏 and a local coordinate 𝑢 in its block.

∎ Blocks represent good units of work which have good locality property.

∎ This yields the following constraints: 0 ≤ 𝑢 < 𝐵, 𝑝 = 𝑏𝐵 + 𝑢.

Marc Moreno Maza Dependence Analysis and (Automatic) Parallelization CS4402 - CS9635 40 / 42



Generating parametric code & use of tiling techniques

parallel_for (p=0; p<=2*n; p++){
c [ p ] =0;
for (t=max(0,n-p); t<= min(n,2*n-p);t++)

C [ p ] = C [ p ]
+ A [ t+p-n ] * B [ n-t ] ;

}

Improving the parallelization

∎ The above generated code is not practical for multicore implementation: the
number of processors is in Θ(𝑛). (Not to mention poor locality!) and the work is
unevenly distributed among the workers.

∎ We group the virtual processors (or threads) into 1D blocks, each of size 𝐵. Each
thread is known by its block number 𝑏 and a local coordinate 𝑢 in its block.

∎ Blocks represent good units of work which have good locality property.
∎ This yields the following constraints: 0 ≤ 𝑢 < 𝐵, 𝑝 = 𝑏𝐵 + 𝑢.

Marc Moreno Maza Dependence Analysis and (Automatic) Parallelization CS4402 - CS9635 40 / 42



Generating parametric code: using tiles
We apply RegularChains:-QuantifierElimination on the left system
(in order to get rid off 𝑖, 𝑗) leading to the relations on the right:

)︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀
⌋︀
⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀]︀

𝑜 < 𝑛
0 ≤ 𝑖 ≤ 𝑛
0 ≤ 𝑗 ≤ 𝑛
𝑡 = 𝑛 − 𝑗
𝑝 = 𝑖 + 𝑗

0 ≤ 𝑏
𝑜 ≤ 𝑢 < 𝐵

𝑝 = 𝑏𝐵 + 𝑢,

)︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀
⌋︀
⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀]︀

𝐵 > 0
𝑛 > 0

0 ≤ 𝑏 ≤ 2𝑛⇑𝐵
0 ≤ 𝑢 < 𝐵

0 ≤ 𝑢 ≤ 2𝑛 −𝐵𝑏
𝑝 = 𝑏𝐵 + 𝑢,

(3)

From where we derive the following program:
for (p=0; p<=2*n; p++) c [ p ] = 0;
parallel_for (b=0; b<= 2 n / B; b++) {

parallel_for (u=0; u<=min(B-1, 2*n - B * b); u++) {
p = b * B + u;
for (t=max(0,n-p); t<=min(n,2*n-p) ;t++)

c [ p ] = c [ p ] + a [ t+p-n ] * b [ n-t ];
}

}

Marc Moreno Maza Dependence Analysis and (Automatic) Parallelization CS4402 - CS9635 41 / 42



References

[1] C. Bastoul. “Code Generation in the Polyhedral Model Is Easier Than
You Think”. In: Proceedings of the 13th International Conference on
Parallel Architectures and Compilation Techniques. PACT ’04. IEEE
Computer Society, 2004, pp. 7–16.

[2] A. Größlinger, M. Griebl, and C. Lengauer. “Quantifier elimination in
automatic loop parallelization”. In: J. Symb. Comput. 41.11 (2006),
pp. 1206–1221.

Marc Moreno Maza Dependence Analysis and (Automatic) Parallelization CS4402 - CS9635 42 / 42


	Dependence analysis
	Introductory examples
	Data dependence classification
	Iteration space graphs
	Distance and direction vectors

	(Automatic) parallelization
	Data Dependence Tests
	The polyhedral model


