
Introduction to parallel and distributed computing

Marc Moreno Maza

Ontario Research Center for Computer Algebra
Departments of Computer Science and Mathematics

University of Western Ontario, Canada

CS4402 - CS9635, January 30, 2024

Marc Moreno Maza Introduction to parallel and distributed computing CS4402 - CS9635 1 / 34



Introduction to parallel and distributed computing

Marc Moreno Maza

Ontario Research Center for Computer Algebra
Departments of Computer Science and Mathematics

University of Western Ontario, Canada

CS4402 - CS9635, January 30, 2024

Marc Moreno Maza Introduction to parallel and distributed computing CS4402 - CS9635 2 / 34



Plan

1. Hardware architecture and concurrency

2. Parallel programming patterns

3. Concurrency platforms

Marc Moreno Maza Introduction to parallel and distributed computing CS4402 - CS9635 3 / 34



Outline

1. Hardware architecture and concurrency

2. Parallel programming patterns

3. Concurrency platforms

Marc Moreno Maza Introduction to parallel and distributed computing CS4402 - CS9635 4 / 34



The CPU-Memory GAP

∎ In the 1980’s, a memory access and a CPU operation were both as
slow as the other

∎ CPU frequency increase, between 1985 and 2005, has reduced CPU
op times much more than DRAM technology improvement could
reduce memory access times.

∎ Even after the introduction of multicore processors, the gap is still
huge.
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Hierarchical memory
Capacity
Access Time
Cost

Staging
Xfer Unit

CPU Registers
100s Bytes
300 – 500 ps (0.3-0.5 ns)

L1 d L2 C h

Registers

L1 Cache
Instr. Operands prog./compiler

1-8 bytes

Upper Level

faster

L1 and L2 Cache
10s-100s K Bytes
~1 ns - ~10 ns
$1000s/ GByte

L1 Cache
Blocks

cache cntl
32-64 bytes

L2 Cache
h tl

Main Memory
G Bytes
80ns- 200ns
~ $100/ GByte

Memory
OS

cache cntl
64-128 bytesBlocks

Disk
10s T Bytes, 10 ms 
(10,000,000 ns)
~ $1 / GByte

Disk

Pages OS
4K-8K bytes

user/operator $1 / GByte

Tape
infinite
sec-min

Tape

Files user/operator
Mbytes

Lower Level
Larger

sec min
~$1 / GByte

∎ Data moves in blocks (cache-lines, pages) between levels

∎ On the right, note the block sizes
∎ On the left, note the access times, sizes and prices.
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Moore’s law

The Pentium Family: Do not rewrite software, just buy a new machine!

https://en.wikipedia.org/wiki/Moore%27s_law
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From Moore’s law to multicore processors

Image taken from Hennessy, Patterson. Computer Architecture, a
quantitative approach. 5 th Ed. 2010.
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Multicore processors
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Multicore processors

∎ In the 1st Gen. Intel Core i7, each core had an L1 data cache and an
L1 instruction cache, together with a unified L2 cache

∎ The cores share an L3 cache
∎ Note the sizes of the successive caches
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Graphics processing units (GPUs)

∎ A GPU consists of a scheduler, a large shared memory and several
streaming multiprocessors (SMs)

∎ In addition, each SM has a local (private) small memory.
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Graphics processing units (GPUs)

∎ In a GPU, the small local memories have much smaller access time
than the large shared memory.

∎ Thus, as much as possible, cores access data in the local memories
while the shared memory should essentially be used for data exchange
between SMs.
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Distributed Memory

∎ Distributed memory systems require a communication network to
connect inter-processor memory.

∎ Processors have their own local memory and operate independently.
∎ Memory addresses in one processor do not map to another processor,

so there is no concept of global address space across all processors.
∎ Data exchange between processors is managed by the programmer ,

not by the hardware.
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Hybrid Distributed-Shared Memory

∎ The largest and fastest computers in the world today employ both
shared and distributed memory architectures.

∎ Current trends seem to indicate that this type of memory architecture
will continue to prevail.

∎ While this model allows for applications to scale, it increases the
complexity of writing computer programs.
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Outline

1. Hardware architecture and concurrency

2. Parallel programming patterns
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Divide-and-Conquer

Marc Moreno Maza Introduction to parallel and distributed computing CS4402 - CS9635 16 / 34



Divide-and-Conquer and Fork-Join

Fork

Join

∎ Fork: divide problem and
execute separate calls in
parallel

∎ Join: merge parallel
execution back into serial

∎ Recursively applying
fork-join can “easily”
parallelize a
divide-and-conquer
algorithm
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Map

∎ Simultaneously execute a function on each data item in a collection

∎ If more data items than threads, apply the pattern block-wise:
(1) partition the collection, and (2) apply one thread to each part

∎ This pattern is often simplified as just a parallel_for loop

∎ Where multiple map steps are performed in a row,
they may operate in lockstep

Input

Output

Data Item

Function Execution
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Workpile

∎ Workpile generalizes map pattern to a queue of tasks

∎ Tasks in-flight can add new tasks to input queue

∎ Threads take tasks from queue until it is empty

∎ Can be seen as a parallel_while loop

...

...

...

Input

Output

Function Execution
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Reduction

∎ A reduction combines every element in a collection into one element,
using an associative operator.

∎ Example: computing the sum (or product) of 𝑛 matrices.

∎ Grouping the operations is often needed to allow for parallelism.

∎ This grouping requires associativity, but not commutativity.
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Producer-Consumer

∎ Two functions connected by a queue

∎ The producer produces data items, pushing them to the queue

∎ The consumer processes data items, pulling them from the queue

∎ Producer and consumer execute simultaneously; at least one must be
active at all times Ô⇒ no deadlock

...

Data QueueProducer Consumer

∎ In some circumstances, the producer may be considered
as an iterator or generator
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Pipeline

∎ A sequence of stages where the output of one stage is used as the
input to another

∎ Example: in a pipelined processor, instructions flow through the
central processing unit (CPU) in stages (Instruction Fetch, Decode,
Execute, etc.)

∎ Two consecutive stages form a producer-consumer pair

∎ Internal stages are both producer and consumer

∎ Typically, a pipeline is constructed statically through code
organization

∎ Pipelines can be created dynamically and implicitly with
AsyncGenerators and the call-stack
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Pascal triangle construction: a stencil computation

1
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8

∎ Stencil computations are a class of data processing techniques which
update array elements according to a pattern

∎ Construction of the Pascal Triangle: nearly the simplest stencil
computation!
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Divide and conquer: principle

I
II

II

I II

II III

∎ Each triangle region can be computed as a square region followed by
two (concurrent) triangle regions.

∎ Each square region can also be computed in a divide and conquer
manner.
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Blocking strategy: principle

a7

a6

a5

a4

a3

a2

a1

a0

0 0 0 0 0 0 0 0

1

4

3

3

3

2

2
4

4

4

∎ Let 𝐵 be the order of a block and 𝑛 be the number of elements.

∎ Each block is processed serially (as a task) and the set of all blocks is
computed concurrently.
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Outline

1. Hardware architecture and concurrency

2. Parallel programming patterns

3. Concurrency platforms
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Programming patterms in Julia

_
_ _ _(_)_ | Documentation: https://docs.julialang.org

(_) | (_) (_) |
_ _ _| |_ __ _ | Type "?" for help, "]?" for Pkg help.

| | | | | | |/ _‘ | |
| | |_| | | | (_| | | Version 1.7.1 (2021-12-22)

_/ |\__’_|_|_|\__’_| | Official https://julialang.org/ release
|__/ |

julia> map(x -> x * 2, [1, 2, 3])
3-element Vector{Int64}:
2
4
6

julia> mapreduce(x->x^2, +, [1:3;])
14
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Julia
1 function pmap(f, lst)
2 np = nprocs () # the number of processes available
3 n = length (lst)
4 results = Vector {Any }(n)
5 i = 1
6 # function to produce the next work item from the queue .
7 nextidx () = (idx=i; i+=1; idx)
8 @sync begin
9 for p=1:np

10 if p != myid () || np == 1
11 @async begin
12 while true
13 idx = nextidx ()
14 if idx > n
15 break
16 end
17 results [idx]= remotecall_fetch (f,p,lst[idx ])
18 end
19 end
20 end
21 end
22 end
23 results
24 end
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Fork-Join with Cilk

int fib(int n)
{

if (n < 2) return n;
int x, y;
x = cilk_spawn fib(n-1);
y = fib(n-2);
cilk_sync;
return x+y;

}

∎ The named child function cilk_spawn fib(n-1) may execute in
parallel with its parent

∎ Cilk keywords cilk_spawn and cilk_sync grant permissions for
parallel execution. They do not command parallel execution.

∎ Visit https://www.opencilk.org/
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Cilk

∎ Cilk has been developed since 1994 at the MIT Laboratory for
Computer Science by Prof. Charles E. Leiserson and his group, in
particular by Matteo Frigo and Tao B. Schardl

∎ Cilk is a multithreaded language for parallel programming that
generalizes the semantics of C (resp. C++) by introducing linguistic
constructs for parallel control.

∎ Cilk is a faithful extension of C (resp. C++). That is, the C (resp.
C++) elision of a Cilk program is a correct implementation of the
semantics of that program.

∎ Cilk’s scheduler maps strands onto processors dynamically at
runtime, using the work-stealing principle. Under reasonable
assumptions, this provives a guarantee of performance.

∎ Cilk has supporting tools for data race (thus non-deterministic
behaviour) detection and performance analysis.
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Heterogeneous programming with CUDA

∎ The parallel code is written for a thread

ë Each thread is free to execute a unique code path
ë Built-in thread and block ID variables are used to map each thread

to a specific data tile (see next slide).
∎ Thus, each thread executes the same code.
∎ However, different threads work on different data, based on their

thread and block IDs.

Marc Moreno Maza Introduction to parallel and distributed computing CS4402 - CS9635 31 / 34



Heterogeneous programming with CUDA

∎ The parallel code is written for a thread
ë Each thread is free to execute a unique code path

ë Built-in thread and block ID variables are used to map each thread
to a specific data tile (see next slide).

∎ Thus, each thread executes the same code.
∎ However, different threads work on different data, based on their

thread and block IDs.

Marc Moreno Maza Introduction to parallel and distributed computing CS4402 - CS9635 31 / 34



Heterogeneous programming with CUDA

∎ The parallel code is written for a thread
ë Each thread is free to execute a unique code path
ë Built-in thread and block ID variables are used to map each thread

to a specific data tile (see next slide).

∎ Thus, each thread executes the same code.
∎ However, different threads work on different data, based on their

thread and block IDs.

Marc Moreno Maza Introduction to parallel and distributed computing CS4402 - CS9635 31 / 34



Heterogeneous programming with CUDA

∎ The parallel code is written for a thread
ë Each thread is free to execute a unique code path
ë Built-in thread and block ID variables are used to map each thread

to a specific data tile (see next slide).
∎ Thus, each thread executes the same code.

∎ However, different threads work on different data, based on their
thread and block IDs.

Marc Moreno Maza Introduction to parallel and distributed computing CS4402 - CS9635 31 / 34



Heterogeneous programming with CUDA

∎ The parallel code is written for a thread
ë Each thread is free to execute a unique code path
ë Built-in thread and block ID variables are used to map each thread

to a specific data tile (see next slide).
∎ Thus, each thread executes the same code.
∎ However, different threads work on different data, based on their

thread and block IDs.

Marc Moreno Maza Introduction to parallel and distributed computing CS4402 - CS9635 31 / 34



CUDA Example: increment array elements (1/2)
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CUDA Example: increment array elements (2/2)
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