Plan

1. GPUs and CUDA: a Brief Introduction
2. CUDA Programming Model
3. CUDA Memory Model
4. CUDA Programming Basics
5. CUDA Hardware Implementation
6. CUDA Programming: Scheduling and Synchronization
7. CUDA Tools
8. Sample Programs

GPUs

- GPUs are massively multithreaded manycore chips:
 - NVIDIA Tesla products have up to 448 scalar processors with
 - over 12,000 concurrent threads in flight and
 - 1030.4 GFLOPS sustained performance (single precision).
- Users across science & engineering disciplines are achieving 100x or better speedups on GPUs.

GPUs and CUDA: a Brief Introduction

GPUs are massively multithreaded manycore chips: NVIDIA Tesla products have up to 448 scalar processors with over 12,000 concurrent threads in flight and 1030.4 GFLOPS sustained performance (single precision). Users across science & engineering disciplines are achieving 100x or better speedups on GPUs.
CUDA is a scalable parallel programming model and a software environment for parallel computing:
- Minimal extensions to familiar C/C++ environment
- Heterogeneous serial-parallel programming model

GPU Computing with CUDA brings data-parallel computing to the masses
- as of 2008, over 46,000,000 (100,000,000, as of 2009) CUDA-capable GPUs sold,
- a developer kit costs about $400 (for 500 GFLOPS).

Massively parallel computing has become a commodity technology!
CUDA Programming Model

Heterogeneous programming (1/3)

- A CUDA program is a serial program with parallel kernels, all in C.
- The serial C code executes in a host (= CPU) thread
- The parallel kernel C code executes in many device threads across multiple GPU processing elements, called streaming processors (SP).

Heterogeneous programming (2/3)

- Thus, the parallel code (kernel) is launched and executed on a device by many threads.
- Threads are grouped into thread blocks (more on this soon).
- One kernel is executed at a time on the device.
- Many threads execute each kernel.

Heterogeneous programming (3/3)

- The parallel code is written for a thread
 - Each thread is free to execute a unique code path
 - Built-in thread and block ID variables are used to map each thread to a specific data tile (more on this soon).
- Thus, each thread executes the same code on different data based on its thread and block ID.

IDs and dimensions (1/2)

- A kernel is a grid of thread blocks.
- Each thread block has a 2-D ID, which is unique within the grid.
- Each thread has a 2-D ID, which is unique within its thread block.
- The dimensions are set at launch time by the host code.
- IDs and dimension sizes are accessed via global variables in the device code: threadIdx, blockIdx, ..., blockDim, gridDim.
- Simplify memory addressing when processing multidimensional data
CUDA Programming Model
Example: increment array elements (1/2)

Increment N-element vector `a` by scalar `b`

```
int idx = blockIdx.x * blockDim.x + threadIdx.x;
```

Let's assume `N=16`, `blockDim=4` -> 4 blocks

```
blockIdx.x=0  blockDim.x=4
threadIdx.x=0,1,2,3  idx=0,1,2,3
```
```
blockIdx.x=1  blockDim.x=4
threadIdx.x=0,1,2,3  idx=4,5,6,7
```
```
blockIdx.x=2  blockDim.x=4
threadIdx.x=0,1,2,3  idx=8,9,10,11
```
```
blockIdx.x=3  blockDim.x=4
threadIdx.x=0,1,2,3  idx=12,13,14,15
```

See our example number 4 in /usr/local/cs4402/examples/4

CUDA Programming Model
Example host code for increment array elements

```
// allocate host memory
unsigned int numBytes = N * sizeof(float);
float* h_A = (float*) malloc(numBytes);

// allocate device memory
float* d_A = 0;
cudaMalloc((void**)&d_A, numBytes);

// copy data from host to device
cudaMemcpy(d_A, h_A, numBytes, cudaMemcpyHostToDevice);

// execute the kernel
increment_gpu<<< N/blockSize, blockDim>>>(d_A, b);

// copy data from device back to host
cudaMemcpy(h_A, d_A, numBytes, cudaMemcpyDeviceToHost);

// free device memory
cudaFree(d_A);
```

CPU program

```
void increment_cpu(float *a, float b, int N)
{
    for (int idx = 0; idx<N; idx++)
        a[idx] = a[idx] + b;
}

void main()
{
    ....
    increment_cpu(a, b, N);
}
```

CUDA program

```
__global__ void increment_gpu(float *a, float b, int N)
{
    int idx = blockIdx.x * blockDim.x + threadIdx.x;
    if (idx < N)
        a[idx] = a[idx] + b;
}

void main()
{
    ....
    dim3 dimBlock (blocksize);
    dim3 dimGrid( ceil( N / (float)blocksize ) );
    increment_gpu<<<dimGrid, dimBlock>>>(a, b, N);
}
```
Thread blocks (1/2)

- A **Thread block** is a group of threads that can:
 - Synchronize their execution
 - Communicate via shared memory
- Within a grid, **thread blocks can run in any order**:
 - Concurrently or sequentially
 - Facilitates scaling of the same code across many devices

Thus, within a grid, any possible interleaving of blocks must be valid.

Thread blocks **may coordinate but not synchronize**
- they may share pointers
- they should not share locks (this can easily deadlock).

The fact that thread blocks cannot synchronize gives **scalability**:
- A kernel scales across any number of parallel cores

However, within a thread block, threads in the same block may synchronize with barriers.

That is, threads wait at the barrier until threads in the **same block** reach the barrier.

Plan

1. GPUs and CUDA: a Brief Introduction
2. CUDA Programming Model
3. CUDA Memory Model

CUDA Memory Model

Memory hierarchy (1/3)

- **Host (CPU) memory**:
 - Not directly accessible by CUDA threads
CUDA Memory Model

Memory hierarchy (2/3)

Global (on the device) memory:
- Also called device memory
- Accessible by all threads as well as host (CPU)
- Data lifetime = from allocation to deallocation

CUDA Memory Model
Memory hierarchy (3/3)

Shared memory:
- Each thread block has its own shared memory, which is accessible only by the threads within that block
- Data lifetime = block lifetime

Local storage:
- Each thread has its own local storage
- Data lifetime = thread lifetime

Plan

1. GPUs and CUDA: a Brief Introduction
2. CUDA Programming Model
3. CUDA Memory Model
4. CUDA Programming Basics
5. CUDA Hardware Implementation
6. CUDA Programming: Scheduling and Synchronization
7. CUDA Tools
8. Sample Programs

Vector addition on GPU (1/4)

Device Code

```c
// Compute vector sum C = A+B
// Each thread performs one pair-wise addition
__global__ void vecAdd(float* A, float* B, float* C)
{
    int i = threadIdx.x + blockDim.x * blockIdx.x;
    C[i] = A[i] + B[i];
}

int main()
{
    // Run grid of N/256 blocks of 256 threads each
    vecAdd<<<N/256, 256>>>(d_A, d_B, d_C);
}
```
CUDA Programming Basics
Vector addition on GPU (2/4)

```c
// Compute vector sum C = A+B
// Each thread performs one pair-wise addition
__global__ void vecAdd(float* A, float* B, float* C)
{
    int i = threadIdx.x + blockDim.x * blockIdx.x;
    C[i] = A[i] + B[i];
}
```

```c
int main()
{
    // Run grid of N/256 blocks of 256 threads each
cvecAdd<<<N/256, 256>>>(d_A, d_B, d_C);
}
```

CUDA Programming Basics
Vector addition on GPU (3/4)

```c
// allocate and initialize host (CPU) memory
float *h_A = ...; *h_B = ...; *h_C = ...;(empty)

// allocate device (GPU) memory
float *d_A, *d_B, *d_C;

cudaMalloc((void**)&d_A, N * sizeof(float));
cudaMalloc((void**)&d_B, N * sizeof(float));
cudaMalloc((void**)&d_C, N * sizeof(float));
```

```c
// copy host memory to device
cudaMemcpy( d_A, h_A, N * sizeof(float),
cudaMemcpyHostToDevice );
cudaMemcpy( d_B, h_B, N * sizeof(float),
cudaMemcpyHostToDevice );
```

```c
// execute grid of N/256 blocks of 256 threads each
cvecAdd<<<N/256, 256>>>(d_A, d_B, d_C);
```

CUDA Programming Basics
Code executed on the GPU

- The GPU code defines and calls C function with some restrictions:
 - Can only access GPU memory
 - No variable number of arguments
 - No static variables
 - No recursion
 - No dynamic polymorphism

- GPU functions must be declared with a qualifier:
 - `__global__` : launched by CPU, cannot be called from GPU, must return void
 - `__device__` : called from other GPU functions, cannot be launched by the CPU
 - `__host__` : can be executed by CPU
 - qualifiers can be combined.

- Built-in variables: `gridDim`, `blockDim`, `blockIdx`, `threadIdx`
CUDA Programming Basics

Variable Qualifiers (GPU code)

device:

- stored in global memory (not cached, high latency)
- accessible by all threads
- lifetime: application

constant:

- stored in global memory (cached)
- read-only for threads, written by host
- Lifetime: application

shared

- stored in shared memory (latency comparable to registers)
- accessible by all threads in the same threadblock
- lifetime: block lifetime

Unqualified variables:

- scalars and built-in vector types are stored in registers
- arrays are stored in device (= global) memory

Launching kernels on GPU

Launch parameters:

- grid dimensions (up to 2D)
- thread-block dimensions (up to 3D)
- shared memory: number of bytes per block
 - for extern smem variables declared without size
 - Optional, 0 by default
- stream ID:
 - Optional, 0 by default

Example:

```c
dim3 grid(16, 16);
dim3 block(16,16);
kernel<<<grid, block, 0, 0>>>(...);
kernel<<<32, 512>>>(...);
```

GPU Memory Allocation / Release

Host (CPU) manages GPU memory:

- cudaMalloc (void ** pointer, size_t nbytes)
- cudaMemcpy (void *dst, void *src, size_t nbytes, enum cudaMemcpyKind direction);
- cudaFree (void* pointer)

```
int n = 1024;
int nbytes = 1024*sizeof(int);
int * d_a = 0;
cudaMalloc( (void**)&d_a, nbytes );
cudaMemset( d_a, 0, nbytes );
cudaFree(d_a);
```

Data Copies

- cudaMemcpy (void *dst, void *src, size_t nbytes, enum cudaMemcpyKind direction);
- returns after the copy is complete,
- blocks the CPU thread,
- doesn’t start copying until previous CUDA calls complete.

- enum cudaMemcpyKind

- cudaMemcpyHostToDevice
- cudaMemcpyDeviceToHost
- cudaMemcpyDeviceToDevice

- Non-blocking memcopies are provided (more on this later)
Example kernel Source Code

```c
__global__ void sum_kernel(int *g_input, int *g_output)
{
    extern __shared__ int s_data[ ]; // allocated during kernel launch

    // read input into shared memory
    unsigned int id = blockIdx.x * blockDim.x + threadIdx.x;
    s_data[threadIdx.x] = g_input[id];
    __syncthreads();

    // compute sum for the threadblock
    for ( int dist = blockDim.x/2; dist > 0; dist /= 2 )
    {
        if ( threadIdx.x < dist )
            s_data[threadIdx.x] += s_data[threadIdx.x + dist];
        __syncthreads();
    }

    // write the block's sum to global memory
    if ( threadIdx.x == 0 )
        g_output[blockIdx.x] = s_data[0];
}
```

Kernel variations and output: what is in a?

```c
__global__ void kernel( int *a )
{
    int idx = blockIdx.x*blockDim.x + threadIdx.x;
    a[idx] = 7;
}
```

```c
__global__ void kernel( int *a )
{
    int idx = blockIdx.x*blockDim.x + threadIdx.x;
    a[idx] = blockIdx.x;
}
```

```c
__global__ void kernel( int *a )
{
    int idx = blockIdx.x*blockDim.x + threadIdx.x;
    a[idx] = threadIdx.x;
}
```

Kernel variations and output: answers

```c
__global__ void kernel( int *a )
{
    int idx = blockIdx.x*blockDim.x + threadIdx.x;
    a[idx] = 7;
}
```

```c
#include <stdio.h>

int main()
{
    int dimx = 16;
    int num_bytes = dimx*sizeof(int);

    int *d_a=0, *h_a=0; // device and host pointers
```
CUDA Programming Basics

Code Walkthrough (2/4)

```c
#include <stdio.h>

int main()
{
    int dimx = 16;
    int num_bytes = dimx*sizeof(int);
    int *d_a = 0, *h_a = 0; // device and host pointers
    h_a = (int*)malloc(num_bytes);
    cudaMemcpy( (void**)&d_a, num_bytes );
    if( 0==h_a || 0==d_a )
    {
        printf("couldn't allocate memory\n");
        return 1;
    }
}
```

Code Walkthrough (3/4)

```c
#include <stdio.h>

int main()
{
    int dimx = 16;
    int num_bytes = dimx*sizeof(int);
    int *d_a = 0, *h_a = 0; // device and host pointers
    h_a = (int*)malloc(num_bytes);
    cudaMemcpy( (void**)&d_a, num_bytes );
    if( 0==h_a || 0==d_a )
    {
        printf("couldn't allocate memory\n");
        return 1;
    }
    cudaMemcpy(d_a, h_a, num_bytes);
}
```

Example: Shuffling Data

```c
#include <stdio.h>

__global__ void shuffle(int* prev_array, int* new_array, int* indices)
{
    int i = threadIdx.x + blockDim.x * blockIdx.x;
    new_array[i] = prev_array[indices[i]];
}

int main()
{
    // Run grid of N/256 blocks of 256 threads each
    shuffle<<< N/256, 256 >>>(d_old, d_new, d_ind);
}
```
CUDA Hardware Implementation

Plan

1. GPUs and CUDA: a Brief Introduction
2. CUDA Programming Model
3. CUDA Memory Model
4. CUDA Programming Basics
5. CUDA Hardware Implementation
6. CUDA Programming: Scheduling and Synchronization
7. CUDA Tools
8. Sample Programs

Blocks Run on Multiprocessors

Kernel launched by host

Device processor array

Device Memory
Streaming processors and multiprocessors

- **G80 (launched Nov 2006)**
- 128 Thread Processors execute kernel threads
- Up to 12,288 parallel threads active

Processing elements:
- 8 scalar thread processors (SP)
- SM 32 GFLOPS peak at 1.35 GHz
- 8192 32-bit registers (32KB)
- usual ops: float, int, branch, ...

Hardware multithreading:
- up to 8 blocks resident at once
- up to 768 active threads in total

16KB on-chip memory:
- low latency storage
- shared among threads of a block
- supports thread communication
CUDA Hardware Implementation

Hardware Multithreading

- **Hardware allocates resources to blocks:**
 - blocks need: thread slots, registers, shared memory
 - blocks don’t run until resources are available
- **Hardware schedules threads:**
 - threads have their own registers
 - any thread not waiting for something can run
 - context switching is free every cycle
- **Hardware relies on threads to hide latency:**
 - thus high parallelism is necessary for performance.

SIMT Thread Execution (1/3)

- At each clock cycle, a multiprocessor executes the same instruction on a group of threads called a **warp**
 - The number of threads in a warp is the **warp size** (32 on G80)
 - A half-warp is the first or second half of a warp.
- **Within a warp, threads**
 - share instruction fetch/dispatch
 - some become inactive when code path diverges
 - hardware automatically handles divergence
- **Warps are the primitive unit of scheduling:**
 - each active block is split into warps in a well-defined way
 - threads within a warp are executed physically in parallel while warps and blocks are executed logically in parallel.

SIMT Thread Execution (2/3)

- **SIMT execution is an implementation choice:**
 - sharing control logic leaves more space for ALUs
 - largely invisible to programmer
 - must be understood for performance, not correctness
- As already mentioned, each multiprocessor processes batches of blocks, one batch after the other:
 - **Active blocks** = the blocks processed by one multiprocessor in one batch
 - **Active threads** = all the threads from the active blocks

SIMT Thread Execution (3/3)

- The multiprocessor’s registers and shared memory are split among the active threads
- Therefore, for a given kernel, the number of active blocks depends on:
 - The number of registers the kernel compiles to
 - How much shared memory the kernel requires
- If there cannot be at least one active block, the kernel fails to launch.
CUDA Programming: Scheduling and Synchronization

Plan

1. GPUs and CUDA: a Brief Introduction
2. CUDA Programming Model
3. CUDA Memory Model
4. CUDA Programming Basics
5. CUDA Hardware Implementation
6. CUDA Programming: Scheduling and Synchronization
7. CUDA Tools
8. Sample Programs

Thread Synchronization Function

- `void __syncthreads();`

- Synchronizes all threads in a block:
 - once all threads have reached this point, execution resumes normally.
 - this is used to avoid hazards when accessing shared memory.

- Should be used in conditional code only if the condition is uniform across the entire thread block.

GPU Atomic Integer Operations

- Atomic operations on integers in global memory:
 - associative operations on signed/unsigned ints, such as `add`, `min`, `max`, `and`, `or`, `xor`.
 - they have names like `atomicAdd`, `atomicMin`, `atomicAnd`, ...

- Requires hardware with 1.1 compute capability

- Should be used only when strictly necessary: non-locking mechanisms should be preferred for performance consideration.

Host Synchronization

- All kernel launches are asynchronous:
 - control returns to CPU immediately
 - kernel starts executing once all previous CUDA calls have completed

- Memcopies are synchronous:
 - control returns to CPU once the copy is complete
 - copy starts once all previous CUDA calls have completed

- `cudaThreadSynchronize()`:
 - host code execution resumes when all previous CUDA calls complete

- Asynchronous CUDA calls provide:
 - non-blocking memcopies (more on this later)
 - ability to overlap memcopies and kernel execution
CUDA Programming: Scheduling and Synchronization

Device Management

CPU can query and select GPU devices:
- `cudaGetDeviceCount(int* count)`
- `cudaSetDevice(int device)`
- `cudaGetDevice(int *current_device)`
- `cudaGetDeviceProperties(cudaDeviceProp* prop, int device)`
- `cudaChooseDevice(int *device, cudaDeviceProp* prop)`

Multi-GPU setup:
- device 0 is used by default
- one CPU thread can control one GPU
- multiple CPU threads can control the same GPU but their calls are serialized by the driver.
- CUDA resources allocated by a CPU thread can be consumed only by CUDA calls from the same CPU thread.

CUDA Event API

Events are inserted (recorded) into CUDA call streams

Usage scenarios:
- measure elapsed time for CUDA calls (clock cycle precision)
- query the status of an asynchronous CUDA call
- block CPU until CUDA calls prior to the event are completed

```
cudaEvent_t start, stop;
cudaEventCreate(&start);
cudaEventCreate(&stop);
cudaEventRecord(start, 0);
kernelfgrid, block>>>(...);
cudaEventRecord(stop, 0);
cudaEventSynchronize(stop);
float et;
cudaEventElapsedTime(&et, start, stop);
cudaEventDestroy(start); cudaEventDestroy(stop);
```
CUDA Tools

Plan

1. GPUs and CUDA: a Brief Introduction
2. CUDA Programming Model
3. CUDA Memory Model
4. CUDA Programming Basics
5. CUDA Hardware Implementation
6. CUDA Programming: Scheduling and Synchronization
7. CUDA Tools
8. Sample Programs

The nvcc compiler

- Any source file containing CUDA language extensions must be compiled with nvcc:
 - NVCC separates code running on the host from code running on the device.
- Two-stage compilation:
 - First generates Parallel Thread eXecution code (PTX)
 - Then produces Device-specific binary object
- NVCC is a compiler driver:
 - Works by invoking all the necessary tools and compilers like cudacc, g++,
- An executable with CUDA code requires:
 - the CUDA core library (cuda)
 - the CUDA runtime library (cudart)

Compiling CUDA code

PTX Example (SAXPY code)

cvt.u32.s16 $blockid, $ctaid.x; // Calculate i from thread/block IDs
cvt.u32.s16 $blocksiz, $ntid.x;
cvt.u32.s16 $tid, $ntid.x;
mad24.lo.u32 $i, $blockid, $blocksiz, $tid;
ld.param.u32 $n, [N]; // Nothing to do if n <= i
setp.le.u32 $pl, $n, $i;
$bpl bxz $l_finish;
mul.lo.u32 $offset, $i, 4; // Load y[i]
ld.param.u32 $yaddr, [Y];
add.u32 $yaddr, $yaddr, $offset;
ld.global.f32 $y_i, [$yaddr+0];
ld.param.u32 $xaddr, [X]; // Load x[i]
add.u32 $xaddr, $xaddr, $offset;
ld.global.f32 $x_i, [$xaddr+0];
ld.param.f32 $alpha, [ALPHA]; // Compute and store alpha*x[i]+y[i]
med.f32 $y_i, $alpha, $x_i, $y_i;
st.global.f32 [$yaddr+0], $y_i;
$L_finish: exit;
Debugging CUDA code

- An executable compiled in device emulation mode (nvcc -deviceemu) runs completely on the host using the CUDA runtime:
 - no need of any device and CUDA driver
 - each device thread is emulated with a host thread

- However, the device emulation mode has several pitfalls:
 - emulated device threads execute sequentially, so simultaneous accesses of the same memory location by multiple threads potentially produce different results.
 - results of floating-point computations will slightly differ because of different compiler outputs, different instruction sets. etc.
 - dereferencing device pointers on the host may produce correct results in device emulation mode while generating errors in device execution mode.

- In fact in the latest version of nvcc the device emulation mode is no longer supported!

Developing a CUDA program

- Decompose the targeted application according to the many-core programming model of CUDA:
 - such a program alternates serial code and vectorized code
 - such that the parallel code has enough work and enough parallelism

- Write serial C code for each targeted CUDA kernel

- For each targeted CUDA kernel, carefully decompose the work into thread blocks:
 - this implies mapping the thread blocks to the data
 - leading to potentially delicate index calculation:
 - proving them mathematically often prevents from painful debugging!

- Verify each kernel against its C counterpart

- Debugging may lead to further decompose a kernel into smaller kernels.

Plan

- GPUs and CUDA: a Brief Introduction
- CUDA Programming Model
- CUDA Memory Model
- CUDA Programming Basics
- CUDA Hardware Implementation
- CUDA Programming: Scheduling and Synchronization
- CUDA Tools
- Sample Programs

Matrix multiplication (1/16)

- The goals of this example are:
 - Understanding how to write a kernel for a non-toy example
 - Understanding how to map work (and data) to the thread blocks
 - Understanding the importance of using shared memory

- We start by writing a naive kernel for matrix multiplication which does not use shared memory.

- Then we analyze the performance of this kernel and realize that it is limited by the global memory latency.

- Finally, we present a more efficient kernel, which takes advantage of a tile decomposition and makes use of shared memory.
Sample Programs

Matrix multiplication (2/16)

- Consider multiplying two rectangular matrices A and B with respective formats $m \times n$ and $n \times p$. Define $C = A \times B$.
- Principle: each thread computes an element of C through a 2D kernel.

__global__ void mat_mul(float *a, float *b, float *ab, int width)
{
 // calculate the row & col index of the element
 int row = blockIdx.y*blockDim.y + threadIdx.y;
 int col = blockIdx.x*blockDim.x + threadIdx.x;
 float result = 0;
 // do dot product between row of a and col of b
 for(int k = 0; k < width; ++k)
 result += a[row*width+k] * b[k*width+col];
 ab[row*width+col] = result;
}

Matrix multiplication (3/16)

Analyze the previous CUDA kernel for multiplying two rectangular matrices A and B with respective formats $m \times n$ and $n \times p$. Define $C = A \times B$.

- Each element of C is computed by one thread:
 - then each row of A is read p times and
 - each column of B is read m times, thus
 $2 m n p$ reads in total for $2 m n p$ flops.

- Let t be an integer dividing m and p. We decompose C into $t \times t$ tiles. If tiles are computed one after another, then:
 - $(m/t)(t n)(p/t)$ slots are read in A
 - $(p/t)(t n)(m/t)$ slots are read in A, thus
 $2 m n p / t$ reads in total for $2 m n p$ flops.

- For a CUDA implementation, $t = 16$ such that each tile is computed by one thread block.

The previous explanation can be adapted to a particular GPU architecture, so as to estimate the performance of the first (naive) kernel.

- The first kernel has a global memory access to flop ratio (GMAC) of 8 Bytes / 2 ops, that is, 4 B/op.
- Suppose using a GeForce GTX 260, which has 805 GFLOPS peak performance.
- In order to reach peak fp performance we would need a memory bandwidth of $GMAC \times$ Peak FLOPS = 3.2 TB/s.
- Unfortunately, we only have 112 GB/s of actual memory bandwidth (BW) on a GeForce GTX 260.
- Therefore an upper bound on the performance of our implementation is $BW / GMAC = 28$ GFLOPS.
Matrix multiplication (6/16)

- The picture below illustrates our second kernel
- Each thread block computes a tile in C, which is obtained as a dot product of tile-vector of A by a tile-vector of B.
- Tile size is chosen in order to maximize data locality.

Matrix multiplication (7/16)

- So a thread block computes a $t \times t$ tile of C.
- Each element in that tile is a dot-prouct of a row from A and a column from B.
- We view each of these dot-products as a sum of small dot products:
 \[
 c_{i,j} = \sum_{k=0}^{t-1} a_{i,k} b_{k,j} + \sum_{k=t}^{2t-1} a_{i,k} b_{k,j} + \cdots + \sum_{k=n-\ell-1}^{n-1} a_{i,k} b_{k,j}
 \]
- Therefore we fix ℓ and then compute $\sum_{k=\ell t}^{(\ell+1)t-1} a_{i,k} b_{k,j}$ for all i, j in the working thread block.
- We do this for $\ell = 0, 1, \ldots, (n/t - 1)$.
- This allows us to store the working tiles of A and B in shared memory.

Matrix multiplication (8/16)

- We assume that A, B, C are stored in row-major layout.
- Observe that for computing a tile in C our kernel code does need to know the number of rows in A.
- It just needs to know the width (number of columns) of A and B.
- The following code fragments are taken from Example 2.

```cpp
#define BLOCK_SIZE 16

template<typename T>
__global__ void matrix_mul_ker(T* C, const T *A, const T *B, size_t wa, size_t wb) {
    // Block index; WARNING: should be at most 2^16 - 1
    int bx = blockIdx.x; int by = blockIdx.y;

    // Thread index
    int tx = threadIdx.x; int ty = threadIdx.y;

    // A Begin, A End, A Step
    int aBegin = wa * BLOCK_SIZE * by;
    int aEnd = aBegin + wa - 1;
    int aStep = BLOCK_SIZE;
}
```

Matrix multiplication (9/16)

- We need the position in $*A$ of the first element of the first working tile from A; we call it $aBegin$.
- We will need also the position in $*A$ of the last element of the last working tile from A; we call it $aEnd$.
- Moreover, we will need the offset between two consecutive working tiles of A; we call it $aStep$.

```cpp
int aBegin = wa * BLOCK_SIZE * by;
int aEnd = aBegin + wa - 1;
int aStep = BLOCK_SIZE;
```
Sample Programs

Matrix multiplication (10/16)

- Similarly for \(B \) we have \(b\text{Begin} \) and \(b\text{Step} \).
- We will not need a \(b\text{End} \) since once we are done with a row of \(A \), we are also done with a column of \(B \).
- Finally, we initially the accumulator of the working thread; we call it \(C_{\text{sub}} \).

\[
\text{int } b\text{Begin} = \text{BLOCK_SIZE} \times bx;
\]
\[
\text{int } b\text{Step} = \text{BLOCK_SIZE} \times wb;
\]
\[
\text{int } C_{\text{sub}} = 0;
\]

Matrix multiplication (11/16)

- The main loop starts by copying the working tiles of \(A \) and \(B \) to shared memory.

\[
\text{for(int } a = a\text{Begin, } b = b\text{Begin; } a <= a\text{End; } a += a\text{Step, } b += b\text{Step)} \{
\]
- \(___\text{shared__ } \text{int } As[\text{BLOCK_SIZE}][\text{BLOCK_SIZE}]; \)
- \(___\text{shared__ } \text{int } Bs[\text{BLOCK_SIZE}][\text{BLOCK_SIZE}]; \)

\[
\text{// Load the tiles from global memory to shared memory}
\]
\[
\text{// each thread loads one element of each tile}
As[ty][tx] = A[a + wa * ty + tx];
Bs[ty][tx] = B[b + wb * ty + tx];
\]

\[
\text{// synchronize to make sure the matrices are loaded}
___\text{syncthreads();}
\]

Matrix multiplication (12/16)

- Compute a small “dot-product” for each element in the working tile of \(C \).

\[
\text{// Multiply the two tiles together}
\text{// each thread computes one element of the tile of } C
\text{\text{for(int } k = 0; k < \text{BLOCK_SIZE}; ++k)} \{
\text{C_{sub} += As[ty][k] * Bs[k][tx];}
\}
\text{\text{// synchronize to make sure that the preceding compute;}
\text{// done before loading two new tiles of } A \text{ and } B \text{ in the}}
___\text{syncthreads();}
\]

Matrix multiplication (13/16)

- Once computed, the working tile of \(C \) is written to global memory.

\[
\text{// Write the working tile of } C \text{ to global memory;}
\text{// each thread writes one element}
\text{int } c = wb * \text{BLOCK_SIZE} * by + \text{BLOCK_SIZE} * bx;
C[c + wb * ty + tx] = C_{\text{sub;}}
\]
Each thread block should have many threads:
- TILE_WIDTH = 16 implies 16 × 16 = 256 threads

There should be many thread blocks:
- A 1024 × 1024 matrix would require 4096 thread blocks.
- Since one streaming multiprocessor (SM) can handle 768 threads, each SM will process 3 thread blocks, leading it full occupancy.

Each thread block performs 2 × 256 reads of a 4-byte float while performing 256 × (2 × 16) = 8,192 fp ops:
- Memory bandwidth is no longer limiting factor

Experimentation performed on a GT200.
- Tiling and using shared memory were clearly worth the effort.

Effective use of different memory resources reduces the number of accesses to global memory
- But these resources are finite!
- The more memory locations each thread requires, the fewer threads an SM can accommodate.

<table>
<thead>
<tr>
<th>Resource</th>
<th>Per GT200 SM</th>
<th>Full Occupancy on GT200</th>
</tr>
</thead>
<tbody>
<tr>
<td>Registers</td>
<td>16384</td>
<td><= 16384 / 768 threads</td>
</tr>
<tr>
<td>shared</td>
<td>16KB</td>
<td><= 16KB / 8 blocks</td>
</tr>
</tbody>
</table>

(Moreno Maza) CS4402-9535: Many-core Computing with CUDA UWO-CS4402-CS9535 83 / 83