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GPUs and CUDA: a Brief Introduction

GPUs

@ GPUs are massively multithreaded manycore chips:
e NVIDIA Tesla products have up to 448 scalar processors with
e over 12,000 concurrent threads in flight and
e 1030.4 GFLOPS sustained performance (single precision).
@ Users across science & engineering disciplines are achieving 100x or
better speedups on GPUs.

NVIDIA,
TEsLA
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CUDA CUDA programming and memory models in a nutshell

@ CUDA is a scalable parallel programming model and a software Streaming Processor Streaming Multiprocessor
environment for parallel computing: 00
e Minimal extensions to familiar C/C++ environment o
o Heterogeneous serial-parallel programming model - 0o

|

@ GPU Computing with CUDA brings data-parallel computing to the Thread Threadblock

masses

Per-block
o as of 2008, over 46,000,000 (100,000,000, as of 2009) CUDA-capable Shared
GPUs sold, LM

o a developer kit costs about $400 (for 500 GFLOPS).

. . . M
@ Massively parallel computing has become a commodity technology!
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CUDA Programming Model CUDA Programming Model

Plan CUDA design goals

@ Enable heterogeneous systems (i.e., CPU4+GPU)
@ Scale to 100’s of cores, 1000's of parallel threads
e Use C/C++ with minimal extensions

9 CUDA Programming Model @ Let programmers focus on parallel algorithms
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CUDA Programming Model CUDA Programming Model

Heterogeneous programming (1/3) Heterogeneous programming (2/3)

o A CUDA program is a serial program with parallel kernels, all in C.

@ The serial C code executes in a host (= CPU) thread

@ The parallel kernel C code executes in many device threads across
multiple GPU processing elements, called streaming processors (SP).

@ Thus, the parallel code (kernel) is launched and executed on a device
by many threads.

@ Threads are grouped into thread blocks (more on this soon).
@ One kernel is executed at a time on the device.

@ Many threads execute each kernel.

Parallel Kernel
KernelA (args);

Serial Code

Parallel Kernel
KernelA (args);

Device

Parallel Kernel
KernelB (args);

(Moreno Maza) CS4402-9535: Many-core Computing with CU
CUDA Programming Model

Heterogeneous programming (3/3)

Parallel Kernel
KernelB (args);
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CUDA Programming Model

IDs and dimensions (1/2)
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@ The parallel code is written for a thread @ A kernel is a grid of thread blocks.
e Each thread is free to execute a unique code path @ Each thread block has a 2-D ID, which is unique within the grid.
o Built-in thread and block ID variables are used to map each thread @ Each thread has a 2-D ID, which is unique within its thread block.
to a specific data tile (more on this soon). @ The dimensions are set at launch time by the host code
@ Thus, each thread executes the same code on different data based on @ IDs and dimension sizes are accessed via global variables in the
its thread and block ID. device code: threadIdx, blockIdx, ..., blockDim, gridDim.
e Simplify memory addressing when processing multidimensional data

Parallel Kernel Device

KernelA (args);

Parallel Kernel | Device

KernelB (args);

(Moreno Maza)
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IDs and dimensions (2/2) Example: increment array elements (1/2)

Device

orid 1 Increment N-element vector a by scalar b
r

Blcck | | Baoek | | Blcck ArrrrrrrrfrrrrrT

Biock | | Brock | " Block Let's assume N=16, blockDim=4 -> 4 blocks

(0, 1) (1, 1) (2,1)

Block (1, 1)

Thread | Thread | Thread | Thread | Thread
0.0 | (L0 | @0 | G0 | 40

blockldx.x=0 blockldx.x=1 blockldx.x=2 blockldx.x=3
Thread | Thread | Thread | Thread | Thread : - : — . _ : -
o |anlenlan| an blockDim.x=4 blockDim.x=4 blockDim.x=4 blockDim.x=4
threadldx.x=0,1,2,3 threadldx.x=0,1,2,3 threadldx.x=0,1,2,3 threadldx.x=0,1,2,3
Thread | Thread | Thread | Thread | Thread idx=0,1,2,3 idx=4,5,6,7 idx=8,9,10,11 idx=12,13,14,15

©,2) | (1L,2) | (2,2) | 3,2) | 4,2)

See our exampe number 4 in /usr/local/cs4402/examples/4
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CUDA Programming Model CUDA Programming Model

Example: increment array elements (2/2) Example host code for increment array elements

// allocate host memory
unsigned int numBytes = N * sizeof (float)
float* h A = (float*) malloc (numBytes) ;

// allocate device memory

id i * i void increment u(float *a, float b, int N
void increment_cpu(float *a, float b, int N) { _gpu( ) float* d A = 0;
{ for (int idx = 0; idx<N; idx++) int idx = . + - cudaMalloa({zoid*+)ed A, mmbytes);
if( idx < N) _
// copy data from host to device
} } cudaMemcpy (d A, h A, numBytes, cudaMemcpyHostToDevice) ;
// execute the kernel
void main() void main() increment gpu<<< N/blockSize, blockSize>>>(d A, b);
{ {
increment_cpu(a, b, N); dim3 dimBlock ( ); // copy data from device back to host
} - dim3 dimGrid( ceil( N / (float) ) ); cudaMemcpy (h A, d A, numBytes, cudaMemcpyDeviceToHost) ;
increment_gpu a, b, N);
} // free device memory

cudaFree (d A);
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Thread blocks (1/2) Thread blocks (2/2)

@ A Thread block is a group of threads that can:

e Synchronize their execution @ Thus, within a grid, any possible interleaving of blocks must be valid.
o Communicate via shared memor . .
i . Y . @ Thread blocks may coordinate but not synchronize
@ Within a grid, thread blocks can run in any order: .
C | il e they may share pointers
e ‘oncurrently or sequentially . e they should not share locks (this can easily deadlock).
o Facilitates scaling of the same code across many devices
@ The fact that thread blocks cannot synchronize gives scalability:

Kernel grid

2-Core Device 4-Core Device
Block 0 Block 1 ‘
/ Block 2 Block 3 \ L L

Block 4 Block 5
Block 0 | Block 1 Block 6 Block 7 Elock 0 Block 1 ‘ Block 2 | Block 3

o A kernel scales across any number of parallel cores

@ However, within a thread bloc, threads in the same block may
synchronize with barriers.

||Bluck 2 ‘| Block 3 Block 4 Block 5 ‘ Block 6 | Block 7

That is, threads wait at the barrier until threads in the same block
reach the barrier.

||Elncll 4 \| Block 5

|Block 6 H Block 7
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CUDA Memory Model CUDA Memory Model

Plan Memory hierarchy (1/3)

Host (CPU) memory:
@ Not directly accessible by CUDA threads

© CUDA Memory Model
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Memory hierarchy (2/3)

Global (on the device) memory:
@ Also called device memory
@ Accessible by all threads as well as host (CPU)

@ Data lifetime = from allocation to deallocation

(Moreno Maza)

Plan

@ CUDA Programming Basics
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Memory hierarchy (3/3)

Shared memory:

@ Each thread block has its own shared memory, which is accessible
only by the threads within that block

e Data lifetime = block lifetime
Local storage:
@ Each thread has its own local storage

@ Data lifetime = thread lifetime
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CUDA Programming Basics CUDA Programming Basics

Vector addition on GPU (1/4)

Device Code
// Compute vector sum C = A+B
// Each thread performs one pair-wise addition
__global wvoid vecAdd(float* A, float* B, float* C)

{
int i = threadIdx.x + blockDim.x * blockIdx.x;

C[i] = A[i] + B[i]:;

int main()

{

// Run grid of N/256 blocks of 256 threads each
vecAdd<<< N/256, 256>>>(d A, d B, d C);

23 /83 (Moreno Maza) (CS4402-9535: Many-core Computing with CL UWO-CS4402-CS9535 24 / 83



Vector addition on GPU (2/4)

A+B
// Each thread performs one pair-wise addition
__global  void vecAdd(float* A, float* B, float* C)

{

// Compute vector sum C =

int i = threadIdx.x + blockDim.x * blockIdx.x;
C[i] = A[i] + B[i];

Host Code
int main{()
{
// Run grid of N/256 blocks of 256 threads each
vecAdd<<< N/256, 256>>>(d A, d B, d C);

(Moreno Maza) CS4402-9535: Many-core Computing with CU
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Vector addition on GPU (4/4)

// execute grid of N/256 blocks of 256 threads each
vecAdd<<<N/256, 256>>>(d A, d B, d C);

// copy result back to host memory

cudaMemcpy( h C, d C, N * sizeof(float),
cudaMemcpyDeviceToHost) ) ;

// do something with the result..

// free device (GPU) memory
cudaFree(d A);
cudaFree (d _B);
cudaFree(d C);

UWO-CS4402-CS9535
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Vector addition on GPU (3/4)

// allocate and initialize host (CPU) memory
fleoat *h A = ., *h B = .; *h C = .. (empty)

// allocate device (GPU) memory

float *d A, *d B, *d C;

cudaMalloc( (void**) &d A, N * sizeof(float));
cudaMalloc( (void**) &d B, N * sizeof(float));
cudaMalloc( (void**) &d C, N * sizeof(float));

// copy host memory to device

cudaMemcpy( d A, h A, N * sizeof(float),
cudaMemcpyHostToDevice) ) ;

cudaMemcpy( d B, h B, N * sizeof(float),
cudaMemcpyHostToDevice) ) ;

// execute grid of N/256 blocks of 256 threads
vecAdd<<<N/256, 256>>>(d A, d B, d C);
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Code executed on the GPU

@ The GPU code defines and calls C function with some restrictions:

Can only access GPU memory
No variable number of arguments
No static variables

No recursion

No dynamic polymorphism

@ GPU functions must be declared with a qualifier:
__global__ : launched by CPU, cannot be called from GPU, must

return void
__device _ : called from other GPU functions, cannot be launched
by the CPU
__host__ : can be executed by CPU

@ qualifiers can be combined.

@ Built-in variables: gridDim, blockDim, blockIdx, threadIdx
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CUDA Programming Basics CUDA Programming Basics

Variable Qualifiers (GPU code) Launching kernels on GPU
__device_ : e stored in global memory (not cached, high latency) Launch parameters:
@ accessible by all threads e grid dimensions (up to 2D)
o lifetime: application @ thread-block dimensions (up to 3D)
__constant__ : e stored in global memory (cached) @ shared memory: number of bytes per block
@ read-only for threads, written by host e for extern smem variables declared without size
o Lifetime: application o Optional, 0 by default
_ shared_ : e stored in shared memory (latency comparable to o stream |D:

@ accessible by all threads in the same threadblock

o lifetime: block lifetime dim3 grid(16, 16);

dim3 block(16,16);
kernel<<<grid, block, 0, 0>>>(...);
kernel<<<32, 512>>>(...);

Unqualified variables: @ scalars and built-in vector types are stored in
registers
@ arrays are stored in device (= global) memory
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GPU Memory Allocation / Release Data Copies

(Moreno Maza)

Host (CPU) manages GPU memory:

@ cudaMalloc (void ** pointer, size_t nbytes) @ cudaMemcpy( void *dst, void *src, size_t nbytes, enum

. _ . ) cudaMemcpyKind direction);
@ cudaMemset (void * pointer, int value, size_t count) .
e returns after the copy is complete,

@ cudaFree (void* pointer) o blocks the CPU thread,

e doesn't start copying until previous CUDA calls complete.
int n = 1024;
int nbytes = 1024*sizeof (int); o cudaMemcpyHostToDevice
int * d_a = 0; o cudaMemcpyDeviceToHost
cudaMalloc( (void**)&d_a, nbytes ); o cudaMemcpyDeviceToDevice
cudaMemset( d_a, 0, nbytes);
cudaFree(d_a);

@ enum cudaMemcpyKind

@ Non-blocking memcopies are provided (more on this later)
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Example kernel Source Code

sum_kernel(int *g_input *g_output)

s_data[]; // allocated during kernel launch

Kernel variations and output: what is in a?

global  void kernel(int *a )

int idx = blockldx.x*blockDim.x + threadldx.x;
alidx] = 7;

// read input into shared memory

idx = X X+
s_data[ 1=g_ input[idx];
__syncthreads( );

// compute sum for the threadblock
(intdist = /2; dist>0; dist/=2)
{
( x < dist)
s_data[ ]1+=s_data[
__syncthreads( );

}

// write the block's sum to global memory
if ( ==0)
g_output| ]1=s_data[0];
}
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Kernel variations and utput: answers

global__ void kernel(int *a )

int idx = blockldx.x*blockDim.x + threadldx.x;

alidx] =7, Output: 7777777777777777

global _ void kernel(int *a)

int idx = bloc *blockDim.x + threadldx.x;

afidx] = bloc Output: 000011112

global _ void kernel(int *a)

int idx = blockldx.x*blockDim.x + threadldx.x;
a[idx] = thread ;

(Moreno Maza) CS4402-9535: Many-core Computing with CL
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global _ void kernel(int *a )

int idx = block blockDim.x + threadldx.x;

a[idx] = blockld>

global__ void kernel(int *a )

int idx = blockldx.x*blockDim.x + threadldx.x;

a[idx] = threadl
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Code Walkthrough (1/4)

// walkthrought.cu
#include <stdio.h>

int main()
{
int dimx = 16;
int num_bytes = dimx*sizeof(int);

UWO-CS4402-CS9535

int *d_a=0, *h_a=0; // device and host pointers
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Code Walkthrough (2/4)

/I walkthrough1.cu
#include <stdio.h>

int main()

{

int dimx = 16;
int num_bytes = dimx*sizeof(int);

int *d_a=0, *h_a=0; // device and host pointers

h_a = (int*)malloc(num_bytes);
cudaMalloc( (void**)&d_a, num_bytes );

if( 0==h_a || 0==d_a)

{
printf("couldn't allocate memory\n");
return 1;
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Code Walkthrough (4/4)

# walkthrought.cu
#include <stdio.h>

int main()
.

1
int dimx = 16;
int num_bytes = dimx*sizeof(int);

int *d_a=0, *h_a=0; // device and host pointers

h_a = (int")malloc(num_bytes);
cudaMalloc( (void**)&d_a, num_bytes );

if( 0==h_a || 0==d_a )

.

1
printf("couldn't allocate memory\n");
refurn 1;

1

I

cudaMemset(d_a, 0, num_bytes);
cudaMemcpy( h_a, d_a, num_bytes, cudaMemcpyDevice ToHost );

free(h_a);
cudaFree(d_a);

return 0;
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Code Walkthrough (3/4)

// walkthrough1.cu
#include <stdio.h>

int main()
{
int dimx = 16;
int num_bytes = dimx*sizeof(int);
int *d_a=0, *h_a=0; // device and host pointers

h_a = (int*)malloc(num_bytes);
cudaMalloc( (void**)&d_a, num_bytes );

if(0==h_a || 0==d_a)

printf("couldn't allocate memory\n");
return 1;

}

cudaMemset( d_a, 0, num_bytes );
cudaMemcpy( h_a, d_a, num_bytes,
cudaMemcpyDeviceToHost );
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Example: Shuffling Data

// Reorder values based on keys
// Each thread moves one element

__global  void shuffle(int* prev_array, int*
new_array, int* indices)

int i = threadIdx.x + blockDim.x * blockIdx.x;
new_array[i] = prev_array[indices[i]];

Host Code

int main ()

{
// Run grid of N/256 blocks of 256 threads each
shuffle<<< N/256, 256>>>(d old, d new, d ind);

39 /83 (Moreno Maza) (CS4402-9535: Many-core Computing with CL UWO-CS4402-CS9535 40 / 83



Kernel with 2D Indexing (1/2) Kernel with 2D Indexing (2/2)

int main()

/ device and host pointers

h_a = (int")malloc(num_bytes);
_g|0ba|_ VDId kel’ne'( Int *a! Int dlqu Int dlmy) cuc oid a, num_bytes )

{ if( 0==h_a|| 0==d_a )

printf("couldn't allocate memory\n");

int ix blockldx.x*blockDim.x + threadldx.x; rewm:
int |y _ b'OCK'dX y*blocKDim y N threadldx y global__ void kernel( int *a, int dimx, int dimy )
int |dx _ Iy*dlmx + iX. ! e intix =bloc *blockDim.x + threadl

intiy = blockl *blockDim.y + threadldx.y;
intidx = iy*dimx + ix;

alidx] = a[idx]+1; alidx] = afidx]+1:

return 0;
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CUDA Hardware Implementation CUDA Hardware Implementation

Plan Blocks Run on Multiprocessors

Kernel launched by host

. Device processor array
© CUDA Hardware Implementation
LI B
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Streaming processors and multiprocessors Block Diagram for the G80 Family

e G80 (launched Nov 2006)

Streaming Processor Streaming Multiprocessor @ 128 Thread Processors execute kernel threads

%DD e Up to 12,288 parallel threads active

|
00 Hou
D D InputA:sembler

v
Threadblock Thread Execution Manager

Thread

Per-block
emory
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Streaming Multiprocessor (1/2) Streaming Multiprocessor (2/2)

e Hardware multithreading:

o up to 8 blocks resident at once

8 scalar thread processors (SP) @ up to 768 active threads in total
SM 32 GFLOPS peak at 1.35 GHz o 16KB on—chip memory:

8192 32-bit registers (32KB) o low latency storage

usual ops: float, int, branch, ... e shared among threads of a block
@ supports thread communication

@ Processing elements:

"]
]
"]
"]

SM tot1...tB

i % SM t0t1... 18
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CUDA Hardware Implementation CUDA Hardware Implementation

Hardware Multithreading SIMT Thread Execution (1/3)

o Hardware allocates resources to blocks: @ At each clock cycle, a multiprocessor executes the same instruction
e blocks need: thread slots, registers, shared memory on a group of threads called a warp
o blocks don’t run until resources are available e The number of threads in a warp is the warp size (32 on G80)
o Hardware schedules threads: o A half-warp is the first or second half of a warp.
o hreads have their own registers e Within a warp, threads
e any thread not waiting for something can run e share instruction fetch/dispatch
e context switching is free every cycle e some become inactive when code path diverges
o Hardware relies on threads to hide latency:

e hardware automatically handles divergence
o thus high parallelism is necessary for performance. @ Warps are the primitive unit of scheduling:

SM e each active block is split nto warps in a well-defined way

e threads within a warp are executed physically in parallel while warps
and blocks are executed logically in parallel.

SM
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SIMT Thread Execution (2/3)
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SIMT Thread Execution (3/3)

e SIMT execution is an implementation choice:

@ The multiprocessor's registers and shared memory are split among the
e sharing control logic leaves more space for ALUs active threads
o largely invisible to programmer

e must be understodd for performance, not correctness

@ As already mentioned, each multiprocessor processes batches of
blocks, one batch after the other:

o Active blocks = the blocks processed by one multiprocessor in one

@ Therefore, for a given kernel, the number of active blocks depends on:

e The number of registers the kernel compiles to

e How much shared memory the kernel requires
batc.h ) @ If there cannot be at least one active block, the kernel fails to launch.
o Active threads = all the threads from the active blocks
SM SM
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CUDA Programming: Scheduling and Synchronization
Plan

@ CUDA Programming: Scheduling and Synchronization
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GPU Atomic Integer Operations

@ Atomic operations on integers in global memory:

e associative operations on signed/unsigned ints, such as
e add, min, max, . and, or, xor.
o they have names like atomicAdd, atomicMin, atomicAnd, ...

@ Requires hardware with 1.1 compute capability

@ Should be used only when strictly necessary: non-locking mechanisms
should be prefered for performance consideration.
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Thread Synchronization Function

@ void __syncthreads();

@ Synchronizes all threads in a block:

e once all threads have reached this point, execution resumes normally.
e this is used to avoid hazards when accessing shared memory.

@ Should be used in conditional code only if the condition is uniform
across the entire thread block.
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CUDA Programming: Scheduling and Synchronization
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Host Synchronization

@ All kernel launches are asynchronous

e control returns to CPU immediately
o kernel starts executing once all previous CUDA calls have completed

@ Memcopies are synchronous

e control returns to CPU once the copy is complete
e copy starts once all previous CUDA calls have completed

@ cudaThreadSynchronize ()
e host code execution resumes when all previous CUDA calls complete
@ Asynchronous CUDA calls provide:

e non-blocking memcopies (more on this later)
e ability to overlap memcopies and kernel execution
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Example host code (recall)

unsigned int numBytes = N * sizeof(float)
float* h_A = (float*) malloc (numBytes) ;

float* d_A = 0;
((void**) &d A, numbytes);

(d_A, h_A, numBytes, )
>>>(d_A, b, N);

(h_A, d A, numBytes, )

cudaFree (d_A);
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CUDA Error Reporting to CPU
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o All CUDA calls return error code:

o except for kernel launches
o the error code type is cudaError_t

e cudaError_t cudaGetlLastError(void):

e returns the code for the last error ( no error has also a code)
@ char* cudaGetErrorString(cudaError_t code):

e returns a null-terminted character string describing the error

printf (%s\n, cudaGetErrorString( cudaGetLastError() ) );
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Device Management

@ CPU can query and select GPU devices:

e cudaGetDeviceCount( int* count )

e cudaSetDevice( int device )

e cudaGetDevice( int *current device )

e cudaGetDeviceProperties( cudaDeviceProp* prop, int
device )

e cudaChooseDevice( int *device, cudaDeviceProp* prop )

o Multi-GPU setup:

e device 0 is used by default

e one CPU thread can control one GPU

e multiple CPU threads can control the same GPU but their calls are
serialized by the driver

e CUDA resources allocated by a CPU thread can be consumed only by
CUDA calls from the same CPU thread.
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CUDA Event API
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o Events are inserted (recorded) into CUDA call streams

@ Usage scenarios:
e measure elapsed time for CUDA calls (clock cycle precision)
e query the status of an asynchronous CUDA call
e block CPU until CUDA calls prior to the event are completed

cudaEvent_t start, stop;

cudaEventCreate (&start) ;

cudaEventCreate (&stop) ;

cudaEventRecord(start, 0);

kernel<<<grid, block>>>(...);
cudaEventRecord(stop, 0);
cudaEventSynchronize (stop) ;

float et;

cudaEventElapsedTime (&et, start, stop);
cudaEventDestroy(start); cudaEventDestroy(stop);
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Plan

@ CUDA Tools
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Compiling CUDA code

e

Virtual

Target code

Physical
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CUDA Tools

The nvcc compiler

@ Any source file containing CUDA language extensions must be
compiled with nvcec:

e NVCC separates code running on the host from code running on the

device.

@ Two-stage compilation:

o First generates Parallel Thread eXecution code (PTX)
e Then produces Device-specific binary object

@ NVCC is a compiler driver:
e Works by invoking all the necessary tools and compilers like cudacc,

g++,

@ An executable with CUDA code requires:

o the CUDA core library (cuda)
o the CUDA runtime library (cudart)
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PTX Example (SAXPY code)

cvt.u32.ulé
cvt.u32.ulé6
cvt.u32.uls6
mad24.lo.u32
ld.param.u3?2
setp.le.u32
@spl bra

mul.lo.u32
ld.param.u3?2
add.u32
ld.global.£32
ld.param.u32
add.u32
ld.global.f32

ld.param.£32
mad.f32
st.global.f32

$L finish:
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Shlockid,

Sblocksize, H
stid, H

Si, S$blockid, $blocksize, $tid:;
Sn, [N];

$pl, %n, $i;

SL finish;

Soffset, $i, 4;

S$yaddr, [Y];

Syaddr, S$vyaddr, Soffset;
Sy i, [$yaddr+0];

Sxaddr, [X];

Sxaddr, $xaddr, Soffset;
Sx i, [$xaddr+0];

Salpha, [ALPHA];

Sy i, Salpha, $x i, Sy i;
[$yaddr+0], Sy i;

exit;

UWO-CS4402-CS9535
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Debugging CUDA code

@ An executable compiled in device emulation mode (nvcc
-deviceemu) runs completely on the host using the CUDA runtime:

e no need of any device and CUDA driver
o each device thread is emulated with a host thread
@ However, the device emulation mode has several pitfalls:

o emulated device threads execute sequentially, so simultaneous accesses
of the same memory location by multiple threads potentially produce
different results.

e results of floating-point computations will slightly differ because of
different compiler outputs, different instruction sets. etc.

o dereferencing device pointers on the host may produce correct results
in device emulation mode while generating errors in device execution
mode

@ In fact in the latest version of nvcc the device emulation mode is no
longer supported!
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© Sample Programs
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Developing a CUDA program

© Decompoe the targeted application according to the many-core
programming model of CUDA:
e such a program alternates serial code and vectorized code
e such that the parallel code has enough work and enough parallelism
© Write serial C code for each targeted CUDA kernel
© For each targeted CUDA kernel, carefully decompose the work into
thread blocks:

e this implies mapping the thred blocks to the data
e leading to potentially delicate index caculation:
e proving them mathematically often prevents from painful debugging!

© Verify each kernel against its C counterpart

© Debugging may lead to further decompose a kernel into smaller
kernels.
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Matrix multiplication (1/16)

@ The goals of this e8 xample are:

e Understanding how to write a kernel for a non-toy example
o Understanding how to map work (and data) to the thread blocks
e Understanding the importance of using shared memory

@ We start by writing a naive kernel for matrix multiplication which
does not use shared memory.

@ Then we analyze the performance of this kernel and realize that it is
limited by the global memory latency.

e Finally, we present a more efficient kernel, which takes advantage of a
tile decomposition and makes use of shared memory.
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Matrix multiplication (2/16)

@ Consider multiplying two rectangular matrices A and B with
respective formats m x n and n x p. Define C = A x B.
@ Principle: each thread computes an element of C through a 2D kernel.

{
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Matrix multiplication (4/16)

@ Analyze the previous CUDA kernel for multiplying two rectangular
matrices A and B with respective formats m x n and n x p. Define
C=AxB.

@ Each element of C is computed by one thread:

o then each row of A is read p times and
o each column of B is read m times, thus
e 2mnp reads in total for 2 mnp flops.

@ Let t be an integer dividing m and p. We decompose C into t X t

tiles. If tiles are computed one after another, then:
o (m/t)(tn)(p/t) slots are read in A
o (p/t)(tn)(m/t) slots are read in A, thus
e 2mnp/t reads in total for 2 mnp flops.

@ For a CUDA implementation, t = 16 such that each tile is computed
by one thread block.
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__global_
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Matrix multiplication (5/16)
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Matrix multiplication (3/16)

void mat_mul (float *a, float *b,
float *ab, int width)

// calculate the row & col index of the element
int row = blockIdx.y*blockDim.y + threadldx.y;
int col = blockIdx.x*blockDim.x + threadIdx.x;
float result = O;
// do dot product between row of a and col of b
for(int k = 0; k < width; ++k)

result += al[row*width+k] * b[k*width+col];
ab[row*width+col] = result;
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@ The previous explanation can be adapted to a particular GPU

architecture, so as to estimate the performance of the first (naive)
kernel.

@ The first kernel has a global memory access to flop ratio (GMAC)

of 8 Bytes / 2 ops, that is, 4 B/op.

@ Suppose using a GeForce GTX 260, which has 805 GFLOPS peak

performance.

@ In order to reach peak fp performance we would need a memory

bandwidth of GMAC x Peak FLOPS = 3.2 TB/s.

e Unfortunately, we only have 112 GB/s of actual memory bandwidth

(BW) on a GeForce GTX 260.

@ Therefore an upper bound on the performance of our implementation

is BW / GMAC = 28 GFLOPS.
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Matrix multiplication (6/16) Matrix multiplication (7/16)

@ The picture below illustrates our second kernel
@ Each thread block computes a tile in C, which is obtained as a dot

product of tile-vector of A by a tile-vector of B. @ So a thread block computes a t x t tile of C.
o Tile size is chosen in order to maximize data locality. @ Each element in that tile is a dot-prouct of a row from A and a
TILE WIDTH column from B.
;—*—\ @ We view each of these dot-products as a sum of small dot products:

t—1 2t—1 n—1
Cij = L _odikbrj+ Xy aikbkj+ - Xy 1 a0 kbk

@ Therefore we fix £ and then compute ngiglt)t_la,-ykbk’j for all 7,/ in
the working thread block.
e We do this for £ =0,1,...,(n/t —1).

This allows us to store the working tiles of A and B in shared memory.
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Matrix multiplication (8/16) Matrix multiplication (9/16)

@ We assume that A, B, C are stored in row-major layout.

@ Observe that for computing a tile in C our kernel code does need to °
know the number of rows in A.

@ It just needs to know the width (number of columns) of A and B.

@ The following code fragments are taken from Example 2.

We need the position in *A of the first element of the first working
tile from A; we call it aBegin.

@ We will need also the position in *A of the last element of the last
working tile from A; we call it aEnd.

#define BLOCK_SIZE 16 @ Moreover, we will need the offset between two consecutive working

tiles of A; we call it aStep.
template <typename T>

__global__ void matrix_mul_ker(T* C, const T *A, const T %B, int aBegin = wa * BLOCK_SIZE * by;
size_t wa, size_t wb)
// Block index; WARNING: should be at most 2716 - 1 int aEnd = aBegin + wa - 1;
int bx = blocklIdx.x; int by = blocklIdx.y;
int aStep = BLOCK_SIZE;
// Thread index
int tx = threadldx.x; int ty = threadldx.y;
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Matrix multiplication (10/16) Matrix multiplication (11/16)

@ The main loop starts by copying the working tiles of A and B to

imi hared :
@ Similarly for B we have bBegin and bStep. shared memory

@ We will not need a bEnd since once we are done with a row of A, we for(int a = aBegin, b = bBegin; a <= aEnd; a += aStep, b += bS
are also done with a column of B. // shared memory for the tile of A

. L . ) __shared__ int As[BLOCK_SIZE] [BLOCK_SIZE];
e Finally, we initially the accumulator of the working thread; we call it

Csub. // shared memory for the tile of B

__shared__ int Bs[BLOCK_SIZE] [BLOCK_SIZE];
int bBegin = BLOCK_SIZE * bx;
// Load the tiles from global memory to shared memory
int bStep = BLOCK_SIZE * wb; // each thread loads one element of each tile
As[tyl [tx] = Ala + wa * ty + tx];
int Csub = 0; Bs[ty] [tx] = B[b + wb * ty + tx];

// synchronize to make sure the matrices are loaded

__syncthreads () ;
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Matrix multiplication (12/16) Matrix multiplication (13/16)

@ Compute a small “dot-product” for each element in the working tile
of C.

. ) @ Once computed, the working tile of C is written to global memory.
// Multiply the two tiles together

// each thread computes one element of the tile of C
for(int k = 0; k < BLOCK_SIZE; ++k) {
Csub += As[ty] [k] * Bs[k] [tx];

// Write the working tile of $C$ to global memory;
// each thread writes one element
int ¢ = wb * BLOCK_SIZE * by + BLOCK_SIZE * bx;

¥ Clc + wb * ty + tx] = Csub;

// synchronize to make sure that the preceding comput:
// done before loading two new tiles of A dnd B in the
__syncthreads() ;
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Matrix multiplication (14/16) Matrix multiplication (15/16)

@ Experimentation performed on a GT200.
e Tiling and using shared memory were clearly worth the effort.

@ Each thread block should have many threads:
o TILE_WIDTH = 16 implies 16 x 16 = 256 threads

@ There should be many thread blocks:

o A 1024 x 1024 matrix would require 4096 thread blocks.
e Since one streaming multiprocessor (SM) can handle 768 threads, each
SM will process 3 thread blocks, leading it full occupancy.

@ Each thread block performs 2 x 256 reads of a 4-byte float while
performing 256 x (2 x 16) = 8,192 fp ops:

o Memory bandwidth is no longer limiting factor

untiled 2x2 4x4 8x8 12x12 14x14 15x15 16x16
TILE SIZE
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Matrix multiplication (16/16)

o Effective use of different memory resources reduces the number of
accesses to global memory

@ But these resources are finite!

@ The more memory locations each thread requires, the fewer threads
an SM can accommodate.

Registers 16384 <= 16384 / 768 threads
= 21 per thread
Memory 16KB <= 16KB / 8 blocks

= 2KB per block
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