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GPUs and CUDA: a Brief Introduction

GPUs

GPUs are massively multithreaded manycore chips:

NVIDIA Tesla products have up to 448 scalar processors with
over 12,000 concurrent threads in flight and
1030.4 GFLOPS sustained performance (single precision).

Users across science & engineering disciplines are achieving 100x or
better speedups on GPUs.
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GPUs and CUDA: a Brief Introduction

CUDA

CUDA is a scalable parallel programming model and a software
environment for parallel computing:

Minimal extensions to familiar C/C++ environment
Heterogeneous serial-parallel programming model

GPU Computing with CUDA brings data-parallel computing to the
masses

as of 2008, over 46,000,000 (100,000,000, as of 2009) CUDA-capable
GPUs sold,
a developer kit costs about $400 (for 500 GFLOPS).

Massively parallel computing has become a commodity technology!
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GPUs and CUDA: a Brief Introduction

CUDA programming and memory models in a nutshell
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CUDA Programming Model
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CUDA Programming Model

CUDA design goals

Enable heterogeneous systems (i.e., CPU+GPU)
Scale to 100’s of cores, 1000’s of parallel threads
Use C/C++ with minimal extensions
Let programmers focus on parallel algorithms
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CUDA Programming Model

Heterogeneous programming (1/3)

A CUDA program is a serial program with parallel kernels, all in C.

The serial C code executes in a host (= CPU) thread

The parallel kernel C code executes in many device threads across
multiple GPU processing elements, called streaming processors (SP).
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CUDA Programming Model

Heterogeneous programming (2/3)

Thus, the parallel code (kernel) is launched and executed on a device
by many threads.

Threads are grouped into thread blocks (more on this soon).

One kernel is executed at a time on the device.

Many threads execute each kernel.
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CUDA Programming Model

Heterogeneous programming (3/3)

The parallel code is written for a thread
Each thread is free to execute a unique code path
Built-in thread and block ID variables are used to map each thread
to a specific data tile (more on this soon).

Thus, each thread executes the same code on different data based on
its thread and block ID.
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CUDA Programming Model

IDs and dimensions (1/2)

A kernel is a grid of thread blocks.
Each thread block has a 2-D ID, which is unique within the grid.
Each thread has a 2-D ID, which is unique within its thread block.
The dimensions are set at launch time by the host code
IDs and dimension sizes are accessed via global variables in the
device code: threadIdx, blockIdx, . . . , blockDim, gridDim.
Simplify memory addressing when processing multidimensional data
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CUDA Programming Model

IDs and dimensions (2/2)
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CUDA Programming Model

Example: increment array elements (1/2)

See our exampe number 4 in /usr/local/cs4402/examples/4
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CUDA Programming Model

Example: increment array elements (2/2)
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CUDA Programming Model

Example host code for increment array elements
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CUDA Programming Model

Thread blocks (1/2)

A Thread block is a group of threads that can:

Synchronize their execution
Communicate via shared memory

Within a grid, thread blocks can run in any order:

Concurrently or sequentially
Facilitates scaling of the same code across many devices

(Moreno Maza) CS4402-9535: Many-core Computing with CUDA UWO-CS4402-CS9535 17 / 83

CUDA Programming Model

Thread blocks (2/2)

Thus, within a grid, any possible interleaving of blocks must be valid.

Thread blocks may coordinate but not synchronize
they may share pointers
they should not share locks (this can easily deadlock).

The fact that thread blocks cannot synchronize gives scalability:

A kernel scales across any number of parallel cores

However, within a thread bloc, threads in the same block may
synchronize with barriers.

That is, threads wait at the barrier until threads in the same block
reach the barrier.
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CUDA Memory Model
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CUDA Memory Model

Memory hierarchy (1/3)

Host (CPU) memory:

Not directly accessible by CUDA threads
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CUDA Memory Model

Memory hierarchy (2/3)

Global (on the device) memory:

Also called device memory

Accessible by all threads as well as host (CPU)

Data lifetime = from allocation to deallocation
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CUDA Memory Model

Memory hierarchy (3/3)

Shared memory:

Each thread block has its own shared memory, which is accessible
only by the threads within that block

Data lifetime = block lifetime

Local storage:

Each thread has its own local storage

Data lifetime = thread lifetime
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CUDA Programming Basics
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CUDA Programming Basics

Vector addition on GPU (1/4)
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CUDA Programming Basics

Vector addition on GPU (2/4)
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CUDA Programming Basics

Vector addition on GPU (3/4)
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CUDA Programming Basics

Vector addition on GPU (4/4)
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CUDA Programming Basics

Code executed on the GPU

The GPU code defines and calls C function with some restrictions:

Can only access GPU memory
No variable number of arguments
No static variables
No recursion
No dynamic polymorphism

GPU functions must be declared with a qualifier:

global : launched by CPU, cannot be called from GPU, must
return void

device : called from other GPU functions, cannot be launched
by the CPU

host : can be executed by CPU

qualifiers can be combined.

Built-in variables: gridDim, blockDim, blockIdx, threadIdx
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CUDA Programming Basics

Variable Qualifiers (GPU code)

device : stored in global memory (not cached, high latency)
accessible by all threads
lifetime: application

constant : stored in global memory (cached)
read-only for threads, written by host
Lifetime: application

shared : stored in shared memory (latency comparable to
registers)
accessible by all threads in the same threadblock
lifetime: block lifetime

Unqualified variables: scalars and built-in vector types are stored in
registers
arrays are stored in device (= global) memory
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CUDA Programming Basics

Launching kernels on GPU

Launch parameters:

grid dimensions (up to 2D)

thread-block dimensions (up to 3D)

shared memory: number of bytes per block

for extern smem variables declared without size
Optional, 0 by default

stream ID:

Optional, 0 by default

dim3 grid(16, 16);

dim3 block(16,16);

kernel<<<grid, block, 0, 0>>>(...);

kernel<<<32, 512>>>(...);
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CUDA Programming Basics

GPU Memory Allocation / Release

Host (CPU) manages GPU memory:

cudaMalloc (void ** pointer, size t nbytes)

cudaMemset (void * pointer, int value, size t count)

cudaFree (void* pointer)

int n = 1024;

int nbytes = 1024*sizeof(int);

int * d_a = 0;

cudaMalloc( (void**)&d_a, nbytes );

cudaMemset( d_a, 0, nbytes);

cudaFree(d_a);
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CUDA Programming Basics

Data Copies

cudaMemcpy( void *dst, void *src, size t nbytes, enum
cudaMemcpyKind direction);

returns after the copy is complete,
blocks the CPU thread,
doesn’t start copying until previous CUDA calls complete.

enum cudaMemcpyKind

cudaMemcpyHostToDevice

cudaMemcpyDeviceToHost

cudaMemcpyDeviceToDevice

Non-blocking memcopies are provided (more on this later)
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CUDA Programming Basics

Example kernel Source Code
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CUDA Programming Basics

Kernel variations and output: what is in a?
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CUDA Programming Basics

Kernel variations and utput: answers
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CUDA Programming Basics

Code Walkthrough (1/4)
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CUDA Programming Basics

Code Walkthrough (2/4)
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CUDA Programming Basics

Code Walkthrough (3/4)
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CUDA Programming Basics

Code Walkthrough (4/4)

(Moreno Maza) CS4402-9535: Many-core Computing with CUDA UWO-CS4402-CS9535 39 / 83

CUDA Programming Basics

Example: Shuffling Data
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CUDA Programming Basics

Kernel with 2D Indexing (1/2)
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CUDA Programming Basics

Kernel with 2D Indexing (2/2)
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CUDA Hardware Implementation
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CUDA Hardware Implementation

Blocks Run on Multiprocessors
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CUDA Hardware Implementation

Streaming processors and multiprocessors
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CUDA Hardware Implementation

Block Diagram for the G80 Family

G80 (launched Nov 2006)

128 Thread Processors execute kernel threads

Up to 12,288 parallel threads active
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CUDA Hardware Implementation

Streaming Multiprocessor (1/2)

Processing elements:

8 scalar thread processors (SP)
SM 32 GFLOPS peak at 1.35 GHz
8192 32-bit registers (32KB)
usual ops: float, int, branch, . . .

(Moreno Maza) CS4402-9535: Many-core Computing with CUDA UWO-CS4402-CS9535 47 / 83

CUDA Hardware Implementation

Streaming Multiprocessor (2/2)

Hardware multithreading:
up to 8 blocks resident at once
up to 768 active threads in total

16KB on-chip memory:
low latency storage
shared among threads of a block
supports thread communication
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CUDA Hardware Implementation

Hardware Multithreading

Hardware allocates resources to blocks:
blocks need: thread slots, registers, shared memory
blocks don’t run until resources are available

Hardware schedules threads:
hreads have their own registers
any thread not waiting for something can run
context switching is free every cycle

Hardware relies on threads to hide latency:
thus high parallelism is necessary for performance.
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CUDA Hardware Implementation

SIMT Thread Execution (1/3)

At each clock cycle, a multiprocessor executes the same instruction
on a group of threads called a warp

The number of threads in a warp is the warp size (32 on G80)
A half-warp is the first or second half of a warp.

Within a warp, threads
share instruction fetch/dispatch
some become inactive when code path diverges
hardware automatically handles divergence

Warps are the primitive unit of scheduling:
each active block is split nto warps in a well-defined way
threads within a warp are executed physically in parallel while warps
and blocks are executed logically in parallel.
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CUDA Hardware Implementation

SIMT Thread Execution (2/3)

SIMT execution is an implementation choice:
sharing control logic leaves more space for ALUs
largely invisible to programmer
must be understodd for performance, not correctness

As already mentioned, each multiprocessor processes batches of
blocks, one batch after the other:

Active blocks = the blocks processed by one multiprocessor in one
batch
Active threads = all the threads from the active blocks
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CUDA Hardware Implementation

SIMT Thread Execution (3/3)

The multiprocessor’s registers and shared memory are split among the
active threads

Therefore, for a given kernel, the number of active blocks depends on:

The number of registers the kernel compiles to
How much shared memory the kernel requires

If there cannot be at least one active block, the kernel fails to launch.
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CUDA Programming: Scheduling and Synchronization
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CUDA Programming: Scheduling and Synchronization

Thread Synchronization Function

void syncthreads();

Synchronizes all threads in a block:

once all threads have reached this point, execution resumes normally.
this is used to avoid hazards when accessing shared memory.

Should be used in conditional code only if the condition is uniform
across the entire thread block.
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CUDA Programming: Scheduling and Synchronization

GPU Atomic Integer Operations

Atomic operations on integers in global memory:

associative operations on signed/unsigned ints, such as
add, min, max, . and, or, xor.
they have names like atomicAdd, atomicMin, atomicAnd, . . .

Requires hardware with 1.1 compute capability

Should be used only when strictly necessary: non-locking mechanisms
should be prefered for performance consideration.
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CUDA Programming: Scheduling and Synchronization

Host Synchronization

All kernel launches are asynchronous

control returns to CPU immediately
kernel starts executing once all previous CUDA calls have completed

Memcopies are synchronous

control returns to CPU once the copy is complete
copy starts once all previous CUDA calls have completed

cudaThreadSynchronize()

host code execution resumes when all previous CUDA calls complete

Asynchronous CUDA calls provide:

non-blocking memcopies (more on this later)
ability to overlap memcopies and kernel execution
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CUDA Programming: Scheduling and Synchronization

Example host code (recall)
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CUDA Programming: Scheduling and Synchronization

Device Management

CPU can query and select GPU devices:

cudaGetDeviceCount( int* count )

cudaSetDevice( int device )

cudaGetDevice( int *current device )

cudaGetDeviceProperties( cudaDeviceProp* prop, int

device )

cudaChooseDevice( int *device, cudaDeviceProp* prop )

Multi-GPU setup:

device 0 is used by default
one CPU thread can control one GPU
multiple CPU threads can control the same GPU but their calls are
serialized by the driver.
CUDA resources allocated by a CPU thread can be consumed only by
CUDA calls from the same CPU thread.
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CUDA Programming: Scheduling and Synchronization

CUDA Error Reporting to CPU

All CUDA calls return error code:

except for kernel launches
the error code type is cudaError t

cudaError t cudaGetLastError(void):

returns the code for the last error ( no error has also a code)

char* cudaGetErrorString(cudaError t code):

returns a null-terminted character string describing the error

printf(%s\n, cudaGetErrorString( cudaGetLastError() ) );
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CUDA Programming: Scheduling and Synchronization

CUDA Event API

Events are inserted (recorded) into CUDA call streams
Usage scenarios:

measure elapsed time for CUDA calls (clock cycle precision)
query the status of an asynchronous CUDA call
block CPU until CUDA calls prior to the event are completed

cudaEvent_t start, stop;

cudaEventCreate(&start);

cudaEventCreate(&stop);

cudaEventRecord(start, 0);

kernel<<<grid, block>>>(...);

cudaEventRecord(stop, 0);

cudaEventSynchronize(stop);

float et;

cudaEventElapsedTime(&et, start, stop);

cudaEventDestroy(start); cudaEventDestroy(stop);
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CUDA Tools
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CUDA Tools

The nvcc compiler

Any source file containing CUDA language extensions must be
compiled with nvcc:

NVCC separates code running on the host from code running on the
device.

Two-stage compilation:

First generates Parallel Thread eXecution code (PTX)
Then produces Device-specific binary object

NVCC is a compiler driver:

Works by invoking all the necessary tools and compilers like cudacc,
g++,

An executable with CUDA code requires:

the CUDA core library (cuda)
the CUDA runtime library (cudart)
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CUDA Tools

Compiling CUDA code
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CUDA Tools

PTX Example (SAXPY code)
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CUDA Tools

Debugging CUDA code

An executable compiled in device emulation mode (nvcc
-deviceemu) runs completely on the host using the CUDA runtime:

no need of any device and CUDA driver
each device thread is emulated with a host thread

However, the device emulation mode has several pitfalls:

emulated device threads execute sequentially, so simultaneous accesses
of the same memory location by multiple threads potentially produce
different results.
results of floating-point computations will slightly differ because of
different compiler outputs, different instruction sets. etc.
dereferencing device pointers on the host may produce correct results
in device emulation mode while generating errors in device execution
mode

In fact in the latest version of nvcc the device emulation mode is no
longer supported!
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CUDA Tools

Developing a CUDA program

1 Decompoe the targeted application according to the many-core
programming model of CUDA:

such a program alternates serial code and vectorized code
such that the parallel code has enough work and enough parallelism

2 Write serial C code for each targeted CUDA kernel
3 For each targeted CUDA kernel, carefully decompose the work into

thread blocks:

this implies mapping the thred blocks to the data
leading to potentially delicate index caculation:
proving them mathematically often prevents from painful debugging!

4 Verify each kernel against its C counterpart

5 Debugging may lead to further decompose a kernel into smaller
kernels.
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Sample Programs
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Sample Programs

Matrix multiplication (1/16)

The goals of this e8 xample are:

Understanding how to write a kernel for a non-toy example
Understanding how to map work (and data) to the thread blocks
Understanding the importance of using shared memory

We start by writing a naive kernel for matrix multiplication which
does not use shared memory.

Then we analyze the performance of this kernel and realize that it is
limited by the global memory latency.

Finally, we present a more efficient kernel, which takes advantage of a
tile decomposition and makes use of shared memory.
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Sample Programs

Matrix multiplication (2/16)

Consider multiplying two rectangular matrices A and B with
respective formats m × n and n × p. Define C = A× B.

Principle: each thread computes an element of C through a 2D kernel.
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Sample Programs

Matrix multiplication (3/16)

__global__ void mat_mul(float *a, float *b,

float *ab, int width)

{

// calculate the row & col index of the element

int row = blockIdx.y*blockDim.y + threadIdx.y;

int col = blockIdx.x*blockDim.x + threadIdx.x;

float result = 0;

// do dot product between row of a and col of b

for(int k = 0; k < width; ++k)

result += a[row*width+k] * b[k*width+col];

ab[row*width+col] = result;

}
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Sample Programs

Matrix multiplication (4/16)

Analyze the previous CUDA kernel for multiplying two rectangular
matrices A and B with respective formats m × n and n × p. Define
C = A× B.

Each element of C is computed by one thread:

then each row of A is read p times and
each column of B is read m times, thus
2mn p reads in total for 2mn p flops.

Let t be an integer dividing m and p. We decompose C into t × t
tiles. If tiles are computed one after another, then:

(m/t)(t n)(p/t) slots are read in A
(p/t)(t n)(m/t) slots are read in A, thus
2mn p/t reads in total for 2mn p flops.

For a CUDA implementation, t = 16 such that each tile is computed
by one thread block.
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Sample Programs

Matrix multiplication (5/16)

The previous explanation can be adapted to a particular GPU
architecture, so as to estimate the performance of the first (naive)
kernel.

The first kernel has a global memory access to flop ratio (GMAC)
of 8 Bytes / 2 ops, that is, 4 B/op.

Suppose using a GeForce GTX 260, which has 805 GFLOPS peak
performance.

In order to reach peak fp performance we would need a memory
bandwidth of GMAC× Peak FLOPS = 3.2 TB/s.

Unfortunately, we only have 112 GB/s of actual memory bandwidth
(BW) on a GeForce GTX 260.

Therefore an upper bound on the performance of our implementation
is BW / GMAC = 28 GFLOPS.
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Sample Programs

Matrix multiplication (6/16)

The picture below illustrates our second kernel
Each thread block computes a tile in C , which is obtained as a dot
product of tile-vector of A by a tile-vector of B.
Tile size is chosen in order to maximize data locality.
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Sample Programs

Matrix multiplication (7/16)

So a thread block computes a t × t tile of C .

Each element in that tile is a dot-prouct of a row from A and a
column from B.

We view each of these dot-products as a sum of small dot products:

ci ,j = Σt−1
k=oai ,kbk,j + Σ2t−1

k=t ai ,kbk,j + · · ·Σn−1
k=n−1−tai ,kbk,j

Therefore we fix ` and then compute Σ
(`+1)t−1
k=`t ai ,kbk,j for all i , j in

the working thread block.

We do this for ` = 0, 1, . . . , (n/t − 1).

This allows us to store the working tiles of A and B in shared memory.
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Sample Programs

Matrix multiplication (8/16)

We assume that A, B, C are stored in row-major layout.

Observe that for computing a tile in C our kernel code does need to
know the number of rows in A.

It just needs to know the width (number of columns) of A and B.

The following code fragments are taken from Example 2.

#define BLOCK_SIZE 16

template <typename T>

__global__ void matrix_mul_ker(T* C, const T *A, const T *B,

size_t wa, size_t wb)

// Block index; WARNING: should be at most 2^16 - 1

int bx = blockIdx.x; int by = blockIdx.y;

// Thread index

int tx = threadIdx.x; int ty = threadIdx.y;
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Sample Programs

Matrix multiplication (9/16)

We need the position in *A of the first element of the first working
tile from A; we call it aBegin.

We will need also the position in *A of the last element of the last
working tile from A; we call it aEnd.

Moreover, we will need the offset between two consecutive working
tiles of A; we call it aStep.

int aBegin = wa * BLOCK_SIZE * by;

int aEnd = aBegin + wa - 1;

int aStep = BLOCK_SIZE;
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Sample Programs

Matrix multiplication (10/16)

Similarly for B we have bBegin and bStep.

We will not need a bEnd since once we are done with a row of A, we
are also done with a column of B.

Finally, we initially the accumulator of the working thread; we call it
Csub.

int bBegin = BLOCK_SIZE * bx;

int bStep = BLOCK_SIZE * wb;

int Csub = 0;
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Sample Programs

Matrix multiplication (11/16)

The main loop starts by copying the working tiles of A and B to
shared memory.

for(int a = aBegin, b = bBegin; a <= aEnd; a += aStep, b += bStep) {

// shared memory for the tile of A

__shared__ int As[BLOCK_SIZE][BLOCK_SIZE];

// shared memory for the tile of B

__shared__ int Bs[BLOCK_SIZE][BLOCK_SIZE];

// Load the tiles from global memory to shared memory

// each thread loads one element of each tile

As[ty][tx] = A[a + wa * ty + tx];

Bs[ty][tx] = B[b + wb * ty + tx];

// synchronize to make sure the matrices are loaded

__syncthreads();
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Sample Programs

Matrix multiplication (12/16)

Compute a small “dot-product” for each element in the working tile
of C .

// Multiply the two tiles together

// each thread computes one element of the tile of C

for(int k = 0; k < BLOCK_SIZE; ++k) {

Csub += As[ty][k] * Bs[k][tx];

}

// synchronize to make sure that the preceding computation is

// done before loading two new tiles of A dnd B in the next iteration

__syncthreads();

}
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Sample Programs

Matrix multiplication (13/16)

Once computed, the working tile of C is written to global memory.

// Write the working tile of $C$ to global memory;

// each thread writes one element

int c = wb * BLOCK_SIZE * by + BLOCK_SIZE * bx;

C[c + wb * ty + tx] = Csub;
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Sample Programs

Matrix multiplication (14/16)

Each thread block should have many threads:

TILE WIDTH = 16 implies 16 × 16 = 256 threads

There should be many thread blocks:

A 1024 × 1024 matrix would require 4096 thread blocks.
Since one streaming multiprocessor (SM) can handle 768 threads, each
SM will process 3 thread blocks, leading it full occupancy.

Each thread block performs 2 × 256 reads of a 4-byte float while
performing 256 × (2 × 16) = 8, 192 fp ops:

Memory bandwidth is no longer limiting factor
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Sample Programs

Matrix multiplication (15/16)

Experimentation performed on a GT200.
Tiling and using shared memory were clearly worth the effort.
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Sample Programs

Matrix multiplication (16/16)

Effective use of different memory resources reduces the number of
accesses to global memory

But these resources are finite!

The more memory locations each thread requires, the fewer threads
an SM can accommodate.
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