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GPUs
∎ GPUs are massively multithreaded manycore chips:

ë NVIDIA Tesla (2012) had up to 448 scalar processors with over 12,000
concurrent threads in flight and 1030.4 GFLOPS sustained
performance (single precision).

ë NVIDIA RTX 4090 (2022) have up to 16,384 scalar processors with
over 100,000 concurrent threads in flight and 82.58 TF32 TFLOPS

∎ Users across science & engineering disciplines are achieving 100x or
better speedups on GPUs.
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CUDA

∎ CUDA is a scalable parallel programming model and a software
environment for parallel computing:

ë Minimal extensions to familiar C/C++ environment
ë Heterogeneous serial-parallel programming model

∎ GPU Computing with CUDA brings data-parallel computing to the
masses

ë as of 2008, over 46,000,000 (100,000,000, as of 2009) CUDA-capable
GPUs sold,

ë a developer kit costs about $1000 (RTX 4090).

∎ Massively parallel computing has become a commodity technology!
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CUDA programming and memory models in a nutshell
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CUDA design goals

∎ Enable heterogeneous systems (i.e., CPU+GPU)

∎ Scale to 100’s of cores, 1000’s of parallel threads
∎ Use C/C++ with minimal extensions
∎ Let programmers focus on parallel algorithms
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Heterogeneous programming (1/3)

∎ A CUDA program is a serial program with parallel kernels, all in C.

∎ The serial C code executes in a host (= CPU) thread
∎ The parallel kernel C code executes in many device threads across

multiple GPU processing elements, called streaming processors (SP).
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Heterogeneous programming (2/3)

∎ Thus, the parallel code (kernel) is launched and executed on a device
by many threads.

∎ Threads are grouped into thread blocks (more on this soon).
∎ One kernel is executed at a time on the device.
∎ Many threads execute each kernel.
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Heterogeneous programming (3/3)

∎ The parallel code is written for a thread

ë Each thread is free to execute a unique code path
ë Built-in thread and block ID variables are used to map each thread

to a specific data tile (more on this soon).
∎ Thus, each thread executes the same code on different data based on

its thread and block ID.
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IDs and dimensions (1/2)
∎ A kernel is a grid of thread blocks.
∎ Each thread block has a 𝑛-D ID, which is unique within the grid, for

1 ≤ 𝑛 ≤ 2.

∎ Each thread has a 𝑛-D ID, which is unique within its thread block, ,
for 1 ≤ 𝑛 ≤ 3.

∎ The dimensions are set at launch time by the host code
∎ IDs and dimension sizes are accessed via global variables in the

device code: threadIdx, blockIdx, . . . , blockDim, gridDim.
∎ Simplify memory addressing when processing multidimensional data
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IDs and dimensions (2/2)
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Example: increment array elements (1/2)

See our example number 4 in simple_examples.tgz.
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Example: increment array elements (2/2)
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Example host code for increment array elements
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Thread blocks (1/2)

∎ A Thread block is a group of threads that can:

ë Synchronize their execution
ë Communicate via shared memory

∎ Within a grid, thread blocks can run in any order:

ë Concurrently or sequentially
ë Facilitates scaling of the same code across many devices
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Thread blocks (2/2)

∎ Thus, within a grid, any possible interleaving of blocks must be valid.

∎ Thread blocks may coordinate but not synchronize

ë they may share pointers
ë they should not share locks (this can easily deadlock).

∎ The fact that thread blocks cannot synchronize gives scalability:

ë A kernel scales across any number of parallel cores

∎ However, within a thread bloc, threads in the same block may
synchronize with barriers.

∎ That is, threads wait at the barrier until threads in the same block
reach the barrier.
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Memory hierarchy (1/3)

Host (CPU) memory:
∎ Not directly accessible by CUDA threads
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Memory hierarchy (2/3)

Global (on the device) memory:
∎ Also called device memory

∎ Accessible by all threads as well as host (CPU)
∎ Data lifetime = from allocation to deallocation
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Memory hierarchy (3/3)

Shared memory:
∎ Each thread block has its own shared memory space, which is

accessible only by the threads within that block

∎ Data lifetime = block lifetime
Local storage:

∎ Each thread has its own local storage
∎ Data lifetime = thread lifetime
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Vector addition on GPU (1/4)

CS4402-9635: Many-core Computing with CUDA UWO-CS4402-CS9635 25 / 84



Vector addition on GPU (2/4)
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Vector addition on GPU (3/4)
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Vector addition on GPU (4/4)
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Code executed on the GPU

∎ The GPU code defines and calls C function with some restrictions:
ë Can only access GPU memory

ë No variable number of arguments
ë No static variables
ë No recursion (has been relaxed in recent years)
ë No dynamic polymorphism

∎ GPU functions must be declared with a qualifier:
global : launched by CPU, cannot be called from GPU, must

return void
device : called from other GPU functions, cannot be launched

by the CPU
host : can be executed by CPU

∎ qualifiers can be combined.

∎ Built-in variables: gridDim, blockDim, blockIdx, threadIdx
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Variable Qualifiers (GPU code)

device : ∎ stored in global memory (not cached, high latency)
∎ accessible by all threads
∎ lifetime: application

constant : ∎ stored in global memory (cached)
∎ read-only for threads, written by host
∎ Lifetime: application

shared : ∎ stored in shared memory (latency comparable to
registers)

∎ accessible by all threads in the same threadblock
∎ lifetime: block lifetime

Unqualified variables: ∎ scalars and built-in vector types are stored in
registers

∎ arrays are stored in device (= global) memory
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Launching kernels on GPU

Launch parameters:
∎ grid dimensions (up to 2D)
∎ thread-block dimensions (up to 3D)
∎ shared memory: number of bytes per block

ë for extern smem variables declared without size
ë Optional, 0 by default

∎ stream ID:
ë Optional, 0 by default

dim3 grid(16, 16);
dim3 block(16,16);
kernel<<<grid, block, 0, 0>>>(...);
kernel<<<32, 512>>>(...);
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GPU Memory Allocation / Release

Host (CPU) manages GPU memory:
∎ cudaMalloc (void ** pointer, size_t nbytes)

∎ cudaMemset (void * pointer, int value, size_t count)

∎ cudaFree (void* pointer)

int n = 1024;
int nbytes = 1024*sizeof(int);
int * d_a = 0;
cudaMalloc( (void**)&d_a, nbytes );
cudaMemset( d_a, 0, nbytes);
cudaFree(d_a);
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Data Copies

∎ cudaMemcpy( void *dst, void *src, size_t nbytes, enum
cudaMemcpyKind direction);

ë returns after the copy is complete,
ë blocks the CPU thread,
ë doesn’t start copying until previous CUDA calls complete.

∎ enum cudaMemcpyKind
ë cudaMemcpyHostToDevice
ë cudaMemcpyDeviceToHost
ë cudaMemcpyDeviceToDevice

∎ Non-blocking memcopies are provided (more on this later)
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Example kernel Source Code
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Kernel variations and output: what is in a?
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Kernel variations and utput: answers
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Code Walkthrough (1/4)

CS4402-9635: Many-core Computing with CUDA UWO-CS4402-CS9635 37 / 84



Code Walkthrough (2/4)
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Code Walkthrough (3/4)
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Code Walkthrough (4/4)
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Example: Shuffling Data
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Kernel with 2D Indexing (1/2)
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Kernel with 2D Indexing (2/2)
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Outline

1. GPUs and CUDA: a Brief Introduction

2. CUDA Programming Model

3. CUDA Memory Model

4. CUDA Programming Basics

5. CUDA Hardware Implementation

6. CUDA Programming: Scheduling and Synchronization

7. CUDA Tools

8. Sample Programs

CS4402-9635: Many-core Computing with CUDA UWO-CS4402-CS9635 44 / 84



Blocks Run on Multiprocessors
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Streaming processors and multiprocessors
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Block Diagram for the G80 Family

∎ G80 (launched Nov 2006)
∎ 128 Thread Processors execute kernel threads
∎ Up to 12,288 parallel threads active
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Streaming Multiprocessor (1/2)

∎ Processing elements:

ë 8 scalar thread processors (SP)
(32 on recent GPUs)

ë SM 32 GFLOPS peak at 1.35 GHz
ë 8192 32-bit registers (32KB)
ë usual ops: float, int, branch, . . .
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Streaming Multiprocessor (2/2)
∎ Hardware multithreading:

ë up to 8 blocks resident at once

ë up to 768 active threads in total
∎ 16KB on-chip memory:

ë (100KB on recent GPUs, with 1KB minimum per thread block)

ë low latency storage
ë shared among threads of a block
ë supports thread communication

https://en.wikipedia.org/wiki/CUDA

CS4402-9635: Many-core Computing with CUDA UWO-CS4402-CS9635 49 / 84

https://en.wikipedia.org/wiki/CUDA


Streaming Multiprocessor (2/2)
∎ Hardware multithreading:

ë up to 8 blocks resident at once
ë up to 768 active threads in total

∎ 16KB on-chip memory:
ë (100KB on recent GPUs, with 1KB minimum per thread block)

ë low latency storage
ë shared among threads of a block
ë supports thread communication

https://en.wikipedia.org/wiki/CUDA

CS4402-9635: Many-core Computing with CUDA UWO-CS4402-CS9635 49 / 84

https://en.wikipedia.org/wiki/CUDA


Streaming Multiprocessor (2/2)
∎ Hardware multithreading:

ë up to 8 blocks resident at once
ë up to 768 active threads in total

∎ 16KB on-chip memory:
ë (100KB on recent GPUs, with 1KB minimum per thread block)

ë low latency storage
ë shared among threads of a block
ë supports thread communication

https://en.wikipedia.org/wiki/CUDA

CS4402-9635: Many-core Computing with CUDA UWO-CS4402-CS9635 49 / 84

https://en.wikipedia.org/wiki/CUDA


Streaming Multiprocessor (2/2)
∎ Hardware multithreading:

ë up to 8 blocks resident at once
ë up to 768 active threads in total

∎ 16KB on-chip memory:
ë (100KB on recent GPUs, with 1KB minimum per thread block)
ë low latency storage

ë shared among threads of a block
ë supports thread communication

https://en.wikipedia.org/wiki/CUDA

CS4402-9635: Many-core Computing with CUDA UWO-CS4402-CS9635 49 / 84

https://en.wikipedia.org/wiki/CUDA


Streaming Multiprocessor (2/2)
∎ Hardware multithreading:

ë up to 8 blocks resident at once
ë up to 768 active threads in total

∎ 16KB on-chip memory:
ë (100KB on recent GPUs, with 1KB minimum per thread block)
ë low latency storage
ë shared among threads of a block

ë supports thread communication
https://en.wikipedia.org/wiki/CUDA

CS4402-9635: Many-core Computing with CUDA UWO-CS4402-CS9635 49 / 84

https://en.wikipedia.org/wiki/CUDA


Streaming Multiprocessor (2/2)
∎ Hardware multithreading:

ë up to 8 blocks resident at once
ë up to 768 active threads in total

∎ 16KB on-chip memory:
ë (100KB on recent GPUs, with 1KB minimum per thread block)
ë low latency storage
ë shared among threads of a block
ë supports thread communication

https://en.wikipedia.org/wiki/CUDA

CS4402-9635: Many-core Computing with CUDA UWO-CS4402-CS9635 49 / 84

https://en.wikipedia.org/wiki/CUDA


Streaming Multiprocessor (2/2)
∎ Hardware multithreading:

ë up to 8 blocks resident at once
ë up to 768 active threads in total

∎ 16KB on-chip memory:
ë (100KB on recent GPUs, with 1KB minimum per thread block)
ë low latency storage
ë shared among threads of a block
ë supports thread communication

https://en.wikipedia.org/wiki/CUDA

CS4402-9635: Many-core Computing with CUDA UWO-CS4402-CS9635 49 / 84

https://en.wikipedia.org/wiki/CUDA


Hardware Multithreading
∎ Hardware allocates resources to blocks:

ë blocks need: thread slots, registers, shared memory
ë blocks don’t run until resources are available

∎ Hardware schedules threads:

ë threads have their own registers
ë any thread not waiting for something can run
ë context switching is free – every cycle

∎ Hardware relies on threads to hide latency:

ë thus high parallelism is necessary for performance.
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SIMT Thread Execution (1/3)
∎ At each clock cycle, a multiprocessor executes the same instruction

on a group of threads called a warp

ë The number of threads in a warp is the warp size (32 on G80)
ë A half-warp is the first or second half of a warp.

∎ Within a warp, threads

ë share instruction fetch/dispatch
ë some become inactive when code path diverges
ë hardware automatically handles divergence

∎ Warps are the primitive unit of scheduling:

ë each active block is split into warps in a well-defined way
ë threads within a warp are executed physically in parallel while warps

and blocks are executed logically in parallel.
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SIMT Thread Execution (2/3)

∎ SIMT execution is an implementation choice:

ë sharing control logic leaves more space for ALUs
ë largely invisible to programmer
ë must be understood for performance, not correctness

∎ As already mentioned, each multiprocessor processes batches of
blocks, one batch after the other:

ë Active blocks = the blocks processed by one multiprocessor in one
batch

ë Active threads = all the threads from the active blocks
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SIMT Thread Execution (3/3)

∎ The multiprocessor’s registers and shared memory are split among the
active threads

∎ Therefore, for a given kernel, the number of active blocks depends on:

ë The number of registers the kernel compiles to
ë How much shared memory the kernel requires

∎ If there cannot be at least one active block, the kernel fails to launch.
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Thread Synchronization Function

∎ void __syncthreads();

∎ Synchronizes all threads in a block:

ë once all threads have reached this point, execution resumes normally.
ë this is used to avoid hazards when accessing shared memory.

∎ Should be used in conditional code only if the condition is uniform
across the entire thread block.
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GPU Atomic Integer Operations

∎ Atomic operations on integers in global memory:

ë associative operations on signed/unsigned ints, such as
ë add, min, max, . and, or, xor.
ë they have names like atomicAdd, atomicMin, atomicAnd, . . .

∎ Requires hardware with 1.1 compute capability
∎ Should be used only when strictly necessary: non-locking mechanisms

should be preferred for performance consideration.
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Host Synchronization

∎ All kernel launches are asynchronous

ë control returns to CPU immediately
ë kernel starts executing once all previous CUDA calls have completed

∎ Memcopies are synchronous

ë control returns to CPU once the copy is complete
ë copy starts once all previous CUDA calls have completed

∎ cudaThreadSynchronize()

ë host code execution resumes when all previous CUDA calls complete

∎ Asynchronous CUDA calls provide:

ë non-blocking memcopies (more on this later)
ë ability to overlap memcopies and kernel execution
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Example host code (recall)
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Device Management

∎ CPU can query and select GPU devices:
ë cudaGetDeviceCount( int* count )
ë cudaSetDevice( int device )
ë cudaGetDevice( int *current_device )
ë cudaGetDeviceProperties( cudaDeviceProp* prop, int

device )
ë cudaChooseDevice( int *device, cudaDeviceProp* prop )

∎ Multi-GPU setup:
ë device 0 is used by default
ë one CPU thread can control one GPU
ë multiple CPU threads can control the same GPU but their calls are

serialized by the driver.
ë CUDA resources allocated by a CPU thread can be consumed only by

CUDA calls from the same CPU thread.
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CUDA Error Reporting to CPU

∎ All CUDA calls return error code:
ë except for kernel launches
ë the error code type is cudaError_t

∎ cudaError_t cudaGetLastError(void):
ë returns the code for the last error ( no error has also a code)

∎ char* cudaGetErrorString(cudaError_t code):
ë returns a null-terminated character string describing the error

printf(“%s\n”, cudaGetErrorString( cudaGetLastError() ) );
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CUDA Event API

∎ Events are inserted (recorded) into CUDA call streams
∎ Usage scenarios:

ë measure elapsed time for CUDA calls (clock cycle precision)
ë query the status of an asynchronous CUDA call
ë block CPU until CUDA calls prior to the event are completed

cudaEvent_t start, stop;
cudaEventCreate(&start);
cudaEventCreate(&stop);
cudaEventRecord(start, 0);
kernel<<<grid, block>>>(...);
cudaEventRecord(stop, 0);
cudaEventSynchronize(stop);
float et;
cudaEventElapsedTime(&et, start, stop);
cudaEventDestroy(start); cudaEventDestroy(stop);
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The nvcc compiler

∎ Any source file containing CUDA language extensions must be
compiled with nvcc:

ë NVCC separates code running on the host from code running on the
device.

∎ Two-stage compilation:

ë First generates Parallel Thread execution code (PTX)
ë Then produces Device-specific binary object

∎ NVCC is a compiler driver:

ë Works by invoking all the necessary tools and compilers like cudacc,
g++,

∎ An executable with CUDA code requires:

ë the CUDA core library (cuda)
ë the CUDA runtime library (cudart)
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Compiling CUDA code
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PTX Example (SAXPY code)
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Debugging CUDA code

∎ An executable compiled in device emulation mode (nvcc
-deviceemu) runs completely on the host using the CUDA runtime:

ë no need of any device and CUDA driver
ë each device thread is emulated with a host thread

∎ However, the device emulation mode has several pitfalls:

ë emulated device threads execute sequentially, so simultaneous accesses
of the same memory location by multiple threads potentially produce
different results.

ë results of floating-point computations will slightly differ because of
different compiler outputs, different instruction sets. etc.

ë dereferencing device pointers on the host may produce correct results
in device emulation mode while generating errors in device execution
mode

∎ In fact in the latest versions of nvcc the device emulation mode is no
longer supported!
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Developing a CUDA program

1 Decompose the targeted application according to the many-core
programming model of CUDA:

ë such a program alternates serial code and vectorized code
ë such that the parallel code has enough work and enough parallelism

2 Write serial C code for each targeted CUDA kernel
3 For each targeted CUDA kernel, carefully decompose the work into

thread blocks:

ë this implies mapping the thread blocks to the data
ë leading to potentially delicate index calculation:
ë proving them mathematically often prevents from painful debugging!

4 Verify each kernel against its C counterpart
5 Debugging may lead to further decompose a kernel into smaller

kernels.
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Matrix multiplication (1/16)

∎ The goals of this example are:
ë Understanding how to write a kernel for a non-toy example

ë Understanding how to map work (and data) to the thread blocks
ë Understanding the importance of using shared memory

∎ We start by writing a naive kernel for matrix multiplication which
does not use shared memory.

∎ Then we analyze the performance of this kernel and realize that it is
limited by the global memory latency.

∎ Finally, we present a more efficient kernel, which takes advantage of a
tile decomposition and makes use of shared memory.

CS4402-9635: Many-core Computing with CUDA UWO-CS4402-CS9635 69 / 84



Matrix multiplication (1/16)

∎ The goals of this example are:
ë Understanding how to write a kernel for a non-toy example
ë Understanding how to map work (and data) to the thread blocks

ë Understanding the importance of using shared memory

∎ We start by writing a naive kernel for matrix multiplication which
does not use shared memory.

∎ Then we analyze the performance of this kernel and realize that it is
limited by the global memory latency.

∎ Finally, we present a more efficient kernel, which takes advantage of a
tile decomposition and makes use of shared memory.

CS4402-9635: Many-core Computing with CUDA UWO-CS4402-CS9635 69 / 84



Matrix multiplication (1/16)

∎ The goals of this example are:
ë Understanding how to write a kernel for a non-toy example
ë Understanding how to map work (and data) to the thread blocks
ë Understanding the importance of using shared memory

∎ We start by writing a naive kernel for matrix multiplication which
does not use shared memory.

∎ Then we analyze the performance of this kernel and realize that it is
limited by the global memory latency.

∎ Finally, we present a more efficient kernel, which takes advantage of a
tile decomposition and makes use of shared memory.

CS4402-9635: Many-core Computing with CUDA UWO-CS4402-CS9635 69 / 84



Matrix multiplication (1/16)

∎ The goals of this example are:
ë Understanding how to write a kernel for a non-toy example
ë Understanding how to map work (and data) to the thread blocks
ë Understanding the importance of using shared memory

∎ We start by writing a naive kernel for matrix multiplication which
does not use shared memory.

∎ Then we analyze the performance of this kernel and realize that it is
limited by the global memory latency.

∎ Finally, we present a more efficient kernel, which takes advantage of a
tile decomposition and makes use of shared memory.

CS4402-9635: Many-core Computing with CUDA UWO-CS4402-CS9635 69 / 84



Matrix multiplication (1/16)

∎ The goals of this example are:
ë Understanding how to write a kernel for a non-toy example
ë Understanding how to map work (and data) to the thread blocks
ë Understanding the importance of using shared memory

∎ We start by writing a naive kernel for matrix multiplication which
does not use shared memory.

∎ Then we analyze the performance of this kernel and realize that it is
limited by the global memory latency.

∎ Finally, we present a more efficient kernel, which takes advantage of a
tile decomposition and makes use of shared memory.

CS4402-9635: Many-core Computing with CUDA UWO-CS4402-CS9635 69 / 84



Matrix multiplication (1/16)

∎ The goals of this example are:
ë Understanding how to write a kernel for a non-toy example
ë Understanding how to map work (and data) to the thread blocks
ë Understanding the importance of using shared memory

∎ We start by writing a naive kernel for matrix multiplication which
does not use shared memory.

∎ Then we analyze the performance of this kernel and realize that it is
limited by the global memory latency.

∎ Finally, we present a more efficient kernel, which takes advantage of a
tile decomposition and makes use of shared memory.

CS4402-9635: Many-core Computing with CUDA UWO-CS4402-CS9635 69 / 84



Matrix multiplication (2/16)
∎ Consider multiplying two rectangular matrices 𝐴 and 𝐵 with

respective formats 𝑚 × 𝑛 and 𝑛 × 𝑝. Define 𝐶 = 𝐴 ×𝐵.

∎ Principle: each thread computes an element of 𝐶 through a 2D
kernel.
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Matrix multiplication (3/16)

__global__ void mat_mul(float *a, float *b,
float *ab, int wa, int wb)

{
// calculate the row & col index of the element
int row = blockIdx.y*blockDim.y + threadIdx.y;
int col = blockIdx.x*blockDim.x + threadIdx.x;
float result = 0;
// do dot product between row of a and col of b
for(int k = 0; k < wa; ++k)

result += a[row*wa+k] * b[k*wb+col];
ab[row*width+col] = result;

}
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Matrix multiplication (4/16)

∎ Analyze the previous CUDA kernel for multiplying two rectangular
matrices 𝐴 and 𝐵 with respective formats 𝑚 × 𝑛 and 𝑛 × 𝑝. Define
𝐶 = 𝐴 ×𝐵.

∎ Each element of 𝐶 is computed by one thread:

ë then each row of 𝐴 is read 𝑝 times and
ë each column of 𝐵 is read 𝑚 times, thus
ë 2 𝑚 𝑛 𝑝 reads in total for 2 𝑚 𝑛 𝑝 flops.

∎ Let 𝑡 be an integer dividing 𝑚 and 𝑝. We decompose 𝐶 into 𝑡 × 𝑡
tiles. If tiles are computed one after another, then:

ë (𝑚⇑𝑡)(𝑡 𝑛)(𝑝⇑𝑡) slots are read in 𝐴
ë (𝑝⇑𝑡)(𝑡 𝑛)(𝑚⇑𝑡) slots are read in 𝐵, thus
ë 2𝑚 𝑛 𝑝⇑𝑡 reads in total for 2 𝑚 𝑛 𝑝 flops.

∎ For a CUDA implementation, 𝑡 = 16 such that each tile is computed
by one thread block.
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tiles. If tiles are computed one after another, then:

ë (𝑚⇑𝑡)(𝑡 𝑛)(𝑝⇑𝑡) slots are read in 𝐴
ë (𝑝⇑𝑡)(𝑡 𝑛)(𝑚⇑𝑡) slots are read in 𝐵, thus
ë 2𝑚 𝑛 𝑝⇑𝑡 reads in total for 2 𝑚 𝑛 𝑝 flops.

∎ For a CUDA implementation, 𝑡 = 16 such that each tile is computed
by one thread block.
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Matrix multiplication (5/16)

∎ The previous explanation can be adapted to a particular GPU
architecture, so as to estimate the performance of the first (naive)
kernel.

∎ The first kernel has a global memory access to flop ratio (GMAC)
of 8 Bytes / 2 ops, that is, 4 B/op.

∎ Suppose using a GeForce GTX 260, which has 805 GFLOPS peak
performance.

∎ In order to reach peak fp performance we would need a memory
bandwidth of GMAC ×Peak FLOPS = 3.2 TB/s.

∎ Unfortunately, we only have 112 GB/s of actual memory bandwidth
(BW) on a GeForce GTX 260.

∎ Therefore an upper bound on the performance of our implementation
is BW / GMAC = 28 GFLOPS.
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Matrix multiplication (6/16)

∎ The picture below illustrates our second kernel

∎ Each thread block computes a tile in 𝐶, which is obtained as a dot
product of tile-vector of 𝐴 by a tile-vector of 𝐵.

∎ Tile size is chosen in order to maximize data locality.
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Matrix multiplication (7/16)

∎ So a thread block computes a 𝑡 × 𝑡 tile of 𝐶.

∎ Each element in that tile is a dot-product of a row from 𝐴 and a
column from 𝐵.

∎ We view each of these dot-products as a sum of small dot products:

𝑐𝑖,𝑗 = Σ𝑡−1
𝑘=𝑜𝑎𝑖,𝑘𝑏𝑘,𝑗 +Σ2𝑡−1

𝑘=𝑡 𝑎𝑖,𝑘𝑏𝑘,𝑗 +⋯Σ𝑛−1
𝑘=𝑛−1−𝑡𝑎𝑖,𝑘𝑏𝑘,𝑗

∎ Therefore we fix ℓ and then compute Σ(ℓ+1)𝑡−1
𝑘=ℓ𝑡 𝑎𝑖,𝑘𝑏𝑘,𝑗 for all 𝑖, 𝑗 in

the working thread block.
∎ We do this for ℓ = 0, 1, . . . , (𝑛⇑𝑡 − 1).
∎ This allows us to store the working tiles of 𝐴 and 𝐵 in shared memory.
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Matrix multiplication (8/16)

∎ We assume that 𝐴, 𝐵, 𝐶 are stored in row-major layout.

∎ Observe that for computing a tile in 𝐶 our kernel code does need to
know the number of rows in 𝐴.

∎ It just needs to know the width (number of columns) of 𝐴 and 𝐵.

#define BLOCK_SIZE 16

template <typename T>
__global__ void matrix_mul_ker(T* C, const T *A, const T *B,

size_t wa, size_t wb)

// Block index; WARNING: should be at most 2^16 - 1
int bx = blockIdx.x; int by = blockIdx.y;

// Thread index
int tx = threadIdx.x; int ty = threadIdx.y;
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Matrix multiplication (9/16)

∎ We need the position in *A of the first element of the first working
tile from 𝐴; we call it aBegin.

∎ We will need also the position in *A of the last element of the last
working tile from 𝐴; we call it aEnd.

∎ Moreover, we will need the offset between two consecutive working
tiles of 𝐴; we call it aStep.

int aBegin = wa * BLOCK_SIZE * by;

int aEnd = aBegin + wa - 1;

int aStep = BLOCK_SIZE;
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Matrix multiplication (10/16)

∎ Similarly for 𝐵 we have bBegin and bStep.

∎ We will not need a bEnd since once we are done with a row of 𝐴, we
are also done with a column of 𝐵.

∎ Finally, we initially the accumulator of the working thread; we call it
Csub.

int bBegin = BLOCK_SIZE * bx;

int bStep = BLOCK_SIZE * wb;

int Csub = 0;
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Matrix multiplication (11/16)

∎ The main loop starts by copying the working tiles of 𝐴 and 𝐵 to
shared memory.

for(int a = aBegin, b = bBegin; a <= aEnd; a += aStep, b += bStep) {
// shared memory for the tile of A
__shared__ int As[BLOCK_SIZE][BLOCK_SIZE];

// shared memory for the tile of B
__shared__ int Bs[BLOCK_SIZE][BLOCK_SIZE];

// Load the tiles from global memory to shared memory
// each thread loads one element of each tile
As[ty][tx] = A[a + wa * ty + tx];
Bs[ty][tx] = B[b + wb * ty + tx];

// synchronize to make sure the matrices are loaded
__syncthreads();
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Matrix multiplication (12/16)

∎ Compute a small “dot-product” for each element in the working tile
of 𝐶.

// Multiply the two tiles together
// each thread computes one element of the tile of C
for(int k = 0; k < BLOCK_SIZE; ++k) {

Csub += As[ty][k] * Bs[k][tx];
}
// synchronize to make sure that the preceding computation is
// done before loading two new tiles of A dnd B in the next iteration
__syncthreads();

}
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Matrix multiplication (13/16)

∎ Once computed, the working tile of 𝐶 is written to global memory.

// Write the working tile of C to global memory;
// each thread writes one element
int c = wb * BLOCK_SIZE * by + BLOCK_SIZE * bx;
C[c + wb * ty + tx] = Csub;
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Matrix multiplication (14/16)

∎ Each thread block should have many threads:

ë TILE_WIDTH = 16 implies 16 × 16 = 256 threads

∎ There should be many thread blocks:

ë A 1024 × 1024 matrix would require 4096 thread blocks.
ë Since one streaming multiprocessor (SM) can handle 768 threads, each

SM will process 3 thread blocks, leading it full occupancy.

∎ Each thread block performs 2 × 256 reads of a 4-byte float while
performing 256 × (2 × 16) = 8, 192 fp ops:

ë Memory bandwidth is no longer limiting factor
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Matrix multiplication (15/16)

∎ Experimentation performed on a GT200.

∎ Tiling and using shared memory were clearly worth the effort.
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Matrix multiplication (16/16)

∎ Effective use of different memory resources reduces the number of
accesses to global memory

∎ But these resources are finite!
∎ The more memory locations each thread requires, the fewer threads

an SM can accommodate.
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