CS4402-9635: Many-core Computing with CUDA

Marc Moreno Maza

University of Western Ontario, London, Ontario (Canada)

UWO-CS4402-CS9635

CS4402-9635: Many-core Computing with CUDA

Marc Moreno Maza

University of Western Ontario, London, Ontario (Canada)

UWO-CS4402-CS9635

Plan

- 1. GPUs and CUDA: a Brief Introduction
- 2. CUDA Programming Model
- 3. CUDA Memory Model
- 4. CUDA Programming Basics
- 5. CUDA Hardware Implementation
- 6. CUDA Programming: Scheduling and Synchronization
- 7. CUDA Tools
- 8. Sample Programs

Outline

1. GPUs and CUDA: a Brief Introduction

- 2. CUDA Programming Model
- 3. CUDA Memory Model
- 4. CUDA Programming Basics
- 5. CUDA Hardware Implementation
- 6. CUDA Programming: Scheduling and Synchronization
- 7. CUDA Tools
- 8. Sample Programs

GPUs

GPUs are massively multithreaded manycore chips:

GPUs

GPUs are massively multithreaded manycore chips:

▷ NVIDIA Tesla (2012) had up to 448 scalar processors with over 12,000 concurrent threads in flight and 1030.4 GFLOPS sustained performance (single precision).

GPUs

GPUs are massively multithreaded manycore chips:

- ↓ NVIDIA Tesla (2012) had up to 448 scalar processors with over 12,000 concurrent threads in flight and 1030.4 GFLOPS sustained performance (single precision).
- ▷ NVIDIA RTX 4090 (2022) have up to 16,384 scalar processors with over 100,000 concurrent threads in flight and 82.58 TF32 TFLOPS
- Users across science & engineering disciplines are achieving 100x or better speedups on GPUs.

CUDA is a scalable parallel programming model and a software environment for parallel computing:

- CUDA is a scalable parallel programming model and a software environment for parallel computing:
 - $\,\,\,\downarrow\,\,\,$ Minimal extensions to familiar C/C++ environment

- CUDA is a scalable parallel programming model and a software environment for parallel computing:

 - → Heterogeneous serial-parallel programming model

- CUDA is a scalable parallel programming model and a software environment for parallel computing:

 - → Heterogeneous serial-parallel programming model
- GPU Computing with CUDA brings data-parallel computing to the masses

- CUDA is a scalable parallel programming model and a software environment for parallel computing:

 - → Heterogeneous serial-parallel programming model
- GPU Computing with CUDA brings data-parallel computing to the masses

- CUDA is a scalable parallel programming model and a software environment for parallel computing:

 - → Heterogeneous serial-parallel programming model
- GPU Computing with CUDA brings data-parallel computing to the masses

 - \downarrow a *developer kit* costs about \$1000 (RTX 4090).

- CUDA is a scalable parallel programming model and a software environment for parallel computing:

 - → Heterogeneous serial-parallel programming model
- GPU Computing with CUDA brings data-parallel computing to the masses

 - \downarrow a *developer kit* costs about \$1000 (RTX 4090).

Massively parallel computing has become a commodity technology!

CUDA programming and memory models in a nutshell

Outline

1. GPUs and CUDA: a Brief Introduction

2. CUDA Programming Model

- 3. CUDA Memory Model
- 4. CUDA Programming Basics
- 5. CUDA Hardware Implementation
- 6. CUDA Programming: Scheduling and Synchronization
- 7. CUDA Tools
- 8. Sample Programs

■ Enable heterogeneous systems (i.e., CPU+GPU)

- Enable heterogeneous systems (i.e., CPU+GPU)
- Scale to 100's of cores, 1000's of parallel threads

- Enable heterogeneous systems (i.e., CPU+GPU)
- Scale to 100's of cores, 1000's of parallel threads
- Use C/C++ with minimal extensions

- Enable heterogeneous systems (i.e., CPU+GPU)
- Scale to 100's of cores, 1000's of parallel threads
- Use C/C++ with minimal extensions
- Let programmers focus on parallel algorithms

A CUDA program is a serial program with parallel kernels, all in C.

- A CUDA program is a serial program with parallel kernels, all in C.
- The serial C code executes in a host (= CPU) thread

- A CUDA program is a serial program with parallel kernels, all in C.
- The serial C code executes in a host (= CPU) thread
- The parallel kernel C code executes in many device threads across multiple GPU processing elements, called streaming processors (SP).

Thus, the parallel code (kernel) is launched and executed on a device by many threads.

- Thus, the parallel code (kernel) is launched and executed on a device by many threads.
- Threads are grouped into thread blocks (more on this soon).

- Thus, the parallel code (kernel) is launched and executed on a device by many threads.
- Threads are grouped into thread blocks (more on this soon).
- One kernel is executed at a time on the device.

- Thus, the parallel code (kernel) is launched and executed on a device by many threads.
- Threads are grouped into thread blocks (more on this soon).
- One kernel is executed at a time on the device.
- Many threads execute each kernel.

The parallel code is written for a thread

- The parallel code is written for a thread
 - $\, {\scriptstyle {\scriptstyle {\scriptstyle \leftarrow}}}\,$ Each thread is free to execute a unique code path

- The parallel code is written for a thread

 - → Built-in **thread and block ID variables** are used to map each thread to a specific data tile (more on this soon).

- The parallel code is written for a thread
 - $\, {\scriptstyle {\scriptstyle {\rm l}}} \,$ Each thread is free to execute a unique code path
 - ⇒ Built-in thread and block ID variables are used to map each thread to a specific data tile (more on this soon).
- Thus, each thread executes the same code on different data based on its thread and block ID.

- A kernel is a grid of thread blocks.
- Each thread block has a n-D ID, which is unique within the grid, for $1 \le n \le 2$.

Device								
	Grid 1							
	E	Block (0, 0)	Bloc (1, 0	k E	Block (2, 0)			
			Bloc (1, 1	k E	Block (2, 1)			
Block	(1, 1)							
Threa (0, 0)	f Thread (1, 0)	Thread (2, 0)	Thread (3, 0)	Thread (4, 0)				
Threa (0, 1)	f Thread (1, 1)	Thread (2, 1)	Thread (3, 1)	Thread (4, 1)				
Three	Thread	Thread	Throad	Thread				

- A kernel is a grid of thread blocks.
- Each thread block has a n-D ID, which is unique within the grid, for $1 \le n \le 2$.
- Each thread has a n-D ID, which is unique within its thread block, , for $1 \le n \le 3$.

Device								
	Grid 1							
	E	Block (0, 0)	Bloc (1, 0	k)	Bl((2,	ock 0)		
	E	Block (0, 1)	Block (1, 1)		Block (2, 1)			
Block (1, 1)							
Thread (0, 0)	Thread (1, 0)	Thread (2, 0)	Thread (3, 0)	Thre: (4, 0	nd D			
Thread (0, 1)	Thread (1, 1)	Thread (2, 1)	Thread (3, 1)	Threa (4, 1	ıd)			
Throad	Thread	Thread	Thread	Three				

- A kernel is a grid of thread blocks.
- Each thread block has a n-D ID, which is unique within the grid, for $1 \le n \le 2$.
- Each thread has a n-D ID, which is unique within its thread block, , for $1 \le n \le 3$.
- The dimensions are set at launch time by the host code

- A kernel is a grid of thread blocks.
- Each thread block has a n-D ID, which is unique within the grid, for $1 \le n \le 2$.
- Each thread has a *n*-D ID, which is unique within its thread block, , for $1 \le n \le 3$.
- The dimensions are set at launch time by the **host code**
- IDs and dimension sizes are accessed via global variables in the device code: threadIdx, blockIdx, ..., blockDim, gridDim.

Device							
	Grid 1						
	E (Block 0, 0)	Bloc (1, 0	k)	Block (2, 0)		
	E	Block 0, 1)	Bloc (1, 1	k)	Block (2, 1)		
Block (1	1, 1)						
Thread (0, 0)	Thread (1, 0)	Thread (2, 0)	Thread (3, 0)	Thread (4, 0)			
Thread (0, 1)	Thread (1, 1)	Thread (2, 1)	Thread (3, 1)	Thread (4, 1)			

- A kernel is a grid of thread blocks.
- Each thread block has a n-D ID, which is unique within the grid, for $1 \le n \le 2$.
- Each thread has a *n*-D ID, which is unique within its thread block, , for $1 \le n \le 3$.
- The dimensions are set at launch time by the **host code**
- IDs and dimension sizes are accessed via global variables in the device code: threadIdx, blockIdx, ..., blockDim, gridDim.

Device							
	Grid 1						
	E (Block 0, 0)	Bloc (1, 0	k)	Block (2, 0)		
	E	Block 0, 1)	Bloc (1, 1	k)	Block (2, 1)		
Block (1	1, 1)						
Thread (0, 0)	Thread (1, 0)	Thread (2, 0)	Thread (3, 0)	Thread (4, 0)			
Thread (0, 1)	Thread (1, 1)	Thread (2, 1)	Thread (3, 1)	Thread (4, 1)			
IDs and dimensions (1/2)

- A kernel is a grid of thread blocks.
- Each thread block has a n-D ID, which is unique within the grid, for $1 \le n \le 2$.
- Each thread has a *n*-D ID, which is unique within its thread block, , for $1 \le n \le 3$.
- The dimensions are set at launch time by the **host code**
- IDs and dimension sizes are accessed via global variables in the device code: threadIdx, blockIdx, ..., blockDim, gridDim.
- Simplify memory addressing when processing multidimensional data

CS4402-9635: Many-core Computing with CUDA

IDs and dimensions (2/2)

Device					
	Grid 1				
E		lock	Bloc	k	Block
(0, 0)	(1, 0)	(2, 0)
	Block		Bloc	k	Block
	(0, 1)		(1, 1)	(2, 1)
Block (1	l, 1)				
Thread	Thread	Thread	Thread	Thread	1
(0, 0)	(1, 0)	(2, 0)	(3, 0)	(4, 0)	
Thread	Thread	Thread	Thread	Thread	4
(0, 1)	(1, 1)	(2, 1)	(3, 1)	(4, 1)	
Thread	Thread	Thread	Thread	Thread	1
(0, 2)	(1, 2)	(2, 2)	(3, 2)	(4, 2)	
				-	-

Example: increment array elements (1/2)

Increment N-element vector a by scalar b

Let's assume N=16, blockDim=4 -> 4 blocks

int idx = blockDim.x * blockId.x + threadIdx.x;

blockldx.x=0 blockDim.x=4 threadldx.x=0,1,2,3 idx=0,1,2,3 blockldx.x=1 blockDim.x=4 threadIdx.x=0,1,2,3 idx=4,5,6,7 blockIdx.x=2 blockDim.x=4 threadIdx.x=0,1,2,3 idx=8,9,10,11

blockIdx.x=3 blockDim.x=4 threadIdx.x=0,1,2,3 idx=12,13,14,15

See our example number 4 in simple_examples.tgz.

Example: increment array elements (2/2)

CPU program

CUDA program

```
void increment_cpu(float *a, float b, int N)
                                             global void increment_gpu(float *a, float b, int N)
                                             {
{
                                                  int idx = blockldx.x * blockDim.x + threadldx.x:
    for (int idx = 0; idx<N; idx++)
                                                  if (idx < N)
         a[idx] = a[idx] + b;
                                                       a[idx] = a[idx] + b:
}
                                             }
                                             void main()
void main()
Ł
  ....
                                                  dim3 dimBlock (blocksize);
    increment_cpu(a, b, N);
                                                  dim3 dimGrid( ceil( N / (float)blocksize) );
}
                                                  increment gpu<<<dimGrid, dimBlock>>>(a, b, N);
```

Example host code for increment array elements

```
// allocate host memory
unsigned int numBytes = N * sizeof(float)
float* h A = (float*) malloc(numBytes);
// allocate device memory
float* d A = 0;
cudaMalloc((void**)&d A, numbytes);
// copy data from host to device
cudaMemcpy(d A, h A, numBytes, cudaMemcpyHostToDevice);
// execute the kernel
increment gpu<<< N/blockSize, blockSize>>>(d A, b);
// copy data from device back to host
cudaMemcpy(h A, d A, numBytes, cudaMemcpyDeviceToHost);
// free device memory
cudaFree(d A);
```


• A Thread block is a group of threads that can:

- Within a grid, thread blocks can run in any order:

- Within a grid, thread blocks can run in any order:
 - $\, {\scriptstyle {\scriptstyle {\scriptstyle \vdash}}} \,$ Concurrently or sequentially

- Within a grid, thread blocks can run in any order:

 - $\, {\scriptstyle {\scriptstyle {\scriptstyle \leftarrow}}}\,$ Facilitates scaling of the same code across many devices

Thread blocks (2/2)

- Thus, within a grid, any possible interleaving of blocks must be valid.
- Thread blocks may coordinate but not synchronize

- Thus, within a grid, any possible interleaving of blocks must be valid.
- Thread blocks may coordinate but not synchronize
 - $\, \, \downarrow \, \,$ they may share pointers

- Thus, within a grid, any possible interleaving of blocks must be valid.
- Thread blocks may coordinate but not synchronize
 - $\, \, \downarrow \, \,$ they may share pointers
 - $\, \downarrow \,$ they should not share locks (this can easily deadlock).

Thus, within a grid, any possible interleaving of blocks must be valid.

- Thread blocks may coordinate but not synchronize
 - \vdash they may share pointers
 - \downarrow they should not share locks (this can easily deadlock).

The fact that thread blocks cannot synchronize gives scalability:

- Thread blocks may coordinate but not synchronize
 - \vdash they may share pointers
 - \downarrow they should not share locks (this can easily deadlock).
- The fact that thread blocks cannot synchronize gives scalability:
 - $\, {\scriptstyle {\scriptstyle {\scriptstyle \leftarrow}}}\,$ A kernel scales across any number of parallel cores

- Thread blocks may coordinate but not synchronize
 - $\, \, \downarrow \, \,$ they may share pointers
 - \downarrow they should not share locks (this can easily deadlock).
- The fact that thread blocks cannot synchronize gives scalability:
- However, within a thread bloc, threads in the same block may synchronize with barriers.

- Thread blocks may coordinate but not synchronize
 - $\, \, \downarrow \, \,$ they may share pointers
 - \downarrow they should not share locks (this can easily deadlock).
- The fact that thread blocks cannot synchronize gives scalability:
 - $\, {\scriptstyle {\scriptstyle {\scriptstyle \leftarrow}}}\,$ A kernel scales across any number of parallel cores
- However, within a thread bloc, threads in the same block may synchronize with barriers.
- That is, threads wait at the barrier until threads in the same block reach the barrier.

Outline

- 1. GPUs and CUDA: a Brief Introduction
- 2. CUDA Programming Model
- 3. CUDA Memory Model
- 4. CUDA Programming Basics
- 5. CUDA Hardware Implementation
- 6. CUDA Programming: Scheduling and Synchronization
- 7. CUDA Tools
- 8. Sample Programs

Host (CPU) memory:

Not directly accessible by CUDA threads

Global (on the device) memory:

Also called device memory

Global (on the device) memory:

- Also called device memory
- Accessible by all threads as well as host (CPU)

Global (on the device) memory:

- Also called device memory
- Accessible by all threads as well as host (CPU)
- Data lifetime = from allocation to deallocation

Shared memory:

Each thread block has its own shared memory space, which is accessible only by the threads within that block

Shared memory:

- Each thread block has its own shared memory space, which is accessible only by the threads within that block
- Data lifetime = block lifetime

Shared memory:

- Each thread block has its own shared memory space, which is accessible only by the threads within that block
- Data lifetime = block lifetime

Local storage:

Each thread has its own local storage

Shared memory:

- Each thread block has its own shared memory space, which is accessible only by the threads within that block
- Data lifetime = block lifetime

Local storage:

- Each thread has its own local storage
- Data lifetime = thread lifetime

Outline

- 1. GPUs and CUDA: a Brief Introduction
- 2. CUDA Programming Model
- 3. CUDA Memory Model

4. CUDA Programming Basics

- 5. CUDA Hardware Implementation
- 6. CUDA Programming: Scheduling and Synchronization
- 7. CUDA Tools
- 8. Sample Programs

Vector addition on GPU (1/4)

Vector addition on GPU (2/4)

```
Compute vector sum C = A+B
// Each thread performs one pair-wise addition
 global void vecAdd(float* A, float* B, float* C)
    int i = threadIdx.x + blockDim.x * blockIdx.x;
   C[i] = A[i] + B[i];
}
                                            Host Code
int main()
ł
    // Run grid of N/256 blocks of 256 threads each
    vecAdd<<< N/256, 256>>>(d A, d B, d C);
```

Vector addition on GPU (3/4)

// allocate and initialize host (CPU) memory
float *h_A = ..., *h_B = ...; *h_C = ...(empty)
// allocate device (GPU) memory
float *d_A, *d_B, *d_C;
cudaMalloc((void**) &d_A, N * sizeof(float));
cudaMalloc((void**) &d_B, N * sizeof(float));
cudaMalloc((void**) &d_C, N * sizeof(float));

// copy host memory to device cudaMemcpy(d A, h A, N * sizeof(float), cudaMemcpyHostToDevice)); cudaMemcpy(d B, h B, N * sizeof(float), cudaMemcpyHostToDevice));

// execute grid of N/256 blocks of 256 threads each
vecAdd<<<N/256, 256>>>(d_A, d_B, d_C);

Vector addition on GPU (4/4)

// execute grid of N/256 blocks of 256 threads each
vecAdd<<<N/256, 256>>>(d_A, d_B, d_C);

// do something with the result ...

```
// free device (GPU) memory
cudaFree(d_A);
cudaFree(d_B);
cudaFree(d_C);
```

Code executed on the GPU

The GPU code defines and calls C function with some restrictions:

Code executed on the GPU

The GPU code defines and calls C function with some restrictions:

- $\, {\scriptstyle {\scriptstyle \vdash}} \,$ Can only access GPU memory
- ${\,\mathrel{\,{\scriptstyle \vdash}\,}}$ No variable number of arguments

Code executed on the GPU

The GPU code defines and calls C function with some restrictions:

- $\, {\scriptstyle {\scriptstyle \vdash}} \,$ Can only access GPU memory
- ${\,\mathrel{\,{\scriptstyle \vdash}\,}}$ No variable number of arguments
The GPU code defines and calls C function with some restrictions:

- $\, {\scriptstyle {\scriptstyle \vdash}} \,$ Can only access GPU memory
- ${} \rightarrow$ No static variables
- \lor No recursion (has been relaxed in recent years)

The GPU code defines and calls C function with some restrictions:

- $\, {\scriptstyle {\scriptstyle \vdash}} \,$ Can only access GPU memory
- ${} \rightarrow$ No static variables
- \lor No recursion (has been relaxed in recent years)

The GPU code defines and calls C function with some restrictions:

- $\, {\scriptstyle {\scriptstyle \vdash}} \,$ Can only access GPU memory
- ${} \rightarrow$ No static variables
- \lor No recursion (has been relaxed in recent years)

■ GPU functions must be declared with a qualifier:

- _global__ : launched by CPU, cannot be called from GPU, must return void
- __device__ : called from other GPU functions, cannot be launched by the CPU
 - __host__ : can be executed by CPU

The GPU code defines and calls C function with some restrictions:

- $\, {\scriptstyle {\scriptstyle \vdash}} \,$ Can only access GPU memory
- ${} \rightarrow$ No static variables
- \lor No recursion (has been relaxed in recent years)

■ GPU functions must be declared with a qualifier:

- _global__ : launched by CPU, cannot be called from GPU, must return void
- __device__ : called from other GPU functions, cannot be launched by the CPU
 - __host__ : can be executed by CPU

qualifiers can be combined.

The GPU code defines and calls C function with some restrictions:

- ${} \rightarrow$ No static variables
- \lor No recursion (has been relaxed in recent years)

GPU functions must be declared with a qualifier:

- _global__ : launched by CPU, cannot be called from GPU, must return void
- __device__ : called from other GPU functions, cannot be launched by the CPU
 - __host__ : can be executed by CPU
- qualifiers can be combined.
- Built-in variables: gridDim, blockDim, blockIdx, threadIdx

Variable Qualifiers (GPU code)

device:	 stored in global memory (not cached, high latency) accessible by all threads lifetime: application
constant:	stored in global memory (cached)
	read-only for threads, written by host
	Lifetime: application
shared:	stored in shared memory (latency comparable to
	registers)
	accessible by all threads in the same threadblock
	lifetime: block lifetime
Unqualified varia	bles: s calars and built-in vector types are stored in
	registers
	arrays are stored in device (= global) memory

Launching kernels on GPU

Launch parameters:

- grid dimensions (up to 2D)
- thread-block dimensions (up to 3D)
- shared memory: number of bytes per block
 - $\, {\scriptstyle {\scriptstyle \vdash}}\,$ for extern smem variables declared without size
 - $\, \, \downarrow \, \,$ Optional, 0 by default
- stream ID:
 - \vdash Optional, 0 by default

```
dim3 grid(16, 16);
dim3 block(16,16);
kernel<<<grid, block, 0, 0>>>(...);
kernel<<<32, 512>>>(...);
```

GPU Memory Allocation / Release

Host (CPU) manages GPU memory:

- cudaMalloc (void ** pointer, size_t nbytes)
- cudaMemset (void * pointer, int value, size_t count)
- cudaFree (void* pointer)

```
int n = 1024;
int nbytes = 1024*sizeof(int);
int * d_a = 0;
cudaMalloc( (void**)&d_a, nbytes );
cudaMemset( d_a, 0, nbytes);
cudaFree(d_a);
```

Data Copies

cudaMemcpy(void *dst, void *src, size_t nbytes, enum cudaMemcpyKind direction);

- $\, \, \downarrow \, \,$ blocks the CPU thread,
- → doesn't start copying until previous CUDA calls complete.
- enum cudaMemcpyKind
 - ert cudaMemcpyHostToDevice
 - ert cudaMemcpyDeviceToHost
 - ${\scriptstyle {\scriptstyle {} \rightarrowtail}} \ {\tt cudaMemcpyDeviceToDevice}$
- Non-blocking memcopies are provided (more on this later)

Example kernel Source Code

100 11: 1

```
global void sum kernel(int *g input, int *g output)
extern __shared__ int s_data[]; // allocated during kernel launch
// read input into shared memory
unsigned int idx = blockIdx x * blockDim x + threadIdx.x;
s data[threadIdx.x] = g input[idx];
syncthreads();
// compute sum for the threadblock
for (int dist = blockDim.x/2; dist > 0; dist /= 2)
  if (threadIdx.x < dist)
    s data[threadIdx.x] += s data[threadIdx.x + dist];
   syncthreads();
// write the block's sum to global memory
if (threadIdx.x == 0)
  g output[ blockldx.x ] = s data[0];
```

Kernel variations and output: what is in a?

```
global void kernel(int *a)
  int idx = blockIdx.x*blockDim.x + threadIdx.x;
  a[idx] = 7;
}
  global void kernel(int *a)
  int idx = blockldx.x^{*}blockDim.x + threadldx.x;
  a[idx] = blockldx.x;
}
  global___ void kernel( int *a )
  int idx = blockIdx.x*blockDim.x + threadIdx.x;
  a[idx] = threadIdx.x;
```

Kernel variations and utput: answers

```
_global___ void kernel( int *a )
int idx = blockIdx.x*blockDim.x + threadIdx.x;
a[idx] = 7;
                                                       Output: 77777777777777777777
_global___ void kernel( int *a )
int idx = blockIdx.x*blockDim.x + threadIdx.x;
                                                       Output: 0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3
a[idx] = blockIdx.x:
_global___ void kernel( int *a )
int idx = blockIdx.x*blockDim.x + threadIdx.x;
a[idx] = threadIdx.x;
                                                       Output: 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3
```

Code Walkthrough (1/4)

```
// walkthrough1.cu
#include <stdio.h>
int main()
{
    int dimx = 16;
    int num_bytes = dimx*sizeof(int);
    int *d a=0, *h a=0; // device and host pointers
```

Code Walkthrough (2/4)

```
// walkthrough1.cu
#include <stdio.h>
int main()
  int dimx = 16;
  int num_bytes = dimx*sizeof(int);
  int *d_a=0, *h_a=0; // device and host pointers
  h a = (int^*)malloc(num bytes);
  cudaMalloc( (void**)&d a, num bytes );
  if (0 = h a || 0 = d a)
     printf("couldn't allocate memory\n");
     return 1;
```

Code Walkthrough (3/4)

// walkthrough1.cu #include <stdio.h>

int main()

```
int dimx = 16;
int num_bytes = dimx*sizeof(int);
```

int *d_a=0, *h_a=0; // device and host pointers

```
h_a = (int*)malloc(num_bytes);
cudaMalloc( (void**)&d_a, num_bytes );
```

```
if( 0==h_a || 0==d_a )
```

printf("couldn't allocate memory\n"); return 1;

```
cudaMemset( d_a, 0, num_bytes );
cudaMemcpy( h_a, d_a, num_bytes,
cudaMemcpyDeviceToHost );
```

Code Walkthrough (4/4)

// walkthrough1.cu #include <stdio.h>

int main()

int dimx = 16; int num_bytes = dimx*sizeof(int);

int *d_a=0, *h_a=0; // device and host pointers

```
h_a = (int*)malloc(num_bytes);
cudaMalloc( (void**)&d_a, num_bytes );
```

```
if( 0==h_a || 0==d_a )
```

```
printf("couldn't allocate memory\n"); return 1;
```

```
cudaMemset( d_a, 0, num_bytes );
cudaMemcpy( h_a, d_a, num_bytes, cudaMemcpyDeviceToHost );
```

```
for(int i=0; i<dimx; i++)
printf("%d ", h_a[i] );
printf("\n");
```

```
free( h_a );
cudaFree( d_a );
```

return 0;

Example: Shuffling Data

```
// Reorder values based on keys
// Each thread moves one element
 global void shuffle(int* prev array, int*
  new array, int* indices)
ł
    int i = threadIdx.x + blockDim.x * blockIdx.x;
    new array[i] = prev array[indices[i]];
                                            Host Code
}
int main()
ł
    // Run grid of N/256 blocks of 256 threads each
    shuffle<<< N/256, 256>>>>(d old, d new, d ind);
```

Kernel with 2D Indexing (1/2)

Kernel with 2D Indexing (2/2)

```
int main()
                                                                           int dimx = 16:
                                                                           int dimy = 16:
                                                                           int num bytes = dimx*dimy*sizeof(int);
                                                                          int *d a=0, *h a=0; // device and host pointers
                                                                          h_a = (int*)malloc(num_bytes);
                                                                          cudaMalloc( (void**)&d a, num bytes );
                                                                           if( 0==h_a || 0==d_a )
                                                                            printf("couldn't allocate memory\n");
                                                                             return 1:
global void kernel( int *a, int dimx, int dimy )
                                                                          cudaMemset( d_a, 0, num_bytes );
int ix = blockIdx.x*blockDim.x + threadIdx.x;
                                                                           dim3 grid, block;
int iy = blockldx.y*blockDim.y + threadldx.y;
                                                                           block.x = 4
                                                                           block.y = 4;
int idx = iy^*dimx + ix;
                                                                           arid.x = dimx / block.x:
                                                                           arid.v = dimv / block.v;
a[idx] = a[idx]+1;
                                                                          kernel<<<grid, block>>>( d a, dimx, dimy );
                                                                          cudaMemcpy( h a, d a, num bytes, cudaMemcpyDeviceToHost );
                                                                           for(int row=0; row<dimy; row++)
                                                                             for(int col=0: col<dimx: col++)
                                                                               printf("%d ", h_a[row*dimx+col] );
                                                                             printf("\n"):
                                                                          free( h_a );
                                                                          cudaFree(d_a);
                                                                           return 0;
```

CS4402-9635: Many-core Computing with CUDA

Outline

- 1. GPUs and CUDA: a Brief Introduction
- 2. CUDA Programming Model
- 3. CUDA Memory Model
- 4. CUDA Programming Basics
- 5. CUDA Hardware Implementation
- 6. CUDA Programming: Scheduling and Synchronization
- 7. CUDA Tools
- 8. Sample Programs

Blocks Run on Multiprocessors

Kernel launched by host

Streaming processors and multiprocessors

Block Diagram for the G80 Family

- G80 (launched Nov 2006)
- 128 Thread Processors execute kernel threads
- Up to 12,288 parallel threads active

Processing elements:

 A scalar thread processors (SP) (32 on recent GPUs)

- B scalar thread processors (SP) (32 on recent GPUs)

- B scalar thread processors (SP) (32 on recent GPUs)
- → 8192 32-bit registers (32KB)

- B scalar thread processors (SP) (32 on recent GPUs)
- → 8192 32-bit registers (32KB)

- Hardware multithreading:
 - ${\, {\scriptstyle {\scriptstyle \mapsto}}}\,$ up to 8 blocks resident at once

Hardware multithreading:

- ${\, {\scriptstyle {\scriptstyle \mapsto}}}\,$ up to 8 blocks resident at once

Hardware multithreading:

■ 16KB on-chip memory:

 \downarrow (100KB on recent GPUs, with 1KB minimum per thread block)

Hardware multithreading:

16KB on-chip memory:

- └→ (100KB on recent GPUs, with 1KB minimum per thread block)
- $\, {\scriptstyle {\scriptstyle {\scriptstyle \mapsto}}}\,$ low latency storage

Hardware multithreading:

- $\, \, \lrcorner \,$ up to 768 active threads in total

16KB on-chip memory:

- \downarrow (100KB on recent GPUs, with 1KB minimum per thread block)

Hardware multithreading:

- $\, \, \lrcorner \,$ up to 768 active threads in total

16KB on-chip memory:

- \downarrow (100KB on recent GPUs, with 1KB minimum per thread block)
- $\, {\scriptstyle {\scriptstyle {\scriptstyle \vdash}}} \,$ shared among threads of a block

Hardware multithreading:

16KB on-chip memory:

- \downarrow (100KB on recent GPUs, with 1KB minimum per thread block)
- $\, {\scriptstyle {\scriptstyle {\scriptstyle \leftarrow}}} \,$ low latency storage

https://en.wikipedia.org/wiki/CUDA

Hardware Multithreading

Hardware allocates resources to blocks:

Hardware allocates resources to blocks:

Hardware allocates resources to blocks:

- $\, {\scriptstyle {\scriptstyle {\scriptstyle \vdash}}} \,$ blocks need: thread slots, registers, shared memory

Hardware allocates resources to blocks:

Hardware schedules threads:

Hardware allocates resources to blocks:

Hardware schedules threads:

Hardware allocates resources to blocks:

Hardware schedules threads:

- $\, {\scriptstyle {\scriptstyle \vdash}}\,$ any thread not waiting for something can run

Hardware allocates resources to blocks:

- blocks don't run until resources are available

Hardware schedules threads:

- $\, {\scriptstyle {\scriptstyle \vdash}}\,$ any thread not waiting for something can run

Hardware allocates resources to blocks:

- blocks don't run until resources are available

Hardware schedules threads:

- $\, {\scriptstyle {\scriptstyle \vdash}}\,$ any thread not waiting for something can run

Hardware relies on threads to hide latency:

Hardware allocates resources to blocks:

- blocks don't run until resources are available

Hardware schedules threads:

- $\, {\scriptstyle {\scriptstyle \vdash}}\,$ any thread not waiting for something can run

Hardware relies on threads to hide latency:

 $\, \downarrow \,$ thus high parallelism is necessary for performance.

SM

At each clock cycle, a multiprocessor executes the same instruction on a group of threads called a warp

- At each clock cycle, a multiprocessor executes the same instruction on a group of threads called a warp
 - \downarrow The number of threads in a warp is the warp size (32 on G80)

- At each clock cycle, a multiprocessor executes the same instruction on a group of threads called a warp
 - \downarrow The number of threads in a warp is the warp size (32 on G80)
 - $\, \, \downarrow \, \,$ A half-warp is the first or second half of a warp.

- At each clock cycle, a multiprocessor executes the same instruction on a group of threads called a warp
 - \downarrow The number of threads in a warp is the warp size (32 on G80)
 - $\, {\scriptstyle {\scriptstyle \vdash}}\,$ A half-warp is the first or second half of a warp.
- Within a warp, threads

- At each clock cycle, a multiprocessor executes the same instruction on a group of threads called a warp
 - \downarrow The number of threads in a warp is the warp size (32 on G80)
 - $\, {\scriptstyle {\scriptstyle \vdash}}\,$ A half-warp is the first or second half of a warp.
- Within a warp, threads

- At each clock cycle, a multiprocessor executes the same instruction on a group of threads called a warp
 - \downarrow The number of threads in a warp is the warp size (32 on G80)
 - $\, \, \downarrow \, \,$ A half-warp is the first or second half of a warp.
- Within a warp, threads

- At each clock cycle, a multiprocessor executes the same instruction on a group of threads called a warp
 - \downarrow The number of threads in a warp is the warp size (32 on G80)
 - $\, {\scriptstyle {\scriptstyle \vdash}}\,$ A half-warp is the first or second half of a warp.
- Within a warp, threads
 - $\, {\scriptstyle {\scriptstyle {\scriptstyle \vdash}}} \,$ share instruction fetch/dispatch

- At each clock cycle, a multiprocessor executes the same instruction on a group of threads called a warp
 - \downarrow The number of threads in a warp is the warp size (32 on G80)
 - $\, {\scriptstyle {\scriptstyle \vdash}}\,$ A half-warp is the first or second half of a warp.
- Within a warp, threads
 - $\, {\scriptstyle {\scriptstyle {\scriptstyle \vdash}}} \,$ share instruction fetch/dispatch

Warps are the primitive unit of scheduling:

- At each clock cycle, a multiprocessor executes the same instruction on a group of threads called a warp
 - \downarrow The number of threads in a warp is the warp size (32 on G80)
 - $\, {\scriptstyle {\scriptstyle \vdash}}\,$ A half-warp is the first or second half of a warp.
- Within a warp, threads
 - $\, {\scriptstyle {\scriptstyle {\scriptstyle \vdash}}} \,$ share instruction fetch/dispatch

■ Warps are the primitive unit of scheduling:

- At each clock cycle, a multiprocessor executes the same instruction on a group of threads called a warp
 - \downarrow The number of threads in a warp is the warp size (32 on G80)
 - $\, {\scriptstyle {\scriptstyle \vdash}}\,$ A half-warp is the first or second half of a warp.
- Within a warp, threads
 - $\, {\scriptstyle {\scriptstyle {\scriptstyle \vdash}}} \,$ share instruction fetch/dispatch

Warps are the primitive unit of scheduling:

- ↓ threads within a warp are executed physically in parallel while warps and blocks are executed logically in parallel.

■ SIMT execution is an implementation choice:

SM MT IU SP

■ SIMT execution is an implementation choice:

- $\, {\scriptstyle {\scriptstyle \vdash}}\,$ sharing control logic leaves more space for ALUs
- → largely invisible to programmer

- $\, {\scriptstyle {\scriptstyle \vdash}}\,$ sharing control logic leaves more space for ALUs
- → largely invisible to programmer

- As already mentioned, each multiprocessor processes batches of blocks, one batch after the other:

- As already mentioned, each multiprocessor processes batches of blocks, one batch after the other:
 - Active blocks = the blocks processed by one multiprocessor in one batch

- $\, {\scriptstyle {\scriptstyle \vdash}}\,$ sharing control logic leaves more space for ALUs

- As already mentioned, each multiprocessor processes batches of blocks, one batch after the other:
 - Active blocks = the blocks processed by one multiprocessor in one batch
 - \downarrow Active threads = all the threads from the active blocks

The multiprocessor's registers and shared memory are split among the active threads

- The multiprocessor's registers and shared memory are split among the active threads
- Therefore, for a given kernel, the number of active blocks depends on:

- The multiprocessor's registers and shared memory are split among the active threads
- Therefore, for a given kernel, the number of active blocks depends on:

- The multiprocessor's registers and shared memory are split among the active threads
- Therefore, for a given kernel, the number of active blocks depends on:

 - $\, {\scriptstyle {\scriptstyle {\scriptstyle \leftarrow}}}\,$ How much shared memory the kernel requires

- The multiprocessor's registers and shared memory are split among the active threads
- Therefore, for a given kernel, the number of active blocks depends on:
 - $_{
 ightarrow}$ The number of registers the kernel compiles to
 - $\, {\scriptstyle {\scriptstyle {\scriptstyle \leftarrow}}}\,$ How much shared memory the kernel requires
- If there cannot be at least one active block, the kernel fails to launch.

Outline

- 1. GPUs and CUDA: a Brief Introduction
- 2. CUDA Programming Model
- 3. CUDA Memory Model
- 4. CUDA Programming Basics
- 5. CUDA Hardware Implementation
- 6. CUDA Programming: Scheduling and Synchronization
- 7. CUDA Tools
- 8. Sample Programs

void __syncthreads();

- void __syncthreads();
- Synchronizes all threads in a block:

void __syncthreads();

Synchronizes all threads in a block:

void __syncthreads();

Synchronizes all threads in a block:

- ${\scriptstyle {\scriptstyle ij}}$ once all threads have reached this point, execution resumes normally.
- $\, \downarrow \,$ this is used to avoid hazards when accessing shared memory.

void __syncthreads();

Synchronizes all threads in a block:

- $\, \downarrow \,$ this is used to avoid hazards when accessing shared memory.
- Should be used in conditional code only if the condition is uniform across the entire thread block.
Atomic operations on integers in global memory:

Atomic operations on integers in global memory:

 $\, {\scriptstyle {\scriptstyle {\scriptstyle \leftarrow}}}\,$ associative operations on signed/unsigned ints, such as

- Atomic operations on integers in global memory:
 - $\, {\scriptstyle {\scriptstyle {\scriptstyle \leftarrow}}}\,$ associative operations on signed/unsigned ints, such as

- Atomic operations on integers in global memory:
 - $\, \lrcorner \,$ associative operations on signed/unsigned ints, such as

- Atomic operations on integers in global memory:
 - $\, {\scriptstyle {\scriptstyle {\scriptstyle \leftarrow}}}\,$ associative operations on signed/unsigned ints, such as

 - $\, \downarrow \,$ they have names like atomicAdd, atomicMin, atomicAnd, ...
- Requires hardware with 1.1 compute capability

- Atomic operations on integers in global memory:
 - $\, {\scriptstyle {\scriptstyle {\scriptstyle \leftarrow}}}\,$ associative operations on signed/unsigned ints, such as
 - ${} {\scriptstyle {\scriptstyle \mapsto}} {}$ add, min, max, . and, or, xor.
- Requires hardware with 1.1 compute capability
- Should be used only when strictly necessary: non-locking mechanisms should be preferred for performance consideration.

All kernel launches are asynchronous

- $\, {\scriptstyle {\scriptstyle \vdash} }$ kernel starts executing once all previous CUDA calls have completed

- $\, {\scriptstyle {\scriptstyle \vdash} }$ kernel starts executing once all previous CUDA calls have completed
- Memcopies are synchronous

- Memcopies are synchronous

- Memcopies are synchronous
 - $\, {\scriptstyle {\scriptstyle {\scriptstyle \leftarrow}}} \,$ control returns to CPU once the copy is complete
 - $\, {\scriptstyle {\scriptstyle {\scriptstyle \leftarrow}}} \,$ copy starts once all previous CUDA calls have completed

All kernel launches are asynchronous

- $\, {\scriptstyle {\scriptstyle \vdash} }$ kernel starts executing once all previous CUDA calls have completed
- Memcopies are synchronous
 - $\, {\scriptstyle {\scriptstyle {\scriptstyle \leftarrow}}}\,$ control returns to CPU once the copy is complete

cudaThreadSynchronize()

- $\, {\scriptstyle {\scriptstyle \vdash} }$ kernel starts executing once all previous CUDA calls have completed
- Memcopies are synchronous
 - $\, {\scriptstyle {\scriptstyle {\scriptstyle \leftarrow}}} \,$ control returns to CPU once the copy is complete
- cudaThreadSynchronize()

- $\, {\scriptstyle {\scriptstyle \vdash} }$ kernel starts executing once all previous CUDA calls have completed
- Memcopies are synchronous
 - $\, {\scriptstyle {\scriptstyle {\scriptstyle \leftarrow}}} \,$ control returns to CPU once the copy is complete
- cudaThreadSynchronize()
- Asynchronous CUDA calls provide:

- Memcopies are synchronous
 - $\, {\scriptstyle {\scriptstyle {\scriptstyle \leftarrow}}} \,$ control returns to CPU once the copy is complete
- cudaThreadSynchronize()
- Asynchronous CUDA calls provide:
 - $\, \, \downarrow \, \,$ non-blocking memcopies (more on this later)

- $\, {\scriptstyle {\scriptstyle \vdash} }$ kernel starts executing once all previous CUDA calls have completed
- Memcopies are synchronous
 - $\, {\scriptstyle {\scriptstyle {\scriptstyle \leftarrow}}} \,$ control returns to CPU once the copy is complete
- cudaThreadSynchronize()
- Asynchronous CUDA calls provide:
 - \rightarrow non-blocking memcopies (more on this later)

Example host code (recall)

```
// allocate host memory
unsigned int numBytes = N * sizeof(float)
float* h_A = (float*) malloc(numBytes);
```

```
// allocate device memory
float* d_A = 0;
cudaMalloc((void**)&d_A, numbytes);
```

```
// copy data from host to device
cudaMemcpy(d_A, h_A, numBytes, cudaMemcpyHostToDevice);
```

// execute the kernel
increment gpu<<< N/blockSize, blockSize>>>(d A, b, N);

// copy data from device back to host
cudaMemcpy(h_A, d_A, numBytes, cudaMemcpyDeviceToHost);

```
// free device memory
cudaFree(d_A);
```

Device Management

■ CPU can query and select GPU devices:

- $\$ cudaGetDeviceCount(int* count)
- \vdash cudaSetDevice(int device)
- Ly cudaGetDevice(int *current_device)
- Ly cudaGetDeviceProperties(cudaDeviceProp* prop, int device)

Multi-GPU setup:

- multiple CPU threads can control the same GPU but their calls are serialized by the driver.
- ↓ CUDA resources allocated by a CPU thread can be consumed only by CUDA calls from the same CPU thread.

CUDA Error Reporting to CPU

All CUDA calls return error code:

- \downarrow the error code type is cudaError_t
- cudaError_t cudaGetLastError(void):
 - \vdash returns the code for the last error (*no error* has also a code)
- char* cudaGetErrorString(cudaError_t code):
 - $\, {\scriptstyle {\scriptstyle {\scriptstyle \leftarrow}}}\,$ returns a null-terminated character string describing the error

printf("%s\n", cudaGetErrorString(cudaGetLastError()));

CUDA Event API

Events are inserted (recorded) into CUDA call streams

Usage scenarios:

 \downarrow measure elapsed time for CUDA calls (clock cycle precision)

- $\, {\scriptstyle {\scriptstyle {\scriptstyle \leftarrow}}}\,$ query the status of an asynchronous CUDA call
- $\, {\scriptstyle {\scriptstyle {\scriptstyle \leftarrow}}} \,$ block CPU until CUDA calls prior to the event are completed

cudaEvent_t start, stop; cudaEventCreate(&start); cudaEventCreate(&stop); cudaEventRecord(start, 0); kernel<<<grid, block>>>(...); cudaEventRecord(stop, 0); cudaEventSynchronize(stop); float et; cudaEventElapsedTime(&et, start, stop); cudaEventDestroy(start); cudaEventDestroy(stop);

Outline

- 1. GPUs and CUDA: a Brief Introduction
- 2. CUDA Programming Model
- 3. CUDA Memory Model
- 4. CUDA Programming Basics
- 5. CUDA Hardware Implementation
- 6. CUDA Programming: Scheduling and Synchronization
- 7. CUDA Tools
- 8. Sample Programs

Any source file containing CUDA language extensions must be compiled with nvcc:

- Any source file containing CUDA language extensions must be compiled with nvcc:
 - → NVCC separates code running on the host from code running on the device.

- Any source file containing CUDA language extensions must be compiled with nvcc:
 - → NVCC separates code running on the host from code running on the device.
- Two-stage compilation:

- Any source file containing CUDA language extensions must be compiled with nvcc:
 - → NVCC separates code running on the host from code running on the device.
- Two-stage compilation:
 - → First generates Parallel Thread execution code (PTX)

- Any source file containing CUDA language extensions must be compiled with nvcc:
 - → NVCC separates code running on the host from code running on the device.
- Two-stage compilation:
 - → First generates **Parallel Thread execution code** (PTX)
 - $\, {\scriptstyle {\scriptstyle {\scriptstyle \leftarrow}}}\,$ Then produces Device-specific binary object

- Any source file containing CUDA language extensions must be compiled with nvcc:
 - → NVCC separates code running on the host from code running on the device.
- Two-stage compilation:
 - → First generates **Parallel Thread execution code** (PTX)
- NVCC is a compiler driver:

- Any source file containing CUDA language extensions must be compiled with nvcc:
 - → NVCC separates code running on the host from code running on the device.
- Two-stage compilation:
 - → First generates Parallel Thread execution code (PTX)
 - $\, {\scriptstyle {\scriptstyle \vdash}}\,$ Then produces Device-specific binary object
- NVCC is a compiler driver:
 - $\, {\scriptstyle \, \smile \,}\,$ Works by invoking all the necessary tools and compilers like cudacc, g++,

- Any source file containing CUDA language extensions must be compiled with nvcc:
 - → NVCC separates code running on the host from code running on the device.
- Two-stage compilation:
 - → First generates Parallel Thread execution code (PTX)
 - $\, {\scriptstyle {\scriptstyle \vdash}}\,$ Then produces Device-specific binary object
- NVCC is a compiler driver:
 - $\, {\scriptstyle \, \smile \,}\,$ Works by invoking all the necessary tools and compilers like cudacc, g++,
- An executable with CUDA code requires:

- Any source file containing CUDA language extensions must be compiled with nvcc:
 - → NVCC separates code running on the host from code running on the device.
- Two-stage compilation:
 - → First generates Parallel Thread execution code (PTX)
 - $\, {\scriptstyle {\scriptstyle \vdash}}\,$ Then produces Device-specific binary object
- NVCC is a compiler driver:
 - $\, {\scriptstyle \, \smile \,}\,$ Works by invoking all the necessary tools and compilers like cudacc, g++,
- An executable with CUDA code requires:
 - $\, \downarrow \,$ the CUDA core library (cuda)

- Any source file containing CUDA language extensions must be compiled with nvcc:
 - → NVCC separates code running on the host from code running on the device.
- Two-stage compilation:
 - → First generates **Parallel Thread execution code** (PTX)
 - $\, {\scriptstyle {\scriptstyle \vdash}}\,$ Then produces Device-specific binary object
- NVCC is a compiler driver:
- An executable with CUDA code requires:
 - $\, \downarrow \,$ the CUDA core library (cuda)
 - \vdash the CUDA runtime library (cudart)

Compiling CUDA code

PTX Example (SAXPY code)

```
$blockid, %ctaid.x; // Calculate i from thread/block IDs
cvt.u32.u16
cvt.u32.u16 $blocksize, %ntid.x;
cvt.u32.u16
              $tid, %tid.x;
mad24.lo.u32
              $i, $blockid, $blocksize, $tid;
ld.param.u32
              $n, [N];
setp.le.u32 $p1, $n, $i;
              $L finish;
@$p1 bra
mul.lo.u32 $offset, $i, 4; //Load y[i]
ld.param.u32 $yaddr, [Y];
add.u32
             $yaddr, $yaddr, $offset;
ld.global.f32 $y i, [$yaddr+0];
ld.param.u32
             $xaddr, [X];
add.1132
             $xaddr, $xaddr, $offset;
ld.global.f32 $x i, [$xaddr+0];
ld.param.f32 $alpha, [ALPHA]; // Compute and store alpha*x[i] + y[i]
mad.f32
          $y i, $alpha, $x i, $y i;
st.global.f32
             [$yaddr+0], $y i;
SL finish:
             exit;
```

Debugging CUDA code

An executable compiled in device emulation mode (nvcc -deviceemu) runs completely on the host using the CUDA runtime:

Debugging CUDA code

- An executable compiled in device emulation mode (nvcc -deviceemu) runs completely on the host using the CUDA runtime:
- An executable compiled in device emulation mode (nvcc -deviceemu) runs completely on the host using the CUDA runtime:
 - ${\scriptstyle {\scriptstyle {\scriptstyle \vdash}}}$ no need of any device and CUDA driver

An executable compiled in device emulation mode (nvcc -deviceemu) runs completely on the host using the CUDA runtime:

- However, the device emulation mode has several pitfalls:

- An executable compiled in device emulation mode (nvcc -deviceemu) runs completely on the host using the CUDA runtime:
- However, the device emulation mode has several pitfalls:
 - → emulated device threads execute sequentially, so simultaneous accesses of the same memory location by multiple threads potentially produce different results.

- An executable compiled in device emulation mode (nvcc -deviceemu) runs completely on the host using the CUDA runtime:
- However, the device emulation mode has several pitfalls:
 - → emulated device threads execute sequentially, so simultaneous accesses of the same memory location by multiple threads potentially produce different results.
 - i→ results of floating-point computations will slightly differ because of different compiler outputs, different instruction sets. etc.

- An executable compiled in device emulation mode (nvcc -deviceemu) runs completely on the host using the CUDA runtime:
- However, the device emulation mode has several pitfalls:
 - → emulated device threads execute sequentially, so simultaneous accesses of the same memory location by multiple threads potentially produce different results.
 - i→ results of floating-point computations will slightly differ because of different compiler outputs, different instruction sets. etc.
 - ↓ dereferencing device pointers on the host may produce correct results in device emulation mode while generating errors in device execution mode

- An executable compiled in device emulation mode (nvcc -deviceemu) runs completely on the host using the CUDA runtime:
- However, the device emulation mode has several pitfalls:
 - → emulated device threads execute sequentially, so simultaneous accesses of the same memory location by multiple threads potentially produce different results.
 - i→ results of floating-point computations will slightly differ because of different compiler outputs, different instruction sets. etc.
 - ↓ dereferencing device pointers on the host may produce correct results in device emulation mode while generating errors in device execution mode
- In fact in the latest versions of nvcc the device emulation mode is no longer supported!

Decompose the targeted application according to the many-core programming model of CUDA:

- Decompose the targeted application according to the many-core programming model of CUDA:

- Decompose the targeted application according to the many-core programming model of CUDA:

- Decompose the targeted application according to the many-core programming model of CUDA:

 - $\, {\scriptstyle {\scriptstyle \vdash}}\,$ such that the parallel code has enough work and enough parallelism
- 2 Write serial C code for each targeted CUDA kernel

- Decompose the targeted application according to the many-core programming model of CUDA:

 - ${\scriptstyle {\scriptstyle {\rm i}}}{\scriptstyle {\scriptstyle {\rm such}}}$ such that the parallel code has enough work and enough parallelism
- 2 Write serial C code for each targeted CUDA kernel
- **3** For each targeted CUDA kernel, carefully decompose the work into thread blocks:

- Decompose the targeted application according to the many-core programming model of CUDA:
- 2 Write serial C code for each targeted CUDA kernel
- **3** For each targeted CUDA kernel, carefully decompose the work into thread blocks:
 - $\, {\scriptstyle {\scriptstyle {\scriptstyle \vdash}}}\,$ this implies mapping the thread blocks to the data

- Decompose the targeted application according to the many-core programming model of CUDA:
- 2 Write serial C code for each targeted CUDA kernel
- **3** For each targeted CUDA kernel, carefully decompose the work into thread blocks:

 - → leading to potentially delicate index calculation:

- Decompose the targeted application according to the many-core programming model of CUDA:
- 2 Write serial C code for each targeted CUDA kernel
- **3** For each targeted CUDA kernel, carefully decompose the work into thread blocks:

 - ${}_{\rightarrow}$ leading to potentially delicate index calculation:
 - $\, \downarrow \,$ proving them mathematically often prevents from painful debugging!

- Decompose the targeted application according to the many-core programming model of CUDA:
- 2 Write serial C code for each targeted CUDA kernel
- **3** For each targeted CUDA kernel, carefully decompose the work into thread blocks:

 - ${}_{\rightarrow}$ leading to potentially delicate index calculation:
 - $\, {\scriptstyle {\scriptstyle {\scriptstyle \leftarrow}}} \,$ proving them mathematically often prevents from painful debugging!
- 4 Verify each kernel against its C counterpart

- Decompose the targeted application according to the many-core programming model of CUDA:
- 2 Write serial C code for each targeted CUDA kernel
- **3** For each targeted CUDA kernel, carefully decompose the work into thread blocks:

 - $\, {\scriptstyle {\scriptstyle {\scriptstyle \leftarrow}}} \,$ proving them mathematically often prevents from painful debugging!
- 4 Verify each kernel against its C counterpart
- **5** Debugging may lead to further decompose a kernel into smaller kernels.

Outline

- 1. GPUs and CUDA: a Brief Introduction
- 2. CUDA Programming Model
- 3. CUDA Memory Model
- 4. CUDA Programming Basics
- 5. CUDA Hardware Implementation
- 6. CUDA Programming: Scheduling and Synchronization
- 7. CUDA Tools
- 8. Sample Programs

- The goals of this example are:
 - $\, {\scriptstyle {\scriptstyle {\scriptstyle \leftarrow}}} \,$ Understanding how to write a kernel for a non-toy example

- $\, {\scriptstyle {\scriptstyle {\scriptstyle \leftarrow}}}\,$ Understanding how to map work (and data) to the thread blocks

- $\, {\scriptstyle {\scriptstyle {\scriptstyle \leftarrow}}}\,$ Understanding how to write a kernel for a non-toy example
- $\, \, \downarrow \, \,$ Understanding how to map work (and data) to the thread blocks

- $\, {\scriptstyle {\scriptstyle {\scriptstyle \leftarrow}}} \,$ Understanding how to write a kernel for a non-toy example
- $\, \, \downarrow \,$ Understanding how to map work (and data) to the thread blocks
- We start by writing a naive kernel for matrix multiplication which does not use shared memory.

- $\, {\scriptstyle {\scriptstyle {\scriptstyle \leftarrow}}} \,$ Understanding how to write a kernel for a non-toy example
- $\, \, \downarrow \,$ Understanding how to map work (and data) to the thread blocks
- $\, {\scriptstyle {\scriptstyle {\scriptstyle \leftarrow}}}\,$ Understanding the importance of using shared memory
- We start by writing a naive kernel for matrix multiplication which does not use shared memory.
- Then we analyze the performance of this kernel and realize that it is limited by the global memory latency.

- $\, {\scriptstyle {\scriptstyle {\scriptstyle \leftarrow}}} \,$ Understanding how to write a kernel for a non-toy example
- $\, \, \downarrow \,$ Understanding how to map work (and data) to the thread blocks
- $\, {\scriptstyle {\scriptstyle {\scriptstyle \mathsf{i}}}} \,$ Understanding the importance of using shared memory
- We start by writing a naive kernel for matrix multiplication which does not use shared memory.
- Then we analyze the performance of this kernel and realize that it is limited by the global memory latency.
- Finally, we present a more efficient kernel, which takes advantage of a tile decomposition and makes use of shared memory.

Consider multiplying two rectangular matrices A and B with respective formats $m \times n$ and $n \times p$. Define $C = A \times B$.

- Consider multiplying two rectangular matrices A and B with respective formats $m \times n$ and $n \times p$. Define $C = A \times B$.
- Principle: each thread computes an element of C through a 2D kernel.


```
_global__ void mat_mul(float *a, float *b,
                        float *ab, int wa, int wb)
ł
  // calculate the row & col index of the element
  int row = blockIdx.y*blockDim.y + threadIdx.y;
  int col = blockIdx.x*blockDim.x + threadIdx.x;
  float result = 0:
  // do dot product between row of a and col of b
  for(int k = 0; k < wa; ++k)
    result += a[row*wa+k] * b[k*wb+col]:
  ab[row*width+col] = result:
}
```

Analyze the previous CUDA kernel for multiplying two rectangular matrices A and B with respective formats m × n and n × p. Define C = A × B.

- Analyze the previous CUDA kernel for multiplying two rectangular matrices A and B with respective formats m × n and n × p. Define C = A × B.
- Each element of *C* is computed by one thread:

- Analyze the previous CUDA kernel for multiplying two rectangular matrices A and B with respective formats m × n and n × p. Define C = A × B.
- Each element of *C* is computed by one thread:
 - $\, {\scriptstyle {\scriptstyle {\scriptstyle \vdash}}} \,$ then each row of A is read p times and

- Analyze the previous CUDA kernel for multiplying two rectangular matrices A and B with respective formats m × n and n × p. Define C = A × B.
- Each element of C is computed by one thread:
 - $\, {\scriptstyle {\scriptstyle {\scriptstyle \vdash}}} \,$ then each row of A is read p times and

- Analyze the previous CUDA kernel for multiplying two rectangular matrices A and B with respective formats m × n and n × p. Define C = A × B.
- Each element of *C* is computed by one thread:
 - $\, {\scriptstyle {\scriptstyle {\scriptstyle \vdash}}} \,$ then each row of A is read p times and

 - $\ \ \, \downarrow \ \, 2\,m\,n\,p$ reads in total for $2\,m\,n\,p$ flops.

- Analyze the previous CUDA kernel for multiplying two rectangular matrices A and B with respective formats m × n and n × p. Define C = A × B.
- Each element of *C* is computed by one thread:
 - $\, {\scriptstyle {\scriptstyle {\scriptstyle \vdash}}} \,$ then each row of A is read p times and
 - $\, {\scriptstyle {\scriptstyle {\scriptstyle \vdash}}} \,$ each column of B is read m times, thus
 - $\ \ \, \downarrow \ \, 2\,m\,n\,p$ reads in total for $2\,m\,n\,p$ flops.
- Let t be an integer dividing m and p. We decompose C into $t \times t$ tiles. If tiles are computed one after another, then:

- Analyze the previous CUDA kernel for multiplying two rectangular matrices A and B with respective formats m × n and n × p. Define C = A × B.
- Each element of *C* is computed by one thread:
 - $\, {\scriptstyle {\scriptstyle {\scriptstyle \vdash}}} \,$ then each row of A is read p times and

 - $\ \ \, \downarrow \ \, 2\,m\,n\,p$ reads in total for $2\,m\,n\,p$ flops.
- Let t be an integer dividing m and p. We decompose C into $t \times t$ tiles. If tiles are computed one after another, then:

- Analyze the previous CUDA kernel for multiplying two rectangular matrices A and B with respective formats m × n and n × p. Define C = A × B.
- Each element of *C* is computed by one thread:
 - $\, {\scriptstyle {\scriptstyle {\scriptstyle \vdash}}} \,$ then each row of A is read p times and

 - $\ \ \, \downarrow \ \, 2\,m\,n\,p$ reads in total for $2\,m\,n\,p$ flops.
- Let t be an integer dividing m and p. We decompose C into $t \times t$ tiles. If tiles are computed one after another, then:
 - $\mapsto (m/t)(tn)(p/t)$ slots are read in A
 - $\, \, \downarrow \, \, (p/t)(t\,n)(m/t)$ slots are read in B, thus

- Analyze the previous CUDA kernel for multiplying two rectangular matrices A and B with respective formats m × n and n × p. Define C = A × B.
- Each element of *C* is computed by one thread:
 - $\, {\scriptstyle {\scriptstyle {\scriptstyle \vdash}}} \,$ then each row of A is read p times and
 - $\, {\scriptstyle {\scriptstyle {\scriptstyle \vdash}}} \,$ each column of B is read m times, thus
 - $\ \ \, \downarrow \ \, 2\,m\,n\,p$ reads in total for $2\,m\,n\,p$ flops.
- Let t be an integer dividing m and p. We decompose C into $t \times t$ tiles. If tiles are computed one after another, then:
 - (m/t)(tn)(p/t) slots are read in A
 - $\, \, \downarrow \, \, (p/t)(t\,n)(m/t)$ slots are read in B, thus
 - $\, \, \downarrow \, 2m n p / t$ reads in total for 2m n p flops.

- Analyze the previous CUDA kernel for multiplying two rectangular matrices A and B with respective formats m × n and n × p. Define C = A × B.
- Each element of *C* is computed by one thread:
 - $\, {\scriptstyle {\scriptstyle {\scriptstyle \vdash}}} \,$ then each row of A is read p times and
 - $\, {\scriptstyle {\scriptstyle {\scriptstyle \vdash}}} \,$ each column of B is read m times, thus
 - $\ \ \, \downarrow \ \, 2\,m\,n\,p$ reads in total for $2\,m\,n\,p$ flops.
- Let t be an integer dividing m and p. We decompose C into $t \times t$ tiles. If tiles are computed one after another, then:
 - (m/t)(tn)(p/t) slots are read in A
 - $\, \, \downarrow \, \, (p/t)(t\,n)(m/t)$ slots are read in B, thus
 - $\, \, \downarrow \, 2m n p / t$ reads in total for 2m n p flops.
- For a CUDA implementation, *t* = 16 such that each tile is computed by one thread block.
- The previous explanation can be adapted to a particular GPU architecture, so as to estimate the performance of the first (naive) kernel.
- The first kernel has a global memory access to flop ratio (GMAC) of 8 Bytes / 2 ops, that is, 4 B/op.

- The previous explanation can be adapted to a particular GPU architecture, so as to estimate the performance of the first (naive) kernel.
- The first kernel has a global memory access to flop ratio (GMAC) of 8 Bytes / 2 ops, that is, 4 B/op.
- Suppose using a GeForce GTX 260, which has 805 GFLOPS peak performance.

- The previous explanation can be adapted to a particular GPU architecture, so as to estimate the performance of the first (naive) kernel.
- The first kernel has a global memory access to flop ratio (GMAC) of 8 Bytes / 2 ops, that is, 4 B/op.
- Suppose using a GeForce GTX 260, which has 805 GFLOPS peak performance.
- In order to reach **peak fp performance** we would need a memory bandwidth of GMAC × Peak FLOPS = 3.2 TB/s.

- The previous explanation can be adapted to a particular GPU architecture, so as to estimate the performance of the first (naive) kernel.
- The first kernel has a global memory access to flop ratio (GMAC) of 8 Bytes / 2 ops, that is, 4 B/op.
- Suppose using a GeForce GTX 260, which has 805 GFLOPS peak performance.
- In order to reach **peak fp performance** we would need a memory bandwidth of GMAC × Peak FLOPS = 3.2 TB/s.
- Unfortunately, we only have 112 GB/s of actual memory bandwidth (BW) on a GeForce GTX 260.

- The previous explanation can be adapted to a particular GPU architecture, so as to estimate the performance of the first (naive) kernel.
- The first kernel has a global memory access to flop ratio (GMAC) of 8 Bytes / 2 ops, that is, 4 B/op.
- Suppose using a GeForce GTX 260, which has 805 GFLOPS peak performance.
- In order to reach **peak fp performance** we would need a memory bandwidth of GMAC × Peak FLOPS = 3.2 TB/s.
- Unfortunately, we only have 112 GB/s of actual memory bandwidth (BW) on a GeForce GTX 260.
- Therefore an upper bound on the performance of our implementation is BW / GMAC = 28 GFLOPS.

The picture below illustrates our second kernel

- The picture below illustrates our second kernel
- Each thread block computes a tile in *C*, which is obtained as a dot product of tile-vector of *A* by a tile-vector of *B*.

- The picture below illustrates our second kernel
- Each thread block computes a tile in *C*, which is obtained as a dot product of tile-vector of *A* by a tile-vector of *B*.
- Tile size is chosen in order to maximize data locality.

So a thread block computes a $t \times t$ tile of C.

- So a thread block computes a $t \times t$ tile of C.
- Each element in that tile is a dot-product of a row from *A* and a column from *B*.

- So a thread block computes a $t \times t$ tile of C.
- Each element in that tile is a dot-product of a row from A and a column from B.
- We view each of these dot-products as a sum of small dot products:

$$c_{i,j} = \sum_{k=o}^{t-1} a_{i,k} b_{k,j} + \sum_{k=t}^{2t-1} a_{i,k} b_{k,j} + \dots \sum_{k=n-1-t}^{n-1} a_{i,k} b_{k,j}$$

- So a thread block computes a $t \times t$ tile of C.
- Each element in that tile is a dot-product of a row from A and a column from B.
- We view each of these dot-products as a sum of small dot products:

$$c_{i,j} = \sum_{k=0}^{t-1} a_{i,k} b_{k,j} + \sum_{k=t}^{2t-1} a_{i,k} b_{k,j} + \dots \sum_{k=n-1-t}^{n-1} a_{i,k} b_{k,j}$$

Therefore we fix ℓ and then compute $\sum_{k=\ell t}^{(\ell+1)t-1} a_{i,k} b_{k,j}$ for all i, j in the working thread block.

- So a thread block computes a $t \times t$ tile of C.
- Each element in that tile is a dot-product of a row from A and a column from B.
- We view each of these dot-products as a sum of small dot products:

$$c_{i,j} = \sum_{k=0}^{t-1} a_{i,k} b_{k,j} + \sum_{k=t}^{2t-1} a_{i,k} b_{k,j} + \dots \sum_{k=n-1-t}^{n-1} a_{i,k} b_{k,j}$$

- Therefore we fix ℓ and then compute $\sum_{k=\ell t}^{(\ell+1)t-1} a_{i,k} b_{k,j}$ for all i, j in the working thread block.
- We do this for $\ell = 0, 1, \dots, (n/t 1)$.

- So a thread block computes a $t \times t$ tile of C.
- Each element in that tile is a dot-product of a row from A and a column from B.
- We view each of these dot-products as a sum of small dot products:

$$c_{i,j} = \sum_{k=0}^{t-1} a_{i,k} b_{k,j} + \sum_{k=t}^{2t-1} a_{i,k} b_{k,j} + \dots \sum_{k=n-1-t}^{n-1} a_{i,k} b_{k,j}$$

- Therefore we fix ℓ and then compute $\sum_{k=\ell t}^{(\ell+1)t-1} a_{i,k} b_{k,j}$ for all i, j in the working thread block.
- We do this for $\ell = 0, 1, \dots, (n/t 1)$.
- This allows us to store the working tiles of A and B in shared memory.

• We assume that A, B, C are stored in row-major layout.

```
#define BLOCK_SIZE 16
```

```
// Block index; WARNING: should be at most 2<sup>16</sup> - 1
int bx = blockIdx.x; int by = blockIdx.y;
```

```
// Thread index
int tx = threadIdx.x; int ty = threadIdx.y;
```

- We assume that A, B, C are stored in row-major layout.
- Observe that for computing a tile in C our kernel code does need to know the number of rows in A.

```
#define BLOCK_SIZE 16
    template <typename T>
__global__ void matrix_mul_ker(T* C, const T *A, const T *B,
        size_t wa, size_t wb)
```

```
// Block index; WARNING: should be at most 2<sup>16</sup> - 1
int bx = blockIdx.x; int by = blockIdx.y;
```

```
// Thread index
int tx = threadIdx.x; int ty = threadIdx.y;
```

- We assume that A, B, C are stored in row-major layout.
- Observe that for computing a tile in C our kernel code does need to know the number of rows in A.
- It just needs to know the width (number of columns) of A and B.

```
#define BLOCK_SIZE 16
    template <typename T>
__global__ void matrix_mul_ker(T* C, const T *A, const T *B,
        size_t wa, size_t wb)
```

```
// Block index; WARNING: should be at most 2<sup>16</sup> - 1
int bx = blockIdx.x; int by = blockIdx.y;
```

```
// Thread index
int tx = threadIdx.x; int ty = threadIdx.y;
```

We need the position in *A of the first element of the first working tile from A; we call it aBegin.

int aBegin = wa * BLOCK_SIZE * by;

int aEnd = aBegin + wa - 1;

int aStep = BLOCK_SIZE;

- We need the position in *A of the first element of the first working tile from A; we call it aBegin.
- We will need also the position in *A of the last element of the last working tile from A; we call it aEnd.

```
int aBegin = wa * BLOCK_SIZE * by;
int aEnd = aBegin + wa - 1;
```

```
int aStep = BLOCK_SIZE;
```

- We need the position in *A of the first element of the first working tile from A; we call it aBegin.
- We will need also the position in *A of the last element of the last working tile from A; we call it aEnd.
- Moreover, we will need the offset between two consecutive working tiles of A; we call it aStep.

int aBegin = wa * BLOCK_SIZE * by;

```
int aEnd = aBegin + wa - 1;
```

```
int aStep = BLOCK_SIZE;
```

• Similarly for B we have bBegin and bStep.

```
int bBegin = BLOCK_SIZE * bx;
```

```
int bStep = BLOCK_SIZE * wb;
```

int Csub = 0;

- Similarly for B we have bBegin and bStep.
- We will not need a bEnd since once we are done with a row of *A*, we are also done with a column of *B*.

```
int bBegin = BLOCK_SIZE * bx;
```

```
int bStep = BLOCK_SIZE * wb;
```

int Csub = 0;

- Similarly for B we have bBegin and bStep.
- We will not need a bEnd since once we are done with a row of A, we are also done with a column of B.
- Finally, we initially the accumulator of the working thread; we call it Csub.

```
int bBegin = BLOCK_SIZE * bx;
```

```
int bStep = BLOCK_SIZE * wb;
```

```
int Csub = 0;
```

The main loop starts by copying the working tiles of A and B to shared memory.

```
for(int a = aBegin, b = bBegin; a <= aEnd; a += aStep, b += bS
    // shared memory for the tile of A
    __shared__ int As[BLOCK_SIZE][BLOCK_SIZE];</pre>
```

// shared memory for the tile of B
__shared__ int Bs[BLOCK_SIZE][BLOCK_SIZE];

// Load the tiles from global memory to shared memory // each thread loads one element of each tile As[ty][tx] = A[a + wa * ty + tx]; Bs[ty][tx] = B[b + wb * ty + tx];

// synchronize to make sure the matrices are loaded
__syncthreads();

}

Compute a small "dot-product" for each element in the working tile of C.

```
// Multiply the two tiles together
// each thread computes one element of the tile of C
for(int k = 0; k < BLOCK_SIZE; ++k) {
    Csub += As[ty][k] * Bs[k][tx];
}
// synchronize to make sure that the preceding computa
// done before loading two new tiles of A dnd B in the
__syncthreads();</pre>
```

Once computed, the working tile of C is written to global memory.

```
// Write the working tile of C to global memory;
// each thread writes one element
int c = wb * BLOCK_SIZE * by + BLOCK_SIZE * bx;
C[c + wb * ty + tx] = Csub;
```

Each thread block should have many threads:

Each thread block should have many threads:

 \downarrow TILE_WIDTH = 16 implies $16 \times 16 = 256$ threads

Each thread block should have many threads:

 \downarrow TILE_WIDTH = 16 implies $16 \times 16 = 256$ threads

Each thread block should have many threads:

 \downarrow TILE_WIDTH = 16 implies $16 \times 16 = 256$ threads

There should be many thread blocks:

 $\, {\scriptstyle {\scriptstyle \vdash}} \,$ A 1024×1024 matrix would require 4096 thread blocks.

Each thread block should have many threads:

 \downarrow TILE_WIDTH = 16 implies $16 \times 16 = 256$ threads

- $\, {\scriptstyle {\scriptstyle \vdash}} \,$ A 1024×1024 matrix would require 4096 thread blocks.
- Since one streaming multiprocessor (SM) can handle 768 threads, each SM will process 3 thread blocks, leading it full occupancy.

Each thread block should have many threads:

 \downarrow TILE_WIDTH = 16 implies $16 \times 16 = 256$ threads

- $\, {\scriptstyle {\scriptstyle \vdash}} \,$ A 1024×1024 matrix would require 4096 thread blocks.
- Since one streaming multiprocessor (SM) can handle 768 threads, each SM will process 3 thread blocks, leading it full occupancy.
- Each thread block performs 2 × 256 reads of a 4-byte float while performing 256 × (2 × 16) = 8,192 fp ops:

Each thread block should have many threads:

 \downarrow TILE_WIDTH = 16 implies $16 \times 16 = 256$ threads

- $\, {\scriptstyle {\scriptstyle \vdash}} \,$ A 1024×1024 matrix would require 4096 thread blocks.
- Since one streaming multiprocessor (SM) can handle 768 threads, each SM will process 3 thread blocks, leading it full occupancy.
- Each thread block performs 2 × 256 reads of a 4-byte float while performing 256 × (2 × 16) = 8,192 fp ops:

Experimentation performed on a GT200.

- Experimentation performed on a GT200.
- **Tiling** and using **shared memory** were clearly worth the effort.

 Effective use of different memory resources reduces the number of accesses to global memory

Resource	Per GT200 SM	Full Occupancy on GT200
Registers	16384	<= 16384 / 768 threads = 21 per thread
shared Memory	16KB	<= 16KB / 8 blocks = 2KB per block
Matrix multiplication (16/16)

- Effective use of different memory resources reduces the number of accesses to global memory
- But these resources are finite!

Resource	Per GT200 SM	Full Occupancy on GT200
Registers	16384	<= 16384 / 768 threads = 21 per thread
shared Memory	16KB	<= 16KB / 8 blocks = 2KB per block

Matrix multiplication (16/16)

- Effective use of different memory resources reduces the number of accesses to global memory
- But these resources are finite!
- The more memory locations each thread requires, the fewer threads an SM can accommodate.

Resource	Per GT200 SM	Full Occupancy on GT200
Registers	16384	<= 16384 / 768 threads = 21 per thread
shared Memory	16KB	<= 16KB / 8 blocks = 2KB per block