
Introduction to Multicore Programming

Marc Moreno Maza

University of Western Ontario, London, Ontario (Canada)

CS 4435 - CS 9624

(Moreno Maza) Introduction to Multicore Programming CS 4435 - CS 9624 1 / 60

Plan

1 Multi-core Architecture
Multi-core processor
CPU Cache
CPU Coherence

2 Concurrency Platforms
PThreads
TBB
Open MP
Cilk ++
Race Conditions and Cilkscreen
MMM in Cilk++

(Moreno Maza) Introduction to Multicore Programming CS 4435 - CS 9624 2 / 60

Multi-core Architecture

Plan

1 Multi-core Architecture
Multi-core processor
CPU Cache
CPU Coherence

2 Concurrency Platforms
PThreads
TBB
Open MP
Cilk ++
Race Conditions and Cilkscreen
MMM in Cilk++

(Moreno Maza) Introduction to Multicore Programming CS 4435 - CS 9624 3 / 60

Multi-core Architecture Multi-core processor

(Moreno Maza) Introduction to Multicore Programming CS 4435 - CS 9624 4 / 60

Multi-core Architecture Multi-core processor

(Moreno Maza) Introduction to Multicore Programming CS 4435 - CS 9624 5 / 60

Multi-core Architecture Multi-core processor

(Moreno Maza) Introduction to Multicore Programming CS 4435 - CS 9624 6 / 60

Multi-core Architecture Multi-core processor

Memory I/O

Network

…$ $ $
PPP

Chip Multiprocessor (CMP)

(Moreno Maza) Introduction to Multicore Programming CS 4435 - CS 9624 7 / 60

Multi-core Architecture Multi-core processor

Multi-core processor

A multi-core processor is an integrated circuit to which two or more
individual processors (called cores in this sense) have been attached.

In a many-core processor the number of cores is large enough that
traditional multi-processor techniques are no longer efficient.

Cores on a multi-core device can be coupled tightly or loosely:

may share or may not share a cache,
implement inter-core communications methods or message passing.

Cores on a multi-core implement the same architecture features as
single-core systems such as instruction pipeline parallelism (ILP),
vector-processing, SIMD or multi-threading.

Many applications do not realize yet large speedup factors:
parallelizing algorithms and software is a major on-going research area.

(Moreno Maza) Introduction to Multicore Programming CS 4435 - CS 9624 8 / 60

Multi-core Architecture CPU Cache

CPU Cache (1/7)

A CPU cache is an auxiliary memory which is smaller, faster memory
than the main memory and which stores copies of of the main
memory locations that are expectedly frequently used.

Most modern desktop and server CPUs have at least three
independent caches: the data cache, the instruction cache and the
translation look-aside buffer.

(Moreno Maza) Introduction to Multicore Programming CS 4435 - CS 9624 9 / 60

Multi-core Architecture CPU Cache

CPU Cache (2/7)

Each location in each memory (main or cache) has

a datum (cache line) which ranges between 8 and 512 bytes in size,
while a datum requested by a CPU instruction ranges between 1 and
16.
a unique index (called address in the case of the main memory)

In the cache, each location has also a tag (storing the address of the
corresponding cached datum).

(Moreno Maza) Introduction to Multicore Programming CS 4435 - CS 9624 10 / 60

Multi-core Architecture CPU Cache

CPU Cache (3/7)

When the CPU needs to read or write a location, it checks the cache:

if it finds it there, we have a cache hit
if not, we have a cache miss and (in most cases) the processor needs to
create a new entry in the cache.

Making room for a new entry requires a replacement policy: the Least
Recently Used (LRU) discards the least recently used items first; this
requires to use age bits.

(Moreno Maza) Introduction to Multicore Programming CS 4435 - CS 9624 11 / 60

Multi-core Architecture CPU Cache

CPU Cache (4/7)

Read latency (time to read a datum from the main memory) requires
to keep the CPU busy with something else:

out-of-order execution: attempt to execute independent instructions
arising after the instruction that is waiting due to the
cache miss

hyper-threading (HT): allows an alternate thread to use the CPU

(Moreno Maza) Introduction to Multicore Programming CS 4435 - CS 9624 12 / 60

Multi-core Architecture CPU Cache

CPU Cache (5/7)

Modifying data in the cache requires a write policy for updating the
main memory

- write-through cache: writes are immediately mirrored to main
memory

- write-back cache: the main memory is mirrored when that data is
evicted from the cache

The cache copy may become out-of-date or stale, if other processors
modify the original entry in the main memory.

(Moreno Maza) Introduction to Multicore Programming CS 4435 - CS 9624 13 / 60

Multi-core Architecture CPU Cache

CPU Cache (6/7)

The replacement policy decides where in the cache a copy of a
particular entry of main memory will go:

- fully associative: any entry in the cache can hold it
- direct mapped: only one possible entry in the cache can hold it
- N-way set associative: N possible entries can hold it

(Moreno Maza) Introduction to Multicore Programming CS 4435 - CS 9624 14 / 60

Multi-core Architecture CPU Cache

Cache Performance for SPEC CPU2000 by J.F. Cantin and M.D. Hill.

The SPEC CPU2000 suite is a collection of 26 compute-intensive, non-trivial
programs used to evaluate the performance of a computer’s CPU, memory
system, and compilers (http://www.spec.org/osg/cpu2000).

(Moreno Maza) Introduction to Multicore Programming CS 4435 - CS 9624 15 / 60

Multi-core Architecture CPU Coherence

Cache Coherence (1/6)

x=3

…Load x x=3

P P P

Figure: Processor P1 reads x=3 first from the backing store (higher-level memory)

(Moreno Maza) Introduction to Multicore Programming CS 4435 - CS 9624 16 / 60

Multi-core Architecture CPU Coherence

Cache Coherence (2/6)

x=3

…Load x x=3 x=3

P P P

Figure: Next, Processor P2 loads x=3 from the same memory

(Moreno Maza) Introduction to Multicore Programming CS 4435 - CS 9624 17 / 60

Multi-core Architecture CPU Coherence

Cache Coherence (3/6)

x=3

…Load x x=3 x=3 x=3

P P P

Figure: Processor P4 loads x=3 from the same memory

(Moreno Maza) Introduction to Multicore Programming CS 4435 - CS 9624 18 / 60

Multi-core Architecture CPU Coherence

Cache Coherence (4/6)

x=3

Store …Store
x=5 x=3 x=3 x=3

P P P

Figure: Processor P2 issues a write x=5

(Moreno Maza) Introduction to Multicore Programming CS 4435 - CS 9624 19 / 60

Multi-core Architecture CPU Coherence

Cache Coherence (5/6)

x=3

Store …Store
x=5 x=3 x=5 x=3

P P P

Figure: Processor P2 writes x=5 in his local cache

(Moreno Maza) Introduction to Multicore Programming CS 4435 - CS 9624 20 / 60

Multi-core Architecture CPU Coherence

Cache Coherence (6/6)

x=3

…Load x x=3 x=5 x=3

P P P

Figure: Processor P1 issues a read x, which is now invalid in its cache

(Moreno Maza) Introduction to Multicore Programming CS 4435 - CS 9624 21 / 60

Multi-core Architecture CPU Coherence

MSI Protocol

In this cache coherence protocol each block contained inside a cache
can have one of three possible states:

- M: the cache line has been modified and the corresponding data is
inconsistent with the backing store; the cache has the responsibility to
write the block to the backing store when it is evicted.

- S: this block is unmodified and is shared, that is, exists in at least one
cache. The cache can evict the data without writing it to the backing
store.

- I: this block is invalid, and must be fetched from memory or another
cache if the block is to be stored in this cache.

These coherency states are maintained through communication
between the caches and the backing store.

The caches have different responsibilities when blocks are read or
written, or when they learn of other caches issuing reads or writes for
a block.

(Moreno Maza) Introduction to Multicore Programming CS 4435 - CS 9624 22 / 60

Multi-core Architecture CPU Coherence

True Sharing and False Sharing

True sharing:
True sharing cache misses occur whenever two processors access the
same data word
True sharing requires the processors involved to explicitly synchronize
with each other to ensure program correctness.
A computation is said to have temporal locality if it re-uses much of
the data it has been accessing.
Programs with high temporal locality tend to have less true sharing.

False sharing:
False sharing results when different processors use different data that
happen to be co-located on the same cache line
A computation is said to have spatial locality if it uses multiple words
in a cache line before the line is displaced from the cache
Enhancing spatial locality often minimizes false sharing

See Data and Computation Transformations for Multiprocessors by
J.M. Anderson, S.P. Amarasinghe and M.S. Lam
http://suif.stanford.edu/papers/anderson95/paper.html

(Moreno Maza) Introduction to Multicore Programming CS 4435 - CS 9624 23 / 60

Multi-core Architecture CPU Coherence

Multi-core processor (cntd)

Advantages:
Cache coherency circuitry operate at higher rate than off-chip.
Reduced power consumption for a dual core vs two coupled single-core
processors (better quality communication signals, cache can be shared)

Challenges:
Adjustments to existing software (including OS) are required to
maximize performance
Production yields down (an Intel quad-core is in fact a double
dual-core)
Two processing cores sharing the same bus and memory bandwidth
may limit performances
High levels of false or true sharing and synchronization can easily
overwhelm the advantage of parallelism

(Moreno Maza) Introduction to Multicore Programming CS 4435 - CS 9624 24 / 60

Concurrency Platforms

Plan

1 Multi-core Architecture
Multi-core processor
CPU Cache
CPU Coherence

2 Concurrency Platforms
PThreads
TBB
Open MP
Cilk ++
Race Conditions and Cilkscreen
MMM in Cilk++

(Moreno Maza) Introduction to Multicore Programming CS 4435 - CS 9624 25 / 60

Concurrency Platforms

Concurrency Platforms

Programming directly on processor cores is painful and error-prone.

Concurrency platforms

abstract processor cores, handles synchronization, communication
protocols
(optionally) perform load balancing

Examples of concurrency platforms:

Pthreads
Threading Building Blocks (TBB)
OpenMP
Cilk++

We use an implementation of the Fibonacci sequence
Fn+2 = Fn+1 + Fn to compare these four concurrency platforms.

(Moreno Maza) Introduction to Multicore Programming CS 4435 - CS 9624 26 / 60

Concurrency Platforms

Fibonacci Execution

fib(4)

fib(3) fib(2)fib(3)

fib(2) fib(1)

fib(2)

fib(1) fib(0)

fib(1) fib(0)
int fib(int n)

Key idea for parallelization
Th l l ti f fib(1)

{
if (n < 2) return n;
else {

int x = fib(n-1);The calculations of fib(n-1)
and fib(n-2) can be
executed simultaneously

int x = fib(n-1);
int y = fib(n-2);
return x + y;

}

without mutual interference. }

(Moreno Maza) Introduction to Multicore Programming CS 4435 - CS 9624 27 / 60

Concurrency Platforms PThreads

PThreads

Pthreads is a POSIX standard for threads, communicating though
shared memory.

Pthreads defines a set of C programming language types, functions
and constants.

It is implemented with a pthread.h header and a thread library.

Programmers can use Pthreads to create, manipulate and manage
threads.

In particular, programmers can synchronize between threads using
mutexes, condition variables and semaphores.

This is a Do-it-yourself concurrency platform: programmers have to
map threads onto the computer resources (static scheduling).

(Moreno Maza) Introduction to Multicore Programming CS 4435 - CS 9624 28 / 60

Concurrency Platforms PThreads

Key PThread Function

int pthread_create(

pthread_t *thread,

//returned identifier for the new thread

const pthread_attr_t *attr,

//object to set thread attributes (NULL for default)

void *(*func)(void *),

//routine executed after creation

void *arg

//a single argument passed to func

) //returns error status

int pthread_join (

pthread_t thread,

//identifier of thread to wait for

void **status

//terminating thread’s status (NULL to ignore)

) //returns error status

*WinAPI threads provide similar functionality.

(Moreno Maza) Introduction to Multicore Programming CS 4435 - CS 9624 29 / 60

Concurrency Platforms PThreads

PThreads

Overhead: The cost of creating a thread is more than 10,000 cycles.
This enforces coarse-grained concurrency. (Thread pools can
help.)

Scalability: Fibonacci code gets about 1.5 speedup for 2 cores for
computing fib(40).

Indeed the thread creation overhead is so large that only
one thread is used, see below.
Consequently, one needs to rewrite the code for more
than 2 cores.

Simplicity: Programmers must engage in error-prone protocols in order
to schedule and load-balance.

(Moreno Maza) Introduction to Multicore Programming CS 4435 - CS 9624 30 / 60

Concurrency Platforms PThreads

#include <stdio.h>

#include <stdlib.h>

#include <pthread.h>

int fib(int n)

{

if (n < 2) return n;

else {

int x = fib(n-1);

int y = fib(n-2);

return x + y;

}

}

typedef struct {

int input;

int output;

} thread_args;

void *thread_func (void *ptr)

{

int i = ((thread_args *) ptr)->input;

((thread_args *) ptr)->output = fib(i);

return NULL;

}

(Moreno Maza) Introduction to Multicore Programming CS 4435 - CS 9624 31 / 60

Concurrency Platforms PThreads

int main(int argc, char *argv[])

{

pthread_t thread;

thread_args args;

int status;

int result;

int thread_result;

if (argc < 2) return 1;

int n = atoi(argv[1]);

if (n < 30) result = fib(n);

else {

args.input = n-1;

status = pthread_create(&thread,

NULL,

thread_func,

(void*) &args);

// main can continue executing

result = fib(n-2);

// Wait for the thread to terminate.

pthread_join(thread, NULL);

result += args.output;

}

printf("Fibonacci of %d is %d.\n", n, result);

return 0;

}

(Moreno Maza) Introduction to Multicore Programming CS 4435 - CS 9624 32 / 60

Concurrency Platforms TBB

TBB (1/2)

A C++ library that run on top of native threads

Programmers specify tasks rather than threads:

Tasks are objects. Each task object has an input parameter and an
output parameter.
One needs to define (at least) the methods: one for creating a task and
one for executing it.
Tasks are launched by a spawn or a spawn and wait for all
statement.

Tasks are automatically load-balanced across the threads using the
work stealing principle.

TBB Developed by Intel and focus on performance

(Moreno Maza) Introduction to Multicore Programming CS 4435 - CS 9624 33 / 60

Concurrency Platforms TBB

TBB (2/2)

TBB provides many C++ templates to express common patterns
simply, such as:

parallel for for loop parallelism,
parallel reduce for data aggregation
pipeline and filter for software pipelining

TBB provides concurrent container classes which allow multiple
threads to safely access and update items in the container
concurrently.

TBB also provides a variety of mutual-exclusion library functions,
including locks.

(Moreno Maza) Introduction to Multicore Programming CS 4435 - CS 9624 34 / 60

Concurrency Platforms TBB

class FibTask: public task {

public:

const long n;

long* const sum;

FibTask(long n_, long* sum_) :

n(n_), sum(sum_) {}

task* execute() {

if(n < 2) {

*sum = n;

} else {

long x, y;

FibTask& a = *new(allocate_child())

FibTask(n-1,&x);

FibTask& b = *new(allocate_child())

FibTask(n-2,&y);

set_ref_count(3);

spawn(b);

spawn_and_wait_for_all(a);

*sum = x+y;

}

return NULL;

}

};

(Moreno Maza) Introduction to Multicore Programming CS 4435 - CS 9624 35 / 60

Concurrency Platforms Open MP

Open MP

Several compilers available, both open-source and Visual Studio.

Runs on top of native threads

Linguistic extensions to C/C++ or Fortran in the form of compiler
pragmas (compiler directives):

pragma omp task shared(x) implies that the next statement is an
independent task;
moreover sharing of memory is managed explicitly
other pragmas express directives for scheduling, loop parallelism amd
data aggregation.

Supports loop parallelism and, more recently in Version 3.0, task
parallelism with dynamic scheduling.

OpenMP provides a variety of synchronization constructs (barriers,
mutual-exclusion locks, etc.)

(Moreno Maza) Introduction to Multicore Programming CS 4435 - CS 9624 36 / 60

Concurrency Platforms Open MP

int fib(int n)
{

if (n < 2) return n;
int x, y;

#pragma omp task shared(x)
x = fib(n - 1);

#pragma omp task shared(y)
y = fib(n - 2);

#pragma omp taskwait
return x+y;

}

(Moreno Maza) Introduction to Multicore Programming CS 4435 - CS 9624 37 / 60

Concurrency Platforms Cilk ++

From Cilk to Cilk++

Cilk has been developed since 1994 at the MIT Laboratory for
Computer Science by Prof. Charles E. Leiserson and his group, in
particular by Matteo Frigo.

Besides being used for research and teaching, Cilk was the system
used to code the three world-class chess programs: Tech, Socrates,
and Cilkchess.

Over the years, the implementations of Cilk have run on computers
ranging from networks of Linux laptops to an 1824-nodes Intel
Paragon.

From 2007 to 2009 Cilk has lead to Cilk++, developed by Cilk Arts,
an MIT spin-off, which was acquired by Intel in July 2009. Today, it
can be freely downloaded. The place where to start is
http://www.cilk.com/

Cilk is still developed at MIT
http://supertech.csail.mit.edu/cilk/

(Moreno Maza) Introduction to Multicore Programming CS 4435 - CS 9624 38 / 60

Concurrency Platforms Cilk ++

Cilk ++

Cilk++ (resp. Cilk) is a small set of linguistic extensions to C++
(resp. C) supporting fork-join parallelism

Both Cilk and Cilk++ feature a provably efficient work-stealing
scheduler.

Cilk++ provides a hyperobject library for parallelizing code with
global variables and performing reduction for data aggregation.

Cilk++ includes the Cilkscreen race detector and the Cilkview
performance analyzer.

(Moreno Maza) Introduction to Multicore Programming CS 4435 - CS 9624 39 / 60

Concurrency Platforms Cilk ++

Nested Parallelism in Cilk ++

int fib(int n)
{

if (n < 2) return n;
int x, y;
x = cilk_spawn fib(n-1);
y = fib(n-2);
cilk_sync;
return x+y;

}

The named child function cilk spawn fib(n-1) may execute in
parallel with its parent

Cilk++ keywords cilk spawn and cilk sync grant permissions for
parallel execution. They do not command parallel execution.

(Moreno Maza) Introduction to Multicore Programming CS 4435 - CS 9624 40 / 60

Concurrency Platforms Cilk ++

Loop Parallelism in Cilk ++

a11 a12 ⋯ a1n
a21 a22 ⋯ a2n

a11 a21 ⋯ an1
a12 a22 ⋯ an221 22 2n

⋮ ⋮ ⋱ ⋮
an1 an2 ⋯ ann

12 22 n2

⋮ ⋮ ⋱ ⋮
a1n a2n ⋯ annn1 n2 nn 1n 2n nn

A AT

// indices run from 0, not 1
cilk_for (int i=1; i<n; ++i) {

for (int j=0; j<i; ++j) {
d bl [i][j]double temp = A[i][j];
A[i][j] = A[j][i];
A[j][i] = temp;

}}
}

The iterations of a cilk for loop may execute in parallel.

(Moreno Maza) Introduction to Multicore Programming CS 4435 - CS 9624 41 / 60

Concurrency Platforms Cilk ++

Serial Semantics (1/2)

Cilk (resp. Cilk++) is a multithreaded language for parallel
programming that generalizes the semantics of C (resp. C++) by
introducing linguistic constructs for parallel control.

Cilk (resp. Cilk++) is a faithful extension of C (resp. C++):

The C (resp. C++) elision of a Cilk (resp. Cilk++) is a correct
implementation of the semantics of the program.
Moreover, on one processor, a parallel Cilk (resp. Cilk++) program
scales down to run nearly as fast as its C (resp. C++) elision.

To obtain the serialization of a Cilk++ program

#define cilk_for for
#define cilk_spawn
#define cilk_sync

(Moreno Maza) Introduction to Multicore Programming CS 4435 - CS 9624 42 / 60

Concurrency Platforms Cilk ++

Serial Semantics (2/2)

int fib (int n) {
if (n<2) return (n);
else {

int x,y;
x = cilk spawn fib(n-1);

Cilk++ source

x cilk_spawn fib(n 1);
y = fib(n-2);
cilk_sync;
return (x+y);

}
}

int fib (int n) {
if (n<2) return (n);

else {
int x,y;
x fib(n 1);x = fib(n-1);
y = fib(n-2);
return (x+y);

}
} Serialization

(Moreno Maza) Introduction to Multicore Programming CS 4435 - CS 9624 43 / 60

Concurrency Platforms Cilk ++

Scheduling (1/3)

int fib (int n) {
if (n<2) return (n);
else {
int x,y;
 ilk fib(1)x = cilk_spawn fib(n-1);
y = fib(n-2);
cilk_sync;
return (x+y);

}
}}

Memory I/O

Network

…P
P P P
$ $ $
P P P

(Moreno Maza) Introduction to Multicore Programming CS 4435 - CS 9624 44 / 60

Concurrency Platforms Cilk ++

Scheduling (2/3)

Cilk/Cilk++ randomized work-stealing scheduler load-balances the
computation at run-time. Each processor maintains a ready deque:

A ready deque is a double ended queue, where each entry is a
procedure instance that is ready to execute.
Adding a procedure instance to the bottom of the deque represents a
procedure call being spawned.
A procedure instance being deleted from the bottom of the deque
represents the processor beginning/resuming execution on that
procedure.
Deletion from the top of the deque corresponds to that procedure
instance being stolen.

A mathematical proof guarantees near-perfect linear speed-up on
applications with sufficient parallelism, as long as the architecture has
sufficient memory bandwidth.

A spawn/return in Cilk is over 100 times faster than a Pthread
create/exit and less than 3 times slower than an ordinary C
function call on a modern Intel processor.

(Moreno Maza) Introduction to Multicore Programming CS 4435 - CS 9624 45 / 60

Concurrency Platforms Cilk ++

Scheduling (2/3)

Each processor possesses a deque

(Moreno Maza) Introduction to Multicore Programming CS 4435 - CS 9624 46 / 60

Concurrency Platforms Cilk ++

(Moreno Maza) Introduction to Multicore Programming CS 4435 - CS 9624 47 / 60

Concurrency Platforms Cilk ++

(Moreno Maza) Introduction to Multicore Programming CS 4435 - CS 9624 48 / 60

Concurrency Platforms Cilk ++

(Moreno Maza) Introduction to Multicore Programming CS 4435 - CS 9624 49 / 60

Concurrency Platforms Cilk ++

(Moreno Maza) Introduction to Multicore Programming CS 4435 - CS 9624 50 / 60

Concurrency Platforms Cilk ++

(Moreno Maza) Introduction to Multicore Programming CS 4435 - CS 9624 51 / 60

Concurrency Platforms Cilk ++

(Moreno Maza) Introduction to Multicore Programming CS 4435 - CS 9624 52 / 60

Concurrency Platforms Cilk ++

(Moreno Maza) Introduction to Multicore Programming CS 4435 - CS 9624 53 / 60

Concurrency Platforms Cilk ++

The Cilk++ Platform

Cilk++
Compiler

Conventional

Hyperobject
Library1

2 3int fib (int n) {
if (n<2) return (n);
else {

int x,y;
x = cilk_spawn fib(n-1);
y = fib(n-2);

Cilk++source

Conventional
Compiler

y b();
cilk_sync;
return (x+y);

}
}

Cilkview
S l bilit A l

6

BinaryBinary Cilkscreen

Linker

5

int fib (int n) {
if (n<2) return (n);

else {
int x,y;
x = fib(n-1);
y = fib(n 2);

int fib (int n) {
if (n<2) return (n);

else {
int x,y;
x = fib(n-1);
y = fib(n 2);

Scalability Analyzer

BinaryBinary Cilkscreen
Race Detector

y = fib(n-2);
return (x+y);

}
}

y = fib(n-2);
return (x+y);

}
} Serialization

Runtime4Conventional
Regression Tests

Parallel
Regression Tests

Runtime
System

4

Reliable Single-
Threaded Code

Exceptional
Performance

Reliable Multi-
Threaded Code

(Moreno Maza) Introduction to Multicore Programming CS 4435 - CS 9624 54 / 60

Concurrency Platforms Race Conditions and Cilkscreen

Race Bugs (1/3)

i t 0A
int x = 0;

AExample
int x = 0;
cilk_for(int i=0, i<2, ++i) {

x++;
}

A

B C x++; x++;B C

}
assert(x == 2);D

assert(x == 2);

DD

Dependency Graph

Iterations of a cilk for should be independent.

Between a cilk spawn and the corresponding cilk sync, the code
of the spawned child should be independent of the code of the parent,
including code executed by additional spawned or called children.

The arguments to a spawned function are evaluated in the parent
before the spawn occurs.

(Moreno Maza) Introduction to Multicore Programming CS 4435 - CS 9624 55 / 60

Concurrency Platforms Race Conditions and Cilkscreen

Race Bugs (2/3)

x = 0;1
A

r1 = x; r2 = x;2 4int x = 0;

r1++;

x r1;

r2++;

x r2;

3 5

67

x++;

(2)

x++;B C

x = r1; x = r2;

assert(x == 2);

67

8

assert(x == 2);

D

?? ?0001 0 01111 1?

x

?

r1

?

r2

0001 0 01111 1

(Moreno Maza) Introduction to Multicore Programming CS 4435 - CS 9624 56 / 60

Concurrency Platforms Race Conditions and Cilkscreen

Race Bugs (3/3)

Watch out for races in packed data structures such as:

struct{
char a;
char b;

}

Updating x.a and x.b in parallel can cause races.

If an ostensibly deterministic Cilk++ program run on a given input
could possibly behave any differently than its serialization,
Cilkscreen race detector guarantees to report and localize the
offending race.

Employs a regression-test methodology (where the programmer
provides test inputs) and dynamic instrumentation of binary code.

Identifies files-names, lines and variables involved in the race.

Runs about 20 times slower than real-time.

(Moreno Maza) Introduction to Multicore Programming CS 4435 - CS 9624 57 / 60

Concurrency Platforms MMM in Cilk++

template<typename T> void multiply_iter_par(int ii, int jj, int kk, T* A, T* B,
T* C)

{
cilk_for(int i = 0; i < ii; ++i)

for (int k = 0; k < kk; ++k)
cilk_for(int j = 0; j < jj; ++j)

C[i * jj + j] += A[i * kk + k] + B[k * jj + j];
}

Does not scale up well due to a poor locality and uncontrolled granularity.

(Moreno Maza) Introduction to Multicore Programming CS 4435 - CS 9624 58 / 60

Concurrency Platforms MMM in Cilk++

template<typename T> void multiply_rec_seq_helper(int i0, int i1, int j0,

int j1, int k0, int k1, T* A, ptrdiff_t lda, T* B, ptrdiff_t ldb, T* C,

ptrdiff_t ldc)

{

int di = i1 - i0;

int dj = j1 - j0;

int dk = k1 - k0;

if (di >= dj && di >= dk && di >= RECURSION_THRESHOLD) {

int mi = i0 + di / 2;

multiply_rec_seq_helper(i0, mi, j0, j1, k0, k1, A, lda, B, ldb, C, ldc);

multiply_rec_seq_helper(mi, i1, j0, j1, k0, k1, A, lda, B, ldb, C, ldc);

} else if (dj >= dk && dj >= RECURSION_THRESHOLD) {

int mj = j0 + dj / 2;

multiply_rec_seq_helper(i0, i1, j0, mj, k0, k1, A, lda, B, ldb, C, ldc);

multiply_rec_seq_helper(i0, i1, mj, j1, k0, k1, A, lda, B, ldb, C, ldc);

} else if (dk >= RECURSION_THRESHOLD) {

int mk = k0 + dk / 2;

multiply_rec_seq_helper(i0, i1, j0, j1, k0, mk, A, lda, B, ldb, C, ldc);

multiply_rec_seq_helper(i0, i1, j0, j1, mk, k1, A, lda, B, ldb, C, ldc);

} else {

for (int i = i0; i < i1; ++i)

for (int k = k0; k < k1; ++k)

for (int j = j0; j < j1; ++j)

C[i * ldc + j] += A[i * lda + k] * B[k * ldb + j];

}

}
(Moreno Maza) Introduction to Multicore Programming CS 4435 - CS 9624 59 / 60

Concurrency Platforms MMM in Cilk++

template<typename T> inline void multiply_rec_seq(int ii, int jj, int kk, T* A,
T* B, T* C)

{
multiply_rec_seq_helper(0, ii, 0, jj, 0, kk, A, kk, B, jj, C, jj);

}

Multiplying a 4000x8000 matrix by a 8000x4000 matrix

on 32 cores = 8 sockets x 4 cores (Quad Core AMD Opteron 8354)
per socket.

The 32 cores share a L3 32-way set-associative cache of 2 Mbytes.

#core Elision (s) Parallel (s) speedup

8 420.906 51.365 8.19
16 432.419 25.845 16.73
24 413.681 17.361 23.83
32 389.300 13.051 29.83

(Moreno Maza) Introduction to Multicore Programming CS 4435 - CS 9624 60 / 60

