Multithreaded Parallelism and Performance Measures

Marc Moreno Maza
University of Western Ontario, London, Ontario (Canada)
CS 4435 - CS 9624

Plan

1. Parallelism Complexity Measures
2. cilk for Loops
3. Scheduling Theory and Implementation
4. Measuring Parallelism in Practice
5. Announcements

The fork-join parallelism model

int fib (int n) {
if (n<2) return (n);
else {
int x,y;
x = cilk_spawn fib(n-1);
y = fib(n-2);
cilk_sync;
return (x+y);
}
}

Example:
fib(4)

"Processor oblivious"

The computation dag unfolds dynamically.

We shall also call this model multithreaded parallelism.
a **strand** is a maximal sequence of instructions that ends with a **spawn**, **sync**, or **return** (either explicit or implicit) statement.

At runtime, the **spawn** relation causes procedure instances to be structured as a rooted tree, called **spawn tree** or **parallel instruction stream**, where dependencies among strands form a dag.

We define several performance measures. We assume an ideal situation: no cache issues, no interprocessor costs:

- \(T_p \) is the minimum running time on \(p \) processors
- \(T_1 \) is called the **work**, that is, the sum of the number of instructions at each node.
- \(T_\infty \) is the minimum running time with infinitely many processors, called the **span**

The critical path length

Assuming all strands run in unit time, the longest path in the DAG is equal to \(T_\infty \). For this reason, \(T_\infty \) is also referred to as the **critical path length**.

We have: \(T_p \geq T_1/p \).

Indeed, in the best case, \(p \) processors can do \(p \) works per unit of time.
Parallelism Complexity Measures

Span law

We have: \(T_p \geq T_\infty \).

Indeed, \(T_p < T_\infty \) contradicts the definitions of \(T_p \) and \(T_\infty \).

Speedup on \(p \) processors

\(T_1/T_p \) is called the \textbf{speedup on \(p \) processors}.

A parallel program execution can have:

- \textbf{linear speedup}: \(T_1/T_p = \Theta(p) \)
- \textbf{superlinear speedup}: \(T_1/T_p = \omega(p) \) (not possible in this model, though it is possible in others)
- \textbf{sublinear speedup}: \(T_1/T_p = o(p) \)

Parallelism

Because the \textbf{Span Law} dictates that \(T_p \geq T_\infty \), the maximum possible speedup given \(T_1 \) and \(T_\infty \) is

\[\frac{T_1}{T_\infty} = \text{parallelism} \]

= the average amount of work per step along the span.

The Fibonacci example (1/2)

For \(\text{Fib}(4) \), we have \(T_1 = 17 \) and \(T_\infty = 8 \) and thus \(T_1/T_\infty = 2.125 \).

What about \(T_1(\text{Fib}(n)) \) and \(T_\infty(\text{Fib}(n)) \)?
The Fibonacci example (2/2)

- We have $T_1(n) = T_1(n-1) + T_1(n-2) + \Theta(1)$. Let’s solve it.
 - One verify by induction that $T(n) \leq aF_n - b$ for $b > 0$ large enough to dominate $\Theta(1)$ and $a > 1$.
 - We can then choose a large enough to satisfy the initial condition, whatever that is.
 - On the other hand we also have $F_n \leq T(n)$.
 - Therefore $T_1(n) = \Theta(F_n) = \Theta(\psi^n)$ with $\psi = (1 + \sqrt{5})/2$.

- We have $T_\infty(n) = \max(T_\infty(n-1), T_\infty(n-2)) + \Theta(1)$.
 - We easily check $T_\infty(n-1) \geq T_\infty(n-2)$.
 - This implies $T_\infty(n) = T_\infty(n-1) + \Theta(1)$.
 - Therefore $T_\infty(n) = \Theta(n)$.

- Consequently the parallelism is $\Theta(\psi^n/n)$.

--

Series composition

- Work: $T_1(A \cup B) = T_1(A) + T_1(B)$
- Span: $T_\infty(A \cup B) = T_\infty(A) + T_\infty(B)$
Parallelism Complexity Measures

Parallel composition

Algorithm Work Span
Merge sort $\Theta(n \log_2 n)$ $\Theta(\log^3 n)$
Matrix multiplication $\Theta(n^3)$ $\Theta(\log n)$
Strassen $\Theta(n^{\log_2 7})$ $\Theta(\log^2 n)$
LU-decomposition $\Theta(n^3)$ $\Theta(n \log n)$
Tableau construction $\Theta(n^2)$ $\Omega(n^{\log_3})$
FFT $\Theta(n \log n)$ $\Theta(\log^2 n)$
Breadth-first search $\Theta(E)$ $\Theta(d \log V)$

We shall prove those results in the next lectures.

Plan

1. Parallelism Complexity Measures
2. cilk for Loops
3. Scheduling Theory and Implementation
4. Measuring Parallelism in Practice
5. Announcements

For loop parallelism in Cilk++

cilk_for (int i=1; i<n; ++i) {
 for (int j=0; j<i; ++j) {
 double temp = A[i][j];
 A[i][j] = A[j][i];
 A[j][i] = temp;
 }
}

The iterations of a cilk_for loop execute in parallel.
Implementation of for loops in Cilk++

Up to details (next week!) the previous loop is compiled as follows, using a **divide-and-conquer implementation**:

```cilk
void recur(int lo, int hi) {
    if (hi > lo) { // coarsen
        int mid = lo + (hi - lo)/2;
        cilk_spawn recur(lo, mid);
        recur(mid, hi);
        cilk_sync;
    } else
        for (int j=0; j<i; ++j) {
            double temp = A[i][j];
            A[i][j] = A[j][i];
            A[j][i] = temp;
        }
}
```

Analysis of parallel for loops

Here we do not assume that each strand runs in unit time.

- **Span of loop control**: $\Theta(\log(n))$
- **Max span of an iteration**: $\Theta(n)$
- **Span**: $\Theta(n)$
- **Work**: $\Theta(n^2)$
- **Parallelism**: $\Theta(n)$

Parallelizing the inner loop

```cilk
for (int i=1; i<n; ++i) {
    cilk_for (int j=0; j<i; ++j) {
        double temp = A[i][j];
        A[i][j] = A[j][i];
        A[j][i] = temp;
    }
}
```

- **Span of outer loop control**: $\Theta(\log(n))$
- **Max span of an inner loop control**: $\Theta(\log(n))$
- **Span of an iteration**: $\Theta(1)$
- **Span**: $\Theta(\log(n))$
- **Work**: $\Theta(n^2)$
- **Parallelism**: $\Theta(n^2/\log(n))$ But! More on this next week . . .
A scheduler’s job is to map a computation to particular processors. Such a mapping is called a schedule.

- If decisions are made at runtime, the scheduler is online, otherwise, it is offline.
- Cilk++’s scheduler maps strands onto processors dynamically at runtime.

A strand is ready if all its predecessors have executed.

A scheduler is greedy if it attempts to do as much work as possible at every step.

Greedy scheduling (1/2)

Greedy scheduling (2/2)

In any greedy schedule, there are two types of steps:

- **complete step**: There are at least p strands that are ready to run. The greedy scheduler selects any p of them and runs them.
- **incomplete step**: There are strictly less than p threads that are ready to run. The greedy scheduler runs them all.

Theorem of Graham and Brent

For any greedy schedule, we have $T_p \leq T_1/p + T_\infty$.

- #complete steps $\leq T_1/p$, by definition of T_1.
- #incomplete steps $\leq T_\infty$. Indeed, let G' be the subgraph of G that remains to be executed immediately prior to an incomplete step.

 (i) During this incomplete step, all strands that can be run are actually run.

 (ii) Hence removing this incomplete step from G' reduces T_∞ by one.
Corollary 1

A greedy scheduler is always within a factor of 2 of optimal.

From the work and span laws, we have:

\[TP \geq \max(T_1/p, T_\infty) \] (1)

In addition, we can trivially express:

\[\frac{T_1}{p} \leq \max(T_1/p, T_\infty) \] (2)

\[T_\infty \leq \max(T_1/p, T_\infty) \] (3)

From Graham - Brent Theorem, we deduce:

\[TP \leq T_1/p + T_\infty \] (4)

\[\leq \max(T_1/p, T_\infty) + \max(T_1/p, T_\infty) \] (5)

\[\leq 2 \max(T_1/p, T_\infty) \] (6)

which concludes the proof.

Corollary 2

The greedy scheduler achieves linear speedup whenever \(T_\infty = O(T_1/p) \).

From Graham - Brent Theorem, we deduce:

\[TP \leq T_1/p + T_\infty \] (7)

\[= T_1/p + O(T_1/p) \] (8)

\[= \Theta(T_1/p) \] (9)

The idea is to operate in the range where \(T_1/p \) dominates \(T_\infty \). As long as \(T_1/p \) dominates \(T_\infty \), all processors can be used efficiently.

The quantity \(T_1/pT_\infty \) is called the parallel slackness.
The work-stealing scheduler (3/11)

(Moreno Maza) Multithreaded Parallelism and Performance IV
CS 4435 - CS 9624 34 / 62

The work-stealing scheduler (4/11)

(Moreno Maza) Multithreaded Parallelism and Performance IV
CS 4435 - CS 9624 35 / 62

The work-stealing scheduler (5/11)

(Moreno Maza) Multithreaded Parallelism and Performance IV
CS 4435 - CS 9624 36 / 62

The work-stealing scheduler (6/11)
The work-stealing scheduler (7/11)

(Moreno Maza) Multithreaded Parallelism and Performance IV CS 4435 - CS 9624 37 / 62

The work-stealing scheduler (8/11)

(Moreno Maza) Multithreaded Parallelism and Performance IV CS 4435 - CS 9624 38 / 62

The work-stealing scheduler (9/11)

(Moreno Maza) Multithreaded Parallelism and Performance IV CS 4435 - CS 9624 39 / 62

The work-stealing scheduler (10/11)

(Moreno Maza) Multithreaded Parallelism and Performance IV CS 4435 - CS 9624 40 / 62
The work-stealing scheduler (11/11)

Performances of the work-stealing scheduler

Assume that
- each strand executes in unit time,
- for almost all “parallel steps” there are at least \(p \) strands to run,
- each processor is either working or stealing.

Then, the randomized work-stealing scheduler is expected to run in

\[
T_P = \frac{T_1}{p} + O(T_\infty)
\]

- During a steal-free parallel steps (steps at which all processors have work on their deque) each of the \(p \) processors consumes 1 work unit.
- Thus, there is at most \(T_1/p \) steal-free parallel steps.
- During a parallel step with steals each thief may reduce by 1 the running time with a probability of \(1/p \)
- Thus, the expected number of steals is \(O(p \ T_\infty) \).
- Therefore, the expected running time

\[
T_P = \left(\frac{T_1 + O(p \ T_\infty)}{p} \right) = \frac{T_1}{p} + O(T_\infty). \tag{10}
\]

Overheads and burden

- Obviously \(T_1/p + T_\infty \) will over-estimate \(T_p \) in practice.
- Many factors (simplification assumptions of the fork-join parallelism model, architecture limitation, costs of executing the parallel constructs, overheads of scheduling) will make \(T_p \) smaller in practice.
- One may want to estimate the impact of those factors:
 1. by improving the estimate of the randomized work-stealing complexity result
 2. by comparing a Cilk++ program with its C++ elision
 3. by estimating the costs of spawning and synchronizing

Span overhead

- Let \(T_1, T_\infty, T_p \) be given. We want to refine the randomized work-stealing complexity result.
- The span overhead is the smallest constant \(c_\infty \) such that

\[
T_p \leq \frac{T_1}{p} + c_\infty T_\infty.
\]
- Recall that \(T_1/T_\infty \) is the maximum possible speed-up that the application can obtain.
- We call parallel slackness assumption the following property

\[
T_1/T_\infty >> c_\infty p \tag{11}
\]

that is, \(c_\infty p \) is much smaller than the average parallelism.
- Under this assumption it follows that \(T_1/p >> c_\infty T_\infty \) holds, thus \(c_\infty \) has little effect on performance when sufficiently slackness exists.
Work overhead

- Let T_s be the running time of the C++ elision of a Cilk++ program.
- We denote by c_1 the work overhead

 $c_1 = T_1 / T_s$

- Recall the expected running time: $T_p \leq T_1 / P + c_\infty T_\infty$. Thus with the parallel slackness assumption we get

 $T_p \leq c_1 T_s / p + c_\infty T_\infty \approx c_1 T_s / p$. (12)

- We can now state the work first principle precisely

 Minimize c_1, even at the expense of a larger c_∞.
 This is a key feature since it is conceptually easier to minimize c_1 rather than minimizing c_∞.

- Cilk++ estimates T_p as $T_p = T_1 / p + 1.7 \ \text{burdenspan}$, where \text{burdenspan} is 15000 instructions times the number of continuation edges along the critical path.

The cactus stack

- A cactus stack is used to implement C’s rule for sharing of function-local variables.
- A stack frame can only see data stored in the current and in the previous stack frames.

Space bounds

The space S_p of a parallel execution on p processors required by Cilk++’s work-stealing satisfies:

$S_p \leq p \cdot S_1$ (13)

where S_1 is the minimal serial space requirement.
Cilkview computes work and span to derive upper bounds on parallel performance.
Cilkview also estimates scheduling overhead to compute a burdened span for lower bounds.

Fibonacci program timing

The environment for benchmarking:
- model name: Intel(R) Core(TM)2 Quad CPU Q6600 @ 2.40GHz
- L2 cache size: 4096 KB
- memory size: 3 GB

<table>
<thead>
<tr>
<th>#cores = 1</th>
<th>#cores = 2</th>
<th>#cores = 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>timing(s)</td>
<td>speedup</td>
</tr>
<tr>
<td>30</td>
<td>0.086</td>
<td>1.870</td>
</tr>
<tr>
<td>35</td>
<td>0.776</td>
<td>1.780</td>
</tr>
<tr>
<td>40</td>
<td>8.931</td>
<td>1.844</td>
</tr>
<tr>
<td>45</td>
<td>105.263</td>
<td>1.949</td>
</tr>
<tr>
<td>50</td>
<td>1165.000</td>
<td>1.752</td>
</tr>
</tbody>
</table>

Quicksort

code in cilk/examples/qsort

```c
void sample_qsort(int * begin, int * end)
{
    int * middle = std::partition(begin, end,
        std::bind2nd(std::less<int>(), *end));
    using std::swap;
    swap(*end, *middle);
    cilk_spawn sample_qsort(begin, middle);
    sample_qsort(++middle, ++end);
    cilk_sync;
}
```
Quicksort timing

Timing for sorting an array of integers:

<table>
<thead>
<tr>
<th># of int</th>
<th>#cores = 1</th>
<th>#cores = 2</th>
<th>#cores = 4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>timing(s)</td>
<td>timing(s)</td>
<td>timing(s)</td>
</tr>
<tr>
<td></td>
<td>speedup</td>
<td>speedup</td>
<td>speedup</td>
</tr>
<tr>
<td>10×10^6</td>
<td>1.958</td>
<td>1.016</td>
<td>0.541</td>
</tr>
<tr>
<td></td>
<td>3.619</td>
<td>1.927</td>
<td>1.958</td>
</tr>
<tr>
<td>50×10^6</td>
<td>10.518</td>
<td>5.469</td>
<td>2.847</td>
</tr>
<tr>
<td></td>
<td>3.694</td>
<td>1.923</td>
<td>1.927</td>
</tr>
<tr>
<td>100×10^6</td>
<td>21.481</td>
<td>11.096</td>
<td>5.954</td>
</tr>
<tr>
<td></td>
<td>3.608</td>
<td>1.936</td>
<td>1.936</td>
</tr>
<tr>
<td>500×10^6</td>
<td>114.300</td>
<td>57.996</td>
<td>31.086</td>
</tr>
<tr>
<td></td>
<td>3.677</td>
<td>1.971</td>
<td>1.936</td>
</tr>
</tbody>
</table>

Matrix multiplication

Timing of multiplying a 687×837 matrix by a 837×1107 matrix:

<table>
<thead>
<tr>
<th>threshold</th>
<th>st(s)</th>
<th>pt(s)</th>
<th>su</th>
<th>st(s)</th>
<th>pt(s)</th>
<th>su</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>1.273</td>
<td>1.165</td>
<td>0.721</td>
<td>1.674</td>
<td>0.399</td>
<td>4.195</td>
</tr>
<tr>
<td>16</td>
<td>1.270</td>
<td>1.787</td>
<td>0.711</td>
<td>1.408</td>
<td>0.349</td>
<td>4.034</td>
</tr>
<tr>
<td>32</td>
<td>1.280</td>
<td>1.757</td>
<td>0.729</td>
<td>1.223</td>
<td>0.308</td>
<td>3.971</td>
</tr>
<tr>
<td>48</td>
<td>1.258</td>
<td>1.760</td>
<td>0.715</td>
<td>1.223</td>
<td>0.293</td>
<td>3.973</td>
</tr>
<tr>
<td>64</td>
<td>1.258</td>
<td>1.798</td>
<td>0.700</td>
<td>1.159</td>
<td>0.291</td>
<td>3.983</td>
</tr>
<tr>
<td>80</td>
<td>1.252</td>
<td>1.773</td>
<td>0.706</td>
<td>1.267</td>
<td>0.320</td>
<td>3.959</td>
</tr>
</tbody>
</table>

st = sequential time; pt = parallel time with 4 cores; su = speedup

The cilkview example from the documentation

Using `cilk_for` to perform operations over an array in parallel:

```c
static const int COUNT = 4;
static const int ITERATION = 1000000;
long arr[COUNT];
long do_work(long k){
    long x = 15;
    static const int nn = 87;
    for (long i = 1; i < nn; ++i)
        x = x / i + k % i;
    return x;
}
int cilk_main(){
    for (int j = 0; j < ITERATION; j++)
        cilk_for (int i = 0; i < COUNT; i++)
            arr[i] += do_work( j * i + i + j);
}
```

Parallelism Profile

- **Work**: 6,480,801,250 ins
- **Span**: 2,116,801,250 ins
- **Burdened span**: 31,920,801,250 ins
- **Parallelism**: 3.06
- **Burdened parallelism**: 0.20
- **Number of spawns/syncs**: 3,000,000
- **Average instructions / strand**: 720
- **Strands along span**: 4,000,001
- **Average instructions / strand on span**: 529

Speedup Estimate

- **2 processors**: 0.21 - 2.00
- **4 processors**: 0.15 - 3.06
- **8 processors**: 0.13 - 3.06
- **16 processors**: 0.13 - 3.06
- **32 processors**: 0.12 - 3.06
Measuring Parallelism in Practice

A simple fix

Inverting the two for loops

```c
int cilk_main()
{
    cilk_for (int i = 0; i < COUNT; i++)
        for (int j = 0; j < ITERATION; j++)
            arr[i] += do_work(j * i + i + j);
}
```

1) Parallelism Profile

- Work: 5,295,801,529 ins
- Span: 1,326,801,107 ins
- Burdened span: 1,326,830,911 ins
- Parallelism: 3.99
- Burdened parallelism: 3.99
- Number of spawns/syncs: 3
- Average instructions / strand: 529,580,152
- Strands along span: 5
- Average instructions / strand on span: 265,360,221

2) Speedup Estimate

- 2 processors: 1.40 - 2.00
- 4 processors: 1.76 - 3.99
- 8 processors: 2.01 - 3.99
- 16 processors: 2.17 - 3.99
- 32 processors: 2.25 - 3.99

Timing

<table>
<thead>
<tr>
<th>#cores = 1</th>
<th>#cores = 2</th>
<th>#cores = 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>version</td>
<td>timing(s)</td>
<td>timing(s)</td>
</tr>
<tr>
<td>original</td>
<td>7.719</td>
<td>9.611</td>
</tr>
<tr>
<td>improved</td>
<td>7.471</td>
<td>3.724</td>
</tr>
</tbody>
</table>
Acknowledgements

- Charles E. Leiserson (MIT) for providing me with the sources of its lecture notes.
- Matteo Frigo (Intel) for supporting the work of my team with Cilk++.
- Yuzhen Xie (UWO) for helping me with the images used in these slides.
- Liyun Li (UWO) for generating the experimental data.

References