Multithreaded Parallelism and Performance Measures

Marc Moreno Maza

University of Western Ontario, London, Ontario (Canada)

CS 4402 - CS 9535

Plan

1. Parallelism Complexity Measures
2. cilk_for Loops
3. Scheduling Theory and Implementation
4. Measuring Parallelism in Practice
5. Anticipating parallelization overheads
6. Announcements

The fork-join parallelism model

We shall also call this model multithreaded parallelism.
a **strand** is a maximal sequence of instructions that ends with a spawn, sync, or return (either explicit or implicit) statement.

- At runtime, the spawn relation causes procedure instances to be structured as a rooted tree, called spawn tree or parallel instruction stream, where dependencies among strands form a dag.

Work and span

We define several performance measures. We assume an ideal situation: no cache issues, no interprocessor costs:

- T_P is the minimum running time on p processors
- T_1 is called the **work**, that is, the sum of the number of instructions at each node.
- T_∞ is the minimum running time with infinitely many processors, called the **span**.

The critical path length

Assuming all strands run in unit time, the longest path in the DAG is equal to T_∞. For this reason, T_∞ is also referred to as the critical path length.

- We have: $T_P \geq T_1/p$.
- Indeed, in the best case, p processors can do p works per unit of time.
Parallelism Complexity Measures

Span law

We have: $T_p \geq T_\infty$.
Indeed, $T_p < T_\infty$ contradicts the definitions of T_p and T_∞.

Speedup on p processors

- T_1/T_p is called the speedup on p processors.
- A parallel program execution can have:
 - linear speedup: $T_1/T_P = \Theta(p)$
 - superlinear speedup: $T_1/T_P = \omega(p)$ (not possible in this model, though it is possible in others)
 - sublinear speedup: $T_1/T_P = o(p)$

Parallelism

Because the Span Law dictates that $T_p \geq T_\infty$, the maximum possible speedup given T_1 and T_∞ is $T_1/T_\infty = $ parallelism $\frac{\text{parallelism}}{}$ = the average amount of work per step along the span.

The Fibonacci example (1/2)

For Fib(4), we have $T_1 = 17$ and $T_\infty = 8$ and thus $T_1/T_\infty = 2.125$.
What about $T_1(\text{Fib}(n))$ and $T_\infty(\text{Fib}(n))$?
The Fibonacci example (2/2)

- We have \(T_1(n) = T_1(n - 1) + T_1(n - 2) + \Theta(1) \). Let's solve it.
 - One verify by induction that \(T(n) \leq aF_n - b \) for \(b > 0 \) large enough to dominate \(\Theta(1) \) and \(a > 1 \).
 - We can then choose \(a \) large enough to satisfy the initial condition, whatever that is.
 - On the other hand we also have \(F_n \leq T(n) \).
 - Therefore \(T_1(n) = \Theta(F_n) = \Theta(\psi^n) \) with \(\psi = (1 + \sqrt{5})/2 \).

- We have \(T_\infty(n) = \max(T_\infty(n - 1), T_\infty(n - 2)) + \Theta(1) \).
 - We easily check \(T_\infty(n - 1) \geq T_\infty(n - 2) \).
 - This implies \(T_\infty(n) = T_\infty(n - 1) + \Theta(1) \).
 - Therefore \(T_\infty(n) = \Theta(n) \).

- Consequently the parallelism is \(\Theta(\psi^n/n) \).

\[
\begin{align*}
\text{Series composition} & \\
\text{A} \quad \text{B} & \\
\text{A} \quad \text{B} & \\
\text{Work?} & \\
\text{Span?} & \\
\end{align*}
\]
Parallel composition

- Work: $T_1(A \cup B) = T_1(A) + T_1(B)$
- Span: $T_\infty(A \cup B) = \max(T_\infty(A), T_\infty(B))$

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Work</th>
<th>Span</th>
</tr>
</thead>
<tbody>
<tr>
<td>Merge sort</td>
<td>$\Theta(n \lg n)$</td>
<td>$\Theta(lg^3 n)$</td>
</tr>
<tr>
<td>Matrix multiplication</td>
<td>$O(n^3)$</td>
<td>$O(lg n)$</td>
</tr>
<tr>
<td>Strassen</td>
<td>$O(n^{l7})$</td>
<td>$O(lg^2 n)$</td>
</tr>
<tr>
<td>LU-decomposition</td>
<td>$O(n^3)$</td>
<td>$O(n l g n)$</td>
</tr>
<tr>
<td>Tableau construction</td>
<td>$O(n^2)$</td>
<td>$\Omega(n^{lg3})$</td>
</tr>
<tr>
<td>FFT</td>
<td>$O(n \lg n)$</td>
<td>$O(lg^2 n)$</td>
</tr>
<tr>
<td>Breadth-first search</td>
<td>$O(E)$</td>
<td>$O(d \ lg V)$</td>
</tr>
</tbody>
</table>

We shall prove those results in the next lectures.

Plan

1. Parallelism Complexity Measures
2. cilk_for Loops
3. Scheduling Theory and Implementation
4. Measuring Parallelism in Practice
5. Anticipating parallelization overheads
6. Announcements

For loop parallelism in Cilk++

```cilk_for (int i=1; i<n; ++i) {
    for (int j=0; j<i; ++j) {
        double temp = A[i][j];
        A[i][j] = A[j][i];
        A[j][i] = temp;
    }
}
```

The iterations of a cilk_for loop execute in parallel.
Implementation of for loops in Cilk++

Up to details (next week!) the previous loop is compiled as follows, using a divide-and-conquer implementation:

```c
void recur(int lo, int hi) {
    if (hi > lo) { // coarsen
        int mid = lo + (hi - lo)/2;
        cilk_spawn recur(lo, mid);
        recur(mid, hi);
        cilk_sync;
    } else
    for (int j=0; j<hi; ++j) {
        double temp = A[i][j];
        A[i][j] = A[j][i];
        A[j][i] = temp;
    }
}
```

Analysis of parallel for loops

Here we do not assume that each strand runs in unit time.

- **Span of loop control**: $\Theta(\log(n))$
- **Max span of an iteration**: $\Theta(n)$
- **Span**: $\Theta(n)$
- **Work**: $\Theta(n^2)$
- **Parallelism**: $\Theta(n)$

Parallelizing the inner loop

```c
for (int i=1; i<n; ++i) {
    cilk_for (int j=0; j<i; ++j) {
        double temp = A[i][j];
        A[i][j] = A[j][i];
        A[j][i] = temp;
    }
}
```

- **Span of outer loop control**: $\Theta(\log(n))$
- **Max span of an inner loop control**: $\Theta(\log(n))$
- **Span of an iteration**: $\Theta(1)$
- **Span**: $\Theta(\log(n))$
- **Work**: $\Theta(n^2)$
- **Parallelism**: $\Theta(n^2/\log(n))$ But! More on this next week ...
A scheduler’s job is to map a computation to particular processors. Such a mapping is called a schedule.

- If decisions are made at runtime, the scheduler is online, otherwise, it is offline.
- Cilk++’s scheduler maps strands onto processors dynamically at runtime.

A strand is ready if all its predecessors have executed.

A scheduler is greedy if it attempts to do as much work as possible at every step.

Greedy scheduling (1/2)

Greedy scheduling (2/2)

In any greedy schedule, there are two types of steps:

- **complete step**: There are at least p strands that are ready to run. The greedy scheduler selects any p of them and runs them.
- **incomplete step**: There are strictly less than p threads that are ready to run. The greedy scheduler runs them all.

For any greedy schedule, we have $T_p \leq \frac{T_1}{p} + T_\infty$.

- #complete steps $\leq T_1/p$, by definition of T_1.
- #incomplete steps $\leq T_\infty$. Indeed, let G' be the subgraph of G that remains to be executed immediately prior to a incomplete step.

 (i) During this incomplete step, all strands that can be run are actually run.

 (ii) Hence removing this incomplete step from G' reduces T_∞ by one.

Theorem of Graham and Brent
Corollary 1

A greedy scheduler is always within a factor of 2 of optimal.

From the work and span laws, we have:

\[T_P \geq \max(T_1/p, T_\infty) \]

(1)

In addition, we can trivially express:

\[T_1/p \leq \max(T_1/p, T_\infty) \]

(2)

\[T_\infty \leq \max(T_1/p, T_\infty) \]

(3)

From Graham - Brent Theorem, we deduce:

\[T_P \leq T_1/p + T_\infty \]

(4)

\[\leq \max(T_1/p, T_\infty) + \max(T_1/p, T_\infty) \]

(5)

\[\leq 2 \max(T_1/p, T_\infty) \]

(6)

which concludes the proof.

The greedy scheduler achieves linear speedup whenever \(T_\infty = O(T_1/p) \).

From Graham - Brent Theorem, we deduce:

\[T_P \leq T_1/p + T_\infty \]

(7)

\[= T_1/p + O(T_1/p) \]

(8)

\[= \Theta(T_1/p) \]

(9)

The idea is to operate in the range where \(T_1/p \) dominates \(T_\infty \). As long as \(T_1/p \) dominates \(T_\infty \), all processors can be used efficiently.

The quantity \(T_1/pT_\infty \) is called the parallel slackness.

The work-stealing scheduler (1/13)

- Cilk/Cilk++ randomized work-stealing scheduler load-balances the computation at run-time. Each processor maintains a ready deque:
 - A ready deque is a double ended queue, where each entry is a procedure instance that is ready to execute.
 - Adding a procedure instance to the bottom of the deque represents a procedure call being spawned.
 - A procedure instance being deleted from the bottom of the deque represents the processor beginning/resuming execution on that procedure.
 - Deletion from the top of the deque corresponds to that procedure instance being stolen.

- A mathematical proof guarantees near-perfect linear speed-up on applications with sufficient parallelism, as long as the architecture has sufficient memory bandwidth.

- A spawn/return in Cilk is over 100 times faster than a Pthread create/exit and less than 3 times slower than an ordinary C function call on a modern Intel processor.
The work-stealing scheduler (7/13)

The work-stealing scheduler (8/13)

The work-stealing scheduler (9/13)

The work-stealing scheduler (10/13)
Performances of the work-stealing scheduler

Assume that

- each strand executes in unit time,
- for almost all “parallel steps” there are at least \(p \) strands to run,
- each processor is either working or stealing.

Then, the randomized work-stealing scheduler is expected to run in

\[
T_P = T_1/p + O(T_\infty)
\]

- During a **steal-free parallel steps** (steps at which all processors have work on their deque) each of the \(p \) processors consumes 1 work unit.
- Thus, there is at most \(T_1/p \) steal-free parallel steps.
- During a **parallel step with steals** each thief may reduce by 1 the running time with a probability of \(1/p \)
- Thus, the expected number of steals is \(O(p T_\infty) \).
- Therefore, the expected running time

\[
T_P = (T_1 + O(p T_\infty))/p = T_1/p + O(T_\infty)
\]
Overheads and burden

- Obviously $T_1/p + T_\infty$ will under-estimate T_p in practice.
- Many factors (simplification assumptions of the fork-join parallelism model, architecture limitation, costs of executing the parallel constructs, overheads of scheduling) will make T_p larger in practice.
- One may want to estimate the impact of those factors:
 1. by improving the estimate of the randomized work-stealing complexity result
 2. by comparing a Cilk++ program with its C++ elision
 3. by estimating the costs of spawning and synchronizing

Span overhead

- Let T_1, T_∞, T_p be given. We want to refine the randomized work-stealing complexity result.
- The **span overhead** is the smallest constant c_∞ such that
 \[
 T_p \leq T_1/p + c_\infty T_\infty.
 \]
- Recall that T_1/T_∞ is the maximum possible speed-up that the application can obtain.
- We call **parallel slackness assumption** the following property
 \[
 T_1/T_\infty \gg c_\infty p
 \]
 that is, $c_\infty p$ is much smaller than the average parallelism.
- Under this assumption it follows that $T_1/p > c_\infty T_\infty$ holds, thus c_∞ has little effect on performance when sufficiently slackness exists.

Work overhead

- Let T_s be the running time of the C++ elision of a Cilk++ program.
- We denote by c_1 the **work overhead**
 \[
 c_1 = T_1/T_s
 \]
- Recall the expected running time: $T_P \leq T_1/P + c_\infty T_\infty$. Thus with the parallel slackness assumption we get
 \[
 T_P \leq c_1 T_s/p + c_\infty T_\infty \simeq c_1 T_s/p.
 \]
- We can now state the **work first principle** precisely
 \[
 \text{Minimize } c_1, \text{ even at the expense of a larger } c_\infty.
 \]
 This is a key feature since it is conceptually easier to minimize c_1 rather than minimizing c_∞.
- Cilk++ estimates T_P as $T_P = T_1/p + 1.7 \text{ burden_span}$, where burden_span is 15000 instructions times the number of continuation edges along the critical path.

The cactus stack

- A **cactus stack** is used to implement C’s rule for sharing of function-local variables.
- A stack frame can only see data stored in the current and in the previous stack frames.
The space S_p of a parallel execution on p processors required by Cilk++'s work-stealing satisfies:

$$S_p \leq p \cdot S_1$$ \hspace{1cm} (13)$$

where S_1 is the minimal serial space requirement.

Cilkview computes work and span to derive upper bounds on parallel performance.

Cilkview also estimates scheduling overhead to compute a burdened span for lower bounds.

The Fibonacci Cilk++ example

```c++
long fib(int n)
{
    if (n < 2) return n;
    long x, y;
    x = cilk_spawn fib(n-1);
    y = fib(n-2);
    cilk_sync;
    return x + y;
}
```
Fibonacci program timing

The environment for benchmarking:
- model name: Intel(R) Core(TM)2 Quad CPU Q6600 @ 2.40GHz
- L2 cache size: 4096 KB
- memory size: 3 GB

<table>
<thead>
<tr>
<th></th>
<th>#cores = 1</th>
<th>#cores = 2</th>
<th>#cores = 4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>timing(s)</td>
<td>timing(s)</td>
<td>speedup</td>
</tr>
<tr>
<td>n</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>0.086</td>
<td>0.046</td>
<td>1.870</td>
</tr>
<tr>
<td>35</td>
<td>0.776</td>
<td>0.436</td>
<td>1.780</td>
</tr>
<tr>
<td>40</td>
<td>8.931</td>
<td>4.842</td>
<td>1.844</td>
</tr>
<tr>
<td>45</td>
<td>105.263</td>
<td>54.017</td>
<td>1.949</td>
</tr>
<tr>
<td>50</td>
<td>1165.000</td>
<td>665.115</td>
<td>1.752</td>
</tr>
</tbody>
</table>

Quicksort

```c++
void sample_qsort(int * begin, int * end)
{
    if (begin != end) {
        --end;
        int * middle = std::partition(begin, end,
                                        std::bind2nd(std::less<int>(), *end));
        using std::swap;
        swap(*end, *middle);
        cilk_spawn sample_qsort(begin, middle);
        sample_qsort(++middle, ++end);
        cilk_sync;
    }
}
```

Quicksort timing

Timing for sorting an array of integers:

<table>
<thead>
<tr>
<th># of int</th>
<th>#cores = 1</th>
<th>#cores = 2</th>
<th>#cores = 4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>timing(s)</td>
<td>timing(s)</td>
<td>speedup</td>
</tr>
<tr>
<td>10 \times 10^6</td>
<td>1.958</td>
<td>1.016</td>
<td>1.927</td>
</tr>
<tr>
<td>50 \times 10^6</td>
<td>10.518</td>
<td>5.469</td>
<td>1.923</td>
</tr>
<tr>
<td>100 \times 10^6</td>
<td>21.481</td>
<td>11.096</td>
<td>1.936</td>
</tr>
<tr>
<td>500 \times 10^6</td>
<td>114.300</td>
<td>57.996</td>
<td>1.971</td>
</tr>
</tbody>
</table>

Matrix multiplication

Timing of multiplying a 687 \times 837 matrix by a 837 \times 1107 matrix:

<table>
<thead>
<tr>
<th></th>
<th>iterative</th>
<th>recursive</th>
</tr>
</thead>
<tbody>
<tr>
<td>threshold</td>
<td>st(s)</td>
<td>pt(s)</td>
</tr>
<tr>
<td>10</td>
<td>1.273</td>
<td>1.165</td>
</tr>
<tr>
<td>16</td>
<td>1.270</td>
<td>1.787</td>
</tr>
<tr>
<td>32</td>
<td>1.280</td>
<td>1.757</td>
</tr>
<tr>
<td>48</td>
<td>1.258</td>
<td>1.760</td>
</tr>
<tr>
<td>64</td>
<td>1.258</td>
<td>1.798</td>
</tr>
<tr>
<td>80</td>
<td>1.252</td>
<td>1.773</td>
</tr>
</tbody>
</table>

st = sequential time; pt = parallel time with 4 cores; su = speedup
The *cilkview* example from the documentation

Using *cilk_for* to perform operations over an array in parallel:

```c
static const int COUNT = 4;
static const int ITERATION = 1000000;
long arr[COUNT];
long do_work(long k){
    long x = 15;
    static const int nn = 87;
    for (long i = 1; i < nn; ++i)
x = x / i + k % i;
return x;
}
int cilk_main(){
for (int j = 0; j < ITERATION; j++)
cilk_for (int i = 0; i < COUNT; i++)
    arr[i] += do_work( j * i + i + j);
}
```

1) Parallelism Profile

<table>
<thead>
<tr>
<th></th>
<th>Work</th>
<th>Span</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>6,480,801,250 ins</td>
<td>2,116,801,250 ins</td>
</tr>
<tr>
<td>Burdened span :</td>
<td>31,920,801,250 ins</td>
<td>3,000,000</td>
</tr>
<tr>
<td>Parallelism :</td>
<td>3.06</td>
<td>0.20</td>
</tr>
<tr>
<td>Burdened parallelism :</td>
<td>0.20</td>
<td>3.99</td>
</tr>
<tr>
<td>Number of spawns/syncs:</td>
<td>3,000,000</td>
<td>3,000,000</td>
</tr>
<tr>
<td>Average instructions / strand :</td>
<td>720</td>
<td>265,360,221</td>
</tr>
<tr>
<td>Strands along span :</td>
<td>4,000,001</td>
<td>529</td>
</tr>
<tr>
<td>Average instructions / strand on span :</td>
<td>529</td>
<td>265,360,221</td>
</tr>
</tbody>
</table>

2) Speedup Estimate

<table>
<thead>
<tr>
<th></th>
<th>2 processors:</th>
<th>4 processors:</th>
<th>8 processors:</th>
<th>16 processors:</th>
<th>32 processors:</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 processors:</td>
<td>0.21 - 2.00</td>
<td>0.15 - 3.06</td>
<td>0.13 - 3.06</td>
<td>0.13 - 3.06</td>
<td>0.12 - 3.06</td>
</tr>
<tr>
<td>4 processors:</td>
<td></td>
<td>0.15 - 3.06</td>
<td>0.13 - 3.06</td>
<td>0.13 - 3.06</td>
<td>0.12 - 3.06</td>
</tr>
<tr>
<td>8 processors:</td>
<td></td>
<td></td>
<td>0.13 - 3.06</td>
<td>0.13 - 3.06</td>
<td>0.12 - 3.06</td>
</tr>
<tr>
<td>16 processors:</td>
<td></td>
<td></td>
<td></td>
<td>0.13 - 3.06</td>
<td>0.12 - 3.06</td>
</tr>
<tr>
<td>32 processors:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.12 - 3.06</td>
</tr>
</tbody>
</table>

A simple fix

Inverting the two for loops

```c
int cilk_main()
{
cilk_for (int i = 0; i < COUNT; i++)
    for (int j = 0; j < ITERATION; j++)
        arr[i] += do_work( j * i + i + j);
}
```

1) Parallelism Profile

<table>
<thead>
<tr>
<th></th>
<th>Work</th>
<th>Span</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5,295,801,529 ins</td>
<td>1,326,801,107 ins</td>
</tr>
<tr>
<td>Burdened span :</td>
<td>1,326,830,911 ins</td>
<td>3</td>
</tr>
<tr>
<td>Parallelism :</td>
<td>3.99</td>
<td>3.99</td>
</tr>
<tr>
<td>Burdened parallelism :</td>
<td>3.99</td>
<td>3.99</td>
</tr>
<tr>
<td>Number of spawns/syncs:</td>
<td>3,000,000</td>
<td>3,000,000</td>
</tr>
<tr>
<td>Average instructions / strand :</td>
<td>529,580,152</td>
<td>529,580,152</td>
</tr>
<tr>
<td>Strands along span :</td>
<td>5</td>
<td>265,360,221</td>
</tr>
<tr>
<td>Average instructions / strand on span :</td>
<td>529</td>
<td>265,360,221</td>
</tr>
</tbody>
</table>

2) Speedup Estimate

<table>
<thead>
<tr>
<th></th>
<th>2 processors:</th>
<th>4 processors:</th>
<th>8 processors:</th>
<th>16 processors:</th>
<th>32 processors:</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 processors:</td>
<td></td>
<td></td>
<td>2.01 - 3.99</td>
<td>2.17 - 3.99</td>
<td>2.25 - 3.99</td>
</tr>
<tr>
<td>32 processors:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.25 - 3.99</td>
</tr>
</tbody>
</table>
Measuring Parallelism in Practice

<table>
<thead>
<tr>
<th></th>
<th>#cores = 1</th>
<th>#cores = 2</th>
<th>#cores = 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>version</td>
<td>timing(s)</td>
<td>timing(s)</td>
<td>speedup</td>
</tr>
<tr>
<td>original</td>
<td>7.719</td>
<td>9.611</td>
<td>0.803</td>
</tr>
<tr>
<td>improved</td>
<td>7.471</td>
<td>3.724</td>
<td>2.006</td>
</tr>
<tr>
<td></td>
<td>10.758</td>
<td>1.888</td>
<td>3.957</td>
</tr>
</tbody>
</table>

(Moreno Maza) Multithreaded Parallelism and Performance Measures

Plan

1. Parallelism Complexity Measures
2. cilke_for Loops
3. Scheduling Theory and Implementation
4. Measuring Parallelism in Practice
5. Anticipating parallelization overheads
6. Announcements

Pascal Triangle

The parallelism is \(\Theta(n^{2-\log_3 3}) \), so roughly \(\Theta(n^{0.45}) \) which can be regarded as low parallelism.

Construction of the Pascal Triangle: nearly the simplest stencil computation!
Blocking strategy: principle

- Let \(B \) be the order of a block and \(n \) be the number of elements.
- The parallelism of \(\Theta(n/B) \) can still be regarded as low parallelism, but better than with the divide and conquer scheme.

Estimating parallelization overheads

The instruction stream DAG of the blocking strategy consists of \(n/B \) binary trees \(T_0, T_1, \ldots, T_{n/B-1} \) such that

- \(T_i \) is the instruction stream DAG of the \texttt{cilk}_for loop executing the \(i \)-th band
- each leaf of \(T_i \) is connected by an edge to the root of \(T_{i+1} \).

Consequently, the burdened span is

\[
S_b(n) = \sum_{i=1}^{n/B} \log(i) = \log\left(\prod_{i=1}^{n/B} i\right) = \log\left(\frac{n}{B}\right).
\]

Using Stirling’s Formula, we deduce

\[
S_b(n) \in \Theta\left(\frac{n}{B} \log\left(\frac{n}{B}\right)\right).
\]

Thus the burdened parallelism (that is, the ratio work to burdened span) is \(\Theta\left(\frac{B n}{\log\left(\frac{n}{B}\right)}\right) \), that is sub-linear in \(n \), while the non-burdened parallelism is \(\Theta(n/B) \).

Construction of the Pascal Triangle: experimental results

- Consider executing one band after another, where for each band all \(B \times B \) blocks are executed concurrently.
- The non-burdened span is in \(\Theta\left(\frac{B^2 n}{B} \right) = \Theta(n/B) \).
- While the burdened span is

\[
S_b(n) = \sum_{i=1}^{n/B} \log(i) = \log\left(\prod_{i=1}^{n/B} i\right) = \log\left(\frac{n}{B}\right) \in \Theta\left(\frac{n}{B} \log\left(\frac{n}{B}\right)\right).
\]

Summary and notes

- Parallelism after accounting for parallelization overheads (thread management, costs of scheduling, etc.) The burdened parallelism is estimated as the ratio work to burdened span.
- The burdened span is defined as the maximum number of spawns/syncs on a critical path times the cost for a \texttt{cilk}_spawn (\texttt{cilk}_sync) taken as 15,000 cycles.

Impact in practice: example for the Pascal Triangle

- Consider executing one band after another, where for each band all \(B \times B \) blocks are executed concurrently.
- The non-burdened span is in \(\Theta(B^2 n/B) = \Theta(n/B) \).
- While the burdened span is

\[
S_b(n) = \sum_{i=1}^{n/B} \log(i) = \log\left(\prod_{i=1}^{n/B} i\right) = \log\left(\frac{n}{B}\right) \in \Theta\left(\frac{n}{B} \log\left(\frac{n}{B}\right)\right).
\]
Plan

1. Parallelism Complexity Measures
2. cilk for Loops
3. Scheduling Theory and Implementation
4. Measuring Parallelism in Practice
5. Anticipating parallelization overheads

Announcements

Acknowledgements

- Charles E. Leiserson (MIT) for providing me with the sources of its lecture notes.
- Matteo Frigo (Intel) for supporting the work of my team with Cilk++.
- Yuzhen Xie (UWO) for helping me with the images used in these slides.
- Liyun Li (UWO) for generating the experimental data.

References