The Fork-Join Model and its Implementation in Cilk

Marc Moreno Maza

University of Western Ontario, London, Ontario (Canada)

CS 4402 - CS 9535

Plan

Parallelism Complexity Measures

cilk_for Loops

Scheduling Theory and Implementation

Measuring Parallelism in Practice

Anticipating parallelization overheads

Announcements

Plan

Parallelism Complexity Measures

cilk_for Loops

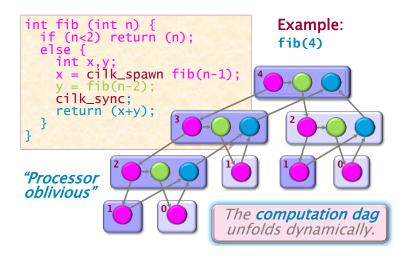
Scheduling Theory and Implementation

Measuring Parallelism in Practice

Anticipating parallelization overheads

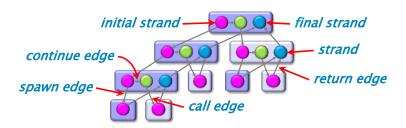
Announcements

The fork-join parallelism model



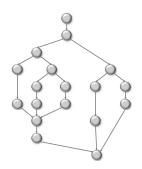
We shall also call this model multithreaded parallelism.

Terminology



- ▶ a strand is is a maximal sequence of instructions that ends with a spawn, sync, or return (either explicit or implicit) statement.
- At runtime, the *spawn* relation causes procedure instances to be structured as a rooted tree, called *spawn tree* or *parallel instruction stream*, where dependencies among strands form a dag.

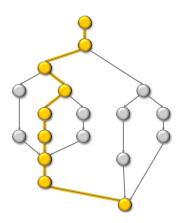
Work and span



We define several performance measures. We assume an ideal situation: no cache issues, no interprocessor costs:

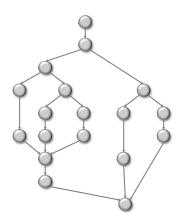
- T_p is the minimum running time on p processors
- T₁ is called the **work**, that is, the sum of the number of instructions at each node.
- T_{∞} is the minimum running time with infinitely many processors, called the span

The critical path length



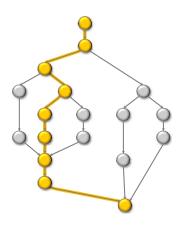
Assuming all strands run in unit time, the longest path in the DAG is equal to T_{∞} . For this reason, T_{∞} is also referred to as the **critical path length**.

Work law



- ▶ We have: $T_p \ge T_1/p$.
- ▶ Indeed, in the best case, *p* processors can do *p* works per unit of time.

Span law



- ▶ We have: $T_p \ge T_{\infty}$.
- ▶ Indeed, $T_p < T_\infty$ contradicts the definitions of T_p and T_∞ .

Speedup on *p* processors

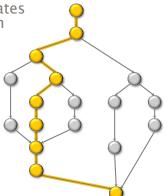
- $ightharpoonup T_1/T_p$ is called the **speedup on** p **processors**
- A parallel program execution can have:
 - ▶ linear speedup: $T_1/T_P = \Theta(p)$
 - **superlinear speedup**: $T_1/T_P = \omega(p)$ (not possible in this model, though it is possible in others)
 - **sublinear speedup**: $T_1/T_P = o(p)$

Parallelism

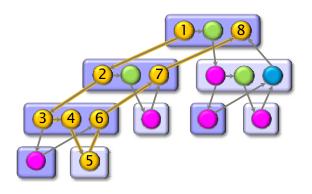
Because the Span Law dictates that $T_P \geq T_{\infty}$, the maximum possible speedup given T_1 and T_{∞} is

 $T_1/T_{\infty} = parallelism$

the average amount of work per step along the span.



The Fibonacci example (1/2)

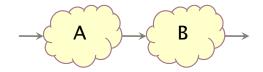


- For Fib(4), we have $T_1=17$ and $T_\infty=8$ and thus $T_1/T_\infty=2.125$.
- ▶ What about $T_1(\operatorname{Fib}(n))$ and $T_\infty(\operatorname{Fib}(n))$?

The Fibonacci example (2/2)

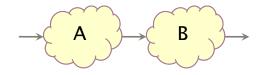
- ▶ We have $T_1(n) = T_1(n-1) + T_1(n-2) + \Theta(1)$. Let's solve it.
 - One verify by induction that $T(n) \le aF_n b$ for b > 0 large enough to dominate $\Theta(1)$ and a > 1.
 - ▶ We can then choose *a* large enough to satisfy the initial condition, whatever that is.
 - ▶ On the other hand we also have $F_n \leq T(n)$.
 - ► Therefore $T_1(n) = \Theta(F_n) = \Theta(\psi^n)$ with $\psi = (1 + \sqrt{5})/2$.
- We have $T_{\infty}(n) = \max(T_{\infty}(n-1), T_{\infty}(n-2)) + \Theta(1)$.
 - We easily check $T_{\infty}(n-1) \geq T_{\infty}(n-2)$.
 - ► This implies $T_{\infty}(n) = T_{\infty}(n-1) + \Theta(1)$.
 - ▶ Therefore $T_{\infty}(n) = \Theta(n)$.
- ▶ Consequently the parallelism is $\Theta(\psi^n/n)$.

Series composition



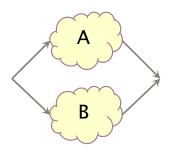
- ► Work?
- ► Span?

Series composition



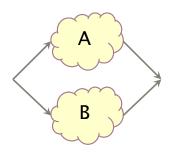
- ▶ Work: $T_1(A \cup B) = T_1(A) + T_1(B)$
- ▶ Span: $T_{\infty}(A \cup B) = T_{\infty}(A) + T_{\infty}(B)$

Parallel composition



- ► Work?
- ► Span?

Parallel composition



- ▶ Work: $T_1(A \cup B) = T_1(A) + T_1(B)$
- ▶ Span: $T_{\infty}(A \cup B) = \max(T_{\infty}(A), T_{\infty}(B))$

Some results in the fork-join parallelism model

Algorithm	Work	Span
Merge sort	Θ(n lg n)	$\Theta(lg^3n)$
Matrix multiplication	$\Theta(n^3)$	Θ(lg n)
Strassen	$\Theta(n^{lg7})$	$\Theta(lg^2n)$
LU-decomposition	$\Theta(n^3)$	Θ(n lg n)
Tableau construction	$\Theta(n^2)$	$\Omega(n^{lg3})$
FFT	Θ(n lg n)	$\Theta(lg^2n)$
Breadth-first search	Θ(Ε)	Θ(d lg V)

We shall prove those results in the next lectures.

Plan

Parallelism Complexity Measures

cilk_for Loops

Scheduling Theory and Implementation

Measuring Parallelism in Practice

Anticipating parallelization overheads

Announcements

For loop parallelism in Cilk++

```
cilk_for (int i=1; i<n; ++i) {
    for (int j=0; j<i; ++j) {
        double temp = A[i][j];
        A[i][j] = A[j][i];
        A[j][i] = temp;
    }
}</pre>
```

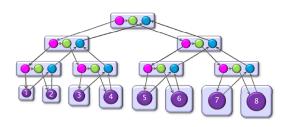
The iterations of a cilk_for loop execute in parallel.

Implementation of for loops in Cilk++

Up to details (next week!) the previous loop is compiled as follows, using a **divide-and-conquer implementation**:

```
void recur(int lo, int hi) {
    if (hi > lo) { // coarsen
        int mid = lo + (hi - lo)/2;
        cilk_spawn recur(lo, mid);
        recur(mid+1, hi);
        cilk_sync;
    } else
        for (int j=lo; j<hi+1; ++j) {
            double temp = A[hi][j];
            A[hi][j] = A[j][hi];
            A[j][hi] = temp;
```

Analysis of parallel for loops



Here we do not assume that each strand runs in unit time.

▶ Span of loop control: $\Theta(\log(n))$

▶ Max span of an iteration: $\Theta(n)$

▶ Span: $\Theta(n)$

▶ Work: $\Theta(n^2)$

▶ Parallelism: $\Theta(n)$

Parallelizing the inner loop

This would yield the following code

```
cilk_for (int i=1; i<n; ++i) {
     cilk_for (int j=0; j<i; ++j) {
          double temp = A[i][j];
          A[i][j] = A[j][i];
          A[i][i] = temp;
 ▶ Span of outer loop control: \Theta(\log(n))
 ▶ Max span of an inner loop control: \Theta(\log(n))
 ▶ Span of an iteration: \Theta(1)
 \triangleright Span: \Theta(\log(n))
 ▶ Work: \Theta(n^2)
 ▶ Parallelism: \Theta(n^2/\log(n))
```

In practice, parallelizing the inner loop would increase the memory footprint (allocation of the temporaries) and increase parallelism overheads. So, this is not a good idea.

Plan

Parallelism Complexity Measures

cilk_for Loops

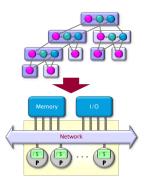
Scheduling Theory and Implementation

Measuring Parallelism in Practice

Anticipating parallelization overheads

Announcements

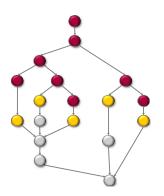
Scheduling



A **scheduler**'s job is to map a computation to particular processors. Such a mapping is called a **schedule**.

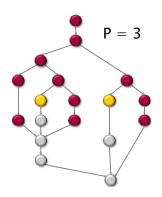
- If decisions are made at runtime, the scheduler is online, otherwise, it is offline
- Cilk++'s scheduler maps strands onto processors dynamically at runtime.

Greedy scheduling (1/2)



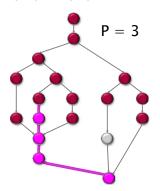
- ► A strand is **ready** if all its predecessors have executed
- A scheduler is **greedy** if it attempts to do as much work as possible at every step.

Greedy scheduling (2/2)



- ▶ In any *greedy schedule*, there are two types of steps:
 - complete step: There are at least p strands that are ready to run. The greedy scheduler selects any p of them and runs them.
 - ▶ **incomplete step**: There are strictly less than *p* strands that are ready to run. The greedy scheduler runs them all.

Theorem of Graham and Brent



For any greedy schedule, we have $T_p \leq T_1/p + T_{\infty}$

- #complete steps $\leq T_1/p$, by definition of T_1 .
- ▶ #incomplete steps $\leq T_{\infty}$. Indeed, let G' be the subgraph of G that remains to be executed immediately prior to an incomplete step.
 - (i) During this incomplete step, all strands that can be run are actually run
 - (ii) Hence removing this incomplete step from G' reduces T_{∞} by

Corollary 1

A greedy scheduler is always within a factor of 2 of optimal.

From the work and span laws, we have:

$$T_P \ge \max(T_1/p, T_\infty) \tag{1}$$

In addition, we can trivially express:

$$T_1/p \le \max(T_1/p, T_\infty) \tag{2}$$

$$T_{\infty} \le \max(T_1/p, T_{\infty}) \tag{3}$$

From Graham - Brent Theorem, we deduce:

$$T_P \leq T_1/p + T_{\infty} \tag{4}$$

$$\leq \max(T_1/p, T_{\infty}) + \max(T_1/p, T_{\infty}) \tag{5}$$

$$\leq 2 \max(T_1/p, T_{\infty}) \tag{6}$$

which concludes the proof.

Corollary 2

The greedy scheduler achieves linear speedup whenever $T_{\infty} = O(T_1/p)$.

From Graham - Brent Theorem, we deduce:

$$T_p \leq T_1/p + T_{\infty} \tag{7}$$

$$= T_1/p + O(T_1/p)$$
 (8)

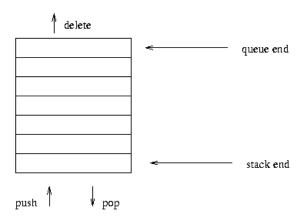
$$= \Theta(T_1/p) \tag{9}$$

The idea is to operate in the range where T_1/p dominates T_{∞} . As long as T_1/p dominates T_{∞} , all processors can be used efficiently. The quantity T_1/pT_{∞} is called the **parallel slackness**.

The work-stealing scheduler (1/9)

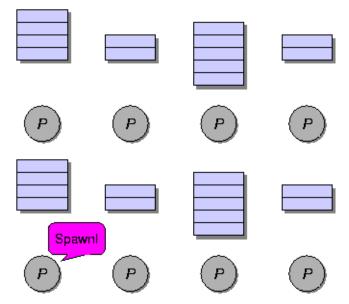
- Cilk/Cilk++ randomized work-stealing scheduler load-balances the computation at run-time. Each processor maintains a ready deque:
 - A ready deque is a double ended queue, where each entry is a procedure instance that is ready to execute.
 - Adding a procedure instance to the bottom of the deque represents a procedure call being spawned.
 - ► A procedure instance being deleted from the bottom of the deque represents the processor beginning/resuming execution on that procedure.
 - ▶ Deletion from the top of the deque corresponds to that procedure instance being stolen.
- ► A mathematical proof guarantees near-perfect linear speed-up on applications with sufficient parallelism, as long as the architecture has sufficient memory bandwidth.
- ► A spawn/return in Cilk is over 100 times faster than a Pthread create/exit and less than 3 times slower than an ordinary C function call on a modern Intel processor.

The work-stealing scheduler (2/9)

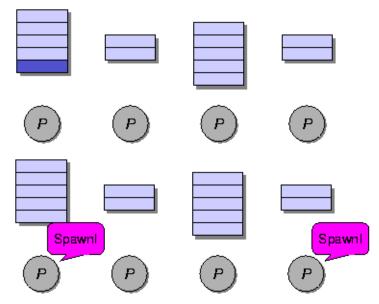


Each processor possesses a deque

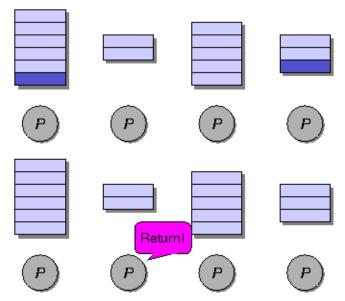
The work-stealing scheduler (3/9)



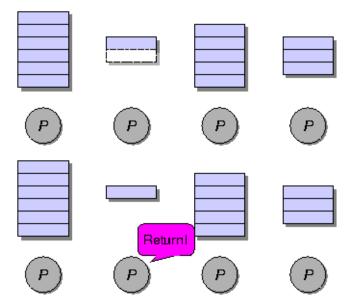
The work-stealing scheduler (4/9)



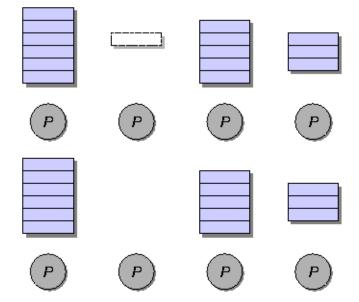
The work-stealing scheduler (5/9)



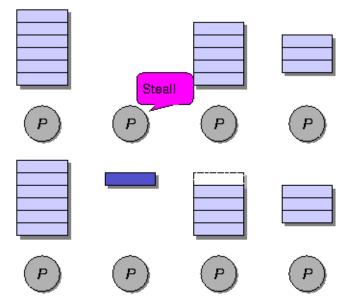
The work-stealing scheduler (6/9)



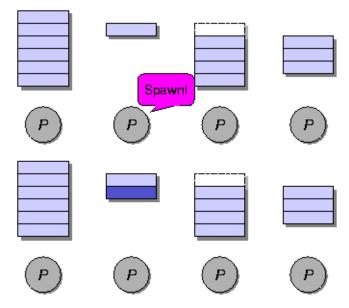
The work-stealing scheduler (7/9)



The work-stealing scheduler (8/9)



The work-stealing scheduler (9/9)



Performances of the work-stealing scheduler

Assume that

- each strand executes in unit time,
- for almost all "parallel steps" there are at least p strands to run,
- each processor is either working or stealing.

Then, the randomized work-stealing scheduler is expected to run in

$$T_P = T_1/p + O(T_\infty)$$

- A processor is either working or stealing.
- ▶ The total time all processors spend working is T_1 , by definition of T_1 .
- Each stealing processor has a probability of 1/P to reduce the span by 1.
- ▶ Thus, the **expected** number of steals is $O(P T_{\infty})$.
- Since P processors are working/stealing together, the expected running time

 $T_P = \#\text{steps} \text{ without steal} + \#\text{steps} \text{ with steal} = T_1/p + O(p T_\infty)/P.$

Overheads and burden

- ▶ Obviously $T_1/p + T_{\infty}$ will under-estimate T_p in practice.
- ▶ Many factors (simplification assumptions of the fork-join parallelism model, architecture limitation, costs of executing the parallel constructs, overheads of scheduling) will make T_p larger in practice.
- One may want to estimate the impact of those factors:
 - 1. by improving the estimate of the *randomized work-stealing* complexity result
 - 2. by comparing a Cilk++ program with its C++ elision
 - 3. by estimating the costs of spawning and synchronizing
- ▶ Cilk++ estimates T_p as $T_p = T_1/p + 1.7$ burden_span, where burden_span is 15000 instructions times the number of continuation edges along the critical path.

Span overhead

- Let T_1, T_∞, T_p be given. We want to refine the randomized work-stealing complexity result.
- ▶ The **span overhead** is the smallest constant c_{∞} such that

$$T_p \leq T_1/p + c_\infty T_\infty$$
.

- ▶ Recall that T_1/T_∞ is the maximum possible speed-up that the application can obtain.
- ► We call **parallel slackness assumption** the following property

$$T_1/T_{\infty} >> c_{\infty} p \tag{11}$$

that is, $c_{\infty} p$ is much smaller than the average parallelism .

▶ Under this assumption it follows that $T_1/p >> c_\infty T_\infty$ holds, thus c_∞ has little effect on performance when sufficiently slackness exists.

Work overhead

- Let T_s be the running time of the C++ elision of a Cilk++ program.
- ▶ We denote by *c*₁ the **work overhead**

$$c_1 = T_1/T_s$$

▶ Recall the expected running time: $T_P \le T_1/P + c_\infty T_\infty$. Thus with the parallel slackness assumption we get

$$T_P \le c_1 T_s/p + c_\infty T_\infty \simeq c_1 T_s/p. \tag{12}$$

- We can now state the work first principle precisely Minimize c_1 , even at the expense of a larger c_∞ . This is a key feature since it is conceptually easier to minimize c_1 rather than minimizing c_∞ .
- ▶ Cilk++ estimates T_p as $T_p = T_1/p + 1.7$ burden_span, where burden_span is 15000 instructions times the number of continuation edges along the critical path.

Plan

Parallelism Complexity Measures

cilk_for Loops

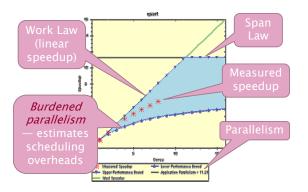
Scheduling Theory and Implementation

Measuring Parallelism in Practice

Anticipating parallelization overheads

Announcements

Cilkview



- Cilkview computes work and span to derive upper bounds on parallel performance
- Cilkview also estimates scheduling overhead to compute a burdened span for lower bounds.

The Fibonacci Cilk++ example

Code fragment

```
long fib(int n)
{
  if (n < 2) return n;
  long x, y;
  x = cilk_spawn fib(n-1);
  y = fib(n-2);
  cilk_sync;
  return x + y;
}</pre>
```

Fibonacci program timing

The environment for benchmarking:

model name : Intel(R) Core(TM)2 Quad CPU Q6600 @ 2.40GHz

L2 cache size : 4096 KB

- memory size : 3 GB

	#cores = 1	#cores	s = 2	#cores = 4		
n	timing(s)	timing(s)	speedup	timing(s)	speedup	
30	0.086	0.046	1.870	0.025	3.440	
35	0.776	0.436	1.780	0.206	3.767	
40	8.931	4.842	1.844	2.399	3.723	
45	105.263	54.017	1.949	27.200	3.870	
50	1165.000	665.115	1.752	340.638	3.420	

Quicksort

code in cilk/examples/qsort

```
void sample_qsort(int * begin, int * end)
   if (begin != end) {
         --end;
        int * middle = std::partition(begin, end,
            std::bind2nd(std::less<int>(), *end));
        using std::swap;
        swap(*end, *middle);
        cilk_spawn sample_qsort(begin, middle);
        sample_qsort(++middle, ++end);
        cilk_sync;
```

Quicksort timing

Timing for sorting an array of integers:

	#cores = 1	#cores	s = 2	#cores = 4		
# of int	timing(s)	timing(s)	speedup	timing(s)	speedup	
$10 imes 10^6$	1.958	1.016	1.927	0.541	3.619	
$50 imes 10^6$	10.518	5.469	1.923	2.847	3.694	
$100 imes 10^6$	21.481	11.096	1.936	5.954	3.608	
500×10^6	114.300	57.996	1.971	31.086	3.677	

Matrix multiplication

Code in cilk/examples/matrix

Timing of multiplying a 687×837 matrix by a 837×1107 matrix

	i.	terativ	re	recursive			
threshold	st(s)	pt(s)	su	st(s)	pt (s)	su	
10	1.273	1.165	0.721	1.674	0.399	4.195	
16	1.270	1.787	0.711	1.408	0.349	4.034	
32	1.280	1.757	0.729	1.223	0.308	3.971	
48	1.258	1.760	0.715	1.164	0.293	3.973	
64	1.258	1.798	0.700	1.159	0.291	3.983	
80	1.252	1.773	0.706	1.267	0.320	3.959	

st = sequential time; pt = parallel time with 4 cores; su = speedup

The cilkview example from the documentation

Using cilk_for to perform operations over an array in parallel:

```
static const int COUNT = 4;
static const int ITERATION = 1000000;
long arr[COUNT];
long do_work(long k){
 long x = 15;
  static const int nn = 87;
  for (long i = 1; i < nn; ++i)
    x = x / i + k % i;
  return x;
int cilk main(){
  for (int j = 0; j < ITERATION; j++)
    cilk_for (int i = 0; i < COUNT; i++)</pre>
      arr[i] += do_work( j * i + i + j);
```

1) Parallelism Profile

Work: 6,480,801,250 ins Span: 2,116,801,250 ins

Burdened span : 31,920,801,250 ins

Parallelism: 3.06 Burdened parallelism: 0.20

Number of spawns/syncs: 3,000,000

Average instructions / strand : 720

Strands along span : 4,000,001

Average instructions / strand on span : 529

2) Speedup Estimate

2 processors: 0.21 - 2.00 4 processors: 0.15 - 3.06

8 processors: 0.13 - 3.06

16 processors: 0.13 - 3.06

32 processors: 0.12 - 3.06

A simple fix

Inverting the two for loops

```
int cilk_main()
{
   cilk_for (int i = 0; i < COUNT; i++)
      for (int j = 0; j < ITERATION; j++)
        arr[i] += do_work( j * i + i + j);
}</pre>
```

1) Parallelism Profile

Work: 5,295,801,529 ins Span: 1,326,801,107 ins

Burdened span : 1,326,830,911 ins

Parallelism: 3.99 Burdened parallelism: 3.99

Number of spawns/syncs: 3

Average instructions / strand : 529,580,152

Strands along span : 5

Average instructions / strand on span: 265,360,221

2) Speedup Estimate

2 processors: 1.40 - 2.00

4 processors: 1.76 - 3.99

8 processors: 2.01 - 3.99

16 processors: 2.17 - 3.99

32 processors: 2.25 - 3.99

Timing

	#cores = 1	#cores	s = 2	#cores = 4		
version	timing(s)	timing(s) timing(s)		timing(s)	speedup	
original	7.719	9.611	0.803	10.758	0.718	
improved	7.471	3.724	2.006	1.888	3.957	

Plan

Parallelism Complexity Measures

cilk_for Loops

Scheduling Theory and Implementation

Measuring Parallelism in Practice

Anticipating parallelization overheads

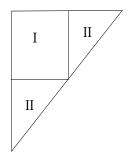
Announcements

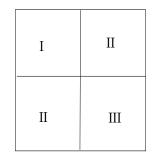
Pascal Triangle

		0	0	0	0	0	0	0	0
1		1	1	1	1	1	1	1	1/
1		2	3	4	5	6	7	8/	
1	ı	3	6	10	15		28/		
1		4	10	20	35	56/			
1		5	15	35	70/				
1		6	21	56/					
1		7	28/	/					
1		8/	*						

Construction of the Pascal Triangle: nearly the simplest stencil computation!

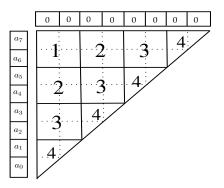
Divide and conquer: principle





The parallelism is $\Theta(n^{2-log_23})$, so roughly $\Theta(n^{0.45})$ which can be regarded as low parallelism.

Blocking strategy: principle



- ► Let *B* be the order of a block and *n* be the number of elements.
- The parallelism of $\Theta(n/B)$ can still be regarded as low parallelism, but better than with the divide and conquer scheme.

Estimating parallelization overheads

The instruction stream DAG of the blocking strategy consists of n/B binary tress $T_0, T_1, \ldots, T_{n/B-1}$ such that

- ► T_i is the instruction stream DAG of the cilk_for loop executing the i-th band
- ightharpoonup each leaf of T_i is connected by an edge to the root of T_{i+1} .

Consequently, the burdened span is

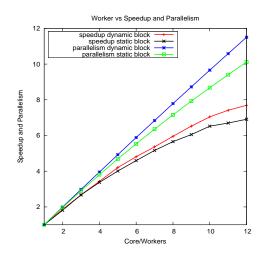
$$S_b(n) = \sum_{i=1}^{n/B} \log(i) = \log(\prod_{i=1}^{n/B} i) = \log(\Gamma(\frac{n}{B} + 1)).$$

Using Stirling's Formula, we deduce

$$S_b(n) \in \Theta\left(\frac{n}{B}\log(\frac{n}{B})\right).$$
 (13)

Thus the burdened parallelism (that is, the ratio work to burdened span) is $\Theta(Bn/\log(\frac{n}{B}))$, that is sub-linear in n, while the non-burdened parallelism is $\Theta(n/B)$.

Construction of the Pascal Triangle: experimental results

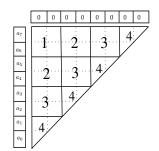


Summary and notes

Burdened parallelism

- Parallelism after accounting for parallelization overheads (thread management, costs of scheduling, etc.) The burdened parallelism is estimated as the ratio work to burdened span.
- ▶ The burdened span is defined as the maximum number of spawns/syncs on a critical path times the cost for a cilk_spawn (cilk_sync) taken as 15,000 cycles.

Impact in practice: example for the Pascal Triangle



- Consider executing one band after another, where for each band all B × B blocks are executed concurrently.
- The non-burdened span is in $\Theta(B^2n/B) = \Theta(n/B)$.
- ► While the burdened span is

$$S_b(n) = \sum_{i=1}^{n/B} \log(i)$$

$$= \log(\prod_{i=1}^{n/B} i)$$

$$= \log(\lceil (\frac{n}{B} + 1) \rceil)$$

$$\in \Theta(\frac{n}{B} \log(\frac{n}{B})).$$

Plan

Parallelism Complexity Measures

cilk_for Loops

Scheduling Theory and Implementation

Measuring Parallelism in Practice

Anticipating parallelization overheads

Announcements

Acknowledgements

- ► Charles E. Leiserson (MIT) for providing me with the sources of its lecture notes.
- Matteo Frigo (Intel) for supporting the work of my team with Cilk++.
- Yuzhen Xie (UWO) for helping me with the images used in these slides.
- Liyun Li (UWO) for generating the experimental data.

References

- ▶ Matteo Frigo, Charles E. Leiserson, and Keith H. Randall. The Implementation of the Cilk-5 Multithreaded Language. Proceedings of the ACM SIGPLAN '98 Conference on Programming Language Design and Implementation, Pages: 212-223. June, 1998.
- ▶ Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul, Charles E. Leiserson, Keith H. Randall, and Yuli Zhou. Cilk: An Efficient Multithreaded Runtime System. Journal of Parallel and Distributed Computing, 55-69, August 25, 1996.
- ▶ Robert D. Blumofe and Charles E. Leiserson. Scheduling Multithreaded Computations by Work Stealing. Journal of the ACM, Vol. 46, No. 5, pp. 720-748. September 1999.