
CS4402-9535: High-Performance Computing with CUDA

Marc Moreno Maza

University of Western Ontario, London, Ontario (Canada)

UWO-CS4402-CS9535

(Moreno Maza) CS4402-9535: High-Performance Computing with CUDAUWO-CS4402-CS9535 1 / 113

Plan

1 Optimizing Matrix Transpose with CUDA

2 Performance Optimization

3 Parallel Reduction

4 Parallel Scan

5 Exercises

(Moreno Maza) CS4402-9535: High-Performance Computing with CUDAUWO-CS4402-CS9535 2 / 113

Optimizing Matrix Transpose with CUDA

Plan

1 Optimizing Matrix Transpose with CUDA

2 Performance Optimization

3 Parallel Reduction

4 Parallel Scan

5 Exercises

(Moreno Maza) CS4402-9535: High-Performance Computing with CUDAUWO-CS4402-CS9535 3 / 113

Optimizing Matrix Transpose with CUDA

Matrix Transpose Characteristics (1/2)

We optimize a transposition code for a matrix of floats. This operates
out-of-place:

input and output matrices address separate memory locations.

For simplicity, we consideran n × n matrix where 32 divides n.
We focus on the device code:

the host code performs typical tasks: data allocation and transfer
between host and device, the launching and timing of several kernels,
result validation, and the deallocation of host and device memory.

Benchmarks illustrate this section:
we compare our matrix transpose kernels against a matrix copy
kernel,
for each kernel, we compute the effective bandwidth, calculated in
GB/s as twice the size of the matrix (once for reading the matrix and
once for writing) divided by the time of execution,
Each operation is run NUM REFS times (for normalizing the
measurements),
This looping is performed once over the kernel and once within the
kernel,
The difference between these two timings is kernel launch and
synchronization overheads.

(Moreno Maza) CS4402-9535: High-Performance Computing with CUDAUWO-CS4402-CS9535 4 / 113

Optimizing Matrix Transpose with CUDA

Matrix Transpose Characteristics (2/2)

We present hereafter different kernels called from the host code, each
addressing different performance issues.

All kernels in this study launch thread blocks of dimension 32x8,
where each block transposes (or copies) a tile of dimension 32x32.

As such, the parameters TILE DIM and BLOCK ROWS are set to 32 and
8, respectively.

Using a thread block with fewer threads than elements in a tile is
advantageous for the matrix transpose:

each thread transposes several matrix elements, four in our case, and
much of the cost of calculating the indices is amortized over these
elements.

This study is based on a technical report by Greg Ruetsch (NVIDIA)
and Paulius Micikevicius (NVIDIA).

(Moreno Maza) CS4402-9535: High-Performance Computing with CUDAUWO-CS4402-CS9535 5 / 113

Optimizing Matrix Transpose with CUDA

A simple copy kernel (1/2)

__global__ void copy(float *odata, float* idata, int width,

int height, int nreps)

{

int xIndex = blockIdx.x*TILE_DIM + threadIdx.x;

int yIndex = blockIdx.y*TILE_DIM + threadIdx.y;

int index = xIndex + width*yIndex;

for (int r=0; r < nreps; r++) { // normalization outer loop

for (int i=0; i<TILE_DIM; i+=BLOCK_ROWS) {

odata[index+i*width] = idata[index+i*width];

}

}

}

(Moreno Maza) CS4402-9535: High-Performance Computing with CUDAUWO-CS4402-CS9535 6 / 113

Optimizing Matrix Transpose with CUDA

A simple copy kernel (2/2)

odata and idata are pointers to the input and output matrices,
width and height are the matrix x and y dimensions,
nreps determines how many times the loop over data movement
between matrices is performed.
In this kernel, xIndex and yIndex are global 2D matrix indices,
used to calculate index, the 1D index used to access matrix elements.

__global__ void copy(float *odata, float* idata, int width,

int height, int nreps)

{

int xIndex = blockIdx.x*TILE_DIM + threadIdx.x;

int yIndex = blockIdx.y*TILE_DIM + threadIdx.y;

int index = xIndex + width*yIndex;

for (int r=0; r < nreps; r++) {

for (int i=0; i<TILE_DIM; i+=BLOCK_ROWS) {

odata[index+i*width] = idata[index+i*width];

} } }
(Moreno Maza) CS4402-9535: High-Performance Computing with CUDAUWO-CS4402-CS9535 7 / 113

Optimizing Matrix Transpose with CUDA

A naive transpose kernel

_global__ void transposeNaive(float *odata, float* idata,

int width, int height, int nreps)

{

int xIndex = blockIdx.x*TILE_DIM + threadIdx.x;

int yIndex = blockIdx.y*TILE_DIM + threadIdx.y;

int index_in = xIndex + width * yIndex;

int index_out = yIndex + height * xIndex;

for (int r=0; r < nreps; r++) {

for (int i=0; i<TILE_DIM; i+=BLOCK_ROWS) {

odata[index_out+i] = idata[index_in+i*width];

}

}

}

(Moreno Maza) CS4402-9535: High-Performance Computing with CUDAUWO-CS4402-CS9535 8 / 113

Optimizing Matrix Transpose with CUDA

Naive transpose kernel vs copy kernel

The performance of these two kernels on a 2048x2048 matrix using a
GTX280 is given in the following table:

The minor differences in code between the copy and nave transpose
kernels have a profound effect on performance.

(Moreno Maza) CS4402-9535: High-Performance Computing with CUDAUWO-CS4402-CS9535 9 / 113

Optimizing Matrix Transpose with CUDA

Coalesced Transpose (1/11)

Because device memory has a much higher latency and lower
bandwidth than on-chip memory, special attention must be paid to:
how global memory accesses are performed?

The simultaneous global memory accesses by each thread of a
half-warp (16 threads on G80) during the execution of a single read or
write instruction will be coalesced into a single access if:

1 The size of the memory element accessed by each thread is either 4, 8,
or 16 bytes.

2 The address of the first element is aligned to 16 times the element’s
size.

3 The elements form a contiguous block of memory.
4 The i-th element is accessed by the i-th thread in the half-warp.

Last two requirements are relaxed with compute capabilities of 1.2.

Coalescing happens even if some threads do not access memory
(divergent warp)

(Moreno Maza) CS4402-9535: High-Performance Computing with CUDAUWO-CS4402-CS9535 10 / 113

Optimizing Matrix Transpose with CUDA

Coalesced Transpose (2/11)

(Moreno Maza) CS4402-9535: High-Performance Computing with CUDAUWO-CS4402-CS9535 11 / 113

Optimizing Matrix Transpose with CUDA

Coalesced Transpose (3/11)

(Moreno Maza) CS4402-9535: High-Performance Computing with CUDAUWO-CS4402-CS9535 12 / 113

Optimizing Matrix Transpose with CUDA

Coalesced Transpose (4/11)

(Moreno Maza) CS4402-9535: High-Performance Computing with CUDAUWO-CS4402-CS9535 13 / 113

Optimizing Matrix Transpose with CUDA

Coalesced Transpose (5/11)

Allocating device memory through cudaMalloc() and choosing
TILE DIM to be a multiple of 16 ensures alignment with a
segment of memory, therefore all loads from idata are coalesced.

Coalescing behavior differs between the simple copy and naive
transpose kernels when writing to odata.

In the case of the naive transpose, for each iteration of the i-loop a
half warp writes one half of a column of floats to different segments
of memory:

resulting in 16 separate memory transactions,
regardless of the compute capability.

(Moreno Maza) CS4402-9535: High-Performance Computing with CUDAUWO-CS4402-CS9535 14 / 113

Optimizing Matrix Transpose with CUDA

Coalesced Transpose (6/11)

The way to avoid uncoalesced global memory access is
1 to read the data into shared memory and,
2 have each half warp access noncontiguous locations in shared memory

in order to write contiguous data to odata.

There is no performance penalty for noncontiguous access patterns in
shared memory as there is in global memory.

a synchthreads() call is required to ensure that all reads from
idata to shared memory have completed before writes from shared
memory to odata commence.

(Moreno Maza) CS4402-9535: High-Performance Computing with CUDAUWO-CS4402-CS9535 15 / 113

Optimizing Matrix Transpose with CUDA

Coalesced Transpose (7/11)

__global__ void transposeCoalesced(float *odata,

float *idata, int width, int height) // no nreps param

{

__shared__ float tile[TILE_DIM][TILE_DIM];

int xIndex = blockIdx.x*TILE_DIM + threadIdx.x;

int yIndex = blockIdx.y*TILE_DIM + threadIdx.y;

int index_in = xIndex + (yIndex)*width;

xIndex = blockIdx.y * TILE_DIM + threadIdx.x;

yIndex = blockIdx.x * TILE_DIM + threadIdx.y;

int index_out = xIndex + (yIndex)*height;

for (int i=0; i<TILE_DIM; i+=BLOCK_ROWS) {

tile[threadIdx.y+i][threadIdx.x] =

idata[index_in+i*width];

} __syncthreads();

for (int i=0; i<TILE_DIM; i+=BLOCK_ROWS) {

odata[index_out+i*height] =

tile[threadIdx.x][threadIdx.y+i];

} }
(Moreno Maza) CS4402-9535: High-Performance Computing with CUDAUWO-CS4402-CS9535 16 / 113

Optimizing Matrix Transpose with CUDA

Coalesced Transpose (8/11)

1 The half warp writes four half rows of the idata matrix tile to the
shared memory 32x32 array tile indicated by the yellow line
segments.

2 After a syncthreads() call to ensure all writes to tile are
completed,

3 the half warp writes four half columns of tile to four half rows of an
odata matrix tile, indicated by the green line segments.

(Moreno Maza) CS4402-9535: High-Performance Computing with CUDAUWO-CS4402-CS9535 17 / 113

Optimizing Matrix Transpose with CUDA

Coalesced Transpose (9/11)

While there is a dramatic increase in effective bandwidth of the coalesced
transpose over the naive transpose, there still remains a large performance
gap between the coalesced transpose and the copy:

One possible cause of this performance gap could be the
synchronization barrier required in the coalesced transpose.
This can be easily assessed using the following copy kernel which
utilizes shared memory and contains a syncthreads() call.

(Moreno Maza) CS4402-9535: High-Performance Computing with CUDAUWO-CS4402-CS9535 18 / 113

Optimizing Matrix Transpose with CUDA

Coalesced Transpose (10/11)

_global__ void copySharedMem(float *odata, float *idata,

int width, int height) // no nreps param

{

__shared__ float tile[TILE_DIM][TILE_DIM];

int xIndex = blockIdx.x*TILE_DIM + threadIdx.x;

int yIndex = blockIdx.y*TILE_DIM + threadIdx.y;

int index = xIndex + width*yIndex;

for (int i=0; i<TILE_DIM; i+=BLOCK_ROWS) {

tile[threadIdx.y+i][threadIdx.x] =

idata[index+i*width];

}

__syncthreads();

for (int i=0; i<TILE_DIM; i+=BLOCK_ROWS) {

odata[index+i*width] =

tile[threadIdx.y+i][threadIdx.x];

} }

(Moreno Maza) CS4402-9535: High-Performance Computing with CUDAUWO-CS4402-CS9535 19 / 113

Optimizing Matrix Transpose with CUDA

Coalesced Transpose (11/11)

The shared memory copy results seem to suggest that the use of shared
memory with a synchronization barrier has little effect on the performance,
certainly as far as the Loop in kerne column indicates when comparing
the simple copy and shared memory copy.

(Moreno Maza) CS4402-9535: High-Performance Computing with CUDAUWO-CS4402-CS9535 20 / 113

Optimizing Matrix Transpose with CUDA

Shared memory bank conflicts (1/6)

1 Shared memory is divided into 16 equally-sized memory modules,
called banks, which are organized such that successive 32-bit words
are assigned to successive banks.

2 These banks can be accessed simultaneously, and to achieve maximum
bandwidth to and from shared memory the threads in a half warp
should access shared memory associated with different banks.

3 The exception to this rule is when all threads in a half warp read
the same shared memory address, which results in a broadcast where
the data at that address is sent to all threads of the half warp in one
transaction.

4 One can use the warp serialize flag when profiling CUDA
applications to determine whether shared memory bank conflicts
occur in any kernel.

(Moreno Maza) CS4402-9535: High-Performance Computing with CUDAUWO-CS4402-CS9535 21 / 113

Optimizing Matrix Transpose with CUDA

Shared memory bank conflicts (2/6)

(Moreno Maza) CS4402-9535: High-Performance Computing with CUDAUWO-CS4402-CS9535 22 / 113

Optimizing Matrix Transpose with CUDA

Shared memory bank conflicts (3/6)

(Moreno Maza) CS4402-9535: High-Performance Computing with CUDAUWO-CS4402-CS9535 23 / 113

Optimizing Matrix Transpose with CUDA

Shared memory bank conflicts (4/6)

1 The coalesced transpose uses a 32× 32 shared memory array of
floats.

2 For this sized array, all data in columns k and k+16 are mapped to
the same bank.

3 As a result, when writing partial columns from tile in shared
memory to rows in odata the half warp experiences a 16-way bank
conflict and serializes the request.

4 A simple way to avoid this conflict is to pad the shared memory array
by one column:

__shared__ float tile[TILE_DIM][TILE_DIM+1];

(Moreno Maza) CS4402-9535: High-Performance Computing with CUDAUWO-CS4402-CS9535 24 / 113

Optimizing Matrix Transpose with CUDA

Shared memory bank conflicts (5/6)

The padding does not affect shared memory bank access pattern when
writing a half warp to shared memory, which remains conflict free,

but by adding a single column now the access of a half warp of data
in a column is also conflict free.

The performance of the kernel, now coalesced and memory bank
conflict free, is added to our table on the next slide.

(Moreno Maza) CS4402-9535: High-Performance Computing with CUDAUWO-CS4402-CS9535 25 / 113

Optimizing Matrix Transpose with CUDA

Shared memory bank conflicts (6/6)

While padding the shared memory array did eliminate shared memory
bank conflicts, as was confirmed by checking the warp serialize

flag with the CUDA profiler, it has little effect (when implemented at
this stage) on performance.
As a result, there is still a large performance gap between the
coalesced and shared memory bank conflict free transpose and the
shared memory copy.

(Moreno Maza) CS4402-9535: High-Performance Computing with CUDAUWO-CS4402-CS9535 26 / 113

Optimizing Matrix Transpose with CUDA

Decomposing Transpose (1/6)

To investigate further, we revisit the data flow for the transpose and
compare it to that of the copy.

There are essentially two differences between the copy code and the
transpose:

transposing the data within a tile, and
writing data to transposed tile.

We can isolate the performance between each of these two
components by implementing two kernels that individually perform
just one of these components:

fine-grained transpose: this kernel transposes the data within a tile,
but writes the tile to the location.

coarse-grained transpose: this kernel writes the tile to the
transposed location in the odata matrix, but does not
transpose the data within the tile.

(Moreno Maza) CS4402-9535: High-Performance Computing with CUDAUWO-CS4402-CS9535 27 / 113

Optimizing Matrix Transpose with CUDA

Decomposing Transpose (2/6)

(Moreno Maza) CS4402-9535: High-Performance Computing with CUDAUWO-CS4402-CS9535 28 / 113

Optimizing Matrix Transpose with CUDA

Decomposing Transpose (3/6)

(Moreno Maza) CS4402-9535: High-Performance Computing with CUDAUWO-CS4402-CS9535 29 / 113

Optimizing Matrix Transpose with CUDA

Decomposing Transpose (4/6)

_global__ void transposeFineGrained(float *odata,

float *idata, int width, int height)

{

__shared__ float block[TILE_DIM][TILE_DIM+1];

int xIndex = blockIdx.x * TILE_DIM + threadIdx.x;

int yIndex = blockIdx.y * TILE_DIM + threadIdx.y;

int index = xIndex + (yIndex)*width;

for (int i=0; i < TILE_DIM; i += BLOCK_ROWS) {

block[threadIdx.y+i][threadIdx.x] =

idata[index+i*width];

}

__syncthreads();

for (int i=0; i < TILE_DIM; i += BLOCK_ROWS) {

odata[index+i*height] =

block[threadIdx.x][threadIdx.y+i];

}

}

(Moreno Maza) CS4402-9535: High-Performance Computing with CUDAUWO-CS4402-CS9535 30 / 113

Optimizing Matrix Transpose with CUDA

Decomposing Transpose (5/6)

__global__ void transposeCoarseGrained(float *odata,

float *idata, int width, int height)

{

__shared__ float block[TILE_DIM][TILE_DIM+1];

int xIndex = blockIdx.x * TILE_DIM + threadIdx.x;

int yIndex = blockIdx.y * TILE_DIM + threadIdx.y;

int index_in = xIndex + (yIndex)*width;

xIndex = blockIdx.y * TILE_DIM + threadIdx.x;

yIndex = blockIdx.x * TILE_DIM + threadIdx.y;

int index_out = xIndex + (yIndex)*height;

for (int i=0; i<TILE_DIM; i += BLOCK_ROWS) {

block[threadIdx.y+i][threadIdx.x] =

idata[index_in+i*width];

} syncthreads();

for (int i=0; i<TILE_DIM; i += BLOCK_ROWS) {

odata[index_out+i*height] =

block[threadIdx.y+i][threadIdx.x];

} }
(Moreno Maza) CS4402-9535: High-Performance Computing with CUDAUWO-CS4402-CS9535 31 / 113

Optimizing Matrix Transpose with CUDA

Decomposing Transpose (6/6)

The fine-grained transpose has performance similar to the shared memory
copy, whereas the coarse-grained transpose has roughly the performance of
the coalesced transpose. Thus the performance bottleneck lies in writing
data to the transposed location in global memory.

(Moreno Maza) CS4402-9535: High-Performance Computing with CUDAUWO-CS4402-CS9535 32 / 113

Optimizing Matrix Transpose with CUDA

Partition Camping (1/4)

Just as shared memory performance can be degraded via bank
conflicts, an analogous performance degradation can occur with
global memory access through partition camping.

Global memory is divided into either 6 partitions (on 8- and 9-series
GPUs) or 8 partitions (on 200-and 10-series GPUs) of 256-byte width.

To use global memory effectively, concurrent accesses to global
memory by all active warps should be divided evenly amongst
partitions.

partition camping occurs when:

global memory accesses are directed through a subset of partitions,
causing requests to queue up at some partitions while other partitions
go unused.

(Moreno Maza) CS4402-9535: High-Performance Computing with CUDAUWO-CS4402-CS9535 33 / 113

Optimizing Matrix Transpose with CUDA

Partition Camping (2/4)

Since partition camping concerns how active thread blocks behave,
the issue of how thread blocks are scheduled on multiprocessors is
important.

When a kernel is launched, the order in which blocks are assigned to
multiprocessors is determined by the one-dimensional block ID defined
as:

bid = blockIdx.x + gridDim.x*blockIdx.y;

which is a row-major ordering of the blocks in the grid.

Once maximum occupancy is reached, additional blocks are assigned
to multiprocessors as needed.

How quickly and the order in which blocks complete cannot be
determined.

So active blocks are initially contiguous but become less contiguous
as execution of the kernel progresses.

(Moreno Maza) CS4402-9535: High-Performance Computing with CUDAUWO-CS4402-CS9535 34 / 113

Optimizing Matrix Transpose with CUDA

Partition Camping (3/4)

With 8 partitions of 256-byte width, all data in strides of 2048 bytes
(or 512 floats) map to the same partition.
Any float matrix with 512× k columns, such as our 2048x2048
matrix, will contain columns whose elements map to a single partition.
With tiles of 32× 32 floats whose one-dimensional block IDs are
shown in the figures, the mapping of idata and odata onto the
partitions is depectide below.

(Moreno Maza) CS4402-9535: High-Performance Computing with CUDAUWO-CS4402-CS9535 35 / 113

Optimizing Matrix Transpose with CUDA

Partition Camping (4/4)

Cconcurrent blocks will be accessing tiles row-wise in idata which
will be roughly equally distributed amongst partitions

However these blocks will access tiles column-wise in odata which
will typically access global memory through just a few partitions.

Just as with shared memory, padding would be an option (potentially
expensive) but there is a better one . . .

(Moreno Maza) CS4402-9535: High-Performance Computing with CUDAUWO-CS4402-CS9535 36 / 113

Optimizing Matrix Transpose with CUDA

Diagonal block reordering (1/7)

(Moreno Maza) CS4402-9535: High-Performance Computing with CUDAUWO-CS4402-CS9535 37 / 113

Optimizing Matrix Transpose with CUDA

Diagonal block reordering (2/7)

The key idea is to view the grid under a diagonal coordinate
system.

If blockIdx.x and blockIdx.y represent the diagonal coordinates,
then (for block-square matrixes) the corresponding cartesian
coordinates are given by the following mapping:

blockIdx_y = blockIdx.x;

blockIdx_x = (blockIdx.x+blockIdx.y)%gridDim.x;

One would simply include the previous two lines of code at the
beginning of the kernel, and write the kernel assuming the cartesian
interpretation of blockIdx fields, except using blockIdx x and
blockIdx y in place of blockIdx.x and blockIdx.y, respectively,
throughout the kernel.

This is precisely what is done in the transposeDiagonal kernel
hereafter.

(Moreno Maza) CS4402-9535: High-Performance Computing with CUDAUWO-CS4402-CS9535 38 / 113

Optimizing Matrix Transpose with CUDA

Decomposing Transpose (3/7)

__global__ void transposeDiagonal(float *odata,

float *idata, int width, int height)

{

__shared__ float tile[TILE_DIM][TILE_DIM+1];

int blockIdx_x, blockIdx_y;

// diagonal reordering

if (width == height) {

blockIdx_y = blockIdx.x;

blockIdx_x = (blockIdx.x+blockIdx.y)%gridDim.x;

} else {

int bid = blockIdx.x + gridDim.x*blockIdx.y;

blockIdx_y = bid%gridDim.y;

blockIdx_x = ((bid/gridDim.y)+blockIdx_y)%gridDim.x;

}

(Moreno Maza) CS4402-9535: High-Performance Computing with CUDAUWO-CS4402-CS9535 39 / 113

Optimizing Matrix Transpose with CUDA

Decomposing Transpose (4/7)

int xIndex = blockIdx_x*TILE_DIM + threadIdx.x;

int yIndex = blockIdx_y*TILE_DIM + threadIdx.y;

int index_in = xIndex + (yIndex)*width;

xIndex = blockIdx_y*TILE_DIM + threadIdx.x;

yIndex = blockIdx_x*TILE_DIM + threadIdx.y;

int index_out = xIndex + (yIndex)*height;

for (int i=0; i<TILE_DIM; i+=BLOCK_ROWS) {

tile[threadIdx.y+i][threadIdx.x] =

idata[index_in+i*width];

}

__syncthreads();

for (int i=0; i<TILE_DIM; i+=BLOCK_ROWS) {

odata[index_out+i*height] =

tile[threadIdx.x][threadIdx.y+i];

}

}

(Moreno Maza) CS4402-9535: High-Performance Computing with CUDAUWO-CS4402-CS9535 40 / 113

Optimizing Matrix Transpose with CUDA

Diagonal block reordering (5/7)

(Moreno Maza) CS4402-9535: High-Performance Computing with CUDAUWO-CS4402-CS9535 41 / 113

Optimizing Matrix Transpose with CUDA

Diagonal block reordering (6/7)

(Moreno Maza) CS4402-9535: High-Performance Computing with CUDAUWO-CS4402-CS9535 42 / 113

Optimizing Matrix Transpose with CUDA

Diagonal block reordering (7/7)

The bandwidth measured when looping within the kernel over the
read and writes to global memory is within a few percent of the
shared memory copy.
When looping over the kernel, the performance degrades slightly,
likely due to additional computation involved in calculating
blockIdx x and blockIdx y. However, even with this performance
degradation the diagonal transpose has over four times the bandwidth
of the other complete transposes.

(Moreno Maza) CS4402-9535: High-Performance Computing with CUDAUWO-CS4402-CS9535 43 / 113

Performance Optimization

Plan

1 Optimizing Matrix Transpose with CUDA

2 Performance Optimization

3 Parallel Reduction

4 Parallel Scan

5 Exercises

(Moreno Maza) CS4402-9535: High-Performance Computing with CUDAUWO-CS4402-CS9535 44 / 113

Performance Optimization

Four principles

Expose as much parallelism as possible

Optimize memory usage for maximum bandwidth

Maximize occupancy to hide latency

Optimize instruction usage for maximum throughput

(Moreno Maza) CS4402-9535: High-Performance Computing with CUDAUWO-CS4402-CS9535 45 / 113

Performance Optimization

Expose Parallelism

Structure algorithm to maximize independent parallelism

If threads of same block need to communicate, use shared memory
and syncthreads()

If threads of different blocks need to communicate, use global
memory and split computation into multiple kernels

Recall that there is no synchronization mechanism between blocks

High parallelism is especially important to hide memory latency by
overlapping memory accesses with computation

Take advantage of asynchronous kernel launches by overlapping CPU
computations with kernel execution.

(Moreno Maza) CS4402-9535: High-Performance Computing with CUDAUWO-CS4402-CS9535 46 / 113

Performance Optimization

Optimize Memory Usage: Basic Strategies

Processing data is cheaper than moving it around:

Especially for GPUs as they devote many more transistors to ALUs
than memory

Basic strategies:

Maximize use of low-latency, high-bandwidth memory
Optimize memory access patterns to maximize bandwidth
Leverage parallelism to hide memory latency by overlapping memory
accesses with computation as much as possible
Write kernels with high arithmetic intensity (ratio of arithmetic
operations to memory transactions)
Sometimes recompute data rather than cache it

(Moreno Maza) CS4402-9535: High-Performance Computing with CUDAUWO-CS4402-CS9535 47 / 113

Performance Optimization

Minimize CPU < − > GPU Data Transfers

CPU < − > GPU memory bandwidth much lower than GPU memory
bandwidth

Minimize CPU < − > GPU data transfers by moving more code from
CPU to GPU

Even if sometimes that means running kernels with low parallelism
computations
Intermediate data structures can be allocated, operated on, and
deallocated without ever copying them to CPU memory

Group data transfers: One large transfer much better than many
small ones.

(Moreno Maza) CS4402-9535: High-Performance Computing with CUDAUWO-CS4402-CS9535 48 / 113

Performance Optimization

Optimize Memory Access Patterns

Effective bandwidth can vary by an order of magnitude depending on
access pattern:

Global memory is not cached on G8x.
Global memory has High latency instructions: 400-600 clock cycles
Shared memory has low latency: a few clock cycles

Optimize access patterns to get:

Coalesced global memory accesses
Shared memory accesses with no or few bank conflicts and
to avoid partition camping.

(Moreno Maza) CS4402-9535: High-Performance Computing with CUDAUWO-CS4402-CS9535 49 / 113

Performance Optimization

A Common Programming Strategy

1 Partition data into subsets that fit into shared memory

2 Handle each data subset with one thread block

3 Load the subset from global memory to shared memory, using
multiple threads to exploit memory-level parallelism.

4 Perform the computation on the subset from shared memory.

5 Copy the result from shared memory back to global memory.

(Moreno Maza) CS4402-9535: High-Performance Computing with CUDAUWO-CS4402-CS9535 50 / 113

Performance Optimization

A Common Programming Strategy

Partition data into subsets that fit into shared memory

(Moreno Maza) CS4402-9535: High-Performance Computing with CUDAUWO-CS4402-CS9535 51 / 113

Performance Optimization

A Common Programming Strategy

Handle each data subset with one thread block

(Moreno Maza) CS4402-9535: High-Performance Computing with CUDAUWO-CS4402-CS9535 52 / 113

Performance Optimization

A Common Programming Strategy

Load the subset from global memory to shared memory, using multiple
threads to exploit memory-level parallelism.

(Moreno Maza) CS4402-9535: High-Performance Computing with CUDAUWO-CS4402-CS9535 53 / 113

Performance Optimization

A Common Programming Strategy

Perform the computation on the subset from shared memory.

(Moreno Maza) CS4402-9535: High-Performance Computing with CUDAUWO-CS4402-CS9535 54 / 113

Performance Optimization

A Common Programming Strategy

Copy the result from shared memory back to global memory.

(Moreno Maza) CS4402-9535: High-Performance Computing with CUDAUWO-CS4402-CS9535 55 / 113

Performance Optimization

A Common Programming Strategy

Carefully partition data according to access patterns

If read only, use constant memory (fast)

for read/write access within a tile, use shared memory (fast)

for read/write scalar access within a thread, use registers (fast)

R/W inputs/results cudaMalloc’ed, use global memory (slow)

(Moreno Maza) CS4402-9535: High-Performance Computing with CUDAUWO-CS4402-CS9535 56 / 113

Parallel Reduction

Plan

1 Optimizing Matrix Transpose with CUDA

2 Performance Optimization

3 Parallel Reduction

4 Parallel Scan

5 Exercises

(Moreno Maza) CS4402-9535: High-Performance Computing with CUDAUWO-CS4402-CS9535 57 / 113

Parallel Reduction

Parallel reduction: presentation

Common and important data parallel primitive.

Easy to implement in CUDA, but hard to get right.

Serves as a great optimization example.

This section is based on slides and technical reports by Mark Harris
(NVIDIA).

(Moreno Maza) CS4402-9535: High-Performance Computing with CUDAUWO-CS4402-CS9535 58 / 113

Parallel Reduction

Parallel reduction: challenges

One needs to be able to use multiple thread blocks:

to process very large arrays,
to keep all multiprocessors on the GPU busy,
to have each thread block reducing a portion of the array.

But how do we communicate partial results between thread blocks?

(Moreno Maza) CS4402-9535: High-Performance Computing with CUDAUWO-CS4402-CS9535 59 / 113

Parallel Reduction

Parallel reduction: CUDA implementation strategy

We decompose computation into multiple kernel invocations

For this problem of parallel reduction, all kernels are in fact the same
code.

(Moreno Maza) CS4402-9535: High-Performance Computing with CUDAUWO-CS4402-CS9535 60 / 113

Parallel Reduction

Parallel reduction: what is our goal?

We should use the right metric between:

GFLOP/s: for compute-bound kernels
Bandwidth: for memory-bound kernels

Reductions have very low arithmetic intensity:

1 flop per element loaded (bandwidth-optimal)

Therefore we should strive for peak bandwidth

We will use G80 GPU (following Mark Harris tech report) for this
example:

384-bit memory interface, 1800 MHz
384 × 1800/8 = 86.4GB/s

(Moreno Maza) CS4402-9535: High-Performance Computing with CUDAUWO-CS4402-CS9535 61 / 113

Parallel Reduction

Parallel reduction: interleaved addressing (1/2)

__global__ void reduce0(int *g_idata, int *g_odata) {

extern __shared__ int sdata[];

// each thread loads one element from global to shared mem

unsigned int tid = threadIdx.x;

unsigned int i = blockIdx.x*blockDim.x + threadIdx.x;

sdata[tid] = g_idata[i];

__syncthreads();

// do reduction in shared mem

for(unsigned int s=1; s < blockDim.x; s *= 2) {

if (tid % (2*s) == 0) {

sdata[tid] += sdata[tid + s];

}

__syncthreads();

}

// write result for this block to global mem

if (tid == 0) g_odata[blockIdx.x] = sdata[0];

}

(Moreno Maza) CS4402-9535: High-Performance Computing with CUDAUWO-CS4402-CS9535 62 / 113

Parallel Reduction

Parallel reduction: interleaved addressing (2/2)

(Moreno Maza) CS4402-9535: High-Performance Computing with CUDAUWO-CS4402-CS9535 63 / 113

Parallel Reduction

Parallel reduction: branch divergence in interleaved
addressing (1/2)

Main performance concern with branching is divergence.

Branch divergence occurs when threads in the same warp take different
paths upon a conditional branch.
Penalty: different execution paths are likely to serialized (at compile
time).

One should be careful branching when branch condition is a function
of thread ID.

Below, branch granularity is less than warp size:

If (threadIdx.x > 2) { }

Below, branch granularity is a whole multiple of warp size:

If (threadIdx.x / WARP_SIZE > 2) { }

(Moreno Maza) CS4402-9535: High-Performance Computing with CUDAUWO-CS4402-CS9535 64 / 113

Parallel Reduction

Parallel reduction: branch divergence in interleaved
addressing (2/2)

(Moreno Maza) CS4402-9535: High-Performance Computing with CUDAUWO-CS4402-CS9535 65 / 113

Parallel Reduction

Parallel reduction: non-divergent interleaved addressing

(Moreno Maza) CS4402-9535: High-Performance Computing with CUDAUWO-CS4402-CS9535 66 / 113

Parallel Reduction

Parallel reduction: shared memory bank conflicts

(Moreno Maza) CS4402-9535: High-Performance Computing with CUDAUWO-CS4402-CS9535 67 / 113

Parallel Reduction

Parallel reduction: sequential addressing (1/2)

(Moreno Maza) CS4402-9535: High-Performance Computing with CUDAUWO-CS4402-CS9535 68 / 113

Parallel Reduction

Parallel reduction: sequential addressing (2/2)

(Moreno Maza) CS4402-9535: High-Performance Computing with CUDAUWO-CS4402-CS9535 69 / 113

Parallel Reduction

Parallel reduction: performance for 4Mb element reduction

(Moreno Maza) CS4402-9535: High-Performance Computing with CUDAUWO-CS4402-CS9535 70 / 113

Parallel Reduction

Parallel reduction: idle threads (1/2)

(Moreno Maza) CS4402-9535: High-Performance Computing with CUDAUWO-CS4402-CS9535 71 / 113

Parallel Reduction

Parallel reduction: idle threads (2/2)

(Moreno Maza) CS4402-9535: High-Performance Computing with CUDAUWO-CS4402-CS9535 72 / 113

Parallel Reduction

Parallel reduction: instruction bottlenecks (1/2)

(Moreno Maza) CS4402-9535: High-Performance Computing with CUDAUWO-CS4402-CS9535 73 / 113

Parallel Reduction

Parallel reduction: instruction bottlenecks (2/2)

At 17 GB/s, we’re far from bandwidth bound:

And we know reduction has low arithmetic intensity

Therefore a likely bottleneck is instruction overhead:

auxiliary instructions that are not loads, stores, or arithmetic for the
core computation,
in other words: address arithmetic and loop overhead.

Strategy: unroll loops.

(Moreno Maza) CS4402-9535: High-Performance Computing with CUDAUWO-CS4402-CS9535 74 / 113

Parallel Reduction

Parallel reduction: unrolling the last warp (1/3)

As reduction proceeds, the number of active threads decreases;

When s ≤ 32, we have only one warp left.

Instructions are SIMD synchronous within a warp

That implies when s ≤ 32:

We do not need to use syncthreads()

We do not need to perform the test if (tid < s) because it doesn’t
save any work.

Let’s unroll the last 6 iterations of the inner loop!

(Moreno Maza) CS4402-9535: High-Performance Computing with CUDAUWO-CS4402-CS9535 75 / 113

Parallel Reduction

Parallel reduction: unrolling the last warp (2/3)

(Moreno Maza) CS4402-9535: High-Performance Computing with CUDAUWO-CS4402-CS9535 76 / 113

Parallel Reduction

Parallel reduction: unrolling the last warp (3/3)

(Moreno Maza) CS4402-9535: High-Performance Computing with CUDAUWO-CS4402-CS9535 77 / 113

Parallel Reduction

Parallel reduction: complete unrolling (1/2)

(Moreno Maza) CS4402-9535: High-Performance Computing with CUDAUWO-CS4402-CS9535 78 / 113

Parallel Reduction

Parallel reduction: complete unrolling (2/2)

(Moreno Maza) CS4402-9535: High-Performance Computing with CUDAUWO-CS4402-CS9535 79 / 113

Parallel Reduction

Parallel reduction: coarsening the base case (1/6)

The work and span of the whole reduction process are Θ(n) and
Θ(log(n)), respectively.

If we allocate Θ(n) threads (for each kernel call) we necessarily do
Θ(nlog(n)) work in total, that is, a significant overhead factor.

Therefore, we need to allocate Θ(n/log(n))) threads, with each
thread doing Θ(log(n)) work.

On G80, best perf with 64-256 blocks of 128 threads with 1024-4096
elements per thread.

(Moreno Maza) CS4402-9535: High-Performance Computing with CUDAUWO-CS4402-CS9535 80 / 113

Parallel Reduction

Parallel reduction: coarsening the base case (2/6)

(Moreno Maza) CS4402-9535: High-Performance Computing with CUDAUWO-CS4402-CS9535 81 / 113

Parallel Reduction

Parallel reduction: coarsening the base case (3/6)

(Moreno Maza) CS4402-9535: High-Performance Computing with CUDAUWO-CS4402-CS9535 82 / 113

Parallel Reduction

Parallel reduction: coarsening the base case (4/6)

(Moreno Maza) CS4402-9535: High-Performance Computing with CUDAUWO-CS4402-CS9535 83 / 113

Parallel Reduction

Parallel reduction: coarsening the base case (5/6)

(Moreno Maza) CS4402-9535: High-Performance Computing with CUDAUWO-CS4402-CS9535 84 / 113

Parallel Reduction

Parallel reduction: coarsening the base case (6/6)

(Moreno Maza) CS4402-9535: High-Performance Computing with CUDAUWO-CS4402-CS9535 85 / 113

Parallel Scan

Plan

1 Optimizing Matrix Transpose with CUDA

2 Performance Optimization

3 Parallel Reduction

4 Parallel Scan

5 Exercises

(Moreno Maza) CS4402-9535: High-Performance Computing with CUDAUWO-CS4402-CS9535 86 / 113

Parallel Scan

Parallel scan: presentation

Another common and important data parallel primitive.

This problem seems inherently sequential, but there is an efficient
parallel algorithm.

Applications: sorting, lexical analysis, string comparison, polynomial
evaluation, stream compaction, building histograms and data
structures (graphs, trees, etc.) in parallel.

(Moreno Maza) CS4402-9535: High-Performance Computing with CUDAUWO-CS4402-CS9535 87 / 113

Parallel Scan

Parallel scan: definitions

Let S be a set, let + : S × S → S be an associative operation on S
with 0 as identity. Let A[0 · · · n − 1] be an array of n elements of S .

Tthe all-prefixes-sum or inclusive scan of A computes the array B of n
elements of S defined by

B[i] =

{
A[0] if i = 0

B[i − 1] + A[i] if 0 < i < n

The exclusive scan of A computes the array B of n elements of S :

C [i] =

{
0 if i = 0

C [i − 1] + A[i − 1] if 0 < i < n

An exclusive scan can be generated from an inclusive scan by shifting
the resulting array right by one element and inserting the identity.

Similarly, an inclusive scan can be generated from an exclusive scan.

We shall focus on exclusive scan.

(Moreno Maza) CS4402-9535: High-Performance Computing with CUDAUWO-CS4402-CS9535 88 / 113

Parallel Scan

Parallel scan: sequential algorithm

void scan(float* output, float* input, int length)

{

output[0] = 0; // since this is a prescan, not a scan

for(int j = 1; j < length; ++j)

{

output[j] = input[j-1] + output[j-1];

}

}

(Moreno Maza) CS4402-9535: High-Performance Computing with CUDAUWO-CS4402-CS9535 89 / 113

Parallel Scan

Parallel scan: naive parallel algorithm (1/4)

This algorithm is not work-efficient since its work is O(nlog2(n)). We
will fix this issue later.

In addition is not suitable for a CUDA implementation either. Indeed,
it works in place which is not feasible for a sufficiently large array
requiring several thread blocks

(Moreno Maza) CS4402-9535: High-Performance Computing with CUDAUWO-CS4402-CS9535 90 / 113

Parallel Scan

Parallel scan: naive parallel algorithm (2/4)

In order to realize CUDA implementation potentially using many thread
blocks, one needs to use a double-buffer.

(Moreno Maza) CS4402-9535: High-Performance Computing with CUDAUWO-CS4402-CS9535 91 / 113

Parallel Scan

Parallel scan: naive parallel algorithm (3/4)

Computing a scan of an array of 8 elements using the nave scan algorithm.
The CUDA version (next slide) can handle arrays only as large as can be
processed by a single thread block running on 1 GPU multiprocessor.

(Moreno Maza) CS4402-9535: High-Performance Computing with CUDAUWO-CS4402-CS9535 92 / 113

Parallel Scan

Parallel scan: naive parallel algorithm (4/4)

(Moreno Maza) CS4402-9535: High-Performance Computing with CUDAUWO-CS4402-CS9535 93 / 113

Parallel Scan

Parallel scan: work-efficient parallel algorithm (1/6)

(Moreno Maza) CS4402-9535: High-Performance Computing with CUDAUWO-CS4402-CS9535 94 / 113

Parallel Scan

Parallel scan: work-efficient parallel algorithm (2/6)

(Moreno Maza) CS4402-9535: High-Performance Computing with CUDAUWO-CS4402-CS9535 95 / 113

Parallel Scan

Parallel scan: work-efficient parallel algorithm (3/6)

(Moreno Maza) CS4402-9535: High-Performance Computing with CUDAUWO-CS4402-CS9535 96 / 113

Parallel Scan

Parallel scan: work-efficient parallel algorithm (4/6)

(Moreno Maza) CS4402-9535: High-Performance Computing with CUDAUWO-CS4402-CS9535 97 / 113

Parallel Scan

Parallel scan: work-efficient parallel algorithm (5/6)

(Moreno Maza) CS4402-9535: High-Performance Computing with CUDAUWO-CS4402-CS9535 98 / 113

Parallel Scan

Parallel scan: work-efficient parallel algorithm (6/6)

(Moreno Maza) CS4402-9535: High-Performance Computing with CUDAUWO-CS4402-CS9535 99 / 113

Parallel Scan

Parallel scan: performance

Performance of the work-efficient, bank conflict free Scan implemented in
CUDA compared to a sequential scan implemented in C++. The CUDA
scan was executed on an NVIDIA GeForce 8800 GTX GPU, the sequential
scan on a single core of an Intel Core Duo Extreme 2.93 GHz.

(Moreno Maza) CS4402-9535: High-Performance Computing with CUDAUWO-CS4402-CS9535 100 / 113

Exercises

Plan

1 Optimizing Matrix Transpose with CUDA

2 Performance Optimization

3 Parallel Reduction

4 Parallel Scan

5 Exercises

(Moreno Maza) CS4402-9535: High-Performance Computing with CUDAUWO-CS4402-CS9535 101 / 113

Exercises

Exercise 1 (1/4)

(1) Write a C function incrementing a float array A of size N

(2) Write a CUDA kernel incrementing a float array A of size N for a 1D
grid, using 1D thread blocks, and assuming that each thread
increments one element.

(3) Assuming that each thread block counts 64 threads, write the host
code launching the kernel (including memory allocation on the device
and host-device data transfers)

(Moreno Maza) CS4402-9535: High-Performance Computing with CUDAUWO-CS4402-CS9535 102 / 113

Exercises

Exercise 1 (2/4)

(1) Write a C function incrementing a float array A of size N

void increment_Array_On_Host(float* A, int N)

{

int i;

for (i=0; i< N; i++)

A[i] = A[i] + 1.f;

}

(Moreno Maza) CS4402-9535: High-Performance Computing with CUDAUWO-CS4402-CS9535 103 / 113

Exercises

Exercise 1 (3/4)

(2) Write a CUDA kernel incrementing a float array A of size N for a 1D
grid, using 1D thread blocks, and assuming that each thread
increments one element.

__global__ void increment_On_Device(float *A, int N)

{

int idx = blockIdx.x*blockDim.x + threadIdx.x;

if (idx<N)

A[idx] = A[idx]+1.0f;

}

(Moreno Maza) CS4402-9535: High-Performance Computing with CUDAUWO-CS4402-CS9535 104 / 113

Exercises

Exercise 1 (4/4)

(3) Assuming that each thread block counts 64 threads, write the host
code launching the kernel (including memory allocation on the device
and host-device data transfers)

float *A_h;

float *A_d;

cudaMalloc((void **) &A_d, size);

// Allocate memory on the host for A and initialize A

..

cudaMemcpy(A_d, A_h, sizeof(float)*N,

cudaMemcpyHostToDevice);

int bSize = 64;

intnBlocks = N/bSize + (N%bSize == 0?0:1);

Increment_On_Device <<< nBlocks, bSize >>> (A_d, N);

cudaMemcpy(A_h, A_d, sizeof(float)*N, cudaMemcpyDeviceToHost

free(A_h);

cudaFree(A_d);

(Moreno Maza) CS4402-9535: High-Performance Computing with CUDAUWO-CS4402-CS9535 105 / 113

Exercises

Exercise 2 (1/4)

We recall below the Sieve of Eratosthenes

def eratosthenes_sieve(n):

Create a candidate list within which non-primes will be

marked as None; only candidates below sqrt(n) need be checked.

candidates = range(n+1)

fin = int(n**0.5)

Loop over the candidates, marking out each multiple.

for i in xrange(2, fin+1):

if not candidates[i]:

continue

candidates[2*i::i] = [None] * (n//i - 1)

Filter out non-primes and return the list.

return [i for i in candidates[2:] if i]

Write a CUDA kernel implementing the Sieve of Eratosthenes on an input n:

(1) Start with a naive single thread-block kernel not using shared memory;

(2) Then, use shared memory and multiple thread blocks.

(Moreno Maza) CS4402-9535: High-Performance Computing with CUDAUWO-CS4402-CS9535 106 / 113

Exercises

Exercise 2 (2/4)

(1) A naive kernel not using shared memory.

__global__ static void Sieve(int * sieve,int sieve_size)

{

int idx = blockIdx.x * blockDim.x + threadIdx.x;

if (idx > 1) {

for(int i=idx+idx;i < sieve_size;i+=idx)

sieve[i] = 1;

}

}

The launching code could be:

cudaMalloc((void**) &device_sieve, sizeof(int) * sieve_size);

Sieve<<<1, sqrt(sieve_size), 0>>>(device_sieve, sieve_size);

But this would be quite inefficient. WHy?
(Moreno Maza) CS4402-9535: High-Performance Computing with CUDAUWO-CS4402-CS9535 107 / 113

Exercises

Exercise 2 (3/4)

(1) A kernel using shared memory.

__global__ static void Sieve(int * sieve,int sieve_size)

{

int b_x = blockIdx.x;

int b_w = blockDim.x;

int t_x = threadIdx.x;

int offset = b_x * b_w;

int ix = offset + tid;

int t_y = threadIdx.y;

// copy the segment (tile) to shared memory

_shared__ int A[b_w]; A[tid] = sieve[ix];

__syncthreads();

knocker = tid;

// tid knocks down numbers that are multiple

// of knocker in the range [offset, offset + b_w)

}

This code is almost correct . . . Let’s fix it!

(Moreno Maza) CS4402-9535: High-Performance Computing with CUDAUWO-CS4402-CS9535 108 / 113

Exercises

Exercise 2 (4/4)

(1) A kernel using shared memory.

knocker = t_y;

// tid knocks down numbers that are multiple

// of knocker in the range [offset, offset + b_w[

int start = (offset % knocker == 0)

? offset : (offset / knocker +1) * knocker;

for (int jx = start; jx < offset + b_w; jx += knoecker)

A[jx - offset] =1;

__syncthreads();

sieve[ix] = A[tid];

}

This code is almost correct . . . Let’s fix it!
(Moreno Maza) CS4402-9535: High-Performance Computing with CUDAUWO-CS4402-CS9535 109 / 113

Exercises

Exercise 3 (1/4)

Write a CUDA kernel (and the launching code) implementing the reversal
of an input integer n. This reversing process will be out-of-place. As in the
previous exercise:

(1) start with a naive kernel not using shared memory

(2) then develop a kernel using shared memory.

(Moreno Maza) CS4402-9535: High-Performance Computing with CUDAUWO-CS4402-CS9535 110 / 113

Exercises

Exercise 3 (2/4)

__global__ void reverseArrayBlock(int *d_out, int *d_in)

{

int inOffset = blockDim.x * blockIdx.x;

int outOffset = blockDim.x * (gridDim.x - 1 - blockIdx.x);

int in = inOffset + threadIdx.x;

int out = outOffset + (blockDim.x - 1 - threadIdx.x);

d_out[out] = d_in[in];

}

int numThreadsPerBlock = 256;

int numBlocks = dimA / numThreadsPerBlock;

dim3 dimGrid(numBlocks);

dim3 dimBlock(numThreadsPerBlock);

reverseArrayBlock<<< dimGrid,

dimBlock >>>(d_b, d_a);

(Moreno Maza) CS4402-9535: High-Performance Computing with CUDAUWO-CS4402-CS9535 111 / 113

Exercises

Exercise 3 (3/4)

__global__ void reverseArrayBlock(int *d_out, int *d_in)

{

extern __shared__ int s_data[];

int inOffset = blockDim.x * blockIdx.x;

int in = inOffset + threadIdx.x;

// Load one element per thread from device memory and store it

// *in reversed order* into temporary shared memory

s_data[blockDim.x - 1 - threadIdx.x] = d_in[in];

// Block until all threads in the block have

// written their data to shared mem

__syncthreads();

// write the data from shared memory in forward order,

// but to the reversed block offset as before

int outOffset = blockDim.x * (gridDim.x - 1 - blockIdx.x);

int out = outOffset + threadIdx.x;

d_out[out] = s_data[threadIdx.x];

}

(Moreno Maza) CS4402-9535: High-Performance Computing with CUDAUWO-CS4402-CS9535 112 / 113

Exercises

Exercise 3 (4/4)

int numThreadsPerBlock = 256;

int numBlocks = dimA / numThreadsPerBlock;

int sharedMemSize = numThreadsPerBlock * sizeof(int);

// launch kernel

dim3 dimGrid(numBlocks);

dim3 dimBlock(numThreadsPerBlock);

reverseArrayBlock<<< dimGrid, dimBlock,

sharedMemSize >>>(d_b, d_a);

(Moreno Maza) CS4402-9535: High-Performance Computing with CUDAUWO-CS4402-CS9535 113 / 113

