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Hardware

von Neumann Architecture

In 1945, the Hungarian mathematician John von Neumann proposed
the above organization for hardware computers.
The Control Unit fetches instructions/data from memory, decodes the
instructions and then sequentially coordinates operations to
accomplish the programmed task.
The Arithmetic Unit performs basic arithmetic operation, while
Input/Output is the interface to the human operator.
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The Pentium Family

The Pentium Family.



Hardware

Parallel computer hardware

Most computers today (including tablets, smartphones, etc.) are
equipped with several processing units (control+arithmetic units).

Various characteristics determine the types of computations: shared
memory vs distributed memory, single-core processors vs multicore
processors, data-centric parallelism vs task-centric parallelism.

Historically, shared memory machines have been classified as UMA
and NUMA, based upon memory access times.



Hardware

Uniform memory access (UMA)

Identical processors, equal access and access times to memory.
In the presence of cache memories, cache coherency is accomplished
at the hardware level: if one processor updates a location in shared
memory, then all the other processors know about the update.
UMA architectures were first represented by Symmetric
Multiprocessor (SMP) machines.
Multicore processors follow the same architecture and, in addition,
integrate the cores onto a single circuit die.



Hardware

Non-uniform memory access (NUMA)

Often made by physically linking two or more SMPs (or multicore
processors).
Global address space provides a user-friendly programming
perspective to memory, that is, it feels like there is a single large
memory where all data reside.
However, not all processors have equal access time to all memories,
since memory access across link is slower.
In fact, memory contention (that is, traffic jam) often limits the
ability to scale of these architectures.
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Multicore processors
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Multicore processors
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Hardware

Once uopn a time, every thing was slow in a computer . . .
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Graphics processing units (GPUs)



Hardware

Graphics processing units (GPUs)

A GPU consists of several streaming multiprocessors (SMs) with a
large shared memory. In addition, each SM has a local (and private)
and small memory. Thus, GPUs cannot be classified as UMA or
NUMA.



Hardware

Graphics processing units (GPUs)

In a GPU, the small local memories have much smaller access time
than the large shared memory.

Thus, as much as possible, cores access data in the local memories
while the shared memory should essentially be used for data exchange
between SMs.



Hardware

Distributed Memory

Distributed memory systems require a communication network to
connect inter-processor memory.

Processors have their own local memory and operate independently.

Memory addresses in one processor do not map to another processor,
so there is no concept of global address space across all processors.

Data exchange between processors is managed by the programmer ,
not by the hardware.



Hardware

Hybrid Distributed-Shared Memory

The largest and fastest computers in the world today employ both
shared and distributed memory architectures.

Current trends seem to indicate that this type of memory architecture
will continue to prevail.

While this model allows for applications to scale, it increases the
complexity of writing computer programs.
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Types of Parallelism

Pipelining

Pipelining is a common way to organize work with the objective of
optimizing throughput.

It turns out that this is also a way to execute concurrently several
tasks (that is, work units) processable by the same pipeline.



Types of Parallelism

Instruction pipeline

Above is a generic pipeline with four stages: Fetch, Decode, Execute,
Write-back.
The top gray box is the list of instructions waiting to be executed; the
bottom gray box is the list of instructions that have been completed;
and the middle white box is the pipeline.
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Data parallelism

The data set is typically organized into a common structure, such as
an array.

A set of tasks work collectively on that structure, however, each task
works on a different region.

Tasks perform the same operation on their region of work, for
example, ”multiply every array element by some value”.
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Data parallelism (2/2)

Illustration of a data-centric parallel program.
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Task parallelism (1/4)

program:

...

if CPU="a" then

do task "A"

else if CPU="b" then

do task "B"

end if

...

end program

Task parallelism is achieved when each processor executes a different
thread (or process) on the same or different data.

The threads may execute the same or different code.
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Task parallelism (2/4)

Code executed by CPU "a":

program:

...

do task "A"

...

end program

Code executed by CPU "b":

program:

...

do task "B"

...

end program

In the general case, different execution threads communicate with one
another as they work.
Communication usually takes place by passing data from one thread to
the next as part of a work-flow.
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Task parallelism (3/4)

Task parallelism can be regarded as a more general scheme than data
parallelism.

It applies to situations where the work can be decomposed evenly or
where the decomposition of the work is not predictable.
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Task parallelism (4/4)

In some situations, one may feel that work can be decomposed evenly.
However, as time progresses, some tasks may finish before others
Then, some processors may become idle and should be used, if other
tasks can be launched. This mapping of tasks onto hardware
resources is called scheduling.
In data-centric parallel applications, scheduling can be done off-line
(that is, by the programmer) or by the hardware (like GPUs).
For task-centric parallel applications, it is desirable that scheduling is
done on-line (that is, dynamically) so as to cover cases where tasks
consume unpredictable amounts of resources.
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Patterns in task or data distribution

Exchanging data among processors in a parallel fashion provides
fundamental examples of concurrent programs.
Above, a master processor broadcasts or scatters data or tasks to
slave processors.
The same master processor gathers or reduces data from slave
processors.
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Stencil computations

In scientific computing, stencil computations are very common.
Typically, a procedure updates array elements according to some fixed
pattern, called stencil.
In the above, a 2D array of 100× 100 elements is updated by the
stencil T .
With a bit of care, one array-update can be done in a concurrent
fashion.
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Stencil computations (2/3)

The above picture illustrates dissipation of heat into a 2D grid.

A differential equation rules this phenomenon.

Once this discretized, through the finite element method, this leads a
stencil computation.
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Stencil computations (3/3)

The above picture illustrates dissipation of heat into a 2D grid.

A differential equation rules this phenomenon.

Once this discretized, through the finite element method, this leads a
stencil computation.
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Pascal triangle construction: another stencil computation
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Construction of the Pascal Triangle: nearly the simplest stencil
computation!



Types of Parallelism

Divide and conquer: principle

I
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Each triangle region can computed as a square region followed by two
(concurrent) triangle regions.

Each square region can also be computed in a divide and conquer
manner.
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Blocking strategy: principle
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Let B be the order of a block and n be the number of elements.

Each block is processed serially (as a task) and the set of all blocks is
computed concurrently.
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Concurrency Platforms: Three Examples Julia

Distributed arrays and parallel reduction (1/4)

[moreno@compute-0-3 ~]$ julia -p 5

_

_ _ _(_)_ | A fresh approach to technical computing

(_) | (_) (_) | Documentation: http://docs.julialang.org

_ _ _| |_ __ _ | Type "help()" to list help topics

| | | | | | |/ _‘ | |

| | |_| | | | (_| | | Version 0.2.0-prerelease+3622

_/ |\__’_|_|_|\__’_| | Commit c9bb96c 2013-09-04 15:34:41 UTC

|__/ | x86_64-redhat-linux

julia> da = @parallel [2i for i = 1:10]

10-element DArray{Int64,1,Array{Int64,1}}:

2

4

6

8

10

12

14

16

18

20
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Distributed arrays and parallel reduction (2/4)

julia> procs(da)

4-element Array{Int64,1}:

2

3

4

5

julia> da.chunks

4-element Array{RemoteRef,1}:

RemoteRef(2,1,1)

RemoteRef(3,1,2)

RemoteRef(4,1,3)

RemoteRef(5,1,4)

julia>

julia> da.indexes

4-element Array{(Range1{Int64},),1}:

(1:3,)

(4:5,)

(6:8,)

(9:10,)

julia> da[3]

6

julia> da[3:5]

3-element SubArray{Int64,1,DArray{Int64,1,Array{Int64,1}},(Range1{Int64},)}:

6

8

10
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Distributed arrays and parallel reduction (3/4)

julia> fetch(@spawnat 2 da[3])

6

julia>

julia> { (@spawnat p sum(localpart(da))) for p=procs(da) }

4-element Array{Any,1}:

RemoteRef(2,1,71)

RemoteRef(3,1,72)

RemoteRef(4,1,73)

RemoteRef(5,1,74)

julia>

julia> map(fetch, { (@spawnat p sum(localpart(da))) for p=procs(da) })

4-element Array{Any,1}:

12

18

42

38

julia>

julia> sum(da)

110
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Distributed arrays and parallel reduction (4/4)

julia> reduce(+, map(fetch,

{ (@spawnat p sum(localpart(da))) for p=procs(da) }))

110

julia>

julia> preduce(f,d) = reduce(f,

map(fetch,

{ (@spawnat p f(localpart(d))) for p=procs(d) }))

# methods for generic function preduce

preduce(f,d) at none:1

julia> function Base.minimum(x::Int64, y::Int64)

min(x,y)

end

minimum (generic function with 10 methods)

julia> preduce(minimum, da)

2
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From Cilk to Cilk++ and Cilk Plus

Cilk has been developed since 1994 at the MIT Laboratory for
Computer Science by Prof. Charles E. Leiserson and his group, in
particular by Matteo Frigo.

Besides being used for research and teaching, Cilk was the system
used to code the three world-class chess programs: Tech, Socrates,
and Cilkchess.

Over the years, the implementations of Cilk have run on computers
ranging from networks of Linux laptops to an 1824-nodes Intel
Paragon.

From 2007 to 2009 Cilk has lead to Cilk++, developed by Cilk Arts,
an MIT spin-off, which was acquired by Intel in July 2009 and
became Cilk Plus, see http://www.cilk.com/

Cilk++ can be freely downloaded at
http://software.intel.com/en-us/articles/download-intel-cilk-sdk/

Cilk is still developed at MIT
http://supertech.csail.mit.edu/cilk/
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CilkPlus (and Cilk Plus)

CilkPlus (resp. Cilk) is a small set of linguistic extensions to C++

(resp. C) supporting task parallelism, using fork & join constructs.

Both Cilk and CilkPlus feature a provably efficient work-stealing
scheduler.

CilkPlus provides a hyperobject library for performing reduction for
data aggregation.

CilkPlus includes the Cilkscreen race detector and the Cilkview

performance analyzer.
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Task Parallelism in CilkPlus

int fib(int n)

{

if (n < 2) return n;

int x, y;

x = cilk_spawn fib(n-1);

y = fib(n-2);

cilk_sync;

return x+y;

}

The named child function cilk spawn fib(n-1) may execute in
parallel with its parent

CilkPlus keywords cilk spawn and cilk sync grant permissions
for parallel execution. They do not command parallel execution.
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The fork-join parallelism model

int fib (int n) {
if (n<2) return (n);

int fib (int n) {
if (n<2) return (n);

Example:
fib(4)( ) ( );

else {
int x,y;
x = cilk_spawn fib(n-1);
y  fib(n 2);

( ) ( );
else {

int x,y;
x = cilk_spawn fib(n-1);
y  fib(n 2);

fib(4)

4
y = fib(n-2);
cilk_sync;
return (x+y);

}

y = fib(n-2);
cilk_sync;
return (x+y);

} 3 2}
}

}
}

2 1 1 0

“Processor 
oblivious”

2

1

1 1 0

0 The computation dag
unfolds dynamically.

1 0

At run time, the task DAG unfolds dynamically.
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Loop Parallelism in CilkPlus

a11 a12 ⋯ a1n
a21 a22 ⋯ a2n

a11 a21 ⋯ an1
a12 a22 ⋯ an221 22 2n

⋮ ⋮ ⋱ ⋮
an1 an2 ⋯ ann

12 22 n2

⋮ ⋮ ⋱ ⋮
a1n a2n ⋯ annn1 n2 nn 1n 2n nn

A AT

// indices run from 0, not 1
cilk_for (int i=1; i<n; ++i) {

for (int j=0; j<i; ++j) {
d bl [i][j]double temp = A[i][j];
A[i][j] = A[j][i];
A[j][i] = temp;

}}
}

The iterations of a cilk for loop may execute in parallel.
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Serial Semantics (1/2)

Cilk (resp. CilkPlus) is a multithreaded language for parallel
programming that generalizes the semantics of C (resp. C++) by
introducing linguistic constructs for parallel control.

Cilk (resp. CilkPlus) is a faithful extension of C (resp. C++):

• The C (resp. C++) elision of a Cilk (resp. CilkPlus) is a correct
implementation of the semantics of the program.

• Moreover, on one processor, a parallel Cilk (resp. CilkPlus) program
scales down to run nearly as fast as its C (resp. C++) elision.

To obtain the serialization of a CilkPlus program

#define cilk_for for

#define cilk_spawn

#define cilk_sync
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Serial Semantics (2/2)

int fib (int n) {
if (n<2) return (n);
else {

int x,y;
x = cilk spawn fib(n-1);

Cilk++ source

x  cilk_spawn fib(n 1);
y = fib(n-2);
cilk_sync;
return (x+y);

}
}

int fib (int n) {
if (n<2) return (n);

else {
int x,y;
x  fib(n 1);x = fib(n-1);
y = fib(n-2);
return (x+y);

}
} Serialization
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Scheduling

Memory I/O

Network

P$ $ $…P
P P P
$ $ $

A scheduler’s job is to map a computation to particular processors. Such
a mapping is called a schedule.

If decisions are made at runtime, the scheduler is online, otherwise, it
is offline

CilkPlus’s scheduler maps strands onto processors dynamically at
runtime.
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The CilkPlus Platform

Cilk++
Compiler

Conventional

Hyperobject
Library1

2 3int fib (int n) {
if (n<2) return (n);
else {

int x,y;
x = cilk_spawn fib(n-1);
y = fib(n-2);

Cilk++source

Conventional 
Compiler

y b( );
cilk_sync;
return (x+y);

}
}

Cilkview
S l bilit A l

6

BinaryBinary Cilkscreen

Linker

5

int fib (int n) {
if (n<2) return (n);

else {
int x,y;
x = fib(n-1);
y = fib(n 2);

int fib (int n) {
if (n<2) return (n);

else {
int x,y;
x = fib(n-1);
y = fib(n 2);

Scalability Analyzer

BinaryBinary Cilkscreen
Race Detector

y = fib(n-2);
return (x+y);

}
}

y = fib(n-2);
return (x+y);

}
} Serialization

Runtime4Conventional 
Regression Tests

Parallel 
Regression Tests

Runtime 
System

4

Reliable Single-
Threaded Code

Exceptional 
Performance

Reliable Multi-
Threaded Code
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Benchmarks for parallel divide-and-conquer matrix multiplication

Multiplying a 4000x8000 matrix by a 8000x4000 matrix

on 32 cores = 8 sockets x 4 cores (Quad Core AMD Opteron 8354)
per socket.

The 32 cores share a L3 32-way set-associative cache of 2 Mbytes.

#core Elision (s) Parallel (s) speedup

8 420.906 51.365 8.19
16 432.419 25.845 16.73
24 413.681 17.361 23.83
32 389.300 13.051 29.83
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Uisng Cilkview
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CUDA design goals

Enable heterogeneous systems (i.e., CPU+GPU)

Scale to 100’s of cores, 1000’s of parallel threads

Use C/C++ with minimal extensions

Let programmers focus on parallel algorithms (as much as possible).
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Heterogeneous programming (1/3)

A CUDA program is a serial program with parallel kernels, all in C.

The serial C code executes in a host (= CPU) thread

The parallel kernel C code executes in many device threads across
multiple GPU processing elements, called streaming processors (SP).
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Heterogeneous programming (2/3)

Thus, the parallel code (kernel) is launched and executed on a device
by many threads.

Threads are grouped into thread blocks.

One kernel is executed at a time on the device.

Many threads execute each kernel.
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Heterogeneous programming (3/3)

The parallel code is written for a thread
• Each thread is free to execute a unique code path
• Built-in thread and block ID variables are used to map each thread

to a specific data tile (see next slide).

Thus, each thread executes the same code on different data based on
its thread and block ID.
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Example: increment array elements (1/2)

See our example number 4 in /usr/local/cs4402/examples/4
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Example: increment array elements (2/2)
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Blocks run on multiprocessors
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Streaming processors and multiprocessors
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Hardware multithreading

Hardware allocates resources to blocks:
• blocks need: thread slots, registers, shared memory
• blocks don’t run until resources are available

Hardware schedules threads:
• threads have their own registers
• any thread not waiting for something can run
• context switching is free every cycle

Hardware relies on threads to hide latency:
• thus high parallelism is necessary for performance.
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A Common programming strategy

Partition data into subsets that fit into shared memory
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A Common Programming Strategy

Handle each data subset with one thread block
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A Common programming strategy

Load the subset from global memory to shared memory, using multiple
threads to exploit memory-level parallelism.
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A Common programming strategy

Perform the computation on the subset from shared memory.
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A Common programming strategy

Copy the result from shared memory back to global memory.
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What is the Messaging Passing Interface (MPI)?

A language-independent communation protocol for parallel computers

Run the same code on a number of nodes (different hardware threads,
servers)

Explicit message passing

Dominant model for high performance computing
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High Level Presentation of MPI

MPI is a type of SPMD (single process, multiple data)

Idea: to have multiple instances of the same program all working on
different data

The program could be running on the same machine, or cluster of
machines

Allow simple communcation of data been processes
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MPI Functions
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MPI Function Notes

MPI Datatype is just an enum, MPI Comm is commonly
MPI COMM WORLD for the global communication channel

dest/source are the rank of the process to send the message
to/receive the message from:

• You may use MPI ANY SOURCE in MPI Recv

Both MPI Send and MPI Recv are blocking calls

You can use man MPI Send or man MPI Recv for good
documentation

The tag allows you to organize your messages, so you can receive
only a specific tag
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Example

Here’s a common example:

Have the master (rank 0) process create some strings and send them
to the worker processes

The worker processes modify the string and send it back to the master
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Example Code (1)
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Example Code (2)
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Example Code (3)
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Example Code (4)
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Compiling
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Compiling and Running
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Other Things MPI Can Do

We can use nodes on a network (by using a hostfile)

We can even use MPMD, for multiple processes, multiple data.

mpi run np 2 a.out : np 2 b.out

All in the same MPI COMM WORLD

Ranks 0 and 1 are instances of a.out

Ranks 2 and 3 are instances of b.out

You could also use the app flag with an appfile instead of typing out
everything
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Performance Considerations and concluding remarks

Your bottleneck for performance here is messages

Keep the communication to a minimum

The more machines, the slower the communication in general

MPI is a powerful tool for highly parallel computing across multiple
machines

Programming is similar to a more powerful version of fork/join
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