CS4403 - CS9535: An Overview of Parallel
Computing

Marc Moreno Maza
University of Western Ontario, London, Ontario (Canada)

January 10, 2017

Plan

@ Hardware
© Types of Parallelism

© Concurrency Platforms: Three Examples
e Julia
o Cilk
o CUDA
o MPI

Plan

@ Hardware

von Neumann Architecture

Arithmetic
Logic
Unit

e 2

@ In 1945, the Hungarian mathematician John von Neumann proposed
the above organization for hardware computers.

@ The Control Unit fetches instructions/data from memory, decodes the
instructions and then sequentially coordinates operations to
accomplish the programmed task.

@ The Arithmetic Unit performs basic arithmetic operation, while
Inout/Output is the interface to the human operator.

Hardware

The Pentium Family

» intel- =
el pentium™ intel.

intgl- "
pentiume intgl.
Pentium™

intal.

pentium™

intgl-] e intgle
pentiume pentiume

pentiume

intgls
pentiume

w/ MMX™ tech

Parallel computer hardware

@ Most computers today (including tablets, smartphones, etc.) are
equipped with several processing units (control+arithmetic units).

@ Various characteristics determine the types of computations: shared
memory vs distributed memory, single-core processors vs multicore
processors, data-centric parallelism vs task-centric parallelism.

@ Historically, shared memory machines have been classified as UMA
and NUMA, based upon memory access times.

Uniform memory access (UMA)

Shared Memory (UNMA)

o ldentical processors, equal access and access times to memory.

@ In the presence of cache memories, cache coherency is accomplished
at the hardware level: if one processor updates a location in shared
memory, then all the other processors know about the update.

@ UMA architectures were first represented by Symmetric
Multiprocessor (SMP) machines.

@ Multicore processors follow the same architecture and, in addition,
integrate the cores onto a single circuit die.

Non-uniform memory access (NUMA)

Bus Interconnect

Shared Memory (NUMA)

e Often made by physically linking two or more SMPs (or multicore
processors).

@ Global address space provides a user-friendly programming
perspective to memory, that is, it feels like there is a single large
memory where all data reside.

@ However, not all processors have equal access time to all memories,
since memory access across link is slower.

@ In fact, memory contention (that is, traffic jam) often limits the
ability to scale of these architectures.

Hardware

Multicore processors

Multicore processors

Core Core

L1 | L1 L1 | L1 L1 | L1 L1 | L1

inst data ins data ins data ins data

Hardware

The CPU-Memory Gap

The increasing gap between DRAM, disk, and CPU

speeds.
100,000,000 * —
—
10,000,000 ——
1,000,000
100,000 | —— Disk seek time
2 10,000 —%— DRAM access time
1.000 —&— SRAM access time
' —*—CPU cycle ti
100 gycle tire
10
1
1980 1985 1990 1995 2000

Once uopn a time, every thing was slow in a computer ...

Hardware

Graphics processing units (GPUs)

NVIDIA.

@i

Graphics processing units (GPUs)

o A GPU consists of several streaming multiprocessors (SMs) with a
large shared memory. In addition, each SM has a local (and private)

and small memory. Thus, GPUs cannot be classified as UMA or
NUMA.

Graphics processing units (GPUs)

@ In a GPU, the small local memories have much smaller access time
than the large shared memory.

@ Thus, as much as possible, cores access data in the local memories
while the shared memory should essentially be used for data exchange

between SMs.

Distributed Memory

Distributed memory systems require a communication network to
connect inter-processor memory.

Processors have their own local memory and operate independently.

Memory addresses in one processor do not map to another processor,
so there is no concept of global address space across all processors.

Data exchange between processors is managed by the programmer ,
not by the hardware.

Hybrid Distributed-Shared Memory

@ The largest and fastest computers in the world today employ both
shared and distributed memory architectures.

@ Current trends seem to indicate that this type of memory architecture
will continue to prevail.

@ While this model allows for applications to scale, it increases the
complexity of writing computer programs.

Plan

© Types of Parallelism

Types of Parallelism

Pipelining

Release

Commit Stage acceptance capacity
testing testing

@ Pipelining is a common way to organize work with the objective of
optimizing throughput.

@ It turns out that this is also a way to execute concurrently several
tasks (that is, work units) processable by the same pipeline.

Types of Parallelism

Instruction pipeline

Clock Cycle
[|
Waiting . .
instructions I [I
[HEn
A RG] | | DGR
2 Jrezeese D D O] I I DX DD X
g | e | X DX (] O I I X)X
Stage 4: Write-back IE @ E IE l:‘ . . . g
CEEN
Completed D . .
Instructions I:l -
O

@ Above is a generic pipeline with four stages: Fetch, Decode, Execute,
Write-back.

@ The top gray box is the list of instructions waiting to be executed; the
bottom gray box is the list of instructions that have been completed;
and the middle white box is the pipeline.

Types of Parallelism

Data parallelism

/ |

/ | \
| 1
T T

Problem Data Set

@ The data set is typically organized into a common structure, such as
an array.

@ A set of tasks work collectively on that structure, however, each task
works on a different region.

@ Tasks perform the same operation on their region of work, for
example, "multiply every array element by some value”.

Types of Parallelism

Data parallelism (2/2)

\/

do i=m,n
A(i)=B(i)*delta
end do

task 1 task 2 task n

[llustration of a data-centric parallel progr

am.

Types of Parallelism

Task parallelism (1/4)

program:

if CPU="a" then

do task "A"

else if CPU="b" then
do task "B"

end if

end program

@ Task parallelism is achieved when each processor executes a different
thread (or process) on the same or different data.

@ The threads may execute the same or different code.
°

Task parallelism (2/4)

Code executed by CPU "a":

program:

<'ic.>.task "A"

end program

Code executed by CPU "b":

program:

c.h;.task "B"

end progrem

@ In the general case, different execution threads communicate with one

another as they work.
o Communication usually takes place by passing data from one thread to

the next as part of a work-flow.

task 0 task 1 task 2 task 3

@ Task parallelism can be regarded as a more general scheme than data
parallelism.

o It applies to situations where the work can be decomposed evenly or
where the decomposition of the work is not predictable.

Types of Parallelism

Task parallelism (4/4)

time

@ In some situations, one may feel that work can be decomposed evenly.
However, as time progresses, some tasks may finish before others

@ Then, some processors may become idle and should be used, if other
tasks can be launched. This mapping of tasks onto hardware
resources is called scheduling.

@ In data-centric parallel applications, scheduling can be done off-line
(that is, by the programmer) or by the hardware (like GPUs).

@ For task-centric parallel applications, it is desirable that scheduling is
done on-line (that is, dynamically) so as to cover cases where tasks
consume unpredictable amounts of resources.

Types of Parallelism

Patterns in task or data distribution

gather reduction

@ Exchanging data among processors in a parallel fashion provides
fundamental examples of concurrent programs.
@ Above, a master processor broadcasts or scatters data or tasks to

slave processors.
@ The same master processor gathers or reduces data from slave

Processors.

Types of Parallelism

Stencil computations

I=10,...,99
S=R
N Sy:ZP R
1, <0
So((z,y)) =<0, 0<z <100
1, = >100
s =((0,-1),(~1,0),(1,0),(0,1))
T:R'S R
T((xy, T2, 23,24)) = 0.25 - (21 + T2 + T3 + 24)

SIOOCI

ZDJacobl Iteration on a 1002 Array

@ In scientific computing, stencil computations are very common.
@ Typically, a procedure updates array elements according to some fixed

pattern, called stencil.
@ In the above, a 2D array of 100 x 100 elements is updated by the

stencil 7.

Types of Parallelism

Stencil computations (2/3)

@ The above picture illustrates dissipation of heat into a 2D grid.
o A differential equation rules this phenomenon.

@ Once this discretized, through the finite element method, this leads a
stencil computation.

Types of Parallelism

Stencil computations (3/3)

U xy+

Uxdy | Uxy | Ux+y

U x,y-1

@ The above picture illustrates dissipation of heat into a 2D grid.
o A differential equation rules this phenomenon.

@ Once this discretized, through the finite element method, this leads a
stencil computation.

Types of Parallelism

Pascal triangle construction: another stencil computation

10 | 20 | 3537

15359

21 56
28

Construction of the Pascal Triangle: nearly the simplest stencil
computation!

Types of Parallelism

Divide and conquer: principle

I i

I
I 1T

@ Each triangle region can computed as a square region followed by two
(concurrent) triangle regions.

@ Each square region can also be computed in a divide and conquer
manner.

Types of Parallelism

Blocking strategy: principle

[ofofofoJoJolo]o]

12 3 |4
2 34

- 3 4

- 4

@ Let B be the order of a block and n be the number of elements.

@ Each block is processed serially (as a task) and the set of all blocks is
computed concurrently.

oncurrency Platforms:

Plan

© Concurrency Platforms: Three Examples
e Julia
o Cilk
o CUDA
o MPI

Concurrency Platforms: Three Julia

Distributed arrays and parallel reduction (1/4)

[moreno@compute-0-3 ~1$ julia -p 5

A fresh approach to technical computing
Documentation: http://docs.julialang.org
Type "help()" to list help topics

I Y G B
JRVZR WU D D W
[

|
|
|
I/ -1 |
| Version 0.2.0-prerelease+3622
| Commit c9bb96c 2013-09-04 15:34:41 UTC
| x86_64-redhat-linux
julia> da = @parallel [2i for i = 1:10]
10-element DArray{Int64,1,Array{Int64,1}}:
2
4
6
8
10
12
14
16
18
20

Distributed arrays and parallel reduction (2/4)

julia> procs(da)
4-element Array{Int64,1}:
2

3
4
5

julia> da.chunks
4-element Array{RemoteRef,1}:
RemoteRef (2,1,1)
RemoteRef (3,1,2)
RemoteRef (4,1,3)
RemoteRef (5,1,4)

julia>

julia> da.indexes
4-element Array{(Rangel{Int64},),1}:
(1:3,)
(4:5,)
(6:8,)
(9:10,)

julia> da[3]
6

julia> da[3:5]

3-element SubArray{Int64,1,DArray{Int64,1,Array{Int64,1}}, (Rangel{Int64},)}:

6
8
10

urrency Platforms: Three

Distributed arrays and parallel reduction (3/4)

julia> fetch(@spawnat 2 da[3])
6

julia>

julia> { (@spawnat p sum(localpart(da))) for p=procs(da) }
4-element Array{Any,1}:

RemoteRef (2,1,71)

RemoteRef (3,1,72)

RemoteRef (4,1,73)

RemoteRef (5,1,74)

julia>

julia> map(fetch, { (@spawnat p sum(localpart(da))) for p=procs(da) })
4-element Array{Any,1}:

12

18

42

38

julia>

julia> sum(da)
110

Concurrency Platforms: Three Examples [ENAIEY

Distributed arrays and parallel reduction (4/4)

julia> reduce(+, map(fetch,
{ (@spawnat p sum(localpart(da))) for p=procs(da) }))
110

julia>

julia> preduce(f,d) = reduce(f,
map (fetch,
{ (@spawnat p f(localpart(d))) for p=procs(d) }))
methods for generic function preduce
preduce(f,d) at none:1

julia> function Base.minimum(x::Int64, y::Int64)
min(x,y)
end

minimum (generic function with 10 methods)

julia> preduce(minimum, da)
2

Concurrency Platforms: Three Examples Cilk

From Cilk to Cilk4++ and Cilk Plus

@ Cilk has been developed since 1994 at the MIT Laboratory for
Computer Science by Prof. Charles E. Leiserson and his group, in
particular by Matteo Frigo.

@ Besides being used for research and teaching, Cilk was the system
used to code the three world-class chess programs: Tech, Socrates,
and Cilkchess.

@ Over the years, the implementations of Cilk have run on computers
ranging from networks of Linux laptops to an 1824-nodes Intel
Paragon.

@ From 2007 to 2009 Cilk has lead to Cilk++, developed by Cilk Arts,
an MIT spin-off, which was acquired by Intel in July 2009 and
became Cilk Plus, see http://www.cilk.com/

@ Cilk++ can be freely downloaded at
http://software.intel.com/en-us/articles/download-intel-c3

@ Cilk is still developed at MIT
http://supertech.csail.mit.edu/cilk/

Concurrency Platforms: Three Examples Cilk

CilkPlus (and Cilk Plus)

@ CilkPlus (resp. Cilk) is a small set of linguistic extensions to C++
(resp. C) supporting task parallelism, using fork & join constructs.

@ Both Cilk and CilkPlus feature a provably efficient work-stealing
scheduler.

@ CilkPlus provides a hyperobject library for performing reduction for
data aggregation.

@ CilkPlus includes the Cilkscreen race detector and the Cilkview
performance analyzer.

Concurrency Platforms: Three Examples Cilk

Task Parallelism in CilkPlus

int fib(int n)
{
if (n < 2) return n;
int x, y;
x = cilk_spawn fib(n-1);
y = fib(n-2);
cilk_sync;
return x+y;

@ The named child function cilk_spawn fib(n-1) may execute in
parallel with its parent

@ CilkPlus keywords cilk_spawn and cilk_sync grant permissions
for parallel execution. They do not command parallel execution.

Concurrency Platforms: Three Examples Cilk

The fork-join parallelism model

int ﬁ(b Snt EP it o Example:
t , .
e_lsenz Re ISR n f1b(4)

1nt X3 ¥

D k_spawn fib(n-1);
V= f1b(n 225
cilk_sync;
return (x+y);

“Processor
oblivious”

The computation dag
unfolds dynamically.

Il

At run time, the task DAG unfolds dynamically.

Concurrency Platforms: Three Examples [EGIY

Loop Parallelism in CilkPlus

~
djp Ay - Ay Ay dyp - dpy
Ayy App .. Apy [:::i:> Ayp Ay - Ap
dnp dn2 - App din Ao - ann/

A AT

// indices run from 0, not 1
Gl ko P GIET=IL S <hl; =) i
OGN E] = 05N <) N
double temp = A[i]1[j];
A[i1[3] = A[31LE];
A[j1[i] = temp;

The iterations of a cilk_for loop may execute in parallel.

Concurrency Platforms: Three Examples Cilk

Serial Semantics (1/2)

@ Cilk (resp. CilkPlus) is a multithreaded language for parallel
programming that generalizes the semantics of C (resp. C++) by
introducing linguistic constructs for parallel control.

@ Cilk (resp. CilkPlus) is a faithful extension of C (resp. C++):

e The C (resp. C++) elision of a Cilk (resp. CilkPlus) is a correct
implementation of the semantics of the program.
o Moreover, on one processor, a parallel Cilk (resp. CilkPlus) program
scales down to run nearly as fast as its C (resp. C++) elision.
@ To obtain the serialization of a CilkPlus program

#define cilk_for for
#define cilk_spawn
#define cilk_sync

Concurrency Platforms: Three Examples [EGIY

Serial Semantics (2/2)

1nt f1b (int n) {
f (n<2) return (n);
e1se {

1nt X, ¥
k spawn fib(n-1);
y—ﬁ(

cilk_ sync,

return (x+y);

| Cilk++ |

v

int fib (int n) {
if (n<2) return (n);

else
int x,g;
x = fib(n-1);
y = fib(n-2);

return (x+y);

Concurrency Platforms: Three Examples [EGIY

Scheduling

-

Memory 1/0

A scheduler’s job is to map a computation to particular processors. Such
a mapping is called a schedule.

< s

o If decisions are made at runtime, the scheduler is online, otherwise, it
is offline

@ CilkPlus's scheduler maps strands onto processors dynamically at
runtime.

Concurrency P

The CilkPlus Platform

int _fib (int n) {
if (n<2) return (n);
else {

T i
o X" f'ib(n—l);
= b(h=2);
il syned |
) retu X+y) ;
L Ci:-+ source |
int fib (int n)

if (n<2) return En);
else {

Cilk++ Hyperobject
Compiler Library

Conventional
Compiler
Cilkview
> Scalability Analyzer

X = f%%n—l); d > .
y = fib(n-2): Cilkscreen

, return (x+y); ‘ Race Detector

Parallel
Regression Tests

Conventional
Regression Tests

Reliable Single- Exceptional Reliable Multi-
Threaded Code Performance Threaded Code

Concurrency Platforms: Three Examples Cilk

Benchmarks for parallel divide-and-conquer matrix multiplication

Multiplying a 4000x8000 matrix by a 8000x4000 matrix

@ on 32 cores = 8 sockets x 4 cores (Quad Core AMD Opteron 8354)
per socket.

@ The 32 cores share a L3 32-way set-associative cache of 2 Mbytes.
#core Elision (s) Parallel (s) speedup

8 420.906 51.365 8.19
16 432.419 25.845 16.73
24 413.681 17.361 23.83

32 389.300 13.051 29.83

Cilk

Uisng Cilkview

Speedup for “nultiply 500018008 natrix by 18880x5888 natrix’

T T T
parallelisn

urdened speedup

38 trials -+

28 -

o
Ey

]
3
@
g

&

15 - +

8 5 18 15 28 25

Horker Count.

Concurrency Platforms: Three Examples CUDA

CUDA design goals

Enable heterogeneous systems (i.e., CPU+GPU)

Scale to 100's of cores, 1000's of parallel threads

Use C/C++ with minimal extensions

Let programmers focus on parallel algorithms (as much as possible).

128 SP Cores

(2
=
5

HE
i1 |
F! 58]
L)

Concurrency Platforms: Three Examples CUDA

Heterogeneous programming (1/3)

@ A CUDA program is a serial program with parallel kernels, all in C.
@ The serial C code executes in a host (= CPU) thread

@ The parallel kernel C code executes in many device threads across
multiple GPU processing elements, called streaming processors (SP).

Parallel Kernel
KernelA (args);

Parallel Kernel
KernelB (args);

Concurrency Platforms: Three Examples [NG16)BY.N

Heterogeneous programming (2/3)

@ Thus, the parallel code (kernel) is launched and executed on a device
by many threads.

@ Threads are grouped into thread blocks.
@ One kernel is executed at a time on the device.

@ Many threads execute each kernel.

Parallel Kernel
KernelA (args);

Parallel Kernel
KernelB (args);

Concurrency Platforms: Three Examples [NG16)BY.N

Heterogeneous programming (3/3)

@ The parallel code is written for a thread
e Each thread is free to execute a unique code path
e Built-in thread and block ID variables are used to map each thread
to a specific data tile (see next slide).
@ Thus, each thread executes the same code on different data based on
its thread and block ID.

Parallel Kernel
KernelA (args);

Parallel Kernel
KernelB (args);

Concurrency Platforms: Three Examples CUDA

Example: increment array elements (1/2)

Increment N-element vector a by scalar b

Let's assume N=16, blockDim=4 -> 4 blocks

int idx = blockDim.x * blockld.x + threadldx.x;

blockldx.x=0 blockldx.x=1 blockldx.x=2 blockldx.x=3
blockDim.x=4 blockDim.x=4 blockDim.x=4 blockDim.x=4
threadldx.x=0,1,2,3 threadldx.x=0,1,2,3 threadldx.x=0,1,2,3 threadldx.x=0,1,2,3
idx=0,1,2,3 idx=4,5,6,7 idx=8,9,10,11 idx=12,13,14,15

See our example number 4 in /usr/local/cs4402/examples/4

Concurrency Platforms: ree CUDA

Example: increment array elements (2/2)

CPU program CUDA program

void increment_cpu(float *a, float b, int N) void increment_gpu(float *a, float b, int N)

{ {
for (int idx = 0; idx<N; idx++) int idx = * + ;
if(idx < N)
}
}
void main() void main()
{ {
increment_cpu(a, b, N); dim3 dimBlock ()
} dim3 dimGrid(ceil(N / (float)))
increment_gpu a, b, N);

Blocks run on multiprocessors

Kernel launched by host

Device processor array

Concurrency Platforms: Three Examples

Streaming processors and multiprocessors

Streaming Processor Streaming Multiprocessor

Threadblock

Thread
Per-block

Memory

Memory

Concurrency Platforms: Three Examples [NG16)BY.N

Hardware multithreading

o Hardware allocates resources to blocks:
e blocks need: thread slots, registers, shared memory
e blocks don't run until resources are available
o Hardware schedules threads:
e threads have their own registers
e any thread not waiting for something can run
e context switching is free every cycle
o Hardware relies on threads to hide latency:
e thus high parallelism is necessary for performance.

SM

Concurrency Platforms: Three Examples CUDA

A Common programming strategy

Partition data into subsets that fit into shared memory

Concurrency Platforms: Three Examples [NG16)BY.N

A Common Programming Strategy

Handle each data subset with one thread block

Concurrency Platforms: Three Examples [NG16)BY.N

A Common programming strategy

Load the subset from global memory to shared memory, using multiple
threads to exploit memory-level parallelism.

Concurrency Platforms: Three Examples [NG16)BY.N

A Common programming strategy

Perform the computation on the subset from shared memory.

Concurrency Platforms: Three Examples [NG16)BY.N

A Common programming strategy

Copy the result from shared memory back to global memory.

Concurrency Platforms: Three Examples MPI

What is the Messaging Passing Interface (MPI)?

A language-independent communation protocol for parallel computers

@ Run the same code on a number of nodes (different hardware threads,
servers)

@ Explicit message passing

@ Dominant model for high performance computing

Concurrency Platforms: Three Examples MPI

High Level Presentation of MPI

e MPI is a type of SPMD (single process, multiple data)

@ Idea: to have multiple instances of the same program all working on
different data

@ The program could be running on the same machine, or cluster of
machines

@ Allow simple communcation of data been processes

Concurrency Platforms: Three Examples Vil

MPI Functions

S/ Initialize MPI
int MPI_Init{int =argc, char ==argv)

// Determine number of processes within a communicator
int MPI_Comm_size(MPI_Comm comm, int =size)

// Determine processor rank within a communicator
int MPI_Comm_rank (MPI_Comm comm, int =rank)

/f Exit MPlI {must be called last by all processors)
int MPI_Finalize()

// Send a message
int MPI_S%end (void =buf,int count, MPI_Datatype datatype,
int dest, int tag, MPI_Comm comm)

// Receive a message

int MPI_Recv (void =buf,int count, MPI_Datatype datatype,
int source, int tag, MPL_Comm comm,
MPI_5Status =status)

Concurrency Platforms: Three Examples MPI

MPI Function Notes

o MPI Datatype is just an enum, MPI_Comm is commonly
MPI_COMM_WORLD for the global communication channel

@ dest/source are the rank of the process to send the message
to/receive the message from:

e You may use MPI_ANY_SOURCE in MPI_Recv
@ Both MPI_Send and MPI_Recv are blocking calls

@ You can use man MPI_Send or man MPI Recv for good
documentation

@ The tag allows you to organize your messages, so you can receive
only a specific tag

MPI

Concurrency Platforms: Three Examples

Example

Here's a common example:
e Have the master (rank 0) process create some strings and send them

to the worker processes
@ The worker processes modify the string and send it back to the master

Concurrency Platforms: Three Examples Vil

Example Code (1)

[=
"Hella World" MPI Test Program
®
#include =mpi.h=
#include <stdio.h>
#include <string.h>

#define BUFSIZE 128
#define TAG O

int main(int argc, char =argv([])
{
char idstr[32];
char buff[BUFSIZE];
int numprocs;

int myid;

int i,

MPI_Status stat;

Concurrency Platforms: Three Examples Vil

Example Code (2)

J= all MPIl programs start with MPI_Init; all "N’
= processes exist thereafter
®

MPI_Init(&arge &argv);

/= find out how big the SPMD world is =/
MPI_Comm_size (MPL_COMM_WORLD, & num procs);

/= and this processes ' rank is =/
MPI_Comm_rank (MPL_COMM_WORLD, & my id);

/= At this point, all programs are running equivalently ,
= the rank distinguishes the roles of the programs in
= the SPMD model, with rank 0 often used specially ...

=/

Concurrency Platforms: Three Examples REVYIg}

Example Code (3)

if ([myid = 0)

printf("%d: We have %d processors'n',
for(i=1;i<numprocs; i++)

sprintf{ buff, "Hello %! ", i)

MPI_Send(buff, BUFSIZE, MF’I_CHJ:-'-.R. i,

MAP_CORM_WORLD) ;

for(i=1;i<numprocs; i++)

MPI_Recv(buff , BUFSIZE, MPI_CHAR, i,

MPL_COMM_WORLD, &stat);
printf("%d: %s'n", myid, buoff);
'
'

myid |

TAG,

TAG,

numprocs);

Concurrency Platforms: Three Examples REVYIg}

Example Code (4)

else

{

/= receive from rank 0: =/
MPI_Recv(buff , BUFSIZE, MPI_CHAR, 0, TAG,
MPL_COMM_WORLD, &stat);
sprintf(idstr, "Processor %d ",
strncat(buff, idstr, BUFSIZE-1);
strncat(buff, "reporting for duty", BUFSIZE-1);
/= send to rank 0: =/
MPI_Send(buff, BUFSIZE, MPI_CHAR, 0, TAG,
MPL_COMM_WORLD) ;

myid J;

}

/= MPl Programs end with MPI Finalize; this is a weak
= synchronization point

®

MPEI_Finalize();

return O,

Concurrency Platforms: Three Examples Vil

Compiling

// Wrappers for geo (C/CH4)
mpicc
mpicxx

// Compiler Flags
OMPI_MPICC_CFLAGS
OMPI_MPICEH OO FLAGS

!/ Linker Flags
OMPI_MPICC_LDFLAGS
OMPI_MPICEX_LDFLAGS

OpenMPIl does not recommend you to set the flags yourself, to see
them try:

Show the flags necessary to compile MPI C applications
shell§ mpicc —showme: compile

Show the flags necessary to link MPlI € applications
shell§ mpicc ——showme: link

Concurrency Platforms:

Compiling and Running

mMpirun —nNp <num_ processors= <programi=
mpiexec —nNp <NUMmM_ processors> < program’=

= Starts num_processors instances of the program using MPI

jon®riker examples master % mpicc hello_mpi.c
jon®riker examples master % mpirun —np 8 a.out
: We have 8 processors

Helle 1! Processor
Helle 2! Processor
Helle 3! Processor
Helle 4! Processor
Helle 5! Processor
Helle 6! Processor
Helle 7! Processor

reporting for duty
reporting for duty
reporting for duty
reporting for duty
reporting for duty
reporting for duty
reporting for duty

(= e e e e e]
E - T - O

= By default, MPl uses the lowest-latency resource available
(shared memory in this case)

Concurrency Platforms: Three Examples MPI

Other Things MPI Can Do

@ We can use nodes on a network (by using a hostfile)
@ We can even use MPMD, for multiple processes, multiple data.
mpi run np 2 a.out : np 2 b.out
o All in the same MPI_COMM_WORLD
@ Ranks 0 and 1 are instances of a.out
@ Ranks 2 and 3 are instances of b.out
@ You could also use the app flag with an appfile instead of typing out

everything

Concurrency Platforms: Three Examples MPI

Performance Considerations and concluding remarks

@ Your bottleneck for performance here is messages

@ Keep the communication to a minimum

@ The more machines, the slower the communication in general

@ MPI is a powerful tool for highly parallel computing across multiple
machines

@ Programming is similar to a more powerful version of fork/join

	Hardware
	Types of Parallelism
	Concurrency Platforms: Three Examples
	Julia
	Cilk
	CUDA
	MPI

