CS4403 - CS9535: An Overview of Parallel
Computing

Marc Moreno Maza
University of Western Ontario, London, Ontario (Canada)

January 10, 2017

Plan

@ Hardware
© Types of Parallelism

© Concurrency Platforms: Three Examples
e Julia
o Cilk
o CUDA
o MPI

Plan

@ Hardware

Hardware

The Pentium Family

» intel- =
el pentium™ intel.

intgl- "
pentiume intgl.
Pentium™

intal.

pentium™

intgl-] e intgle
pentiume pentiume

pentiume

intgls
pentiume

w/ MMX™ tech

Hardware

Multicore processors

Multicore processors

Core Core

L1 | L1 L1 | L1 L1 | L1 L1 | L1

inst data ins data ins data ins data

Hardware

The CPU-Memory Gap

The increasing gap between DRAM, disk, and CPU

speeds.
100,000,000 * —
—
10,000,000 ——
1,000,000
100,000 | —— Disk seek time
2 10,000 —%— DRAM access time
1.000 —&— SRAM access time
' —*—CPU cycle ti
100 gycle tire
10
1
1980 1985 1990 1995 2000

Once uopn a time, every thing was slow in a computer ...

Hardware

Graphics processing units (GPUs)

NVIDIA.

@i

Distributed Memory

Distributed memory systems require a communication network to
connect inter-processor memory.

Processors have their own local memory and operate independently.

Memory addresses in one processor do not map to another processor,
so there is no concept of global address space across all processors.

Data exchange between processors is managed by the programmer ,
not by the hardware.

Hybrid Distributed-Shared Memory

@ The largest and fastest computers in the world today employ both
shared and distributed memory architectures.

@ Current trends seem to indicate that this type of memory architecture
will continue to prevail.

@ While this model allows for applications to scale, it increases the
complexity of writing computer programs.

Plan

© Types of Parallelism

Types of Parallelism

Pipelining

Release

Commit Stage acceptance capacity
testing testing

@ Pipelining is a common way to organize work with the objective of
optimizing throughput.

@ It turns out that this is also a way to execute concurrently several
tasks (that is, work units) processable by the same pipeline.

Types of Parallelism

Instruction pipeline

Clock Cycle
[|
Waiting . .
instructions I [I
[HEn
A RG] | | DGR
2 Jrezeese D D O] I I DX DD X
g | e | X DX (] O I I X)X
Stage 4: Write-back IE @ E IE l:‘ . . . g
CEEN
Completed D . .
Instructions I:l -
O

@ Above is a generic pipeline with four stages: Fetch, Decode, Execute,
Write-back.

@ The top gray box is the list of instructions waiting to be executed; the
bottom gray box is the list of instructions that have been completed;
and the middle white box is the pipeline.

Types of Parallelism

Data parallelism

/ |

/ | \
| 1
T T

Problem Data Set

@ The data set is typically organized into a common structure, such as
an array.

@ A set of tasks work collectively on that structure, however, each task
works on a different region.

@ Tasks perform the same operation on their region of work, for
example, "multiply every array element by some value”.

Types of Parallelism

Task parallelism (1/4)

program:

if CPU="a" then

do task "A"

else if CPU="b" then
do task "B"

end if

end program

@ Task parallelism is achieved when each processor executes a different
thread (or process) on the same or different data.

@ The threads may execute the same or different code.
°

Task parallelism (2/4)

Code executed by CPU "a":

program:

<'ic.>.task "A"

end program

Code executed by CPU "b":

program:

c.h;.task "B"

end progrem

@ In the general case, different execution threads communicate with one

another as they work.
o Communication usually takes place by passing data from one thread to

the next as part of a work-flow.

Types of Parallelism

Stencil computations

I=10,...,99
S=R
N Sy:ZP R
1, <0
So((z,y)) =<0, 0<z <100
1, = >100
s =((0,-1),(~1,0),(1,0),(0,1))
T:R'S R
T((xy, T2, 23,24)) = 0.25 - (21 + T2 + T3 + 24)

SIOOCI

ZDJacobl Iteration on a 1002 Array

@ In scientific computing, stencil computations are very common.
@ Typically, a procedure updates array elements according to some fixed

pattern, called stencil.
@ In the above, a 2D array of 100 x 100 elements is updated by the

stencil 7.

Types of Parallelism

Pascal triangle construction: another stencil computation

10 | 20 | 3537

15359

21 56
28

Construction of the Pascal Triangle: nearly the simplest stencil
computation!

oncurrency Platforms:

Plan

© Concurrency Platforms: Three Examples
e Julia
o Cilk
o CUDA
o MPI

Concurrency Platforms: Three Julia

Distributed arrays and parallel reduction (1/4)

[moreno@compute-0-3 ~1$ julia -p 5

A fresh approach to technical computing
Documentation: http://docs.julialang.org
Type "help()" to list help topics

I Y G B
JRVZR WU D D W
[

|
|
|
I/ -1 |
| Version 0.2.0-prerelease+3622
| Commit c9bb96c 2013-09-04 15:34:41 UTC
| x86_64-redhat-linux
julia> da = @parallel [2i for i = 1:10]
10-element DArray{Int64,1,Array{Int64,1}}:
2
4
6
8
10
12
14
16
18
20

Distributed arrays and parallel reduction (2/4)

julia> procs(da)
4-element Array{Int64,1}:
2

3
4
5

julia> da.chunks
4-element Array{RemoteRef,1}:
RemoteRef (2,1,1)
RemoteRef (3,1,2)
RemoteRef (4,1,3)
RemoteRef (5,1,4)

julia>

julia> da.indexes
4-element Array{(Rangel{Int64},),1}:
(1:3,)
(4:5,)
(6:8,)
(9:10,)

julia> da[3]
6

julia> da[3:5]

3-element SubArray{Int64,1,DArray{Int64,1,Array{Int64,1}}, (Rangel{Int64},)}:

6
8
10

urrency Platforms: Three

Distributed arrays and parallel reduction (3/4)

julia> fetch(@spawnat 2 da[3])
6

julia>

julia> { (@spawnat p sum(localpart(da))) for p=procs(da) }
4-element Array{Any,1}:

RemoteRef (2,1,71)

RemoteRef (3,1,72)

RemoteRef (4,1,73)

RemoteRef (5,1,74)

julia>

julia> map(fetch, { (@spawnat p sum(localpart(da))) for p=procs(da) })
4-element Array{Any,1}:

12

18

42

38

julia>

julia> sum(da)
110

Concurrency Platforms: Three Examples [ENAIEY

Distributed arrays and parallel reduction (4/4)

julia> reduce(+, map(fetch,
{ (@spawnat p sum(localpart(da))) for p=procs(da) }))
110

julia>

julia> preduce(f,d) = reduce(f,
map (fetch,
{ (@spawnat p f(localpart(d))) for p=procs(d) }))
methods for generic function preduce
preduce(f,d) at none:1

julia> function Base.minimum(x::Int64, y::Int64)
min(x,y)
end

minimum (generic function with 10 methods)

julia> preduce(minimum, da)
2

Concurrency Platforms: Three Examples Cilk

Task Parallelism in CilkPlus

int fib(int n)
{
if (n < 2) return n;
int x, y;
x = cilk_spawn fib(n-1);
y = fib(n-2);
cilk_sync;
return x+y;

@ The named child function cilk_spawn fib(n-1) may execute in
parallel with its parent

@ CilkPlus keywords cilk_spawn and cilk_sync grant permissions
for parallel execution. They do not command parallel execution.

Concurrency Platforms: Three Examples [EGIY

Scheduling

-

Memory 1/0

A scheduler’s job is to map a computation to particular processors. Such
a mapping is called a schedule.

< s

o If decisions are made at runtime, the scheduler is online, otherwise, it
is offline

@ CilkPlus's scheduler maps strands onto processors dynamically at
runtime.

Concurrency P

The CilkPlus Platform

int _fib (int n) {
if (n<2) return (n);
else {

T i
o X" f'ib(n—l);
= b(h=2);
il syned |
) retu X+y) ;
L Ci:-+ source |
int fib (int n)

if (n<2) return En);
else {

Cilk++ Hyperobject
Compiler Library

Conventional
Compiler
Cilkview
> Scalability Analyzer

X = f%%n—l); d > .
y = fib(n-2): Cilkscreen

, return (x+y); ‘ Race Detector

Parallel
Regression Tests

Conventional
Regression Tests

Reliable Single- Exceptional Reliable Multi-
Threaded Code Performance Threaded Code

Concurrency Platforms: Three Examples Cilk

Benchmarks for parallel divide-and-conquer matrix multiplication

Multiplying a 4000x8000 matrix by a 8000x4000 matrix

@ on 32 cores = 8 sockets x 4 cores (Quad Core AMD Opteron 8354)
per socket.

@ The 32 cores share a L3 32-way set-associative cache of 2 Mbytes.
#core Elision (s) Parallel (s) speedup

8 420.906 51.365 8.19
16 432.419 25.845 16.73
24 413.681 17.361 23.83

32 389.300 13.051 29.83

Cilk

Uisng Cilkview

Speedup for “nultiply 500018008 natrix by 18880x5888 natrix’

T T T
parallelisn

urdened speedup

38 trials -+

28 -

o
Ey

]
3
@
g

&

15 - +

8 5 18 15 28 25

Horker Count.

Concurrency Platforms: Three Examples CUDA

CUDA design goals

Enable heterogeneous systems (i.e., CPU+GPU)

Scale to 100's of cores, 1000's of parallel threads

Use C/C++ with minimal extensions

Let programmers focus on parallel algorithms (as much as possible).

128 SP Cores

(2
=
5

HE
i1 |
F! 58]
L)

Concurrency Platforms: Three Examples CUDA

Example: increment array elements (1/2)

Increment N-element vector a by scalar b

Let's assume N=16, blockDim=4 -> 4 blocks

int idx = blockDim.x * blockld.x + threadldx.x;

blockldx.x=0 blockldx.x=1 blockldx.x=2 blockldx.x=3
blockDim.x=4 blockDim.x=4 blockDim.x=4 blockDim.x=4
threadldx.x=0,1,2,3 threadldx.x=0,1,2,3 threadldx.x=0,1,2,3 threadldx.x=0,1,2,3
idx=0,1,2,3 idx=4,5,6,7 idx=8,9,10,11 idx=12,13,14,15

See our example number 4 in /usr/local/cs4402/examples/4

Concurrency Platforms: ree CUDA

Example: increment array elements (2/2)

CPU program CUDA program

void increment_cpu(float *a, float b, int N) void increment_gpu(float *a, float b, int N)

{ {
for (int idx = 0; idx<N; idx++) int idx = * + ;
if(idx < N)
}
}
void main() void main()
{ {
increment_cpu(a, b, N); dim3 dimBlock ()
} dim3 dimGrid(ceil(N / (float)))
increment_gpu a, b, N);

Concurrency Platforms: Three Examples CUDA

A Common programming strategy

Partition data into subsets that fit into shared memory

Concurrency Platforms: Three Examples [NG16)BY.N

A Common Programming Strategy

Handle each data subset with one thread block

Concurrency Platforms: Three Examples [NG16)BY.N

A Common programming strategy

Load the subset from global memory to shared memory, using multiple
threads to exploit memory-level parallelism.

Concurrency Platforms: Three Examples [NG16)BY.N

A Common programming strategy

Perform the computation on the subset from shared memory.

Concurrency Platforms: Three Examples [NG16)BY.N

A Common programming strategy

Copy the result from shared memory back to global memory.

MPI

Concurrency Platforms: Three Examples

Example

Here's a common example:
e Have the master (rank 0) process create some strings and send them

to the worker processes
@ The worker processes modify the string and send it back to the master

Concurrency Platforms: Three Examples Vil

Example Code (1)

[=
"Hella World" MPI Test Program
®
#include =mpi.h=
#include <stdio.h>
#include <string.h>

#define BUFSIZE 128
#define TAG O

int main(int argc, char =argv([])
{
char idstr[32];
char buff[BUFSIZE];
int numprocs;

int myid;

int i,

MPI_Status stat;

Concurrency Platforms: Three Examples Vil

Example Code (2)

J= all MPIl programs start with MPI_Init; all "N’
= processes exist thereafter
®

MPI_Init(&arge &argv);

/= find out how big the SPMD world is =/
MPI_Comm_size (MPL_COMM_WORLD, & num procs);

/= and this processes ' rank is =/
MPI_Comm_rank (MPL_COMM_WORLD, & my id);

/= At this point, all programs are running equivalently ,
= the rank distinguishes the roles of the programs in
= the SPMD model, with rank 0 often used specially ...

=/

Concurrency Platforms: Three Examples REVYIg}

Example Code (3)

if ([myid = 0)

printf("%d: We have %d processors'n',
for(i=1;i<numprocs; i++)

sprintf{ buff, "Hello %! ", i)

MPI_Send(buff, BUFSIZE, MF’I_CHJ:-'-.R. i,

MAP_CORM_WORLD) ;

for(i=1;i<numprocs; i++)

MPI_Recv(buff , BUFSIZE, MPI_CHAR, i,

MPL_COMM_WORLD, &stat);
printf("%d: %s'n", myid, buoff);
'
'

myid |

TAG,

TAG,

numprocs);

Concurrency Platforms: Three Examples REVYIg}

Example Code (4)

else

{

/= receive from rank 0: =/
MPI_Recv(buff , BUFSIZE, MPI_CHAR, 0, TAG,
MPL_COMM_WORLD, &stat);
sprintf(idstr, "Processor %d ",
strncat(buff, idstr, BUFSIZE-1);
strncat(buff, "reporting for duty", BUFSIZE-1);
/= send to rank 0: =/
MPI_Send(buff, BUFSIZE, MPI_CHAR, 0, TAG,
MPL_COMM_WORLD) ;

myid J;

}

/= MPl Programs end with MPI Finalize; this is a weak
= synchronization point

®

MPEI_Finalize();

return O,

	Hardware
	Types of Parallelism
	Concurrency Platforms: Three Examples
	Julia
	Cilk
	CUDA
	MPI

