
Parallel and Distributed Ccomputing with Julia

Marc Moreno Maza

University of Western Ontario, London, Ontario (Canada)

January 17, 2017

Plan

A first Julia program

Tasks: Concurrent Function Calls

Julia’s Prnciples for Parallel Computing

Tips on Moving Code and Data

Around the Parallel Julia Code for Fibonacci

Parallel Maps and Reductions

Distributed Computing with Arrays: Motivating Examples

Distributed Arrays

Map Reduce

Shared Arrays

Matrix Multiplication Using Shared Arrays (with Julia 3)

Synchronization (with Julia 3)

Plan

A first Julia program

Tasks: Concurrent Function Calls

Julia’s Prnciples for Parallel Computing

Tips on Moving Code and Data

Around the Parallel Julia Code for Fibonacci

Parallel Maps and Reductions

Distributed Computing with Arrays: Motivating Examples

Distributed Arrays

Map Reduce

Shared Arrays

Matrix Multiplication Using Shared Arrays (with Julia 3)

Synchronization (with Julia 3)

A source file

@everywhere function mycircle(n)

inside=0

for i=1:n

x,y=rand(),rand()

if(x^2+y^2<=1)

inside=inside+1

end

end

f=inside/n

4*f

end

@everywhere function mypcircle(n,p)

r=@parallel (+) for i=1:p

mycircle(n/p)

end

r/p

end

Loading and using it in Julia (1/2)
moreno@gorgosaurus:~/src/Courses/cs2101/Fall-2013/Julia$ julia -p 4

_

_ _ _(_)_ | A fresh approach to technical computing

(_) | (_) (_) | Documentation: http://docs.julialang.org

_ _ _| |_ __ _ | Type "?help" for help.

| | | | | | |/ _‘ | |

| | |_| | | | (_| | | Version 0.5.0 (2016-09-19 18:14 UTC)

_/ |__’_|_|_|__’_| | Official http://julialang.org/ release

|__/ | x86_64-pc-linux-gnu

julia> include("julia.txt")

julia> mypcircle

mypcircle (generic function with 1 method)

julia> mypcircle(10, 4)

2.0

julia> mypcircle(100, 4)

3.1999999999999997

julia> mypcircle(1000, 4)

3.144

julia> mypcircle(1000000, 4)

3.1429120000000004

Loading and using it in Julia (2/2)

julia> @time mycircle(100000000)

0.806303 seconds (9.61 k allocations: 413.733 KB)

3.14157768

julia> @time mypcircle(100000000,4)

0.407655 seconds (613 allocations: 46.750 KB)

3.14141488

julia> @time mycircle(100000000)

0.804030 seconds (5 allocations: 176 bytes)

3.14168324

julia> @time mypcircle(100000000,4)

0.254483 seconds (629 allocations: 47.375 KB)

3.1416292400000003

julia> quit()

Plan

A first Julia program

Tasks: Concurrent Function Calls

Julia’s Prnciples for Parallel Computing

Tips on Moving Code and Data

Around the Parallel Julia Code for Fibonacci

Parallel Maps and Reductions

Distributed Computing with Arrays: Motivating Examples

Distributed Arrays

Map Reduce

Shared Arrays

Matrix Multiplication Using Shared Arrays (with Julia 3)

Synchronization (with Julia 3)

Tasks (aka Coroutines)

Tasks

I Tasks are a control flow feature that allows computations to
be suspended and resumed in a flexible manner

I This feature is sometimes called by other names, such as
symmetric coroutines, lightweight threads, cooperative
multitasking, or one-shot continuations.

I When a piece of computing work (in practice, executing a
particular function) is designated as a Task, it becomes
possible to interrupt it by switching to another Task.

I The original Task can later be resumed, at which point it will
pick up right where it left off

Producer-consumer scheme

The producer-consumer scheme

I One complex procedure is generating values and another
complex procedure is consuming them.

I The consumer cannot simply call a producer function to get a
value, because the producer may have more values to generate
and so might not yet be ready to return.

I With tasks, the producer and consumer can both run as long
as they need to, passing values back and forth as necessary.

I Julia provides the functions produce and consume for
implementing this scheme.

Producer-consumer scheme example

function producer()

produce("start")

for n=1:2

produce(2n)

end

produce("stop")

end

To consume values, first the producer is wrapped in a Task, then consume is
called repeatedly on that object:

ulia> p = Task(producer)

Task

julia> consume(p)

"start"

julia> consume(p)

2

julia> consume(p)

4

julia> consume(p)

"stop"

Tasks as iterators

A Task can be used as an iterable object in a for loop, in which
case the loop variable takes on all the produced values:

julia> for x in Task(producer)

println(x)

end

start

2

4

stop

More about tasks

julia> for x in [1,2,4] println(x) end

1

2

4

julia> t = @task [for x in [1,2,4] println(x) end]

Task (runnable) @0x00000000045c62e0

julia> istaskdone(t)

false

julia> current_task()

Task (waiting) @0x00000000041473b0

julia> consume(t)

1

2

4

1-element Array{Any,1}:

nothing

Plan

A first Julia program

Tasks: Concurrent Function Calls

Julia’s Prnciples for Parallel Computing

Tips on Moving Code and Data

Around the Parallel Julia Code for Fibonacci

Parallel Maps and Reductions

Distributed Computing with Arrays: Motivating Examples

Distributed Arrays

Map Reduce

Shared Arrays

Matrix Multiplication Using Shared Arrays (with Julia 3)

Synchronization (with Julia 3)

Julia’s message passing principle

Julia’s message passing

I Julia provides a multiprocessing environment based on
message passing to allow programs to run on multiple
processors in shared or distributed memory.

I Julias implementation of message passing is one-sided:
I the programmer needs to explicitly manage only one processor

in a two-processor operation
I these operations typically do not look like message send and

message receive but rather resemble higher-level operations
like calls to user functions.

Remote references and remote calls (1/2)

Two key notions: remote references and remote calls

I A remote reference is an object that can be used from any
processor to refer to an object stored on a particular processor.

I Remote references come in two flavors: Future and
RemoteChannel.

I A remote call is a request by one processor to call a certain
function on certain arguments on another (possibly the same)
processor. A remote call returns a returns a Future to its
result.

Remote references and remote calls (2/2)

How remote calls are handled in the program flow

I Remote calls return immediately: the processor that made the
call can then proceeds to its next operation while the remote
call happens somewhere else.

I You can wait for a remote call to finish by calling wait on its
remote reference, and you can obtain the full value of the
result using fetch.

I On the other hand RemoteChannels are rewritable. For
example, multiple processes can co-ordinate their processing
by referencing the same remote Channel.

I Once fetched, a Future will cache its value locally. Further
fetch() calls do not entail a network hop. Once all referencing
Futures have fetched, the remote stored value is deleted

Remote references and remote calls: example
moreno@gorgosaurus:~$ julia -p 4

julia> r = remotecall(rand, 2, 2, 2)

RemoteRef(2,1,6)

julia> fetch(r)

2x2 Array{Float64,2}:

0.675311 0.735236

0.682474 0.569424

julia> s = @spawnat 2 1+fetch(r)

RemoteRef(2,1,8)

julia> fetch(s)

2x2 Array{Float64,2}:

1.67531 1.73524

1.68247 1.56942

Commnets on the example

I Starting with julia -p n provides n processors on the local machine.
I The first argument to remote call is the index of the processor that will

do the work.
I The first line we asked processor 2 to construct a 2-by-2 random matrix,

and in the third line we asked it to add 1 to it.
I The @spawnat macro evaluates the expression in the second argument on

the processor specified by the first argument.

More on remote references

julia> remotecall_fetch(2, getindex, r, 1, 1)

0.675311345332873

remote call fetch

I Occasionally you might want a remotely-computed value
immediately.

I The function remotecall fetch exists for this purpose.

I It is equivalent to fetch(remotecall(...)) but is more
efficient.

I Note that getindex(r,1,1) is equivalent to r[1,1], so this
call fetches the first element of the remote reference r.

The macro @spawn
The macro @spawn

I The syntax of remote call is not especially convenient.
I The macro @spawn makes things easier:

I It operates on an expression rather than a function, and
I chooses the processor where to do the operation for you

julia> r = @spawn rand(2,2)

RemoteRef(3,1,12)

julia> s = @spawn 1+fetch(r)

RemoteRef(3,1,13)

julia> fetch(s)

2x2 Array{Float64,2}:

1.6117 1.20542

1.12406 1.51088

Remarks on the example

I Note that we used 1+fetch(r) instead of 1+r. This is because we do not
know where the code will run, so in general a fetch might be required to
move r to the processor doing the addition.

I In this case, @spawn is smart enough to perform the computation on the
processor that owns r, so the fetch will be a no-op.

Plan

A first Julia program

Tasks: Concurrent Function Calls

Julia’s Prnciples for Parallel Computing

Tips on Moving Code and Data

Around the Parallel Julia Code for Fibonacci

Parallel Maps and Reductions

Distributed Computing with Arrays: Motivating Examples

Distributed Arrays

Map Reduce

Shared Arrays

Matrix Multiplication Using Shared Arrays (with Julia 3)

Synchronization (with Julia 3)

Availability of a function to processors (1/3)
One important point is that your code must be available on any
processor that runs it. For example, type the following into the julia
prompt

julia> function rand2(dims...)

return 2*rand(dims...)

end

julia> rand2(2,2)

2x2 Float64 Array:

0.153756 0.368514

1.15119 0.918912

julia> @spawn rand2(2,2)

RemoteRef(1,1,1)

julia> @spawn rand2(2,2)

RemoteRef(2,1,2)

julia> exception on 2: in anonymous: rand2 not defined

Availability of a function to processors (2/3)

I In the previous example, Processor 1 knew about the function
rand2, but processor 2 did not.

I To make code available to all processors, use include

function together with the @everywhere macro, as in the
introductory example.

I Alternatively, make the code Julia module, then the include

function and the using command; see below.

Availability of a function to processors (3/3)

julia> @everywhere id = myid()

julia> remotecall_fetch(2, ()->id)

2

julia> workers()

4-element Array{Int64,1}:

2

3

4

5

The @everywhere macro executes a statement on all processes.

Running Julia with several proocesses or several machines

I Each process has an associated identifier.

I The process providing the interactive julia prompt always has
an id equal to 1.

I The processes used by default for parallel operations are
referred to as workers.

I When there is only one process, process 1 is considered a
worker.

I Otherwise, workers are considered to be all processes other
than process 1.

I Functions addprocs, rmprocs, workers, and others are
available as programmatic means of adding, removing and
querying the processes in a cluster.

Data Movement (1/4)

Motivation

I Sending messages and moving data constitute most of the
overhead in a parallel program.

I Reducing the number of messages and the amount of data
sent is critical to achieving performance and scalability.

I To this end, it is important to understand the data movement
performed by Julias various parallel programming constructs.

Data Movement (2/4)

fetch and @spawn

I fetch can be considered an explicit data movement operation, since it
directly asks that an object be moved to the local machine.

I @spawn (and a few related constructs) also moves data, but this is not as
obvious, hence it can be called an implicit data movement operation.

I Consider these two approaches to constructing and squaring a random
matrix

I Which one is the most efficient?

method 1

A = rand(1000,1000)

Bref = @spawn A^2

...

fetch(Bref)

method 2

Bref = @spawn rand(1000,1000)^2

...

fetch(Bref)

Data Movement (3/4)

method 1

A = rand(1000,1000)

Bref = @spawn A^2

...

fetch(Bref)

method 2

Bref = @spawn rand(1000,1000)^2

...

fetch(Bref)

Answer to the question

I The difference seems trivial, but in fact is quite significant due to the
behavior of @spawn.

I In the first method, a random matrix is constructed locally, then sent
to another processor where it is squared.

I In the second method, a random matrix is both constructed and
squared on another processor.

I Therefore the second method sends much less data than the first.

Data Movement (4/4)

Remarks on the previous example

I In the previous toy example, the two methods are easy to
distinguish and choose from.

I However, in a real program designing data movement might
require more thought and very likely some measurement.

I For example, if the first processor needs matrix A then the
first method might be better.

I Or, if processing A is expensive but only the current processor
has it, then moving it to another processor might be
unavoidable.

I Or, if the current processor has very little to do between the
@spawn and fetch(Bref) then it might be better to
eliminate the parallelism altogether.

I Or imagine rand(1000,1000) is replaced with a more
expensive operation. Then it might make sense to add
another @spawn statement just for this step.

Plan

A first Julia program

Tasks: Concurrent Function Calls

Julia’s Prnciples for Parallel Computing

Tips on Moving Code and Data

Around the Parallel Julia Code for Fibonacci

Parallel Maps and Reductions

Distributed Computing with Arrays: Motivating Examples

Distributed Arrays

Map Reduce

Shared Arrays

Matrix Multiplication Using Shared Arrays (with Julia 3)

Synchronization (with Julia 3)

Fibonacci (1/4)

_ _ _(_)_ | A fresh approach to technical computing

(_) | (_) (_) | Documentation: http://docs.julialang.org

_ _ _| |_ __ _ | Type "help()" to list help topics

| | | | | | |/ _‘ | |

| | |_| | | | (_| | | Version 0.2.0-prerelease+3622

_/ |__’_|_|_|__’_| | Commit c9bb96c 2013-09-04 15:34:41 UTC

|__/ | x86_64-redhat-linux

ulia> addprocs(3)

3-element Array{Any,1}:

2

3

4

julia> @everywhere function fib(n)

if (n < 2)

return n

else return fib(n-1) + fib(n-2)

end

end

Fibonacci (2/4)

julia> z = @spawn fib(10)

RemoteRef(3,1,8)

julia> fetch(z)

55

julia> @time [fib(i) for i=1:45];

21.388288 seconds (12.07 k allocations: 545.744 KB)

Fibonacci (3/4)

julia> @everywhere function fib_parallel(n)

if (n < 40)

return fib(n)

else

x = @spawn fib_parallel(n-1)

y = fib_parallel(n-2)

return fetch(x) + y

end

end

julia>

julia> fib_parallel(40)

102334155

julia> @time [fib_parallel(i) for i=1:45];

14.515756 seconds (25.13 k allocations: 1.121 MB)

julia> @time [fib_parallel(i) for i=1:45];

10.015639 seconds (3.03 k allocations: 126.859 KB)

Fibonacci (4/4)

julia> @time [fib(45) for i=1:4]

32.638520 seconds (12.09 k allocations: 541.627 KB)

4-element Array{Int64,1}:

1134903170

1134903170

1134903170

1134903170

julia> @time @parallel for i=1:4 println(fib(45)) end

0.190153 seconds (337.56 k allocations: 14.811 MB, 2.67% gc time)

4-element Array{Future,1}:

Future(3,1,103,#NULL)

Future(4,1,104,#NULL)

Future(5,1,105,#NULL)

Future(2,1,106,#NULL)

julia> From worker 3: 1134903170

From worker 2: 1134903170

From worker 5: 1134903170

From worker 4: 1134903170

julia> @time @parallel (+) for i=1:4 fib(45) end

8.855273 seconds (223.89 k allocations: 9.451 MB)

4539612680

Plan

A first Julia program

Tasks: Concurrent Function Calls

Julia’s Prnciples for Parallel Computing

Tips on Moving Code and Data

Around the Parallel Julia Code for Fibonacci

Parallel Maps and Reductions

Distributed Computing with Arrays: Motivating Examples

Distributed Arrays

Map Reduce

Shared Arrays

Matrix Multiplication Using Shared Arrays (with Julia 3)

Synchronization (with Julia 3)

A first example of parallel reduction

julia> @everywhere function count_heads(n)

c::Int = 0

for i=1:n

c += rand(0:1)

end

c

end

ulia> a = @spawn count_heads(100000000)

Future(5,1,122,Nullable{Any}())

julia> b = @spawn count_heads(100000000)

Future(2,1,123,Nullable{Any}())

julia> fetch(a)+fetch(b)

99992853

I This simple example demonstrates a powerful and often-used parallel
programming pattern: reductuon.

I Many iterations run independently over several processors, and then
their results are combined using some function.

Parallel reduction using @parallel (1/4)

Usage of parallel for loops

I In the previous example, we use two explicit @spawn statements,
which limits the parallelism to two processors.

I To run on any number of processors, we can use a parallel for loop,
which can be written in Julia like this:

nheads = @parallel (+) for i=1:200000000

rand(0:1)

end

Comments

I This construct implements the pattern of
I assigning iterations to multiple processors, and
I combining them with a specified reduction (in this case (+)).

I Notice that the reduction operator can be omitted if it is not needed
I However, the semantics of such a parallel for-loop can be dramatically

different from its serial elision. As we shall see on the example of the
next slide.

Parallel reduction using @parallel (2/4)
julia> a = zeros(4)

4-element Array{Float64,1}:

0.0

0.0

0.0

0.0

julia> @parallel for i=1:4

a[i] = i

end

4-element Array{Future,1}:

Future(3,1,130,#NULL)

Future(4,1,131,#NULL)

Future(5,1,132,#NULL)

Future(2,1,133,#NULL)

julia> a

4-element Array{Float64,1}:

0.0

0.0

0.0

0.0

julia> for i=1:4

a[i] = i

end

julia> a

4-element Array{Float64,1}:

1.0

2.0

3.0

4.0

Parallel reduction using @parallel (3/4)

Evaluation of a @parallel for-loop

I Iterations run on different processors and do not happen in a specified
order,

I Conseqnently, variables or arrays will not be globally visible.
I Any variables used inside the parallel loop will be copied and

broadcast to each processor.
I Processors produce results which are made visible to the lauching

processor via the reduction.
I This explains why the following code will not work as intended:

julia> @parallel for i=1:4

a[i] = i

end

Comments on the example

I Each processor will have a separate copy if it.
I Parallel for loops like these must be avoided

Parallel reduction using @parallel (4/4)

Use of “outside” variables in @parallel for-loops

I Using outside variables in parallel loops is perfectly reasonable if the
variables are read-only. See the example on the next slide.

I In some cases no reduction operator is needed, and we merely wish to
apply a function to all elements in some collection.

I This is another useful operation called parallel map, implemented in
Julia as the pmap function.

I For example, we could compute the rank of several large random
matrices in parallel as follows:

julia> M = [rand(1000,1000) for i=1:4];

julia> pmap(rank, M)

4-element Array{Any,1}:

1000

1000

1000

1000

Use of “outside” variables in @parallel for-loops
julia> tic()

0x00000e1e0b7eb4df

julia> R = [@spawnat i rank(M[i]) for i=1:4]

4-element Array{Future,1}:

Future(1,1,164,#NULL)

Future(2,1,165,#NULL)

Future(3,1,166,#NULL)

Future(4,1,167,#NULL)

julia> toc()

elapsed time: 4.876411306 seconds

4.876411306

julia> S = 0

0

julia> tic()

0x00000e21f51cc600

julia> for i=1:4

S = S + fetch(R[i])

end

julia> toc()

elapsed time: 4.643278986 seconds

4.643278986

julia> S

4000

julia> @time @parallel (+) for i=1:4

rank(M[i])

end

1.315844 seconds (15.14 k allocations: 617.030 KB)

4000

Plan

A first Julia program

Tasks: Concurrent Function Calls

Julia’s Prnciples for Parallel Computing

Tips on Moving Code and Data

Around the Parallel Julia Code for Fibonacci

Parallel Maps and Reductions

Distributed Computing with Arrays: Motivating Examples

Distributed Arrays

Map Reduce

Shared Arrays

Matrix Multiplication Using Shared Arrays (with Julia 3)

Synchronization (with Julia 3)

Computing the maximum value of an array in parallel
julia> @everywhere function maxnum_serial(a,s,e)

if s==e

a[s]

else

mid = Int(floor((s+e)/2))

low = maxnum_serial(a,s,mid)

high = maxnum_serial(a,mid+1,e)

low >high? low:high

end

end

julia> @everywhere function maxnum_parallel(a,s,e)

if (e-s)<=10000000

maxnum_serial(a,s,e)

else

mid = Int(floor((s+e)/2))

low_remote = @spawn maxnum_parallel(a,s,mid)

high = maxnum_parallel(a,mid+1,e)

low = fetch(low_remote)

low > high? low:high

end

end

julia> a=rand(20000000);

julia> @time maxnum_serial(a,1,20000000)

0.308907 seconds (2.20 k allocations: 90.496 KB)

0.9999999858772446

julia> @time maxnum_parallel(a,1,20000000) ## two recursive calls

0.743128 seconds (364.71 k allocations: 15.940 MB)

0.9999999858772446

As we can see, the parallel version runs slower than its serial counterpart.
Indeed, the amount of work (number of comparisons) is in the same order
of magnitude of data transfer (number of integers to move from one
processor than another). But the latter costs much more clock-cycles.

Computing the minimum and maximum values of an array
in parallel

julia> @everywhere function minimum_maximum_serial(a,s,e)

if s==e

[a[s], a[s]]

else

mid = Int(floor((s+e)/2))

X = minimum_maximum_serial(a,s,mid)

Y = minimum_maximum_serial(a,mid+1,e)

[min(X[1],Y[1]), max(X[2],Y[2])]

end

end

julia> @everywhere function minimum_maximum_parallel(a,s,e)

if (e-s)<=10000000

minimum_maximum_serial(a,s,e)

else

mid = Int(floor((s+e)/2))

R = @spawn minimum_maximum_parallel(a,s,mid)

Y = minimum_maximum_parallel(a,mid+1,e)

X = fetch(R)

[min(X[1],Y[1]), max(X[2],Y[2])]

end

end

julia> a=rand(20000000);

ulia> @time minimum_maximum_serial(a,1,20000000)

2.562585 seconds (120.01 M allocations: 4.769 GB, 19.10% gc time)

2-element Array{Float64,1}:

1.1769e-7

1.0

julia> @time minimum_maximum_parallel(a,1,20000000)

1.979739 seconds (60.35 M allocations: 2.399 GB, 12.77% gc time)

2-element Array{Float64,1}:

1.1769e-7

1.0

Plan

A first Julia program

Tasks: Concurrent Function Calls

Julia’s Prnciples for Parallel Computing

Tips on Moving Code and Data

Around the Parallel Julia Code for Fibonacci

Parallel Maps and Reductions

Distributed Computing with Arrays: Motivating Examples

Distributed Arrays

Map Reduce

Shared Arrays

Matrix Multiplication Using Shared Arrays (with Julia 3)

Synchronization (with Julia 3)

Distributed Arrays (1/7)

Idea

I Large computations are often organized around large arrays of
data.

I In these cases, a particularly natural way to obtain parallelism is
to distribute arrays among several processes.

I This combines the memory resources of multiple machines,
allowing use of arrays too large to fit on one machine.

I Each process operates on the part of the array it owns, providing
a ready answer to the question of how a program should be
divided among machines.

The DArray type

I Julia distributed arrays are implemented by the DArray type.
I A DArray has an element type and dimensions just like an Array.
I A DArray can also use arbitrary array-like types to represent the

local chunks that store actual data.
I The data in a DArray is distributed by dividing the index space

into some number of blocks in each dimension.

Distributed Arrays (1/7)

julia> Pkg.add("DistributedArrays")

INFO: Initializing package repository /home/moreno/.julia/v0.5

INFO: Cloning METADATA from https://github.com/JuliaLang/METADATA.jl

INFO: Updating cache of Compat...

INFO: Cloning cache of DistributedArrays from https://github.com/JuliaParallel/DistributedArrays.jl.git

INFO: Cloning cache of Primes from https://github.com/JuliaMath/Primes.jl.git

INFO: Installing Compat v0.11.0

INFO: Installing DistributedArrays v0.3.0

INFO: Installing Primes v0.1.2

INFO: Package database updated

julia> import DistributedArrays

INFO: Precompiling module DistributedArrays

julia> @everywhere using DistributedArrays

Distributed Arrays (2/7)
Constructing distributed arrays

Common kinds of arrays can be constructed with functions beginning with
d:

dzeros(100,100,10)

dones(100,100,10)

drand(100,100,10)

drandn(100,100,10)

x=2

dfill(x, 100,100,10)

In the last case, each element will be initialized to the specified value x.
These functions automatically pick a distribution for you.

Constructing distributed arrays with more control

For more control, you can specify which processors to use, and how the
data should be distributed:

dzeros((100,100), workers()[1:4], [1,4])

I The second argument specifies that the array should be created on
the first four workers. When dividing data among a large number of
processes, one often sees diminishing returns in performance. Placing
DArrays on a subset of processes allows multiple DArray
computations to happen at once, with a higher ratio of work to
communication on each process.

I The third argument specifies a distribution; the nth element of this
array specifies how many pieces the nth dimension should be divided
into. In this example the first dimension will not be divided, and the
second dimension will be divided into 4 pieces. Therefore each local
chunk will be of size (100,25). Note that the product of the
distribution array must equal the number of processors.

Distributed Arrays (3/7)
Constructing distributed arrays with even more control

The primitive DArray constructor has the following somewhat elaborate
signature:

DArray(init, dims[, procs, dist])

I init is a function that accepts a tuple of index ranges. This function
should allocate a local chunk of the distributed array and initialize it
for the specified indices.

I dims is the overall size of the distributed array.
I procs optionally specifies a vector of processor IDs to use.
I dist is an integer vector specifying how many chunks the distributed

array should be divided into in each dimension.
I The last two arguments are optional, and defaults will be used if they

are omitted.

Example

As an example, here is how to turn the local array constructor fill into a
distributed array constructor:

dfill(v, args...) = DArray(I->fill(v, map(length,I)), args...)

In this case the init function only needs to call fill with the dimensions of
the local piece it is creating.

Distributed Arrays (4/7)

julia> [i+j for i = 1:5, j = 1:5]

5x5 Array{Int64,2}:

2 3 4 5 6

3 4 5 6 7

4 5 6 7 8

5 6 7 8 9

6 7 8 9 10

julia> @DArray [i+j for i = 1:5, j = 1:5]

5x5 DistributedArrays.DArray{Int64,2,Array{Int64,2}}:

2 3 4 5 6

3 4 5 6 7

4 5 6 7 8

5 6 7 8 9

6 7 8 9 10

Distributed Arrays (4/7)

julia> @everywhere function par(I)

create our local patch

I is a tuple of intervals

WAS d=(size(I[1], 1), size(I[2], 1))

d= (size([i for i=I[1]], 1), size([i for i=I[2]], 1))

m = fill(myid(), d)

return m

end

julia>

julia> @everywhere h=8

julia> @everywhere w=8

julia> m = DArray(par, (h, w))

8x8 DArray{Int64,2,Array{Int64,2}}:

2 2 2 2 4 4 4 4

2 2 2 2 4 4 4 4

2 2 2 2 4 4 4 4

2 2 2 2 4 4 4 4

3 3 3 3 5 5 5 5

3 3 3 3 5 5 5 5

3 3 3 3 5 5 5 5

3 3 3 3 5 5 5 5

Distributed Arrays (5/7)

julia> @spawn rank(m)

Future(5,1,5327,Nullable{Any}())

julia> @spawn rank(m)

Future(6,1,5328,Nullable{Any}())

julia> @spawn rank(m)

Future(7,1,5329,Nullable{Any}())

julia> r = @spawn rank(m)

Future(8,1,5330,Nullable{Any}())

julia> fetch(r)

ERROR: On worker 8:

MethodError: no method matching svdvals!(::DistributedArrays.DArray{Float64,2,Array{Float64,2}})

Distributed Arrays (6/7)
julia> m

88 DistributedArrays.DArray{Int64,2,Array{Int64,2}}:

2 2 2 2 4 4 4 4

2 2 2 2 4 4 4 4

2 2 2 2 4 4 4 4

2 2 2 2 4 4 4 4

3 3 3 3 5 5 5 5

3 3 3 3 5 5 5 5

3 3 3 3 5 5 5 5

3 3 3 3 5 5 5 5

ulia> r = @spawnat 2 (localindexes(m))

Future(2,1,5596,Nullable{Any}())

julia> fetch(r)

(1:4,1:4)

julia> r = @spawnat 2 (localpart(m))

Future(2,1,5598,Nullable{Any}())

julia> fetch(r)

44 Array{Int64,2}:

2 2 2 2

2 2 2 2

2 2 2 2

2 2 2 2

julia> rank(fetch(r))

1

Distributed Arrays (7/7)

Operations on distributed arrays

I distribute(a::Array) converts a local array to a
distributed array.

I localpart(a::DArray) obtains the locally-stored portion of
a DArray.

I localindexes(a::DArray) gives a tuple of the index ranges
owned by the local process.

I convert(Array, a::DArray) brings all the data to the local
processor.

I Indexing a DArray (square brackets) with ranges of indexes
always creates a SubArray, not copying any data.

Plan

A first Julia program

Tasks: Concurrent Function Calls

Julia’s Prnciples for Parallel Computing

Tips on Moving Code and Data

Around the Parallel Julia Code for Fibonacci

Parallel Maps and Reductions

Distributed Computing with Arrays: Motivating Examples

Distributed Arrays

Map Reduce

Shared Arrays

Matrix Multiplication Using Shared Arrays (with Julia 3)

Synchronization (with Julia 3)

Distributed arrays and parallel reduction (1/4)
moreno@gorgosaurus:~/src/Courses/cs2101/Fall-2013/Julia$ julia -p 4

_

_ _ _(_)_ | A fresh approach to technical computing

(_) | (_) (_) | Documentation: http://docs.julialang.org

_ _ _| |_ __ _ | Type "?help" for help.

| | | | | | |/ _‘ | |

| | |_| | | | (_| | | Version 0.5.0 (2016-09-19 18:14 UTC)

_/ |__’_|_|_|__’_| | Official http://julialang.org/ release

|__/ | x86_64-pc-linux-gnu

julia> @everywhere using DistributedArrays

julia> a = [2i for i = 1:10]

10-element Array{Int64,1}:

2

4

6

8

10

12

14

16

18

20

julia> da = distribute(a)

10-element DistributedArrays.DArray{Int64,1,Array{Int64,1}}:

2

4

6

8

10

12

14

16

18

20

Distributed arrays and parallel reduction (2/4)

julia> procs(da)

4-element Array{Int64,1}:

2

3

4

5

julia> da[3]

6

julia> da[3:5]

3-element SubArray{Int64,1,DArray{Int64,1,Array{Int64,1}},(Range1{Int64},)}:

6

8

10

ulia> lp = [@spawnat i (localindexes(da)) for i=2:5]

4-element Array{Future,1}:

Future(2,1,70,#NULL)

Future(3,1,71,#NULL)

Future(4,1,72,#NULL)

Future(5,1,73,#NULL)

Distributed arrays and parallel reduction (2/4)

julia> map(fetch,lp)

4-element Array{Tuple{UnitRange{Int64}},1}:

(1:3,)

(4:5,)

(6:7,)

(8:10,)

ulia> lp = [@spawnat i (localpart(da)) for i=2:5]

4-element Array{Future,1}:

Future(2,1,78,#NULL)

Future(3,1,79,#NULL)

Future(4,1,80,#NULL)

Future(5,1,81,#NULL)

julia> map(fetch,lp)

4-element Array{Array{Int64,1},1}:

[2,4,6]

[8,10]

[12,14]

[16,18,20]

Distributed arrays and parallel reduction (3/4)

julia> fetch(@spawnat 4 da[3])

6

julia> [(@spawnat p sum(localpart(da))) for p=procs(da)]

4-element Array{Future,1}:

Future(2,1,90,#NULL)

Future(3,1,91,#NULL)

Future(4,1,92,#NULL)

Future(5,1,93,#NULL)

julia> map(fetch,

[(@spawnat p sum(localpart(da))) for p=procs(da)])

4-element Array{Int64,1}:

12

18

26

54

julia> sum(da)

110

Distributed arrays and parallel reduction (4/4)

julia> reduce(+, map(fetch,

[(@spawnat p sum(localpart(da))) for p=procs(da)]))

110

julia > preduce(f,d) = reduce(f, map(fetch,

[(@spawnat p f(localpart(d))) for p=procs(d)]))

preduce (generic function with 1 method)

julia> function Base.minimum(x::Int64, y::Int64)

min(x,y)

end

julia> preduce(minimum, da)

2

Plan

A first Julia program

Tasks: Concurrent Function Calls

Julia’s Prnciples for Parallel Computing

Tips on Moving Code and Data

Around the Parallel Julia Code for Fibonacci

Parallel Maps and Reductions

Distributed Computing with Arrays: Motivating Examples

Distributed Arrays

Map Reduce

Shared Arrays

Matrix Multiplication Using Shared Arrays (with Julia 3)

Synchronization (with Julia 3)

Shared arrays (1/6)

Shared arrays vs distributed arrays

I Shared Arrays use system shared memory to map the same
array across many processes.

I While there are some similarities to a DArray, the behavior of
a SharedArray is quite different.

I In a DArray, each process has local access to just a chunk of
the data, and no two processes share the same chunk;

I in contrast, in a SharedArray each participating process has
access to the entire array.

I A SharedArray is a good choice when you want to have a
large amount of data jointly accessible to two or more
processes on the same machine.

Shared arrays (2/6)

Shared arrays vs regular arrays

I SharedArray indexing (assignment and accessing values)
works just as with regular arrays, and is efficient because the
underlying memory is available to the local process.

I Therefore, most algorithms work naturally on SharedArrays,
albeit in single-process mode. In cases where an algorithm
insists on an Array input, the underlying array can be
retrieved from a SharedArray by calling sdata(S).

Shared arrays (3/6)

The constructor for a shared array is of the form:

SharedArray(T::Type, dims::NTuple; init=false, pids=Int[])

I which creates a shared array of a type T and

I size dims across the processes specified by pids.

I Unlike distributed arrays, a shared array is accessible only from
those participating workers specified by the pids named
argument (and the creating process too, if it is on the same
host).

I If an init function, of signature initfn(S::SharedArray),
is specified, then it is called on all the participating workers.

I You can arrange it so that each worker runs the init function
on a distinct portion of the array, thereby parallelizing
initialization.

Shared arrays (4/6)
Heres a brief example (with Julia started with -p 4)

julia> S = SharedArray(Int, (3,4),

init = S -> S[localindexes(S)] = myid())

3x4 SharedArray{Int64,2}:

1 2 4 5

1 3 4 5

2 3 5 5

julia> S[3,2] = 7

7

julia> S

3x4 SharedArray{Int64,2}:

1 2 4 5

1 3 4 5

2 7 5 5

localindexes provides disjoint one-dimensional ranges of indexes, and is
sometimes convenient for splitting up tasks among processes. You can, of
course, divide the work any way you wish:

S=SharedArray(Int,(4,4),

init = S -> S[myid()-1:nworkers():length(S)] = myid())

Shared arrays (5/6)
Continuing the example (with Julia started with -p 3):

julia> S

4x4 SharedArray{Int64,2}:

2 2 2 2

3 3 3 3

4 4 4 4

5 5 5 5

julia> for i=1:3, j=1:4 S[i,j] = myid() end

julia> S

4x4 SharedArray{Int64,2}:

1 1 1 1

1 1 1 1

1 1 1 1

5 5 5 5

julia> @spawn for i=1:3, j=1:4 S[i,j] = myid() end

Future(2,1,610,Nullable{Any}())

julia> S

44 SharedArray{Int64,2}:

2 2 2 2

2 2 2 2

2 2 2 2

5 5 5 5

Shared arrays (6/6)
Since all processes have access to the underlying data, you do have to
be careful not to set up conflicts. For example:

@sync begin

for p in workers()

@spawn for i=1:4, j=1:4 S[i,j] = myid() end

end

end

would result in undefined behavior: because each process fills the
entire array with its own pid, whichever process is the last to execute
(for any particular element of S) will have its pid retained. One could
even get a more random behavior as follows:

@sync begin

for p in workers()

@async begin

remotecall_wait(fill!, p, S, p)

end

end

end

Plan

A first Julia program

Tasks: Concurrent Function Calls

Julia’s Prnciples for Parallel Computing

Tips on Moving Code and Data

Around the Parallel Julia Code for Fibonacci

Parallel Maps and Reductions

Distributed Computing with Arrays: Motivating Examples

Distributed Arrays

Map Reduce

Shared Arrays

Matrix Multiplication Using Shared Arrays (with Julia 3)

Synchronization (with Julia 3)

Blockwise matrix multiplication (1/4)
I Assume that we want to multiply two square matrices A and B of

order n, yielding a square matrix C of order n.
I Assume also that n is a power of 2.
I Then, each of A,B,C can be divided into 4 blocks (themselves

matrices) of order n/2 as depicted below.

C C A A B BC11 C12

C C
= ·

A11 A12

A A

B11 B12

B BC21 C22 A21 A22 B21 B22

A11B11 A11B12 A12B21 A12B22= +
A11B11 A11B12

A21B11 A21B12

A12B21 A12B22

A22B21 A22B2221 11 21 12 22 21 22 22

I This leads to a recursive process for multiplying matrices. with 8
recursive calls, namely for A11B11, A11B12, . . . , A22B22.

I In practice, the recursive calls should be performed until a base case
(typically n = 32 or n = 64 or n = 128, depending on the machine,
the type of the input coefficients and the initial value of n).

I The code on the next slide implements these ideas.

Blockwise matrix multiplication (2/4)
I am using julia-0.3.0-rc4 here!

moreno@gorgosaurus:~$ julia-0.3.0-rc4 -p 4

_

_ _ _(_)_ | A fresh approach to technical computing

(_) | (_) (_) | Documentation: http://docs.julialang.org

_ _ _| |_ __ _ | Type "help()" for help.

| | | | | | |/ _‘ | |

| | |_| | | | (_| | | Version 0.3.0-rc4 (2014-08-15 04:01 UTC)

_/ |__’_|_|_|__’_| |

|__/ | x86_64-linux-gnu

Exercise: Get this section to work with the latest version of julia.

Blockwise matrix multiplication (2/4)

function dacmm(i0, i1, j0, j1, k0, k1, A, B, C, n, basecase)

A, B, C are matrices

We compute C = A * B

if n > basecase

n = div(n,2)

dacmm(i0, i1, j0, j1, k0, k1, A, B, C, n, basecase)

dacmm(i0, i1, j0, j1+n, k0, k1+n, A, B, C, n, basecase)

dacmm(i0+n, i1, j0, j1, k0+n, k1, A, B, C, n, basecase)

dacmm(i0+n, i1, j0, j1+n, k0+n, k1+n, A, B, C, n, basecase)

dacmm(i0, i1+n, j0+n, j1, k0, k1, A, B, C, n, basecase)

dacmm(i0, i1+n, j0+n, j1+n, k0, k1+n, A, B, C, n, basecase)

dacmm(i0+n, i1+n, j0+n, j1, k0+n, k1, A, B, C, n, basecase)

dacmm(i0+n, i1+n, j0+n, j1+n, k0+n, k1+n, A, B, C, n, basecase)

else

for i= 1:n, j=1:n, k=1:n

C[i+k0,k1+j] = C[i+k0,k1+j] + A[i+i0,i1+k] * B[k+j0,j1+j]

end

end

end

Blockwise matrix multiplication (3/4)
julia> n=4

4

julia> basecase = 2

2

julia> A = [rem(rand(Int32),5) for i =1:n, j = 1:n]

4x4 Array{Int64,2}:

-4 -2 0 -3

-1 4 -1 0

1 0 0 -4

2 -3 4 2

julia> B = [rem(rand(Int32),5) for i =1:n, j = 1:n]

4x4 Array{Int64,2}:

3 4 -4 2

-4 -4 3 1

-4 -4 0 -2

0 3 -2 -3

julia> C = zeros(Int32,n,n);

julia> dacmm(0, 0, 0, 0, 0, 0, A, B, C, n, basecase)

julia> C

4x4 Array{Int32,2}:

-4 -17 16 -1

-15 -16 16 4

3 -8 4 14

2 10 -21 -13

Parallel blockwise matrix multiplication (1/2)

@everywhere function dacmm_parallel(i0, i1, j0, j1, k0, k1, A, B, C, s, X)

if s > X

s = div(s,2)

lrf = [@spawn dacmm_parallel(i0, i1, j0, j1, k0, k1, A, B, C, s,X),

@spawn dacmm_parallel(i0, i1, j0, j1+s, k0, k1+s, A, B, C, s,X),

@spawn dacmm_parallel(i0+s, i1, j0, j1, k0+s, k1, A, B, C, s,X),

@spawn dacmm_parallel(i0+s, i1, j0, j1+s, k0+s, k1+s, A, B, C, s,X)]

pmap(fetch, lrf)

lrf = [@spawn dacmm_parallel(i0, i1+s, j0+s, j1, k0, k1, A, B, C, s,X),

@spawn dacmm_parallel(i0, i1+s, j0+s, j1+s, k0, k1+s, A, B, C, s,X),

@spawn dacmm_parallel(i0+s, i1+s, j0+s, j1, k0+s, k1, A, B, C, s,X),

@spawn dacmm_parallel(i0+s, i1+s, j0+s, j1+s, k0+s, k1+s, A, B, C, s,X)]

pmap(fetch, lrf)

else

for i= 0:(s-1), j=0:(s-1), k=0:(s-1)

C[i+k0,k1+j] += A[i+i0,i1+k] * B[k+j0,j1+j]

end

end

end

Parallel blockwise matrix multiplication (2/2)

s = 8

A = convert(SharedArray, rand(s,s))

B = convert(SharedArray, rand(s,s))

C = convert(SharedArray, zeros(s,s))

dacmm_parallel(1,1,1,1,1,1,A,B,C,s,8)

C - A * B

C = convert(SharedArray, zeros(s,s))

dacmm_parallel(1,1,1,1,1,1,A,B,C,s,2)

C - A * B

s = 1024

A = convert(SharedArray, rand(s,s))

B = convert(SharedArray, rand(s,s))

C = convert(SharedArray, zeros(s,s));

@time dacmm_parallel(1,1,1,1,1,1,A,B,C,s,64)

2.487033204 seconds

C = convert(SharedArray, zeros(s,s));

@time dacmm_parallel(1,1,1,1,1,1,A,B,C,s,1024)

25.025766093 seconds

Plan

A first Julia program

Tasks: Concurrent Function Calls

Julia’s Prnciples for Parallel Computing

Tips on Moving Code and Data

Around the Parallel Julia Code for Fibonacci

Parallel Maps and Reductions

Distributed Computing with Arrays: Motivating Examples

Distributed Arrays

Map Reduce

Shared Arrays

Matrix Multiplication Using Shared Arrays (with Julia 3)

Synchronization (with Julia 3)

How does Julia’s schedule computations?
Julia’s scheduling strategy is based on tasks

I Julias parallel programming platform uses Tasks (aka Coroutines) to
switch among multiple computations.

I Whenever code performs a communication operation like fetch or
wait, the current task is suspended and a scheduler picks another
task to run.

I A task is restarted when the event it is waiting for completes.

Dynamic scheduling

I For many problems, it is not necessary to think about tasks directly.
I However, they can be used to wait for multiple events at the same

time, which provides for dynamic scheduling.
I In dynamic scheduling, a program decides what to compute or where

to compute it based on when other jobs finish.
I This is needed for unpredictable or unbalanced workloads, where we

want to assign more work to processes only when they finish their
current tasks.

I As an example, consider computing the ranks of matrices of different
sizes

M = {rand(800,800), rand(600,600), rand(800,800), rand(600,600)}

pmap(rank, M)

Implementation of pmap

Main idea
Processor 1 dispatches the arguments of function f to the workkers via
remotecall fetch.

Details

I Each worker is associated with a local task feeding work to it.
I This mapping is done in the for loop where each iteration is run

asynchronously.
I Indeed, each of these iterations submits remote calls via

remotecall fetch and waits; note the use of the while true loop.
I Once a remote call is submitted, the corresponding task is inerrupted

and another iteration can run; note that all these tasks are local to
Processor 1, hence, only one runs at a time.

I Each worker knows which item to pick from the list lst thanks to the
fuction nextidx().

I May be another task has changed the variable i when a call to
nextidx() returns: but this does not matter thanks to the use of the
local variable idx.

Implementation of pmap

function pmap(f, lst)

np = nprocs() # determine the number of processes available

n = length(lst)

results = cell(n)

i = 1

function to produce the next work item from the queue.

in this case it’s just an index.

nextidx() = (idx=i; i+=1; idx)

@sync begin

for p=1:np

if p != myid() || np == 1

@async begin

while true

idx = nextidx()

if idx > n

break

end

results[idx] = remotecall_fetch(p, f, lst[idx])

end

end

end

end

end

results

end

@spawnlocal, @sync and @everywhere
@spawnlocal (recently renamed @async)

I @spawnlocal is similar to @spawn, but only runs tasks on the local
processor.

I In the pmap example above, we use it to create a feeder task for each
processor.

I Each task picks the next index that needs to be computed, then waits
for its processor to finish, then repeats until we run out of indexes.

@sync

I A @sync block is used to wait for all the local tasks to complete, at
which point the whole operation is done.

I Notice that all the feeder tasks are able to share the state i via
next idx() since they all run on the same processor.

I However, no locking is required, since the threads are scheduled
cooperatively and not preemptively.

I This means context switches only occur at well-defined points (during
the fetch operation).

@everywhere

I It is often useful to execute a statement on all processors, particularly
for setup tasks such as loading source files and defining common
variables. This can be done with the @everywhere macro.

	A first Julia program
	Tasks: Concurrent Function Calls
	Julia's Prnciples for Parallel Computing
	Tips on Moving Code and Data
	Around the Parallel Julia Code for Fibonacci
	Parallel Maps and Reductions
	Distributed Computing with Arrays: Motivating Examples
	Distributed Arrays
	Map Reduce
	Shared Arrays
	Matrix Multiplication Using Shared Arrays (with Julia 3)
	Synchronization (with Julia 3)

