
Parallel Scanning

Marc Moreno Maza

University of Western Ontario, London, Ontario (Canada)

CS2101

Plan

1 Problem Statement and Applications

2 Algorithms

3 Applications

4 Implementation in Julia

Problem Statement and Applications

Plan

1 Problem Statement and Applications

2 Algorithms

3 Applications

4 Implementation in Julia

Problem Statement and Applications

Parallel scan: chapter overview

Overview

This chapter will be the first dedicated to the applications of a
parallel algorithm.

This algorithm, called the parallel scan, aka the parallel prefix sum is
a beautiful idea with surprising uses: it is a powerful recipe to turning
serial into parallel.

Watch closely what is being optimized for: this is an amazing lesson
of parallelization.

Application of parallel scan are numerous:
• it is used in program compilation, scientific computing and,
• we already met prefix sum with the counting-sort algorithm!

Problem Statement and Applications

Prefix sum

Prefix sum of a vector: specification

Input: a vector ~x = (x1, x2, . . . , xn)

Ouput: the vector ~y = (y1, y2, . . . , yn) such that yi =
∑j=i

i=1 xj for
1 ≤ j ≤ n.

Prefix sum of a vector: example

The prefix sum of ~x = (1, 2, 3, 4, 5, 6, 7, 8) is ~y = (1, 3, 6, 10, 15, 21, 28, 36).

Problem Statement and Applications

Prefix sum: thinking of parallelization (1/2)

Remark

So a Julia implementation of the above specification would be:

function prefixSum(x)

n = length(x)

y = fill(x[1],n)

for i=2:n

y[i] = y[i-1] + x[i]

end

y

end

n = 10

x = [mod(rand(Int32),10) for i=1:n]

prefixSum(x)

Comments (1/2)

The i-th iteration of the loop is not at all decoupled from the (i− 1)-th
iteration.
Impossible to parallelize, right?

Problem Statement and Applications

Prefix sum: thinking of parallelization (2/2)

Remark

So a Julia implementation of the above specification would be:

function prefixSum(x)

n = length(x)

y = fill(x[1],n)

for i=2:n

y[i] = y[i-1] + x[i]

end

y

end

n = 10

x = [mod(rand(Int32),10) for i=1:n]

prefixSum(x)

Comments (2/2)

Consider again ~x = (1, 2, 3, 4, 5, 6, 7, 8) and its prefix sum
~y = (1, 3, 6, 10, 15, 21, 28, 36).
Is there any value in adding, say, 4+5+6+7 on itw own?
If we separately have 1+2+3, what can we do?
Suppose we added 1+2, 3+4, etc. pairwise, what could we do?

Problem Statement and Applications

Parallel scan: formal definitions

Let S be a set, let + : S × S → S be an associative operation on S
with 0 as identity. Let A[1 · · ·n] be an array of n elements of S.

Tthe all-prefixes-sum or inclusive scan of A computes the array B of
n elements of S defined by

B[i] =

{
A[1] if i = 1

B[i− 1] + A[i] if 1 < i ≤ n

The exclusive scan of A computes the array B of n elements of S:

C[i] =

{
0 if i = 1

C[i− 1] + A[i− 1] if 1 < i ≤ n

An exclusive scan can be generated from an inclusive scan by shifting
the resulting array right by one element and inserting the identity.

Similarly, an inclusive scan can be generated from an exclusive scan.

Algorithms

Plan

1 Problem Statement and Applications

2 Algorithms

3 Applications

4 Implementation in Julia

Algorithms

Serial scan: pseudo-code

Here’s a sequential algorithm for the inclusive scan.

function prefixSum(x)

n = length(x)

y = fill(x[1],n)

for i=2:n

y[i] = y[i-1] + x[i]

end

y

end

Comments

Recall that this is similar to the cumulated frequency computation
that is done in the prefix sum algorithm.

Observe that this sequential algorithm performa n− 1 additions.

Algorithms

Naive parallelization (1/4)

Principles

Assume we have the input array has n entries and we have n workers at our disposal
We aim at doing as much as possible per parallel step. For simplicity, we assume
that n is a power of 2.
Hence, during the first parallel step, each worker (except the first one) adds the
value it owns to that of its left neighbour: this allows us to compute all sums of the
forms xk−1 + xk−2, for 2 ≤ k ≤ n.
For this to happen, we need to work out of place. More precisely, we need an
auxiliary with n entries.

Algorithms

Naive parallelization (2/4)

Principles

Recall that the k-th slot, for 2 ≤ k ≤ n, holds xk−1 + xk−2.
If n = 4, we can conclude by adding Slot 0 and Slot 2 on one hand and Slot 1 and
Slot 3 on the other.
More generally, we can perform a second parallel step by adding Slot k and Slot
k − 2, for 3 ≤ k ≤ n.

Algorithms

Naive parallelization (3/4)

Principles

Now the k-th slot, for 4 ≤ k ≤ n, holds xk−1 + xk−2 + xk−3 + xk−4.
If n = 8, we can conclude by adding Slot 5 and Slot 1, Slot 6 and Slot 2, Slot 7
and Slot 3, Slot 8 and Slot 4.
More generally, we can perform a third parallel step by adding Slot k and Slot
k − 4 for 5 ≤ k ≤ n.

Algorithms

Naive parallelization (4/4)

Algorithms

Naive parallelization: pseudo-code (1/2)

Input: Elements located in M [1], . . . ,M [n], where n is a power of 2.
Output: The n prefix sums located in M [n + 1], . . . ,M [2n].

Program: Active Proocessors P[1], ...,P[n];

// id the active processor index

for d := 0 to (log(n) -1) do

if d is even then

if id > 2^d then

M[n + id] := M[id] + M[id - 2^d]

else

M[n + id] := M[id]

end if

else

if id > 2^d then

M[id] := M[n + id] + M[n + id - 2^d]

else

M[id] := M[n + id]

end if

end if

if d is odd then M[n + id] := M[id] end if

Algorithms

Naive parallelization: pseudo-code (2/2)

Pseudo-code

Active Proocessors P[1], ...,P[n]; // id the active processor index

for d := 0 to (log(n) -1) do

if d is even then

if id > 2^d then

M[n + id] := M[id] + M[id - 2^d]

else

M[n + id] := M[id]

end if

else

if id > 2^d then

M[id] := M[n + id] + M[n + id - 2^d]

else

M[id] := M[n + id]

end if

end if

if d is odd then M[n + id] := M[id] end if

Observations

M [n + 1], . . . ,M [2n] are used to hold the intermediate results at Steps
d = 0, 2, 4, . . . (log(n)− 2).
Note that at Step d, (n− 2d) processors are performing an addition.
Moreover, at Step d, the distance between two operands in a sum is 2d.

Algorithms

Naive parallelization: analysis

Recall

M [n + 1], . . . ,M [2n] are used to hold the intermediate results at
Steps d = 0, 2, 4, . . . (log(n)− 2).

Note that at Step d, (n− 2d) processors are performing an addition.

Moreover, at Step d, the distance between two operands in a sum is
2d.

Analysis

It follows from the above that the naive parallel algorithm performs
log(n) parallel steps

Moreover, at each parallel step, at least n/2 additions are performed.

Therefore, this algorithm performs at least (n/2)log(n) additions

Thus, this algorithm is not work-efficient since the work of our serial
algorithm is simply n− 1 additions.

Algorithms

Parallel scan: a recursive work-efficient algorithm (1/2)

Algorithm

Input: x[1], x[2], . . . , x[n] where n is a power of 2.
Step 1: (x[k], x[k − 1]) = (x[k] + x[k − 1], x[k] for all even k’s.
Step 2: Recursive call on x[2], x[4], . . . , x[n]
Step 3: x[k − 1] = x[k]− x[k − 1] for all even k’s.

Algorithms

Parallel scan: a recursive work-efficient algorithm (2/2)

Analysis

Since the recursive call is applied to an array of size n/2, the total number of
recursive calls is log(n).
Before the recursive call, one performs n/2 additions
After the recursive call, one performs n/2 subtractions
Elementary calculations show that this recursive algorithm performs at most a
total of 2n additions and subtractions
Thus, this algorithm is work-efficient. In addition, it can run in 2log(n)
parallel steps.

Applications

Plan

1 Problem Statement and Applications

2 Algorithms

3 Applications

4 Implementation in Julia

Applications

Application to Fibonacci sequence computation

Applications

Application to parallel addition (1/2)

Applications

Application to parallel addition (2/2)

Implementation in Julia

Plan

1 Problem Statement and Applications

2 Algorithms

3 Applications

4 Implementation in Julia

Implementation in Julia

Serial prefix sum: recall

function prefixSum(x)

n = length(x)

y = fill(x[1],n)

for i=2:n

y[i] = y[i-1] + x[i]

end

y

end

n = 10

x = [mod(rand(Int32),10) for i=1:n]

prefixSum(x)

Implementation in Julia

Parallel prefix multiplication: live demo (1/7)

julia> reduce(+,1:8) #sum(1:8)

36

julia> reduce(*, 1:8) #prod(1:8)

40320

julia> boring(a,b)=a

methods for generic function boring

boring(a,b) at none:1

julia> println(reduce(boring, 1:8))

1

julia> boring2(a,b)=b

methods for generic function boring2

boring2(a,b) at none:1

julia> reduce(boring2, 1:8)

8

Comments

First, we test Julia’s reduce function with different operations.

Implementation in Julia

Parallel prefix multiplication: live demo (2/7)

julia> fib(j)=reduce(*, [[[1, 1] [1, 0]] for i=1:j])

methods for generic function fib

fib(j) at none:1

julia> map(fib, [4, 7])

2-element Array{Array{Int64,2},1}:

2x2 Array{Int64,2}:

5 3

3 2

2x2 Array{Int64,2}:

21 13

13 8

julia> Hadamard(n)=reduce(kron, [[[1,1] [1,-1]] for i=1:n])

methods for generic function Hadamard

Hadamard(n) at none:1

julia> Hadamard(3)

8x8 Array{Int64,2}:

1 1 1 1 1 1 1 1

1 -1 1 -1 1 -1 1 -1

1 1 -1 -1 1 1 -1 -1

1 -1 -1 1 1 -1 -1 1

1 1 1 1 -1 -1 -1 -1

1 -1 1 -1 -1 1 -1 1

1 1 -1 -1 -1 -1 1 1

1 -1 -1 1 -1 1 1 -1

Comments

Next, we compute Fibonacci numbers and Hadamard matrices via prefix sum.

Implementation in Julia

Parallel prefix multiplication: live demo (3/7)

julia> M=[randn(2,2) for i=1:4];

julia> printnice(x)=println(round(x,3))

methods for generic function printnice

printnice(x) at none:1

julia> printnice(M[4]*M[3]*M[2]*M[1])

-.466 .906

1.559 -3.447

julia> printnice(reduce((A,B)->B*A, M)) #backward multiply

-.466 .906

1.559 -3.447

julia> printnice(reduce(*, M)) #forward multiply

-.823 .25

-2.068 .39

Comments

In the above we do a prefix multiplication with random matrices.

Implementation in Julia

Parallel prefix multiplication: live demo (4/7)

julia> h=reduce((f,g)->(x->f(g(x))), [sin cos tan])

function

julia>

julia> [h(pi) sin(cos(tan(pi)))]

1x2 Array{Float64,2}:

0.841471 0.841471

Comments

In the above example we apply ‘reduce()‘ to function composition:

Implementation in Julia

Parallel prefix multiplication: live demo (5/7)

julia> @everywhere function prefix_serial!(y,*)

@inbounds for i in 2:length(y)

y[i]=y[i-1]*y[i]

end

y

end;

julia> function prefix8!(y,*)

if length(y)!=8; error("length 8 only"); end

for i in [2,4,6,8]; y[i]=y[i-1]*y[i]; end

for i in [4, 8]; y[i]=y[i-2]*y[i]; end

for i in [8]; y[i]=y[i-4]*y[i]; end

for i in [6]; y[i]=y[i-2]*y[i]; end

for i in [3,5,7]; y[i]=y[i-1]*y[i]; end

y

end

methods for generic function prefix8!

prefix8!(y,*) at none:2

julia> function prefix!(y,.*)

l=length(y)

k=int(ceil(log2(l)))

@inbounds for j=1:k, i=2^j:2^j:min(l, 2^k) #"reduce"

y[i]=y[i-2^(j-1)].*y[i]

end

@inbounds for j=(k-1):-1:1, i=3*2^(j-1):2^j:min(l, 2^k) #"broadcast"

y[i]=y[i-2^(j-1)].*y[i]

end

y

end

methods for generic function prefix!

prefix!(y,.*) at none:2

Comments

We prepare a prefix-sum computation with 8 workers and 8 matrices to
multiply.

Implementation in Julia

Parallel prefix multiplication: live demo (6/7)

+(r1::RemoteRef,r2::RemoteRef)=@spawnat r2.where fetch(r1)+fetch(r2)

methods for generic function +

+(x::Bool,y::Bool) at bool.jl:38

+(x::Int64,y::Int64) at int.jl:36

... 91 methods not shown (use methods(+) to see them all)

julia> *(r1::RemoteRef,r2::RemoteRef)=@spawnat r2.where fetch(r1)*fetch(r2)

methods for generic function *

... 121 methods not shown (use methods(*) to see them all)

julia> # The serial version requires 7 operations. The parallel version uses 11 operations, but they are grouped into 5 simultaneous chunks of operations. Henceserial code.hat the parallel version runs in 5/7 the time needed for the nave

Comments

We prepare a prefix-sum computation with 8 workers and 8 matrices to
multiply.

Implementation in Julia

Parallel prefix multiplication: live demo (7/7)

\julia> n=2048

2048

julia> r=[@spawnat i randn(n,n) for i=1:8]; s=fetch(r); t=copy(r)

8-element Array{Any,1}:

RemoteRef(1,1,16)

RemoteRef(2,1,17)

RemoteRef(3,1,18)

RemoteRef(4,1,19)

RemoteRef(5,1,20)

RemoteRef(6,1,21)

RemoteRef(7,1,22)

RemoteRef(8,1,23)

julia> tic(); prefix_serial!(s, *); t_ser = toc()

elapsed time: 10.679596478 seconds

10.679596478

julia> tic(); @sync prefix8!(t, *); t_par = toc() #Caution: race condition bug #4330

elapsed time: 7.434856303 seconds

7.434856303

julia> @printf("Serial: %.3f sec Parallel: %.3f sec speedup: %.3fx (theory=1.4x)", t_ser, t_par, t_ser/t_par)

Serial: 10.680 sec Parallel: 7.435 sec speedup: 1.436x (theory=1.4x)

Comments

Now let’s run prefix in parallel on 8 processors.

	Problem Statement and Applications
	Algorithms
	Applications
	Implementation in Julia

