Parallel Scanning

Marc Moreno Maza
University of Western Ontario, London, Ontario (Canada)

CS2101

Plan

@ Problem Statement and Applications

© Algorithms

© Applications

@ Implementation in Julia

Problem Statement and Applications

Plan

@ Problem Statement and Applications

Problem Statement and Applications

Parallel scan: chapter overview

Overview

@ This chapter will be the first dedicated to the applications of a
parallel algorithm.

@ This algorithm, called the parallel scan, aka the parallel prefix sum is
a beautiful idea with surprising uses: it is a powerful recipe to turning
serial into parallel.

o Watch closely what is being optimized for: this is an amazing lesson
of parallelization.

@ Application of parallel scan are numerous:

e it is used in program compilation, scientific computing and,
e we already met prefix sum with the counting-sort algorithm!

Problem Statement and Applications

Prefix sum

Prefix sum of a vector: specification

Input: a vector & = (x1,z2,...,%y)
Ouput: the vector ¥ = (y1, 42, ..,yn) such that y; = ZE z; for
1<j<n

Prefix sum of a vector: example

The prefix sum of ¥ = (1,2,3,4,5,6,7,8) is ¥ = (1, 3,6, 10, 15,21, 28, 36)

v

Prefix sum: thinking of parallelization (1/2)

Remark

So a Julia implementation of the above specification would be:

function prefixSum(x)
n = length(x)
y = £i11(x[1],n)
for i=2:n
y[il = y[i-1] + x[i]
end

y
end

n = 10

e
]

[mod (rand (Int32),10) for i=1:mn]

prefixSum(x)

Comments (1/2)

@ The i-th iteration of the loop is not at all decoupled from the (i — 1)-th
iteration.
o Impossible to parallelize, right?

Problem Statement and Applications

Prefix sum: thinking of parallelization (2/2)

Remark
So a Julia implementation of the above specification would be:

function prefixSum(x)
n = length(x)

y = £i1l(x[1]1,n)
for i=2:n
y[il = y[i-1] + x[i]
end
y
end
n = 10

x = [mod(rand(Int32),10) for i=1:n]

prefixSum(x)

Comments (2/2)
o Consider again & = (1,2,3,4,5,6,7,8) and its prefix sum
y=(1,3,6,10,15,21,28, 36).
@ Is there any value in adding, say, 4+5+6+7 on itw own?
o If we separately have 14243, what can we do?
@ Suppose we added 142, 3+4, etc. pairwise, what could we do?

Problem Statement and Applications

Parallel scan: formal definitions

o Let S be aset, let +:.5 x S — S be an associative operation on S
with 0 as identity. Let A[l---n] be an array of n elements of S.

e Tthe all-prefixes-sum or inclusive scan of A computes the array B of
n elements of S defined by

o All] it i=1
B[Z]_{B[i—1]+A[z'] it 1<i<n

@ The exclusive scan of A computes the array B of n elements of S

Cli] = 0 if i=1
U=V Cli—1+A4li—1] if 1<i<n

@ An exclusive scan can be generated from an inclusive scan by shifting
the resulting array right by one element and inserting the identity.

e Similarly, an inclusive scan can be generated from an exclusive scan.

Plan

© Algorithms

Algorithms

Serial scan: pseudo-code

Here's a sequential algorithm for the inclusive scan.

function prefixSum(x)
n = length(x)
y = £ill(x[1],n)
for i=2:n
y[il = y[i-1] + x[i]
end

y
end

Comments

o Recall that this is similar to the cumulated frequency computation
that is done in the prefix sum algorithm.

@ Observe that this sequential algorithm performa n — 1 additions.

Algorithms

Naive parallelization (1/4)

Principles

@ Assume we have the input array has n entries and we have n workers at our disposal

@ We aim at doing as much as possible per parallel step. For simplicity, we assume
that n is a power of 2.

o Hence, during the first parallel step, each worker (except the first one) adds the
value it owns to that of its left neighbour: this allows us to compute all sums of the
forms xp_1 + Tp_9, for 2 <k < n.

o For this to happen, we need to work OUT OF PLACE. More precisely, we need an
auxiliary with n entries.

d=0 X0 X X2 X3 X4 Xs X6 X7
- ~ ~ -
I B B e e e e |

d=1 ("4: X<:J Z(xg.Xy) X(Xpe x,) (X Xs) Z(Xa X)) Z(XgXs) | DX Xg) | DX X7)

- R

d=2 ("4] X«) Z(xo-x1) E(xo-Xz2) E(x0-X3) | Z(X1 Xa) | Dxa.Xs) | E(xa. Xg) | X(X4..%7)

=

d=3 | Exgx0) | Z(xp-Xp) B2} | E(xp-X3) | 20 2) Elxp-Xs) | 0 Xg) | Eg.X7)

Naive parallelization (2/4)

Principles
o Recall that the k-th slot, for 2 < k < n, holds zj_1 + T)_9.

o If n =4, we can conclude by adding Slot 0 and Slot 2 on one hand and Slot 1 and
Slot 3 on the other.

@ More generally, we can perform a second parallel step by adding Slot k£ and Slot
k—2 for3<k<n.

0 xg X X2 X3 X4 Xs Xg X7
I e e e B

A=l 2(%0.%0) | 20X 1) Z(X1X2) | (X2 X3) | Z(Xs.%4) | E(X4Xe) | Z(XsXg) | (X6 X7)

P Sy e ey oy |

@22 Z(x.Xo) | E(xo-X1) D(x0.%2) | Z(Xp-X3) | E(x1.x4) | E(x2..Xs) | Z(xa.Xe) | E(x4..%7)

— ===

4=3 B(x.%g) | E(Xg.X) Dxg.Xp) | T(xg.X3) | E(XgX4) | E(g.X3) | T Xg) | B X7)

Algorithms

Naive parallelization (3/4)

Principles

@ Now the k-th slot, for 4 < k < n, holds xy_1 + Tp_9 + Tp_3 + Tp_4.
o If n =8, we can conclude by adding Slot 5 and Slot 1, Slot 6 and Slot 2, Slot 7

and Slot 3, Slot 8 and Slot 4.

@ More generally, we can perform a third parallel step by adding Slot & and Slot

k—4forb5<k<n.

d=0

d=3

Z(xg..%g) | Z(Xg.-

Xo X1 X2 X3 X4 Xs Xa X7
- 8 - - ~—
I e B B B R B

X)) Z(%).%0) | Z(XaXa) | E(Xa . Xy) | Z(x4X5) | D(Xs.-X6) | Z(Xg..X57)

Z(xg..x0) | Z(xp..X1) | E(Xp.-X2) | L(Xo..X3) | Z(Xy..Xa) | E(X2..X5) | L(X3.Xg) | Z(Xs4..X7)

Z(Xg.-Xg) | Z(xg--x1) | Z(Xg-X2) | Z(Xp-X3) | Z(Xg.X4) Z(Xg.X5) | Z{Xg..Xg) | Z(Xg..X7)

Algori

Naive parallelization (4/4)

d=0

d=3

XO‘XI Kz‘

Z(X0.-X0)

Z(xg.-%g)

Z(Xg-X)) Z(X)..X2)

E(xgx)) E(xg..Xa)

ithms

Z(X2.X1)) Z(Xay) Ty Xs) | 2N)| E(X . %0)

R i Sy Sy S |

Z(Ko X3) | Z(%1.%4) | Z(X2..X5) | Z(X3.Xe) | Z(Xy4..X7)

——

Z(xp- Ks) Z(xy. K4) Z(x Xs) Z(xp. Xe) Z(Xo X7)

Algorithms

Naive parallelization: pseudo-code (1/2)

Input: Elements located in M[1],..., M[n], where n is a power of 2.
Output: The n prefix sums located in M[n + 1],..., M[2n].
Program: Active Proocessors P[1], ...,P[n];

// id the active processor index
for 4 := 0 to (log(n) -1) do
if d is even then
if id > 2°d then
M[n + id] := M[id] + M[id - 2°d]
else
M[n + id] := M[id]
end if
else
if id > 2°d then
M[id] := M[n + id] + M[n + id - 2°d]
else
M[id]
end if
end if
if d is odd then M[n + id] := M[id] end if

M[n + id]

Naive parallelization: pseudo-code (2/2)

Pseudo-code

Active Proocessors P[1], ...,P[n]; // id the active processor index
for d := 0 to (log(n) -1) do
if d is even then
if id > 27°d then
M[n + id] := M[id] + M[id - 2~d]
else
M[n + id] := M[id]
end if
else
if id > 27°d then
M[id] := M[n + id] + M[n + id - 2~d]
else
M[id] := M[n + id]
end if
end if
if d is odd then M[n + id] := M[id] end if

Observations
e M[n+1],...,M[2n] are used to hold the intermediate results at Steps
d=0,2,4,...(log(n) —2).
o Note that at Step d, (n — 2d) processors are performing an addition.
@ Moreover, at Step d, the distance between two operands in a sum is 2¢.

Naive parallelization: analysis

Recall
e M[n+1],...,M[2n] are used to hold the intermediate results at
Steps d = 0,2,4, ... (log(n) — 2).
o Note that at Step d, (n — 2%) processors are performing an addition.

@ Moreover, at Step d, the distance between two operands in a sum is
24,

Analysis
o It follows from the above that the naive parallel algorithm performs
log(n) parallel steps
e Moreover, at each parallel step, at least n/2 additions are performed.
@ Therefore, this algorithm performs at least (n/2)log(n) additions

@ Thus, this algorithm is not work-efficient since the work of our serial
algorithm is simply n — 1 additions.

56 78
\/ \/ \/ \/ Pairwise sums

3 7 11 15
| | | | Recursive prefix
3 10 21 36
AW ANA Update “odds”
1 3 61015212836
Algorithm
o Input: z[1],z[2],...,x[n] where n is a power of 2.
o Step 1: (z[k], [D) = (x[k] + [k — 1], z[k] for all even k's.
o Step 2: Recursive call on z[2],z[4],...,z[n]

o Step 3: z[k — 1] = z[k] — [k — 1] for all even k's.

Algorithms

Parallel scan: a recursive work-efficient algorithm (2/2)

123456 78
\/\/ \/ \/ Pairwise sums
3 7 11 15
| | | | Recursive prefix
3 10 21 36
AW ANA Update “odds”
1 361015212836

Analysis
@ Since the recursive call is applied to an array of size n/2, the total number of
recursive calls is log(n).
Before the recursive call, one performs n/2 additions
After the recursive call, one performs n/2 subtractions
Elementary calculations show that this recursive algorithm performs at most a
total of 2n additions and subtractions
@ Thus, this algorithm is work-efficient. In addition, it can run in 2log(n)
parallel steps.

Plan

© Applications

Application to Fibonacci sequence computation

Fn+1 - Fn + Fn-l

F 1 1) F

n+1 n

F 1 0\ E

n

Can compute all F, by matmul_prefix on

[Gol Gl Gol Gl ool ool ool foal)]

Applications

Application to parallel addition (1/2)

Example Notation

1 0 1 1 1| FirstInt a, a, a, a,
1 01 0 1/SecondInt | b, b, b, b

Applications

Application to parallel addition (2/2)

Example Notation

1 0 1 1 1| FirstInt a, a, a, a,
1 01 0 1/SecondInt | a, b, b, b,

(addition mod 2
fori=0:n-1

s,=a, +b +c [Ci] _ [ai *+b, aibi] [Ci-l]
1 0 1 1

¢, =ab, +c,(a; +b)

end

Implementation in Julia

Plan

@ Implementation in Julia

Implementation in Julia

Serial prefix sum: recall

function prefixSum(x)
n = length(x)
y = £fill(x[1],n)
for i=2:n
ylil = yli-1] + x[i]
end

y

end
n =10

[mod(rand(Int32),10) for i=1:n]

e
]

prefixSum(x)

Implementation in Julia

Parallel prefix multiplication: live demo (1/7)

julia> reduce(+,1:8) #sum(1:8)
36

julia> reduce(x, 1:8) #prod(1:8)
40320

julia> boring(a,b)=a
methods for generic function boring
boring(a,b) at none:1

julia> println(reduce(boring, 1:8))
1

julia> boring2(a,b)=b
methods for generic function boring2
boring2(a,b) at none:1

julia> reduce(boring2, 1:8)
8

Comments

@ First, we test Julia’s reduce function with different operations.

in Julia

Parallel prefix multiplication: live demo (2/7)

julia> fib(j)=reduce(x, [[[1, 1] [1, 011 for i=1:j1)
methods for genmeric function fib
fib(j) at none:1

julia> map(fib, [4, 71)

2-element Array{Array{Int64,2},1}:
2x2 Array{Int64,2}:

5 3

3 2

2x2 Array{Int64,2}:

21 13

13 8

julia> Hadamard(n)=reduce(kron, [[[1,1] [1,-1]] for i=1:n])
methods for generic function Hadamard
Hadamard(n) at none:1

julia> Hadamard(3)
8x8 Array{Int64,2}:
1 1 1 1 1 1 1 1
-1 1 -1 1 -1 1 -1
1 -1 -1 1 1 -1 -1
-1 -1 1 1 -1 -1 1
1 1 1 -1 -1 -1 -1
-1 1 -1 -1 1 -1 1
1 -1 -1 -1 -1 1 1
-1 -1 1 -1 1 1 -1

N

Comments
o Next, we compute Fibonacci numbers and Hadamard matrices via prefix sum. J

Implementation in Julia

Parallel prefix multiplication: live demo (3/7)

julia> M=[randn(2,2) for i=1:4];

julia> printnice(x)=println(round(x,3))
methods for generic function printnice
printnice(x) at none:1

julia> printnice (M[4]+M[3]*M[2]*M[1])
-.466 .906
1.559 -3.447

julia> printnice(reduce((A,B)->B*A, M)) #backward multiply
-.466 .906
1.559 -3.447

julia> printnice(reduce(*, M)) #forward multiply
-.823 .25
-2.068 .39

Comments
@ In the above we do a prefix multiplication with random matrices.

Implementation in Julia

Parallel prefix multiplication: live demo (4/7)

julia> h=reduce((f,g)->(x->f(g(x))), [sin cos tan])
function

julia>
julia> [h(pi) sin(cos(tan(pi)))]

1x2 Array{Float64,2}:
0.841471 0.841471

Comments

@ In the above example we apply ‘reduce()‘ to function composition:

Parallel prefix multiplication: live demo (5/7)

julia> Qeverywhere function prefix_seriall (y,*)
@inbounds for i in 2:length(y)
ylil=y[i-11*y[i]

julia> function prefix8!(y,*)
if length(y)!=8; error("length 8 only"); end
for i in [2,4,6,8]; yl[il=y[i-11*y[il; end

for i in [4, 8]; ylil=y[i-2]*y[il; end
for i in [8]; ylil=y[i-41*y[il; end
for i in [6 1; yli [i-2]*y[i]; end
for i in [3,5,7 1; ylil=y[i-1]*y[i]; end
y

end

methods for generic function prefix8!
prefix8! (y,*) at none:2

julia> function prefix!(y,.*)
1=length(y)
k=int (ceil(log2(1)))
@inbounds for j=1:k, i=2"j:2"j:min(l, 2°k) #"reduce"
ylil=y[i-27(G-1)].*y[i]
end
@inbounds for j=(k-1):-1:1, i=3%27(j-1):2"j:min(l, 2°k) #"broadcast"
ylil=y[i-2"(G-1)]1.*y[i]
end
y
end
methods for generic function prefix!
prefix!(y,.*) at none:2

Comments
@ We prepare a prefix-sum computation with 8 workers and 8 matrices to
multiply.

Implementation in Julia

Parallel prefix multiplication: live demo (6/7)

+(rl::RemoteRef,r2: :RemoteRef)=0spawnat r2.where fetch(rl)+fetch(r2)
methods for generic function +

+(x::Bool,y::Bool) at bool.jl:38

+(x::Int64,y::Int64) at int.jl:36

. 91 methods not shown (use methods(+) to see them all)

julia> *(rl::RemoteRef,r2::RemoteRef)=0spawnat r2.where fetch(rl)*fetch(r2)
methods for generic function *

121 methods not shown (use methods(*) to see them all)

julia> # The serial version requires 7 operations. The parallel version uses

Comments

o We prepare a prefix-sum computation with 8 workers and 8 matrices to
multiply.

Parallel prefix multiplication: live demo (7/7)

\julia> n=2048
2048

julia> r=[@spawnat i randn(n,n) for i=1:8]; s=fetch(r); t=copy(r)
8-element Array{Any,1}:

RemoteRef (1,1,16)

RemoteRef(2,1,17)

RemoteRef (3,1,18)

RemoteRef (4,1,19)

RemoteRef (5,1,20)

RemoteRef (6,1,21)

RemoteRef (7,1,22)

RemoteRef (8,1,23)

julia> tic(); prefix_seriall!(s, *); t_ser = toc()
elapsed time: 10.679596478 seconds
10.679596478

julia> tic(); @sync prefix8!(t, *); t_par = toc() #Caution: race condition bug #4330
elapsed time: 7.434856303 seconds
7.434856303

julia> @printf("Serial: 7%.3f sec Parallel: %.3f sec speedup: %.3fx (theory=1.4x)", t_ser, t_par, t_ser
Serial: 10.680 sec Parallel: 7.435 sec speedup: 1.436x (theory=1.4x)

Comments
o Now let's run prefix in parallel on 8 processors. J

	Problem Statement and Applications
	Algorithms
	Applications
	Implementation in Julia

