Parallel Scanning

Marc Moreno Maza

University of Western Ontario, London, Ontario (Canada)

CS2101
Plan

1. Problem Statement and Applications
2. Algorithms
3. Applications
4. Implementation in Julia
Plan

1. Problem Statement and Applications
2. Algorithms
3. Applications
4. Implementation in Julia
Overview

- This chapter will be the first dedicated to the applications of a parallel algorithm.
- This algorithm, called the parallel scan, aka the parallel prefix sum is a beautiful idea with surprising uses: it is a powerful recipe to turning serial into parallel.
- Watch closely what is being optimized for: this is an amazing lesson of parallelization.
- Application of parallel scan are numerous:
 - it is used in program compilation, scientific computing and,
 - we already met prefix sum with the counting-sort algorithm!
Prefix sum

Prefix sum of a vector: specification

Input: a vector \(\vec{x} = (x_1, x_2, \ldots, x_n) \)

Output: the vector \(\vec{y} = (y_1, y_2, \ldots, y_n) \) such that \(y_i = \sum_{i=1}^{j=i} x_j \) for \(1 \leq j \leq n \).

Prefix sum of a vector: example

The prefix sum of \(\vec{x} = (1, 2, 3, 4, 5, 6, 7, 8) \) is \(\vec{y} = (1, 3, 6, 10, 15, 21, 28, 36) \).
Remark
So a Julia implementation of the above specification would be:

```julia
function prefixSum(x)
    n = length(x)
    y = fill(x[1], n)
    for i=2:n
        y[i] = y[i-1] + x[i]
    end
    y
end
```

```
n = 10
x = [mod(rand(Int32),10) for i=1:n]
prefixSum(x)
```

Comments (1/2)
- The \(i\)-th iteration of the loop is not at all decoupled from the \((i-1)\)-th iteration.
- Impossible to parallelize, right?
Remark
So a Julia implementation of the above specification would be:

```julia
function prefixSum(x)
    n = length(x)
    y = fill(x[1],n)
    for i=2:n
        y[i] = y[i-1] + x[i]
    end
    y
end
```

```
n = 10
x = [mod(rand(Int32),10) for i=1:n]
prefixSum(x)
```

Comments (2/2)
- Consider again \(\vec{x} = (1, 2, 3, 4, 5, 6, 7, 8) \) and its prefix sum \(\vec{y} = (1, 3, 6, 10, 15, 21, 28, 36) \).
- Is there any value in adding, say, 4+5+6+7 on itw own?
- If we separately have 1+2+3, what can we do?
- Suppose we added 1+2, 3+4, etc. pairwise, what could we do?
Parallel scan: formal definitions

- Let S be a set, let $+ : S \times S \rightarrow S$ be an associative operation on S with 0 as identity. Let $A[1 \cdots n]$ be an array of n elements of S.

- The *all-prefixes-sum* or *inclusive scan* of A computes the array B of n elements of S defined by

 \[
 B[i] = \begin{cases}
 A[1] & \text{if } i = 1 \\
 B[i - 1] + A[i] & \text{if } 1 < i \leq n
 \end{cases}
 \]

- The *exclusive scan* of A computes the array C of n elements of S:

 \[
 C[i] = \begin{cases}
 0 & \text{if } i = 1 \\
 C[i - 1] + A[i - 1] & \text{if } 1 < i \leq n
 \end{cases}
 \]

- An exclusive scan can be generated from an inclusive scan by shifting the resulting array right by one element and inserting the identity.

- Similarly, an inclusive scan can be generated from an exclusive scan.
Plan

1. Problem Statement and Applications
2. Algorithms
3. Applications
4. Implementation in Julia
Serial scan: pseudo-code

Here’s a sequential algorithm for the inclusive scan.

```plaintext
function prefixSum(x)
    n = length(x)
    y = fill(x[1],n)
    for i=2:n
        y[i] = y[i-1] + x[i]
    end
    y
end
```

Comments

- Recall that this is similar to the *cumulated frequency computation* that is done in the prefix sum algorithm.
- Observe that this sequential algorithm performa $n - 1$ additions.
Naive parallelization (1/4)

Principles

- Assume we have the input array has n entries and we have n workers at our disposal.
- We aim at doing as much as possible per parallel step. For simplicity, we assume that n is a power of 2.
- Hence, during the first parallel step, each worker (except the first one) adds the value it owns to that of its left neighbour: this allows us to compute all sums of the forms $x_{k-1} + x_{k-2}$, for $2 \leq k \leq n$.
- For this to happen, we need to work OUT OF PLACE. More precisely, we need an auxiliary with n entries.
Principles

- Recall that the k-th slot, for $2 \leq k \leq n$, holds $x_{k-1} + x_{k-2}$.
- If $n = 4$, we can conclude by adding Slot 0 and Slot 2 on one hand and Slot 1 and Slot 3 on the other.
- More generally, we can perform a second parallel step by adding Slot k and Slot $k-2$, for $3 \leq k \leq n$.

Naive parallelization (2/4)
Principles

- Now the k-th slot, for $4 \leq k \leq n$, holds $x_{k-1} + x_{k-2} + x_{k-3} + x_{k-4}$.
- If $n = 8$, we can conclude by adding Slot 5 and Slot 1, Slot 6 and Slot 2, Slot 7 and Slot 3, Slot 8 and Slot 4.
- More generally, we can perform a third parallel step by adding Slot k and Slot $k - 4$ for $5 \leq k \leq n$.

![Diagram showing parallel steps with sums of elements in slots]
Naive parallelization (4/4)
Naive parallelization: pseudo-code (1/2)

Input: Elements located in $M[1], \ldots, M[n]$, where n is a power of 2.

Output: The n prefix sums located in $M[n + 1], \ldots, M[2n]$.

Program:
Active Proccessors $P[1], \ldots, P[n]$;
// id the active processor index
for $d := 0$ to $(\log(n) - 1)$ do
if d is even then
if $id > 2^d$ then
$M[n + id] := M[id] + M[id - 2^d]$
else
$M[n + id] := M[id]$
end if
else
if $id > 2^d$ then
$M[id] := M[n + id] + M[n + id - 2^d]$
else
$M[id] := M[n + id]$
end if
end if
if d is odd then $M[n + id] := M[id]$ end if
Naive parallelization: pseudo-code (2/2)

Pseudo-code

Active Processors P[1], ..., P[n]; // id the active processor index
for d := 0 to (log(n) - 1) do
if d is even then
 if id > 2^d then
 M[n + id] := M[id] + M[id - 2^d]
 else
 M[n + id] := M[id]
 end if
else
 if id > 2^d then
 M[id] := M[n + id] + M[n + id - 2^d]
 else
 M[id] := M[n + id]
 end if
end if
if d is odd then M[n + id] := M[id] end if

Observations

- \(M[n + 1], \ldots, M[2n] \) are used to hold the intermediate results at Steps \(d = 0, 2, 4, \ldots (\log(n) - 2) \).
- Note that at Step \(d \), \((n - 2^d) \) processors are performing an addition.
- Moreover, at Step \(d \), the distance between two operands in a sum is \(2^d \).
Naive parallelization: analysis

Recall
- $M[n + 1], \ldots, M[2n]$ are used to hold the intermediate results at Steps $d = 0, 2, 4, \ldots (\log(n) - 2)$.
- Note that at Step d, $(n - 2^d)$ processors are performing an addition.
- Moreover, at Step d, the distance between two operands in a sum is 2^d.

Analysis
- It follows from the above that the naive parallel algorithm performs $\log(n)$ parallel steps.
- Moreover, at each parallel step, at least $n/2$ additions are performed.
- Therefore, this algorithm performs at least $(n/2)\log(n)$ additions.
- Thus, this algorithm is not work-efficient since the work of our serial algorithm is simply $n - 1$ additions.
Parallel scan: a recursive work-efficient algorithm (1/2)

Algorithm

- **Input:** \(x[1], x[2], \ldots, x[n]\) where \(n\) is a power of 2.
- **Step 1:** \((x[k], x[k - 1]) = (x[k] + x[k - 1], x[k])\) for all even \(k\)'s.
- **Step 2:** Recursive call on \(x[2], x[4], \ldots, x[n]\)
- **Step 3:** \(x[k - 1] = x[k] - x[k - 1]\) for all even \(k\)'s.
Parallel scan: a recursive work-efficient algorithm (2/2)

Analysis

- Since the recursive call is applied to an array of size \(n/2 \), the total number of recursive calls is \(\log(n) \).
- Before the recursive call, one performs \(n/2 \) additions.
- After the recursive call, one performs \(n/2 \) subtractions.
- Elementary calculations show that this recursive algorithm performs at most a total of \(2n \) additions and subtractions.
- Thus, this algorithm is work-efficient. In addition, it can run in \(2\log(n) \) parallel steps.
Plan

1. Problem Statement and Applications
2. Algorithms
3. Applications
4. Implementation in Julia
Application to Fibonacci sequence computation

\[F_{n+1} = F_n + F_{n-1} \]

\[
\begin{pmatrix}
F_{n+1} \\
F_n
\end{pmatrix}
=
\begin{pmatrix}
1 & 1 \\
1 & 0
\end{pmatrix}
\begin{pmatrix}
F_n \\
F_{n-1}
\end{pmatrix}
\]

Can compute all \(F_n \) by matmul_prefix on

\[
\left[
\begin{array}{cccccccc}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 0 & 1 & 0 & 1 & 0 & 1 & 0
\end{array}\right]
\]
Application to parallel addition (1/2)

<table>
<thead>
<tr>
<th>Example</th>
<th>Carry</th>
<th>Notation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 0 1 1 1</td>
<td>1 0 1 1 1</td>
<td>c<sub>2</sub> c<sub>1</sub> c<sub>0</sub></td>
</tr>
<tr>
<td>1 0 1 0 1</td>
<td>1 0 1 1 1</td>
<td>a<sub>3</sub> a<sub>2</sub> a<sub>1</sub> a<sub>0</sub></td>
</tr>
<tr>
<td>1 0 1 0 1</td>
<td>1 0 1 1 1</td>
<td>b<sub>3</sub> b<sub>2</sub> b<sub>1</sub> b<sub>0</sub></td>
</tr>
</tbody>
</table>
Application to parallel addition (2/2)

<table>
<thead>
<tr>
<th>Example</th>
<th>Carry</th>
<th>Notation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 0 1 1 1 1</td>
<td>1 0 1 1 1 1</td>
<td>(c_2) (c_1) (c_0)</td>
</tr>
<tr>
<td>1 0 1 0 1</td>
<td>First Int</td>
<td>(a_3) (a_2) (a_1) (a_0)</td>
</tr>
<tr>
<td>1 0 1 0 1</td>
<td>Second Int</td>
<td>(a_3) (b_2) (b_1) (b_0)</td>
</tr>
</tbody>
</table>

\(c_{-1} = 0 \) (addition mod 2)

For \(i = 0 : n-1 \)

\[
\begin{align*}
 s_i &= a_i + b_i + c_{i-1} \\
 c_i &= a_i b_i + c_{i-1}(a_i + b_i)
\end{align*}
\]

\[
\begin{bmatrix}
 c_i \\
 1
\end{bmatrix} =
\begin{bmatrix}
 a_i + b_i & a_i b_i \\
 0 & 1
\end{bmatrix}
\begin{bmatrix}
 c_{i-1} \\
 1
\end{bmatrix}
\]

end
Plan

1. Problem Statement and Applications
2. Algorithms
3. Applications
4. Implementation in Julia
function prefixSum(x)
 n = length(x)
 y = fill(x[1],n)
 for i=2:n
 y[i] = y[i-1] + x[i]
 end
 y
end

n = 10

x = [mod(rand(Int32),10) for i=1:n]

prefixSum(x)
First, we test Julia’s `reduce` function with different operations.
Parallel prefix multiplication: live demo (2/7)

julia> fib(j)=reduce(*, [[[1, 1] [1, 0]] for i=1:j])
methods for generic function fib
fib(j) at none:1

julia> map(fib, [4, 7])
2-element Array{Array{Int64,2},1}:
 2x2 Array{Int64,2}:
 5 3
 3 2
 2x2 Array{Int64,2}:
 21 13
 13 8

julia> Hadamard(n)=reduce(kron, [[[1,1] [1,-1]] for i=1:n])
methods for generic function Hadamard
Hadamard(n) at none:1

julia> Hadamard(3)
8x8 Array{Int64,2}:
 1 1 1 1 1 1 1 1
 1 -1 -1 -1 -1 -1 -1 -1
 1 1 -1 1 1 -1 -1 -1
 1 -1 1 1 -1 -1 1 1
 1 1 1 -1 -1 -1 1 1
 1 -1 1 1 -1 -1 -1 1
 1 1 -1 -1 -1 -1 -1 1
 1 -1 -1 -1 1 1 -1 1

Comments

- Next, we compute Fibonacci numbers and Hadamard matrices via prefix sum.
Parallel prefix multiplication: live demo (3/7)

```
julia> M=[randn(2,2) for i=1:4];

julia> println(x)=println(round(x,3))  # methods for generic function printnice
println(x) at none:1

julia> println(M[4]*M[3]*M[2]*M[1])
  -0.466  0.906
  1.559  -3.447

julia> println(reduce((A,B)->B*A, M))  #backward multiply
  -0.466  0.906
  1.559  -3.447

julia> println(reduce(*, M))  #forward multiply
  -0.823  0.25
  -2.068  0.39
```

Comments

- In the above we do a prefix multiplication with random matrices.
Parallel prefix multiplication: live demo (4/7)

julia> h=reduce((f,g)->(x->f(g(x))), [sin cos tan])
function

julia>

julia> [h(pi) sin(cos(tan(pi)))]
1x2 Array{Float64,2}:
 0.841471 0.841471

Comments

- In the above example we apply ‘reduce()’ to function composition:
Parallel prefix multiplication: live demo (5/7)

julia> @everywhere function prefix_serial!(y,*)
 @inbounds for i in 2:length(y)
 y[i]=y[i-1]*y[i]
 end
 y
end;

julia> function prefix8!(y,*)
 if length(y)!==8; error("length 8 only"); end
 for i in [2,4,6,8]; y[i]=y[i-1]*y[i]; end
 for i in [4, 8]; y[i]=y[i-2]*y[i]; end
 for i in [8]; y[i]=y[i-4]*y[i]; end
 for i in [6]; y[i]=y[i-2]*y[i]; end
 for i in [3,5,7]; y[i]=y[i-1]*y[i]; end
 y
end
methods for generic function prefix8!
prefix8!(y,*) at none:2

julia> function prefix!(y,*)
 l=length(y)
 k=int(ceil(log2(l)))
 @inbounds for j=1:k, i=2^-j:2^-j:min(l, 2^k) #"reduce"
 y[i]=y[i-2^(-j-1)].*y[i]
 end
 @inbounds for j=(k-1):-1:1, i=3*2^-j:2^-j:min(l, 2^k) #"broadcast"
 y[i]=y[i-2^(-j-1)].*y[i]
 end
 y
end
methods for generic function prefix!
prefix!(y,*) at none:2

Comments
- We prepare a prefix-sum computation with 8 workers and 8 matrices to multiply.
Implementation in Julia

Parallel prefix multiplication: live demo (6/7)

```julia
+(r1::RemoteRef,r2::RemoteRef)=@spawnat r2.where fetch(r1)+fetch(r2)

methods for generic function +
+(x::Bool,y::Bool) at bool.jl:38
+(x::Int64,y::Int64) at int.jl:36

... 91 methods not shown (use methods(+) to see them all)

julia> *(r1::RemoteRef,r2::RemoteRef)=@spawnat r2.where fetch(r1)*fetch(r2)
# methods for generic function *

... 121 methods not shown (use methods(*) to see them all)

julia> # The serial version requires 7 operations. The parallel version uses
```

Comments

- We prepare a prefix-sum computation with 8 workers and 8 matrices to multiply.
Parallel prefix multiplication: live demo (7/7)

```
\julia> n=2048
2048

\julia> r=[@spawnat i randn(n,n) for i=1:8]; s=fetch(r); t=copy(r)
8-element Array{Any,1}:
  RemoteRef(1,1,16)
  RemoteRef(2,1,17)
  RemoteRef(3,1,18)
  RemoteRef(4,1,19)
  RemoteRef(5,1,20)
  RemoteRef(6,1,21)
  RemoteRef(7,1,22)
  RemoteRef(8,1,23)

\julia> tic(); prefix_serial!(s, *); t_ser = toc()
elapsed time: 10.679596478 seconds
10.679596478

\julia> tic(); @sync prefix8!(t, *); t_par = toc() #Caution: race condition bug #4330
elapsed time: 7.434856303 seconds
7.434856303

\julia> @printf("Serial: %.3f sec  Parallel: %.3f sec  speedup: %.3fx (theory=1.4x)", t_ser, t_par, t_ser/t_par)
Serial: 10.680 sec  Parallel: 7.435 sec  speedup: 1.436x (theory=1.4x)
```

Comments

- Now let’s run prefix in parallel on 8 processors.