
CS4402/CS9535b: Corrected exercises (including Quiz 1). UWO, February
27, 2014.

Student ID number:
Student Last Name:

Guidelines. The quiz consists of two exercises. All answers should be written
in the answer boxes. No justifications for the answers are needed, unless explicitly
required. You are expected to do this quiz on your own without assistance from
anyone else in the class. If possible, please avoid pencils and use pens with dark
ink. Thank you.

Exercise 1. For each of the following pseudo-code (using the same syntax and
semantics as Cilk++)

1. sketch the shape of the instruction stream DAG,

2. determine the work,

3. determine the span.

Your estimate will depend on the following quantities:

• n, which is an int variable,

• void A (void) and void B(int m), which are two C++ functions,

• WA and SA, which are the work and span of the function call A(),

• WB(n) and SB(n), which are the work and span of the function call B(n).

Of course, you can use the big-Oh, max and sigma notations, when appropriate.
For instance O(n) or max(SB(i), 0 ≤ i ≤ n− 1) or

∑n−1
0 WB(i).

1

1. /* Program 1 */

for (int i = 0; i < n ; i++) {
A();

}

Answer 1
The work and the span are in the order of Θ(nWA) and Θ(nSA) respectively,
thus, in the order of Θ(n) and Θ(n), since WA and SA are constant (i.e inde-
pedent of n).

2. /* Program 2 */

cilk_for (int i = 0; i < n ; i++) {
A();

}

Answer 2
The work and the span are in the order of Θ(nWA) and Θ(log(n) + SA)
respectively, thus, in the order of Θ(n) and Θ(log(n)), since WA and SA are
constant (i.e indepedent of n).

3. /* Program 3 */

cilk_for (int i = 0; i < n ; i++) {
B(i);

}

Answer 3
The work and the span are in the order of Θ(

∑i=n−1
i=0 WB(i)) and

Θ(maxi=n−1
i=0 SB(i) + log(n)) respectively.

2

4. /* Program 4 */

cilk_for (int i = 0; i < n ; i++) {
for (int j = 0; j < 4; j++) {
A();

}
}

Answer 4
The work and the span are in the order of Θ(4nWA) and Θ(log(n) + 4SA)
respectively, thus, in the order of Θ(n) and Θ(log(n)), since WA and SA are
constant (i.e indepedent of n).

5. /* Program 5 */

cilk_for (int i = 0; i < n ; i++) {
cilk_for (int j = 0; j < 4; j++) {
A();

}
}

Answer 5
The work and the span are in the order of Θ(4nWA) and Θ(log(n) + 2 + SA)
respectively, thus, in the order of Θ(n) and Θ(log(n)), since WA and SA are
constant (i.e indepedent of n).

6. /* Program 6 */

for (int i = 0; i < n ; i++) {
cilk_for (int j = 0; j < 4; j++) {
A();

}
}

3

Answer 6
The work and the span are in the order of Θ(4nWA) and Θ(n(2 + SA)) re-
spectively, thus, in the order of Θ(n) and Θ(n), since WA and SA are constant
(i.e indepedent of n).

7. /* Program 7 */

cilk_for (int i = 0; i < n ; i++) {
cilk_for (int j = 0; j < 4; j++) {
A();

}
B(i);

}

Answer 7
The work and the span are in the order of Θ(4nWA +

∑i=n−1
i=0 WB(i))) and

Θ(log(n) + 2 + SA + maxi=n−1
i=0 SB(i)) respectively, thus, in the order of

Θ(n +
∑i=n−1

i=0 WB(i)) and Θ(log(n) + maxi=n−1
i=0 SB(i)), since WA and SA

are constant (i.e indepedent of n).

4

Exercise 2. Let A be a square matrix of order n ≥ 2, where n is assumed to be
a power of 2. The goal of this exercise is to write a parallel algorithm or program
which will compute the inverse of A. To do so, we will rely on a classical formula
from Linear Algebra. We shall analyze the work and the critical path of this
algorithm (or program). We assume that we have two parallel sub-algorithms at
our disposal:

• ADD(C,T, n) computing the sum of two square matrices C and T (C is
replaced by C + T) of order n in work A1(n) = Θ(n2) and with critical
path A∞(n) = Θ(log(n));

• MULT(C,A,B, n) computing the product of two square matrices A and B
(C is replaced by AB) of order n in work M1(n) = Θ(n3) and with critical
path M∞(n) = Θ(log2(n));

We start by reviewing this classical formula. We partition A into four square
blocks of order n/2:

A =

[
A11 A12

A21 A22

]
(1)

Let O and I be the zero and identity matrices of order n/2, respectively. We
assume that the upper right block A11 is an invertible matrix. Then we define
S = A22 − A21A

−1
11 A12 (called the Schur complement). We assume that S is also

invertible. Then we have:

A−1 =

[
I −A−111 A12

O I

] [
A−111 O
O S−1

] [
I O

A21A
−1
11 I

]
(2)

Let us denote by U,D,L the above three matrices respectively.

1. Write a Cilk-like program computing the inverse of A based on the above
formula. We will assume that at each recursive call the upper right and the
Schur complement are invertible. You shall try to make the critical path as
small as possible.

2. Estimate I1(n) the work of your algorithm

3. Estimate I∞(n) the critical path of your algorithm.

4. Is your algorithm in the NC clas? Explain.

Before writing a Cilk-like program, let us first write an informal algorithm:

5

1. Compute A−111 by a recursive call,

2. Compute A−111 A12 and A21A
−1
11 in parallel,

3. Compute A21A
−1
11 A12,

4. Compute S,

5. Compute S−1 by a recursive call,

6. Compute U D

7. Compute and return U DL.

In the following program, we use four subroutines Opposite, ZeroMatrix,
UnitMatrix and CopyMatrix. They respectively compute the opposite of a
matrix, set a matrix to the zero one, set a matrix to the unit one and copy a matrix
into another one. For each of these subroutines, the output is the first argument
and the other ones are the input data.

Note that the proposed procedure Inverse uses its third and fourth argu-
ments as work space. This procedure does not use any local variables. We use
the following notation in this program. For a square matrix M of even order, we
denote by M[i,j] the element at the intersection of row i and j; we denote by
M{1,1}, M{1,2}, M{2,1}, M{2,2} the top-left, top right, bottom-left, bottom-
right blocks of M (each of order half that of M).

6

/* I, A, W are 3 square matrices of order n */
/* C is a square matrix of order n/2 */
/* A is the input, W and C are work space, */
/* I is the output, that is, the inverse of A */
/* A is overwritten */
void Inverse(I, A, W, C, n)

if n=1
then I[1,1] := 1 / A[1,1]
else

spawn Inverse(I{1,1}, A{1,1}, W{2,2}, C{1,1}, n/2)
/* Now I{1,1} contains the inverse of A{1,1} */
spawn Opposite(W{2,2}, A{1,2}, n/2)
sync
spawn Mult(W{2,1}, A{2,1}, I{1,1}, n/2)
/* Now W{2,1} contains A{2,1} * I{1,1} */
spawn Mult(W{1,2}, I{1,1}, W{2,2}, n/2)
/* Now W{1,2} contains the opposite of I{1,1} * A{1,2} */
sync
spawn Mult(W{2,2}, A{2,1}, W{1,2}, n/2)
sync
spawn Add(A{1,2}, A{2,2}, W{2,2}, n/2)
/* Now A{1,2} contains the Schur complement */
spawn CopyMatrix(A{2,1}, W{2,1}, n/2)
/* Now A{2,1} contains A{2,1} * I{1,1} */
sync
spawn Inverse(I{2,2}, A{1,2}, W{1,1}, C{1,1}, n/2)
/* Now I{2,2} contains the inverse of the Schur complement */
sync
spawn UnitMatrix(W{1,1}, n/2)
spawn ZeroMatrix(W{2,1}, n/2)
spawn UnitMatrix(W{2,2}, n/2)
/* Now W = U */
spawn ZeroMatrix(I{2,1}, n/2)
spawn ZeroMatrix(I{1,2}, n/2)
/* Now I = D */
spawn CopyMatrix(C, A{2,1}, n/2)
sync
spawn Mult(A, W, I, n)
sync
spawn ZeroMatrix(W{1,2}, n/2)
spawn CopyMatrix(W{2,1}, C, n/2)
sync
spawn Mult(I, A, W, n)
return

7

For the analysis of the work and the critical path, we neglect the subroutines
Opposite, ZeroMatrix, UnitMatrix and CopyMatrix for simplic-
ity.
Based on the informal algorithm, the critical path I∞(n) satisfies:

I∞(n) = 2 I∞(n/2) + 2M∞(n/2) + 2M∞(n) + A∞(n/2)
= 2 I∞(n/2) + 2 Θ(log2(n/2)) + 2 Θ(log2(n)) + Θ(log(n))
= 2 I∞(n/2) + Θ(log2(n))
= Θ(n)

Therefore our procedure is not in the NC class.
Then, the work satisfies:

I1(n) = 2 I1(n/2) + 3M1(n/2) + 2M1(n) + A1(n/2)
= 2 I1(n/2) + Θ(n3)
= Θ(n3)

8

Exercise 3. Consider the following Cilk++ code fragment.

static const int COUNT = 4;
static const int ITERATION = 1000000;
long arr[COUNT];
long do_work(long k){

long x = 15;
static const int nn = 87;
for (long i = 1; i < nn; ++i)

x = x / i + k % i;
return x;

}
int cilk_main(){

for (int j = 0; j < ITERATION; j++)
cilk_for (int i = 0; i < COUNT; i++)
arr[i] += do_work(i + j);

}

1. Estimate the (theoretical) parallelism of this program.

2. Explain why the burdened span of this program is much higher than the
(theoretical) span. You can sketch the shape of the instruction stream DAG
to support your explanation.

3. How can we fix the performance bottleneck of this program?

Note: Recall that Cilk++ estimates Tp as Tp = T1/p + 1.7 burden span, where
burden span is 15000 instructions times the number of continuation edges along
the critical path.

9

Answer 8
1. Let us write n instead of ITERATION. Observe that the work and span

of the do work are constant W and S (i.e. indepedent of n). Moreover
we have W = S since do work is pure serial code. Thus the work and
span of the above program are respectively propoertional to 4nW and
n(W + 2). Thus the theoretical parallelism is about 4.

2. Each of the n iterations of the outer for-loop will execute, in sequence,
the ineer cilk for loop. Therefore, the burdened span of this pro-
gram is n times 15000 instructions times 2. The factor 2 is the (theoret-
ical) span of the inner loop. This burdened span is likely to be greater
than 4nW . Hence, this parallel program is likely to be slower than its
serial counterpart.

3. It is easy to verify that one can exchange the two for-loops. This re-
duces to burdened span to 2× (15000 +W). On a 4-core machine, this
modified program is likely to reach a speedup factor of 4.

10

